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We compute the pressure, chiral condensate and strange quark number susceptibility from first principles
within perturbative QCD at finite temperature and very high magnetic fields up to two-loop and physical
quark masses. The region of validity for our framework is given by ms ≪ T ≪

ffiffiffiffiffiffi
eB

p
, where ms is the

strange quark mass, e is the fundamental electric charge, T is the temperature, and B is the magnetic field
strength. We study the convergence of the perturbative series for the pressure for different choices of
renormalization scale in the running coupling, αsðT; BÞ. Our results for the chiral condensate and strange
quark number susceptibility can be directly compared to recent lattice QCD data away from the chiral
transition. Even though current lattice results do not overlap with the region of validity above, perturbative
results seem to be in the same ballpark.

DOI: 10.1103/PhysRevD.108.034026

I. INTRODUCTION

The understanding of the phase structure of hadronic
matter under the influence of different control parameters,
such as temperature, baryon chemical potential and
electromagnetic fields, must ultimately be derived from
in-medium quantum chromodynamics (QCD), its funda-
mental theory. The case of magnetic QCD, where one of
the control parameters is an external magnetic field, is
phenomenologically relevant in different scenarios. In the
astrophysics of compact stars, magnetars can exhibit very
large fields, of the order of 1015 Gauss [1–3], which
corresponds to ∼20 MeV2. In noncentral, high-energy
heavy ion collisions one can reach much larger values,
∼1019 Gauss ∼ 10m2

π [4–10]. In the early universe, pri-
mordial magnetic fields could be a few orders of magni-
tude higher [11–13].
From the theoretical perspective, the case of thermal

magnetic QCD, where the control parameters are the
temperature T and external magnetic field B, is particularly
attractive. Since it does not suffer from the sign problem
[14], it can be tackled by Monte Carlo simulations, and

lattice QCD has produced a variety of relevant results in the
last decade, including a great portion of the phase diagram
[15–24]. It can also be addressed analytically within limits
of the fundamental theory: in perturbation theory [25–27],
for large values of T and B; in hard thermal loop
perturbation theory [28–32]; for a large number of colors
Nc [33]; in the low-energy sector, via chiral perturbation
theory [34–36]. Of course, hot hadronic matter in the
presence of external magnetic fields can also be described
within effective models. For a detailed discussion and list of
references, see Refs. [37–40].
In this paper we investigate the behavior of the pressure,

chiral condensate and strange quark number susceptibility
from first principles within perturbative QCD at finite
temperature and very high magnetic fields up to two-
loop (2L) for 3 flavors with physical quark masses. For
the pressure we show that the exchange contribution
increases with the magnetic field, but nevertheless corre-
sponds to a correction of less than 20% at intermediate
temperatures (T ∼ 300 MeV) even for extremely large
magnetic fields.
In order to compare our perturbative results to the

benchmark provided by lattice QCD simulations, we need
very large magnetic fields on the lattice, so that the domain
of validity of our calculation, given by ms ≪ T ≪

ffiffiffiffiffiffi
eB

p
,

wherems is the strange quark mass and e is the fundamental
electric charge, can be reached. A few years ago, Endrödi
[23], in a pioneering tour de force, was able to reach
magnetic fields of the order of eB ¼ 3.25 GeV2 in his
simulations. The expectation, then, using extrapolations
of the available lattice data combined with an effective
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description of QCD, was that for magnetic fields eB ∼
10 GeV2 the crossover in the temperature-magnetic field
phase diagram would become a true first-order phase
transition. Recently D’Elia et al. [41,42] have extended
thermal magnetic QCD on the lattice to magnetic fields as
large as eB ¼ 9 GeV2, providing numerical evidence that
the onset of a first-order line happens within the
range eB ¼ 4–9 GeV2.
This work is organized as follows. In Sec. II we present

the perturbative setup and a few details on the calculation of
the pressure and chiral condensate to 2L, as well as the
running of the coupling and strange quark masses. In
Sec. III we discuss our results and compare some of them to
what has been obtained recently on the lattice. Section IV
contains our summary and outlook.

II. PRESSURE AND CHIRAL CONDENSATE

In this section we compute the pressure and chiral
condensate in the lowest Landau level approximation up
to 2L in perturbative QCD. We assume that the system is
embedded in a uniform, very large magnetic field B ¼ Bẑ,
where the field strength B is much larger than the temper-
ature and all masses.

A. One-loop contribution to the pressure

Let us start with the one-loop (free), contribution to the
pressure of thermal QCD in the presence of high magnetic
fields. The one-loop (1L) contribution coming from the
quark sector is given by the following renormalized
expression (subtracting the pure vacuum term) [37–40]:

Pq
free

Nc
¼

X
f

ðqfBÞ2
2π2

�
ζ0ð−1; xfÞ − ζ0ð−1; 0Þ þ 1

2
ðxf − x2fÞ ln xf þ

x2f
2

�

þ T
X
n;f

qfB

π
ð1 − δn;0=2Þ

Z
dpz

2π

n
lnð1þ e−β½Eðn;pzÞ−μf �Þ þ lnð1þ e−β½Eðn;pzÞþμf �Þ

o
; ð1Þ

where E2ðn; pzÞ ¼ p2
z þm2

f þ 2qfBn, xf ≡m2
f=2qfB,

T ¼ 1=β is the temperature, μ is the quark chemical
potential,Nc is the number of colors, f labels quark flavors,
qf is the quark electric charge, and n ¼ 0; 1; 2;… stands for
the Landau levels. In this expression, Matsubara sums have
already been performed in the medium contribution.
One should notice that there is an inherent arbitrariness

in the renormalization procedure (see Refs. [43–50] for a
discussion). In Eq. (1), all mass-independent terms were
neglected and the pure magnetic term goes to zero in the
limit m → 0. There are renormalization procedures where
other terms survive and the pure magnetic expression
diverges as m → 0. This discrepancy in the renormalized
expression leads to differences in some physical quantities,
e.g., the magnetization [46]. However, it turns out that the
two different pure magnetic terms have the same derivative
with respect to the mass, so that quantities such as the
condensate and the self-energy must in principle coincide
in both approaches.
Taking the limit of very high magnetic fields

(ms ≪ T ≪
ffiffiffiffiffiffi
eB

p
), one ends up with the lowest Landau

level (LLL) expression

PLLL
free

Nc
¼ −

X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p �

þ T
X
f

qfB

2π

Z
dpz

2π

n
ln ð1þ e−β½Eð0;pzÞ−μf �Þ

þ ln ð1þ e−β½Eð0;pzÞþμf �Þ
o
: ð2Þ

The 1L contribution from the gluons has the usual
Stefan-Boltzmann form [51]

PG
free ¼ 2ðN2

c − 1Þ π
2T4

90
: ð3Þ

B. Two-loop contribution to the pressure

The 2L contribution from the quark sector to the pressure
of thermal QCD in the presence of high magnetic fields was
computed in Ref. [25]. For numerical purposes, however, it
is convenient to recast the result found in that reference in a
different fashion.
Let us start with the 2L (exchange) pressure, in the LLL

approximation extracted from Ref. [25],

PLLL
exch

Nc
¼−

1

2

�
qfB

2π

�Z
dk1dk2
ð2πÞ2 e

−
k2
1
þk2

2
2qfB Gðm2

k ¼ k21þk22;m
2
fÞ;

ð4Þ

where

Gðm2
k;m

2
fÞ¼g2

�
N2

c−1

2

�Z
dkzdpzdqz

ð2πÞ3 ð2πÞδðpz−qz−kzÞT3

×
X
l;n1;n2

βδn1;n2þl

4m2
f

½k2L−m2
k�½p2L−m2

f�½q2L−m2
f�
;

ð5Þ
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and kL ¼ ðiωB
l ; kzÞ, pL ¼ ðiωF

n1 ; pzÞ, qL ¼ ðiωF
n2 ; qzÞ. Here

we restrict our discussion to the case where μ ¼ 0. At this
point one can follow two different paths:

(i) First evaluate the Matsubara sums and then the
momentum integrations. This was the path followed
in Ref. [25]. This has the advantage of producing an
expression that is also valid in the case where μ ≠ 0.
However, the resulting integrals are quite involved
numerically due to intertwined divergences.

(ii) First evaluate the momentum integrals and then
carry out the Matsubara sums numerically at
μ ¼ 0. This produces a term that depends on temper-
ature and magnetic field which cannot be separated
into vacuum and medium contributions. This is the
path we will fallow in this work.

Using the Dirac delta and the Kronecker delta in Eq. (5),
one obtains

Gðm2
k; m

2
fÞ ¼ −βVg2

�
N2

c − 1

2

�Z
dpzdqz
ð2πÞ2 T2

X
l;n2

4m2
f

½ω2
l þ ðpz − qzÞ2 þm2

k�½ðωn2 þ ωlÞ2 þ p2
z þm2

f�½ω2
n2 þ q2z þm2

f�
; ð6Þ

where ωl ¼ 2πlT and ωn2 ¼ ð2n2 þ 1ÞπT. Now one can first compute the integrals, which yields

Gðm2
k; m

2
fÞ ¼ −βVg2

�
N2

c − 1

2

�
T2m2

f

X
l;n2

El − En2

ElEn1En2 jEl − En2 jðjEl − En2 j þ En1Þ
; ð7Þ

where El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l þm2

k

q
, En1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωn2 þ ωlÞ2 þm2

f

q
, and En2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n2 þm2

f

q
. Then, in Eq. (4), for each value of the

Matsubara frequencies, one must perform the integrals in k. One can use polar coordinates, so that the final expression for
the exchange pressure has the form

PLLL
exch

Nc
¼ 1

2
g2
�
N2

c − 1

2Nc

�
T2

X
f

m2
f

�
qfB

2π

�X
l;n2

Z
dmk

2π
mke

−
m2
k

2qfB
El − En2

ElEn1En2 jEl − En2 jðjEl − En2 j þ En1Þ
: ð8Þ

This expression has the advantage of being numerically
simple. Its downside, however, is that it only holds for μ ¼
0 and cannot be used for cold and dense QCD. Equation (8)
is numerically equivalent to that of Ref. [25]. From a simple
analysis of Eq. (8), one can check that, for mf → 0, the
exchange contribution to the pressure vanishes. This was
also reported in Ref. [25]. Another important advantage of
Eq. (8) is that it is easy to check that the IR domain for the
momenta, mk → 0, is regulated by the fermionic mass and
Matsubara frequencies.
Taking into account the 2L contribution from the gluons,

given by the well-known formula [51]:

PG
2 ¼ −NcðN2

c − 1Þ g
2T4

144
; ð9Þ

the total 2L pressure can be written as:

P2L ¼ PG
free þ PG

2 þ PLLL
free þ PLLL

exch: ð10Þ

C. Chiral condensate and strange quark number
susceptibility

The chiral condensate is a very relevant observable in the
investigation of the phase diagram for strong interactions.
For massless quarks it is the true order parameter for the
chiral transition. When one includes light quark masses,
however, this is no longer true but its behavior near the
transition (or crossover) still exhibits a “memory” of this
feature, with the condensate varying appreciably but not
sharply, so that it can be considered a pseudo order
parameter for the chiral transition in this case. Of course,
our perturbative analysis is reliable only for very large
temperatures and even larger magnetic fields, so that it
cannot bring information on the region near the phase
transition or crossover. Nevertheless, since there are lattice
results for high temperatures and magnetic fields, the
comparison of these two first-principle calculations in this
region is certainly relevant.
The condensate is obtained from the pressure as a

derivative with respect to the quark mass. So, the f-flavor
condensate is given by

hψ̄fψfi ¼ −
∂Pf

∂mf
¼ −

∂PLLL
free

∂mf
−
∂PLLL

exch

∂mf
: ð11Þ
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From the expressions obtained in the previous section, we can derive straightforwardly

∂PLLL
free

∂mf
¼−Ncmf

qfB

ð2πÞ2
�
1þ lnxfþ

Z
dpz

2nFðEpÞ
Ep

�
ð12Þ

and

∂PLLL
exch

∂mf
¼ −

1

2
g2
�
N2

c − 1

2

�
T2

�
qfB

2π

�X
l;n2

Z
dmk

2π
mke

−
m2
k

2qfB

×

�
m3

f½En2 jEl − En2 j − En1ðEl − En2Þ�
ElE2

n1E
2
n2ðEl − En2ÞðjEl − En2 j þ En1Þ2

−
mfðEl − En2Þ½2ðωn2 þ ωlÞ2ω2

n2 þm2
fððωn2 þ ωlÞ2 þ ω2

n2Þ�
ElE3

n1E
3
n2 jEl − En2 jðjEl − En2 j þ En1Þ

�
; ð13Þ

where nF is the Fermi-Dirac distribution.
On the lattice, one computes the f-flavor renormalized

condensate

Σr
fðB; TÞ ¼

mf

m2
πf2π

½hψ̄fψfiB;T − hψ̄fψfi0;0�; ð14Þ

which eliminates additive and multiplicative divergences.
Here, mπ ¼ 135, fπ ¼ 86, and mf ¼ 5 MeV for the light
quarks. To obtain the vacuum condensate, one cannot
simply take the zero-field limit since we assumed very
large fields from the outset [25].
One usually utilizes the renormalized light quark

chiral condensate, built from the sum of the up and
down quark contributions, to locate the (pseudo-)critical
temperature [42]. Since we assume very high magnetic
fields and temperatures, with the scale hierarchy given by
ms ≪ T ≪

ffiffiffiffiffiffi
eB

p
, this subtraction is negligible in our

perturbative calculation. However a direct comparison
to the renormalized lattice results must happen in scales
not so favorable to pQCD, so that deviations are expected.
One should also have in mind that, since the perturbative
approach can only capture the behavior of the condensate
for large temperatures, it is completely insensitive to
features related to the crossover or possible first-order
phase transition at high magnetic fields.
A different observable that can also be computed and

directly compared to available lattice data is the strange
quark number susceptibility

χs ¼ 1

T2

∂
2P
∂μ2s

; ð15Þ

which has previously been computed using hard thermal
loop resummation at one-loop order [32]. Given the
presence of a derivative with respect to the chemical
potential, pure vacuum terms are excluded. This presents
an advantage when comparing lattice results to pQCD, even
if the temperature range in the simulations is still far from
optimal for this purpose [23,42].

D. Running coupling and strange quark mass

The pressure and chiral condensate to 2L for 3 flavors
with physical quark masses depend not only on the
temperature and magnetic field, but also on the renormal-
ization subtraction point Λ̄, an additional mass scale
generated by the perturbative expansion. This comes about
via the scale dependence of both the strong coupling αsðΛ̄Þ
and strange quark masses msðΛ̄Þ.
The running of both αs and ms are known to four-loop

order in the MS scheme [52]. Since we have determined the
pressure and chiral condensate only to first order in αs, we
use for the coupling [53]

αsðΛ̄Þ ¼
4π

β0L

�
1 −

2β1
β20

lnL
L

�
; ð16Þ

where β0 ¼ 11 − 2Nf=3, β1 ¼ 51 − 19Nf=3, L ¼
2 ln ðΛ̄=ΛMSÞ. Since αs depends on Nf, fixing the massive
quark at some energy scale also depends on the number of
flavors. For the strange quark mass, we have

msðΛ̄Þ ¼ m̂s

�
αs
π

�
4=9

�
1þ 0.895062

�
αs
π

��
; ð17Þ

with m̂s being the renormalization group invariant strange
quark mass, i.e., Λ̄ independent. Since Eq. (16) for αs
tells us that different values of Nf give different values of
ΛMS, by choosing αsðΛ̄¼ 1.5GeV;Nf ¼ 3Þ¼ 0.336þ0.012

−0.008
[54], we obtain Λ2þ1

MS
¼ 343þ18

−12 MeV. Fixing the strange
quark mass at msð2 GeV; Nf ¼ 3Þ ¼ 92.4ð1.5Þ MeV [55]
gives m̂2þ1

s ≈ 248.7 MeV when using α2þ1
s in Eq. (17).

As usual, there is arbitrariness in the way one should
connect the renormalization scale Λ̄ to a physical mass
scale of the system under consideration [51]. In thermal
QCD where, besides quark masses, the only scale is given
by the temperature, and T ≫ mf, the usual choice is the
Matsubara frequency 2πT with a band around it, i.e.,
πT < Λ̄ < 4πT. In the present case, where the magnetic
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field also provides a relevant mass scale given by
ffiffiffiffiffiffi
eB

p
, the

choice becomes more ambiguous. Therefore, in the liter-
ature of thermal magnetic QCD, one can find a few
different assumptions for the form of the running coupling.
Since this issue has induced some debate, we show

results for a few representative choices and discuss their
implications for our observables. Although we have our
preference for the most physical choice, we believe that,
ultimately, this will be settled by direct comparison to
lattice QCD simulations. Since this problem will also arise
in a realm of parameter space still unreachable by
Monte Carlo methods, due to the sign problem, under-
standing this in thermal magnetic QCD becomes even more
relevant. In what follows, we show results for the follow-
ing cases:

(i) A fixed value of αs ¼ 0.336. This corresponds,
essentially, to ignoring all the effects from the
renormalization group running.

(ii) The running form proposed in Ref. [56]:

αsðjeBjÞ ¼
ᾱsðΛ̄2Þ

1þ ðβ0=4πÞᾱsðΛ̄2Þ lnð Λ̄2

Λ̄2þjeBjÞ
; ð18Þ

where ᾱsðΛ̄2Þ corresponds to the usual MS one-loop
running coupling. Here Λ̄ ¼ 1.5 GeV. The main
motivation in this reference has been to try to
provide an understanding of the phenomenon of
inversemagnetic catalysis (for a review, cf. Ref. [57]).
As will be clear below, however, this form for the
running coupling displays an odd behavior as one
plays with the magnetic field strength.

(iii) Same as the previous one, but with Λ̄ ¼ 2πT. This
choice has been adopted, e.g., in Ref. [30,31].

(iv) αs given by Eq. (16) and Λ̄ ¼ 2πT. This corresponds
to the usual thermal QCD choice, and ignores the
possible effect of the magnetic field on the scale Λ̄.

(v) Same as the previous one, but with Λ̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πTÞ2 þ eB

p
. This is, in our view, the most natural

and physical choice, which is an extension of what is
done in finite-temperature field theory [51].

The running of the strange quark mass will, obviously,
be affected by the choice for the running of αs.
In Fig. 1 we show the running of αs as a function of

temperature for two different (large) values of the magnetic
field and as a function of the magnetic field strength for two
different temperatures. Temperatures are chosen to be large,

FIG. 1. Strong coupling, αs, as a function of temperature for two different (large) values of the magnetic field (top) and as a function of
magnetic field at two different temperatures (bottom). For comparison, we show curves for the different choices of the running of αs
discussed in the text.
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since we are using perturbative QCD, but within the
region of validity for the use of the lowest Landau level
approximation, as discussed previously. We also include
the case without running [αs ¼ 0.336, case (i)] which
provides a scale for comparison. One can verify that cases
(ii) and (iii) display a possibly unphysical behavior with
increasing magnetic field, since αs simply grows while
the energy density is also increasing. First, it renders
perturbative calculations meaningless for high magnetic
fields. Second, it seems incompatible with the expected
asymptotic freedom property of strong interactions. In
cases (iv) and (v), αs exhibits the same qualitative (usual)
behavior. The quantitative difference comes about
because in case (v) the magnetic field contributes to
the running scale on an equal footing with respect to the
temperature.
In Fig. 2 we show the running of the strange quark

mass, ms, as a function of temperature for two different
(large) values of the magnetic field and as a function of
the magnetic field strength for two different temper-
atures. Temperatures are again chosen to be large, since
we are using perturbative QCD, but within the region

of validity for the use of the lowest Landau level
approximation. We included a black continuous line
for ms ¼ T as a reminder that one has the constraint
ms ≪ T. The behavior of the different running cases is
analogous to what has been discussed for Fig. 1. The
fact that the quark mass increases with magnetic
field is probably related to the original motivation of
running choices like cases (ii) and (iii), namely, trying to
encode magnetic catalysis and inverse magnetic catalysis
in the properties of the running of the strong coupling
[27,56].
From the discussion above, we believe that only cases

(iv) or (v) could be regarded as providing a physical
description of the running coupling and running quark
mass. Nevertheless, since it can also be tested by direct
comparison to lattice data, we will keep all cases in our
results for the pressure, chiral condensate and strange quark
number susceptibility.

III. RESULTS

We can now discuss our perturbative results for the
pressure, chiral condensate, and strange quark number

FIG. 2. Strange quark mass, ms, as function of temperature for two different (large) values of the magnetic field (top) and as function
of magnetic field at two different temperatures (bottom). For comparison, we show curves for the different choices of the running of αs
discussed in the text. The black continuous line corresponds to ms ¼ T and is there as a reminder of the constraint ms ≪ T.
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susceptibility to 2L for very large magnetic fields. We show
results for the different running schemes discussed in the
literature and compare them to what has been obtained
recently on the lattice.

A. Pressure

In what follows, we present results for the pressure
as a function of the temperature for the highest value of
magnetic field attained in present lattice simulations
(eB ¼ 9 GeV2), Fig. 3, and for an even larger field
(eB ¼ 50 GeV2), Fig. 4. We also present results for the
pressure as a function of the magnetic field for T ¼
0.6 GeV (Fig. 5). In these figures, we show a panel with
the free pressure, Ps

free, the exchange diagram contribu-
tion, Ps

exch, the ratio Ps
exch=P

s
free, and the full strange

pressure, Ps. We show results for the contribution from
the strange quark because mass effects are more relevant
in this case. The ratio Ps

exch=P
s
free provides a certain

measure of the reliability of perturbation theory, since
it seems to be more well behaved than the case in the
absence of a large magnetic field [25].

Finally, for the sake of completeness, we show how the
pressure behaves for huge values of the magnetic field eB ¼
103 GeV2 (Fig. 6). For such high fields, one should
definitely take into account anisotropy effects [20,58],
which we fully neglect for simplicity. Results shown here
would correspond to the longitudinal pressure in an aniso-
tropic description [22]. For phenomenological applications,
one usually has to take into account effects from anisotropy.
In Figs. 3 and 4 we can observe how the behavior of the

pressure is modified for the different choices of the
running of the strong coupling. For the cases (ii) and
(iii) discussed in the previous section, one finds a much
poorer convergence, which becomes worse as one
increases the magnetic field. This is compatible with
the somewhat unphysical behavior observed in the run-
ning of αs and ms for these choices of renormalization
scale. Cases (iv) and (v), on the other hand, seem to be
well behaved. One should notice that a future comparison
to lattice results will have to take into account
the different vacuum subtraction schemes adopted in
lattice simulations, pQCD calculations and effective
models [43,44,46,47].

FIG. 3. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the temperature for

eB ¼ 9 GeV2.
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FIG. 4. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the temperature for

eB ¼ 50 GeV2.

FIG. 5. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the magnetic field at

T ¼ 0.6 GeV. The bands correspond to changes in the central scale by a factor of 2.
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In Fig. 5 we display the same cases as before, but as a
function of the magnetic field. We also include bands
corresponding to increasing/decreasing the central renorm-
alization running scale by a factor of 2. As usual, the size of
these bands correspond to a rough measure of the theo-
retical uncertainty of the perturbative series, since it
represents the residual renormalization scale dependence
[51]. Notice that case (ii) has no band by construction, since
Λ̄ is fixed.
From the first and last panel it is clear that the quark

pressure is dominated by the free gas contribution.
In Fig. 6, as we increase the possible values of the
external magnetic field dramatically, we see a clear
separation in the behavior of cases (ii) and (iii), which
are essentially ill defined perturbatively, and cases (iv)
and (v), which behave well. Case (i) is trivial, since
there is no running. One should notice also that PLLL

exch
changes sign depending on the value of the temperature
and magnetic field. This behavior is exhibited in Fig. 7 in

the
ffiffiffiffiffiffi
eB

p
− T plane. One should emphasize that this

behavior is not sensitive to the value of any other
parameter.
The full pressure P2L, given by Eq. (10), as a function of

the magnetic field for two different values of the temper-
ature, and as a function of the temperature for two
different values of the magnetic field, is shown in
Fig. 8 with bands defined as above. Notice that the
green band in the last panel is divergent for small
temperatures.

B. Chiral condensate and strange quark number
susceptibility

Now we present our results for the chiral condensate
and the strange quark number susceptibility as a function
of the temperature in the presence of high magnetic
fields. We show results for the highest magnetic fields
attained in lattice QCD simulations so far. Of course,
the perturbative approach has the caveat of being reliable
only for large temperatures, so that we will not be able
to describe nontrivial features of the condensate, such
as its behavior near the transition (or crossover). In
any case, perturbation theory would not be sensitive to
such effects.
In Fig. 9 we show the renormalized light quark chiral

condensate as a function of the temperature for eB ¼
4 GeV2 and eB ¼ 9 GeV2 computed using perturbative
QCD. We also show points obtained via lattice simulations
for comparison [42]. In Fig. 10 we do the same for the
strange quark number susceptibility, and, In Fig. 11 we
show the strange quark number susceptibility for a lower
value of magnetic field [23].
Unfortunately, in both cases the temperature range for

lattice results is well below the ideal for a fair comparison
to perturbative QCD. Nevertheless, one can see that
perturbative results are in the right ballpark for the upper
end of temperatures. It is still unclear from the available
lattice data whether our calculations capture the qualita-
tive trend at high temperatures. Lattice results for higher
temperatures, and even higher magnetic fields, would be
necessary for this purpose. As argued previously, the
strange quark number susceptibility represents a better
observable for our comparison, since in our approach
the vacuum contribution is neglected, even though it
might still be relevant for the chiral condensate at the
temperatures currently accessible to lattice simulations.
From the figures one sees that the comparison of pQCD
results to lattice data on the strange quark number
susceptibility seems to display a more promising trend
for temperatures above the ones currently simulated. It is
important to note that our framework here is valid only if
the hierarchy of scales ms ≪ T ≪

ffiffiffiffiffiffi
eB

p
is satisfied. In

this sense, it is not a problem if the perturbative results
deviate from lattice data for very high temperatures at
fixed eB.

FIG. 6. Ps
exch=P

s
free as a function of the magnetic field for

T ¼ 0.3 GeV.

FIG. 7. Sign of PLLL
exch ¼ 0 in the

ffiffiffiffiffiffi
eB

p
− T plane.
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It is also clear from the plots, moreover, that for such high
fields loop corrections to the free case become almost
irrelevant, as was already remarked in Ref. [25] in the
context of the pressure in the chiral limit. Moreover, the
analysis of the different possibilities for the running scale

choice show that thewidth of the band for case (iii) basically
diverges (not shown in the figures), case (iv) has awide band
that also diverges at some point for the susceptibility, and
case (v) is always well behaved. This behavior is, of course,
compatible with what has been observed for the pressure.

FIG. 8. Full pressure as function of the magnetic filed at T ¼ 0.3 GeV (top left) and T ¼ 0.6 GeV (top right), and as function of
temperature at eB ¼ 2 GeV2 (bottom left) and eB ¼ 9 GeV2 (bottom right). The bands correspond to changes in the central scale by a
factor of two.

FIG. 9. Renormalized light quark chiral condensate as a function of the temperature for eB ¼ 4 GeV2 (left) and eB ¼ 9 GeV2

(right).
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IV. SUMMARY AND OUTLOOK

In this paper we computed the pressure, chiral conden-
sate and strange quark number susceptibility within per-
turbative QCD at finite temperature and very high magnetic
fields up to two-loop and physical quark masses. Since we
adopt the lowest-Landau level approximation in order to
obtain analytic results and more control on qualitative
aspects, the region of validity for our framework is
restricted to ms ≪ T ≪

ffiffiffiffiffiffi
eB

p
, where ms is the strange

quark mass, e is the fundamental electric charge, T is the
temperature, and B is the magnetic field strength.
Since the literature in the field exhibits several possibil-

ities for the running scheme, we study the convergence of
the perturbative series1 for the pressure using the most

commonly adopted choices for the scale and functional
form of the running coupling, αsðT; BÞ. Our findings seem
to indicate that cases (ii) and (iii) are inconsistent from the
point of view of the convergence of the perturbative series,
while cases (iv) and (v) pass this criterion, case (v) being
the most well behaved.
Currently, there are essentially two completely oppo-

site scenarios for the way a magnetic field background
affects the QCD interactions: either an enhancement of
the strong coupling that renders perturbative calcula-
tions not applicable even for physically achievable
magnetic fields; or a coupling that is strongly sup-
pressed as the energy density grows, in accordance with
usual expectations from asymptotic freedom. It would
be desirable to have lattice results that help clarifying
this issue.
Moreover, the difficulty of choosing a running scale in a

setting in which more than one relevant control parameter
exists will also be present in the description of systems at
finite density. In particular, the physics of magnetars could
be sensitive to this choice [1–3].
Our results for the chiral condensate and for the strange

quark number susceptibility were directly compared to
recent lattice QCD data away from the chiral transition.
Even though, as discussed previously, current lattice results
do not overlap with the region of validity for our approx-
imations, perturbative results seem to be in the same
ballpark, which is encouraging. Thewindow of applicability
is still narrow, but our results are obtained from a clean first-
principle calculation that can be systematically improved.
Furthermore, as argued previously in Ref. [25] for a fixed
strong coupling αs, medium loop corrections seem to
become essentially negligible as compared to the free term
for very high magnetic fields for physical choices of the
renormalization running scale.
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