
Mueller’s dipole wave function in QCD: Emergent Koba-Nielsen-Olesen
scaling in the double logarithm limit

Yizhuang Liu *

Institute of Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland

Maciej A. Nowak†

Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research,
Jagiellonian University, 30-348 Kraków, Poland

Ismail Zahed‡

Center for Nuclear Theory, Department of Physics and Astronomy, Stony Brook University,
Stony Brook, New York 11794–3800, New York, USA

(Received 8 May 2023; accepted 18 July 2023; published 16 August 2023)

We analyze Mueller’s QCD dipole wave function evolution in the double logarithm approximation
(DLA). Using complex analytical methods, we show that the distribution of the dipole in the wave function
(gluon multiplicity distribution) asymptotically satisfies the Koba-Nielsen-Olesen (KNO) scaling, with a
nontrivial scaling function fðzÞwith z ¼ n

n̄. The scaling function decays exponentially as 2ð2.55Þ2ze−
z

0.3917 at

large z, while its growth is log-normal as e−
1
2
ln2 z for small z. A detailed analysis of the Fourier-Laplace

transform of fðzÞ allows for performing the inverse Fourier transform and accessing the nonasymptotic
bulk region around the peak. The bulk and asymptotic results are shown to be in good agreement with the
measured hadronic multiplicities in DIS, as reported by the H1 Collaboration at HERA in the region of
large Q2. A numerical tabulation of fðzÞ is included. Remarkably, the same scaling function is found to
emerge in the resummation of double logarithms in the evolution of jets. Using the generating function
approach, we show why this is the case. The absence of KNO scaling in noncritical and super-
renormalizable theories is briefly discussed. We also discuss the universal character of the entanglement
entropy in the KNO scaling limit and its measurement using the emitted multiplicities in DIS and eþe−

annihilation.
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I. INTRODUCTION

In a broad and general sense, the high-energy limit of
QCD is nontrivial. In the simplest case of eþe− annihila-
tion, asymptotic freedom is sufficient to guarantee a

controlled ln−1 Q2

Λ2
QCD

expansion in leading power [1,2].

However, there are a number of examples where the
running coupling constant is not the only source of large
logarithms. Remarkably, a complete understanding of the
high-energy limit in these situations is still challenging,
fifty years after the discovery of asymptotic freedom.

One important example which is relatively easy to
understand is the Bjorken limit [3] of processes such as
DIS [4] and DVCS [5] at moderate parton x, where it is
commonly accepted [6,7] that in the leading power, the
structure functions (or at least its moments) can be
factorized into IR-sensitive matrix elements times hard
coefficients in a way that can be cast into a controlled large-

Q2 expansion of the form αðQÞ
γ1
β0ð1þO½αðQÞ�Þcn with the

help of the renormalization group equation (RGE). A more
challenging situation is the Regge limit or small-x limit,
where there are rapidity logarithms of the type ln 1

x, that
cannot be systematically controlled by the RGE formalism.
Nevertheless, if one is only interested in resumming the
“leading logarithms” αns lnn 1

x in pQCD (assuming all the
k⊥’s are large), then major progresses have been made. In
particular, the leading rapidity logarithms in the light-front
wave functions (LFWFs) of a color dipole (Mueller’s
dipole) can be effectively extracted using Mueller’s evo-
lution equation [8,9]. This is essentially a cascade formed
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by consecutive small-x gluon emissions ordered in rapidity.
From Mueller’s dipole, many other evolution equations,
such as the linearized BFKL equation1 for the gluon
density [10–12] or its BK variant [13,14] for the cross
section, can be derived under further assumptions.
Nevertheless, whether the small-x pQCD evolutions

present a correct and self-consistent description of the
Regge limit is still not clear. It is well known that the BFKL
evolution mixes different “twists” and tends to “diffuse”
into soft regions, which is made worse by the “IR
renormalon” caused by running inside massless integrals.
It is also well known that the derivation of the famous
Froissart bound relies crucially on the existence of an
exponential decay at a large impact parameter, a feature that
is essentially nonperturbative. The popular assumption is
that there will be an emergent “saturation scale” Qs that is
hard enough to justify pQCD at large rapidity or small x,
due to ever-increasing gluon density. As a result, the
confinement problem can be avoided. The “color-glass
condensate” (CGC) approach [15–18] to gluon saturation is
based on this assumption. The string-gauge duality pro-
vides another way to look at the Regge limit at strong
coupling (large impact parameter or small Q2). It has been
proposed that the small dipoles are string bits [19–21], and
their evolution is best captured by a dual string [22–26]. In
Refs. [26,27], a string-based holographic Reggeization
formalism in which forward dipole-dipole scattering is
realized as the exchange-minimal surfaces in appropriate
geometries has been proposed and agrees qualitatively
with Mueller’s approach [8,9] in the conformal limit. In
the large-impact-parameter limit, due to the presence of a
natural string tension, the approach fulfills the Froissart
bound in a nonperturbative manner.
Among all the features of the small-x evolution, the

growth of the “parton number” with rapidity plays a key
role. In Mueller’s dipole picture, the LFWF of the projectile
dipole tends to split into more and more dipoles ordered
strongly in rapidity, before interacting with the target. The
large number of color charges present in the wave function
should be responsible for the large amount of observed
particle multiplicity [28]. The distribution of the virtual
dipoles in Mueller’s wave function in the “diffusion limit”
has long been believed to be similar to the simplified
0þ 1D reduction [9,29,30], which satisfies the famous
KNO scaling [31,32], with a “geometric” scaling function
e−z. However, this scaling function differs significantly
from the observed scaling function for ep data [28]. On
the other hand, the dipole evolution has another limit,
which actually forms the common region with the DGLAP
evolution [33], the double logarithm approximation (DLA)

limit. In this limit, the growth of the gluon density is much
slower; however, as we will show in this paper, the
distribution of dipoles in the wave function displays a
nontrivial scaling function, in agreement with the reported
hadronic multiplicities by the H1 Collaboration at
HERA [28].
It has been suggested [34,35] that underlying the large

number of observed particle multiplicity is the onset of a
quantum or entanglement entropy. In Refs. [30,35], the
authors argued that Mueller’s wave function is strongly
entangled in longitudinal momentum space on the light
front. This entanglement is distinct from the spatial entan-
glement, usually encoded in the ground-state wave function
in the rest frame [36–40]. In the large-rapidity y limit,
this entanglement is universally captured by an entropy
S ¼ ln n̄ ∼ y, where the mean multiplicity n̄ ∼ e#y grows
exponentially, as noted in the dual string [34] and Mueller’s
cascade [35]. These observations have attracted a number of
recent studies, both theoretically [29,30,41–50] and empiri-
cally [51–53]. For completeness, we note that a classical
thermodynamical entropy using the production of gluons at
high energy was initially explored in Ref. [54].
Recently, in Refs. [47,49], we have formalized the

rapidity space entanglement between fast and slow degrees
of freedom in Mueller’s dipole, and derived a Balitsky-
Kovchegov (BK) type equation for the associated reduced
density matrix in the large-Nc limit. We have shown
explicitly that for both the 0þ 1D reduction and the 1þ
2D QCD, the eigenvalues of the reduced density matrix
indeed coincide with the dipole distribution. As a result, we
have shown that the multiplicity entropy is of quantum
nature. In particular, in the 0þ 1D reduction, the dipole
multiplicities follow a simple exponential distribution as in
Ref. [9], while in the nonconformal QCD in 1þ 2
dimensions, the mean dipole multiplicities were found to
follow a Poisson distribution pn ¼ e−n̄n̄n=n!, with a linear
growth of mean multiplicity with rapidity. The quantum
entanglement entropy at large rapidity asymptotes at
S ¼ 1

2
ln n̄ ∼ 1

2
ln y, which is much smaller than in 0þ 1D

reduction. The cascade of dipoles in 1þ 2D dimensions is
“quenched” kinematically by transverse integrals and
provides a simple mechanism for saturation.
The solution of the evolved BK-type equations for the

density matrix, and the underlying multiplicity of the
emitting dipoles for QCD in 1þ 3 dimensions, is not
known except in the diffusion limit [9,29,30]. Needless to
say, these dipole or gluon multiplicities, when released in a
prompt ep or pp collision at high energy, are of relevance
to the measured hadronic multiplicities. The purpose of this
paper is to address this open problem partially, by solving
directly Mueller’s evolution in the double logarithm
approximation (DLA), which resums the large ln 1

x and

large ln Q2

Λ2
QCD

simultaneously. This allows for an explicit

derivation of the small dipole distributions, which will turn

1Notice that the BFKL equation is more universal than
Mueller’s dipole. Indeed, the BFKL spectrum is related to
analytical continuation in anomalous dimensions of twist-2
operators, and is therefore generalizable to N ¼ 4 SUSY CFT
at a generic gauge coupling.
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out to be in good agreement with the currently available H1
data from DIS scattering at HERA [28]. It also provides for
an estimation of the entanglement entropy for DIS scatter-
ing in QCD, a measure of gluon decoherence, and possibly
saturation. We should emphasize that the DLA limit lies in
the common region of DGLAP evolution and Mueller’s
evolution. Hence, all the results in this paper can also be
derived using the wave function evolution [33,55], under-
lying the DGLAP equation as well.
It is worth noting that the scaling function we established

for Mueller’s wave function evolution appears in the
context of jet evolution [56,57]. In fact, this is not a
coincidence, as we will detail below, and it follows from the
BMS-BK correspondence, that maps the IR divergences in
eþe− annihilation to the rapidity divergences in the dipole’s
wave function [58–62]. In leading order, this follows from
the fact that all the leading IR logarithms are generated
by a Markov process of consecutive emission of soft
gluons, strongly ordered in energy into the asymptotic
final-state cuts, in a way very similar to the underlying
branching process of Mueller’s dipole. At leading order,
the two evolutions are related by a conformal transforma-
tion [63,64], which maps light-like dipoles to Wilson-line
cusps, and virtual soft gluons in LFWF to real gluons in
asymptotic states. The BMS evolution has a natural double
logarithm limit corresponding to the Sudakov double
logarithm in the virtual part (form factor), which can be
obtained by imposing angular ordering on the emitted soft
gluons. Through a conformal transformation, the angular
ordering maps to the dipole size ordering. As a result, the
scaling functions of the two DL limits are identical. These
observations allow us to extend the concept of entangle-
ment to jet evolution as well.
The organization of the paper is as follows: In Sec. II, we

simplify Mueller’s evolution equation for the generating
functional in the DLA limit. We show that the resulting
generating function in the DLA limit satisfies a second-
order nonlinear differential equation, similar but not
equivalent to the Painlevé-III equation. For large mean
multiplicities n̄, this allows the determination of all the
leading consecutive moments of the dipole distribution,
through a second-order recursive hierarchy. We study the
behavior of the moment sequence and show that the
underlying multiplicity distribution obeys Koba-Nielsen-
Olesen (KNO) scaling [31,32] in the form pn ¼ 1

n̄ fðnn̄Þ,
with the scaling variable z ¼ n=n̄ in the large-n̄ limit and
the scaling function fðzÞ. In Sec. III, we show that the
complex analytic Fourier-Laplace transform ZðtÞ of the
KNO scaling function fðzÞ can be determined by analyti-
cally continuing from a simple integral representation, from
which the fðzÞ can be obtained by Fourier inversion. In
particular, for large and small z, the asymptotic forms of
fðzÞ can be determined exactly, and for general z numeri-
cally. In Sec. IV, we compare our DLA scaling function
fðzÞ to the empirical charged multiplicity scaling function

ΨðzÞ extracted from ep data at HERA [28], and we find
good agreement. In Sec. V, we briefly review the leading-
order BMS evolution equation, using the generating func-
tional formalism of Ref. [8]. The relation to the dipole
evolution is made manifest. In Sec. VI, we show that the
ensuing multiplicities for both the wave function and jet
evolutions are quantum entangled. The entanglement
entropy asymptotes at S ¼ ln n̄ in the DLA. The logarith-
mic growth of the entanglement entropy with n̄ is generic
for all hadronic multiplicities in QCD with KNO scaling.
Our conclusions are given in Sec. VII. In the Appendix,
we briefly discuss the multiplicity distributions of super-
renormalizable theories and their lack of KNO scaling.

II. MUELLER’S DIPOLE WAVE FUNCTION
AND ITS DLA LIMIT

In this section, we consider Mueller’s dipole evolution
equation in the DLA limit. We briefly recall that in
Refs. [8,9] using the planar limit, it was shown that the
consecutive emission of gluons with smaller and smaller x
into the light-front wave function (LFWF) of a valence
quark-antiquark pair (Mueller’s dipole) leads to a closed
equation for the generating functional of the squared norms
of the LFWF:

Z
�
b10;

x0
xmin

; λ

�
¼ S

�
b10;

x0
xmin

�
þ λ

αsNc

2π2

Z
x0

xmin

dx1
x1

× S

�
b10;

x0
x1

�Z
db22

b210
b212b

2
20

× Z
�
b12;

x1
xmin

; λ

�
Z
�
b20;

x1
xmin

; λ

�
;

ð1Þ

with the Sudakov or “soft factor” for “virtual” emissions2 as

S

�
b10;

x0
x1

�
¼ exp

�
−
αsNc

π
ln b210μ

2 ln
x0
x1

�
: ð2Þ

Z generates the probability of finding an nþ 1 dipole
inside the LFWF of the QQ̄ pair:

Zðb; y; λÞ ¼
X∞
n¼0

λnpnðb; yÞ: ð3Þ

2The use of the words “virtual” and “real” in the context of
wave functions is not very precise. A more precise definition
would be “disconnected” and “connected” contributions. This
said, note that this contribution is the square of the standard
transverse-momentum-dependent (TMD) soft factor, with one
factor from the wave function and the other factor from the
conjugate wave function.
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Unitarity requires Z ¼ 1 for λ ¼ 1, which is manifest
in Eq. (3). The factorial moments3 of the distribution p
follow as

dk

dλk
Zðb; y; λÞjλ¼1 ¼

X∞
n¼0

nðn − 1Þ::ðn − kþ 1Þpn

≡ hnðn − 1Þ…ðn − kþ 1Þi: ð4Þ

The knowledge of Z provides a detailed understanding of
the LFWF of the QQ̄ pair in the small-x sector.

A. The double logarithm limit

The double logarithm limit (DLA) corresponds to the
situation where b2 is very close to either b0 or b1, the
locations of the mother dipole, and so on with 0b3….
As a result, the emitted dipoles carry smaller and smaller
sizes. In this limit, if one introduced the scale parameter

α ¼ ln b2
10

b2 ¼ ln Q2

Q2
0

where b is the size of the emitted dipole,

which is identified as the inverse of Q, then the evolution
equation simplifies to

Zðy;α; λÞ ¼ exp
�
−
αsNc

π
αy

�
þ αsNcλ

π

Z
α

0

dα0
Z

y

0

dy0

× exp

�
−
αsNc

π
αðy− y0Þ

�
Zðα0; y0; λÞZðα; y0; λÞ:

ð5Þ

It is easy to check that for λ ¼ 1, one has the trivial solution
Z ¼ 1. By taking the derivative with respect to y, one
obtains the exact equation in DLA:

∂Zðα; yÞ
∂y

¼ αsNc

π
Zðα; yÞ

�
−αþ λ

Z
α

0

dα0Zðα0; yÞ
�
: ð6Þ

On the other hand, for the mean n̄ ¼ dZ
dλ jλ¼1,

∂n̄
∂y

¼ αsNc

π

�
αþ

Z
α

0

n̄ðα0; yÞdα0
�
; ð7Þ

∂
2n̄

∂y∂α
¼ αsNc

π
ðn̄þ 1Þ ∼ αsNc

π
n̄: ð8Þ

The second equation is nothing but the DGLAP evolution
equation in the DLA limit for the gluon density, allowing
the identification n̄ ¼ xGðx;Q2Þ.

Note that for a running gauge coupling αs,

αsðQÞ ¼ 1

β0 ln
Q2

Λ2
QCD

and γ ¼ ln
ln Q2

Λ2
QCD

ln Q2
0

Λ2
QCD

; ð9Þ

where β0 ¼ 1
4π

�
11Nc
3

− 2Nf

3

�
, the above equations still hold,

with

Zðy; γÞ ¼ exp

�
−
Nc

πβ0
yγ

�
þ λ

Nc

πβ0

Z
γ

0

dγ0
Z

y

0

dy0

× exp
�
−
Nc

πβ0
ðy − y0Þγ

�
Zðy0; γ0ÞZðy0; γÞ; ð10Þ

which is identical to Eq. (5) with the identification αs →
1
β0

and α → γ. Below, we still use the notation in Eq. (5) with
this understanding.
To investigate the multiplicity distribution in the DLA,

we note that the generating function Z is only a function
of ρ:

ρ ¼ αsNc

π
y ln

Q2

Q2
0

; no running; ð11Þ

ρ ¼ Nc

πβ0
y ln

ln Q2

Λ2
QCD

ln Q2
0

Λ2
QCD

; with running; ð12Þ

which amounts to

ZðρÞ ¼ e−ρ þ λρ

Z
1

0

dt1

Z
1

0

dt2e−ρð1−t2ÞZðρt1t2ÞZðρt2Þ

ð13Þ

in both cases. In particular, the equation for the averaged
number of soft gluons, n̄ ¼ xGðx;QÞ, becomes

ρ
d2n̄
dρ2

þ dn̄
dρ

¼ n̄þ 1: ð14Þ

The solution is given in terms of the Bessel I0 function

n̄ðρÞ ¼ I0ð2
ffiffiffi
ρ

p Þ − 1; ð15Þ

with the correct growth in rapidity at large y, in leading
double-log accuracy [33].
To solve ZðλÞ in general, we define Z ¼ eW , and the

equation for W now becomes

ρ
d2W
dρ2

þ dW
dρ

¼ λeW − 1: ð16Þ3Sometimes they are also called the “disconnected moments”
or “multiplicity correlators.”
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In terms of u ¼ 2
ffiffiffi
ρ

p
, one has

d2W
du2

þ 1

u
dW
du

¼ ðλeW − 1Þ; ð17Þ

which can be written as

∇2W ¼ ðλeW − 1Þ; ð18Þ

with ∇2 being the radial part of the two-dimensional
Laplacian. Note that in terms of the original generating
function Z, the equation is

d2Z
dρ2

¼ 1

Z

�
dZ
dρ

�
2

−
1

ρ

dZ
dρ

þ 1

ρ
ðλZ2 − ZÞ; ð19Þ

which resembles closely the third Painlevé equation (except
for the last term in the last bracket).

B. Factorial moments nk in the large-rapidity limit:
The asymptotic moment sequence an

To gain more insight into the multiplicity distribution,
in this section we investigate a property of the factorial
moments, nk ¼ dk

dλk
Zjλ¼1. Successive derivatives show that

they satisfy the hierarchy

ρ
d2n1
dρ2

þ dn1
dρ

¼ n1 þ 1; ð20Þ

ρ
d2n2
dρ2

þ dn2
dρ

− n2 ¼ 2ρ

�
dn1
dρ

�
2

þ 2n21 þ 4n1; ð21Þ

ρ
d2n3
dρ2

þ dn3
dρ

− n3 ¼ −6ρn1
�
dn1
dρ

�
2

þ 6ρ
dn1
dρ

dn2
dρ

þ 6n2n1 þ 6n21 þ 6n2; ð22Þ

ρ
d2n4
dρ2

þ dn4
dρ

− n4 ¼ 24ρn21

�
dn1
dρ

�
2

− 12ρn2

�
dn1
dρ

�
2

− 24ρn1
dn1
dρ

dn2
dρ

þ 6ρ

�
dn2
dρ

�
2

þ 8ρ
dn1
dρ

dn3
dρ

þ 8n1n3 þ 6n22

þ 24n2n1 þ 8n3; ð23Þ

and so on. Here, n1 ¼ n̄ is just the mean multiplicity. We
would like to study the asymptotics of the above equations
in the large-u limit. The solution n1 ∼ e2

ffiffi
ρ

p
∼ eu suggests

that we can find the asymptotic solutions of the form nk ∼
akeku in the large-u limit.

For this purpose, notice that in terms of u ¼ 2
ffiffiffi
ρ

p
, the

derivative terms on the left-hand side of the equations
reads

ρ
d2

dρ2
þ d
dρ

≡ d2

du2
þ 1

u
d
du

: ð24Þ

In the large-u limit, we only need to keep the d2

du2 term on the
left-hand side and drop all terms that are exponentially
suppressed on the right-hand side in order to obtain the
leading asymptotics of the form

nkju→∞ → akeku: ð25Þ

The above defines uniquely the asymptotic moment
sequence an with the initial condition a0 ¼ a1 ¼ 1. The
a0 ¼ 1 is due to the probability conservation, while
a1 ¼ 1 fixes the overall normalization of the sequence.
Defining

bn ¼
an
n2

; ð26Þ

it is easy to show that bn satisfies the recursive relations

n2bn ¼ Bnðb1; b2;…bn−1; bnÞ: ð27Þ

Here, the Bn’s are the complete Bell’s polynomials, which
are defined for a generic sequence bn through the relation

exp

�X∞
n¼1

bnun

n!

�
¼ 1þ

X∞
n¼1

Bnðb1;…bnÞun
n!

: ð28Þ

Notice that the Bell’s polynomial satisfies the recursive
relation

Bnðb1;…:bnÞ ¼ bn þ
Xn−2
i¼0

ðn − 1Þ!
i!ðn − 1 − iÞ!

× Bn−1−iðb1;…bn−1−iÞbiþ1 ð29Þ

for a generic sequence bn. Given the above, Eq. (27) can be
simplified to

ðn2 − 1Þbn ¼
Xn−2
i¼0

ðn − 1Þ!
i!ðn − 1 − iÞ! ðn − 1 − iÞ2bn−1−ibiþ1;

ð30Þ

which can be transformed to match Refs. [56,57]. Using
this, the first few terms are readily generated as
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a2 ¼
4

3
; a3 ¼

9

4
; a4 ¼

208

45
; a5 ¼

2425

216
; a6 ¼

2207

70
;

a7 ¼
1303841

12960
; a8 ¼

3059488

8505
; a9 ¼

7981101

5600
; a10 ¼

927828775

149688
: ð31Þ

Furthermore, we note numerically that

anþ2

anþ1

−
anþ1

an
→ C≡ 1

r
¼ 0.3917 ð32Þ

when n → ∞. To show this, we display in Fig. 1 the
behavior of the sequence anþ2

anþ1
− anþ1

an
for n from 1 to 198.

The consecutive differences stabilize at about 10−3 around
n ¼ 10, and at about 10−6 around n ¼ 100. The speed of
convergence is around 1

n2. Asymptotically, the asymptotic
moment sequence an is seen to approach

an → 2ð0.39174Þnnn!; ð33Þ

as illustrated in Fig. 2. In the next section, we will show
that the value of C ¼ 0.3917 in Eq. (32) is fixed by the

radius of convergence of the Taylor series for the moment
sequence an.

C. KNO scaling

In this subsection, we show that for large mean multi-
plicity n̄, the distribution converges to a continuum limit as

pn ¼
1

n̄
f

�
n
n̄

�
; ð34Þ

with a universal probability distribution function or scaling
function fðzÞ. To show this, one introduces the rescaled
dipole number n̂ ¼ n

n̄. The result in the previous subsection
implies that in the large-rapidity limit, one has for each k

lim
ρ→∞

�
n̂

�
n̂ −

1

n̄

�
…

�
n̂ −

k − 1

n̄

��
¼ ak; ð35Þ

where the expectation h…i is defined in terms of the dipole
probability distribution pn in Eq. (4) and ak is the
asymptotic moment sequence defined in Eq (25). Since 1

n̄ →
e−2

ffiffi
ρ

p
→ 0 in the large-ρ limit, the above implies that the

standard kth moment of n̂ converges to the asymptotic
moment sequence ak as well:

lim
ρ→∞

hn̂ki ¼ ak: ð36Þ

Based on the method of moments, which states that
convergence in moments implies convergence in distribu-
tion,4 Eq. (36) implies that n̂ converges in the large-ρ limit
in distribution to a random variable z with the probability
distribution function fðzÞ, such that the ak is nothing but its
moment sequence:

n̂ ¼ n
n̄

				
ρ→∞

→ z; lim
ρ→∞

hχn̂∈Ai ¼ P½z ∈ A� ¼
Z
A
fðzÞdz;

ð37Þ

ak ¼
Z

∞

0

dzzkfðzÞ: ð38Þ

In the above, χn̂∈A is the characteristic function of the event
n̂ ∈ A, and the expectation value h…i is still defined with

50 100 150 200

0.505

0.510

0.515

0.520

0.525

0.530

FIG. 2. Behavior of the sequence ratio ð0.39174Þnðnþ1Þ!
an

for
1 ≤ n ≤ 200.

50 100 150 200
0.3910

0.3912

0.3914

0.3916

FIG. 1. Behavior of the sequences anþ2

anþ1
− anþ1

an
for 1 ≤ n ≤ 198.

4The condition of the method of moments—namely, that the
limiting sequence ak is a moment sequence that uniquely
determines the underlying probability distribution—is indeed
satisfied in this case.

LIU, NOWAK, and ZAHED PHYS. REV. D 108, 034017 (2023)

034017-6



respect to pn. On the other hand, P½z ∈ A� is the probability
of finding z in the set A, according to the probability
distribution fðzÞ. It is easy to see that Eq. (37) is nothing
but an academic way (or “rigorous” way) to express the
KNO scaling relation in Eq. (34).
As a result, the task reduces to finding a probability

distribution fðzÞ, with an being its moment sequence. The
asymptotics an → 2ð0.39174ÞnnðnÞ! grows quickly and
satisfies the Carleman condition, implying that the resulting
fðzÞ is unique. Unfortunately, reconstructing fðzÞ directly
from an is a hard inverse problem in general. However, the
large-k asymptotics of ak already suggests that for large z,
the distribution decays like

fðzÞjz→∞ → 2r2ze−zr: ð39Þ

This will be confirmed by different arguments in the
following section.

III. THE KNO SCALING FUNCTION

Generally, reconstructing a probability distribution from
its moment sequence is a hard inverse problem. However,
in the current case, since the asymptotic moment sequence
an is inherited from a second-order differential equation in
the large-ρ limit, we expect that its exponential generating
function ZðtÞ,

Zðt ¼ −euÞ ¼
X∞
n¼0

an
n!

enu; ð40Þ

also satisfies a second-order differential equation. Indeed, if
one introduces

W ¼ lnZ; ð41Þ

then it is not hard to show using Eqs. (27) and (28) that W
obeys a simpler equation,5

d2

du2
WðuÞ ¼ eWðuÞ − 1; ð42Þ

with the boundary condition that for u → −∞, W → eu.
Equation (42) can then be integrated readily, and analyti-
cally continued to the whole complex plane to obtain the
Fourier-Laplace transform of the scaling function f:

ZðtÞ ¼ LðfÞðtÞ ¼
Z

∞

0

e−tzfðzÞdz: ð43Þ

The complex analytic Fourier-Laplace transform automati-
cally includes the standard Fourier transform of f at

t ¼ iR, or u ¼ R� π
2
i, from which fðzÞ can be finally

obtained by taking the inverse Fourier transform. We
should emphasize that the complex analytic methods are
crucial to obtaining the Fourier transform of fðzÞ, since its
Taylor expansion in terms of the moments,

ZðitÞ ¼
X∞
n¼0

an
n!

ð−1ÞnðitÞn; ð44Þ

has a finite radius of convergence r ¼ 1
C.

A. Integral representation of W

To proceed, we first notice that Eq. (42) can be integrated
as [56,57]

u ¼ cþ
Z

W

1

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU − 2U − 2

p ; ð45Þ

where the constant c can be fixed by imposing the
boundary condition Wju→−∞ → eu as

c ¼ −
Z

0

1

dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU − 2U − 2
p −

1

U

�
: ð46Þ

Therefore, we obtain the integral representation of W:

u ¼
Z

1

0

dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU − 2U − 2
p −

1

U

�

þ
Z

WðuÞ

1

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU − 2U − 2

p : ð47Þ

The integral is along the real axis from 1 to WðuÞ.
This completely determines WðuÞ for −∞ < u < ln r,
where as u → ln r− from the lower side, W diverges to
positive infinity. This corresponds to nothing but the
radius of convergence r ¼ 1=C for the series representation
[Eq. (44)],

ln r ¼
Z

1

0

dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU − 2U − 2
p −

1

U

�

þ
Z

∞

1

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU − 2U − 2

p ¼ 0.93715; ð48Þ

with

C ¼ 1

r
¼ e−0.93713 ¼ 0.391743: ð49Þ

This value of C is in good agreement with the numerical
observation in Eq. (32), since the convergence radius is
always inverse to the rate of the exponential part for an
when n → ∞.
Furthermore, the behavior of W when u → ln r− can be

worked out from the equation
5An equivalent equation has been obtained before for jet

multiplicities [56,57].
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Z
∞

W

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU − 2U − 2

p ¼ ln r − u; ð50Þ

which, after expanding the square root around the dominant
term 2eU, reads

ffiffiffi
2

p
e−

W
2 þ 1

3
ffiffiffi
2

p e−
3
2
W

�
W þ 5

3

�
þO

�
W2e−

5
2
W

�
¼ ln r − u:

ð51Þ
To solve it, we split W ¼ W0 þW1 with

e−
W0
2 ¼ ln r − uffiffiffi

2
p ;

e−
W1
2 ¼ 1 −

ðln r − uÞ2
12

�
−2 ln

ln r − uffiffiffi
2

p þ 5

3

�
; ð52Þ

which implies for Z the following:

ZðuÞ ¼ 2

ðln r− uÞ2 þ
1

3

�
−2 ln

ln r− uffiffiffi
2

p þ 5

3

�
þOðln r− uÞ:

ð53Þ

Therefore, Z has a double “pole” around the singularity,
which exactly implies that fðzÞ ∼ 2r2ze−rz at large z.
Moreover, the coefficient 2 matches precisely the 2 in
the asymptotic form of ak. This has to be compared to the
0þ 1 reduction case, where one has the equation

u ¼
Z

1

0

dU

�
1

eU − 1
−

1

U

�
þ
Z

WðuÞ

1

dU
eU − 1

; ð54Þ

and as u → 0,

ZðuÞ ∼ −
1

u
; ð55Þ

which implies that Z has only a single pole.

B. Analyticity structure of Z

We have already obtained the WðtÞ in the region
−r < t < 0. It is time to extend it to the whole complex
plane. For this, we need to understand the singularity
structure of the integrand

GðwÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ew − 2w − 2

p : ð56Þ

The entire function gðwÞ ¼ 2ew − 2w − 2 has a double pole
at w ¼ 0, and infinitely many nonzero single poles wn and
w̄n. It admits the infinite product expansion

2ew − 2w − 2 ¼ w2e
w
3

Y∞
n¼1

ðw − wnÞðw − w̄nÞ
jwnj2

e
w
wn
þ w

w̄n : ð57Þ

One can show that all the nonzero poles are in the right half-
plane, and the first root occurs at w1 ¼ 2.088þ 7.46149i,
w̄1 ¼ 2.088–7.46149i. For large n, we have wn →
lnð2nþ 1

2
Þπ þ ð2nþ 1

2
Þπi. In fact, by expanding around

w ¼ ð2nþ 1
2
Þπi≡ Ani, one obtains an approximate for-

mula for the location of the poles:

wn ¼ xn þ iyn;

xn ¼ lnAn þ
ln2An − 1

2A2
n

þO
�
ln4An

A4
n

�
;

yn ¼ An −
1þ lnAn

An
þO

�
ln3An

A3
n

�
: ð58Þ

This approximation is better than expected, as the first pole
is already reproduced within three digits of accuracy. Given
the poles, we define GðwÞ as

GðwÞ ¼ 1

w
e−

w
6

Y∞
n¼1

−jwnj
ðw − wnÞ12ðw − w̄nÞ1=2

e−
w

2wn
− w
2w̄n : ð59Þ

The square roots are defined with branch cuts extending
from wn to wn þ∞, and w̄n to w̄n þ∞; namely, for wn, the
arguments go from 0 to 2π, and the same for w̄n. The minus
sign in the numerator will guarantee that GðwÞ is positive
along the positive real axis, while it is negative along the
negative real axis. Therefore, GðwÞ is analytic in the left
half-plane ReðwÞ < 0 and has a single pole at w ¼ 0. In the
right half-plane, it has infinitely many branch cuts extend-
ing to positive infinity.
Given the knowledge of GðwÞ and its singularity

structure, one can determine ZðtÞ for t outside the initial
region −r < t < 0 by specifying the integration paths
(in fact, the end point) for W. We first demonstrate this
for −∞ < t < −r. One first notices that for u → ln rþ or
t → −r−, W must approach ∞� 2πi. In fact, the real and
imaginary parts for W when u is still real must satisfy

Z
ReðWÞþiImðWÞ

ReðWÞ−iImðWÞ
dwGðwÞ ¼ 0: ð60Þ

Therefore, we need to show that asymptotically
ImðWÞ → 2π, as ReðWÞ → þ∞. Indeed, this is the case,
since for very large ReðWÞ, we have

Z
ReðWÞþiImðWÞ

ReðWÞ−iImðWÞ
dwGðwÞ ∼

Z
ReðWÞþiImðWÞ

ReðWÞ−iImðWÞ
dwe−w=2; ð61Þ

for which ImðWÞ → 2π is justified. When the condition in
Eq. (60) is satisfied, u as given by Eq. (47), is real and
larger than ln r. Furthermore, when u increases, the real part
ofW decreases, and one can show that ImW has to increase.
However, the path will never meet the branch cuts forGðzÞ,
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and as t → −∞ or u → þ∞, ReðWÞ approaches −∞ along
the curve depicted in Fig. 3.
Similarly, the integration paths for the Fourier transform

F ðfÞ, corresponding to ImðuÞ ¼ � π
2
, and the Laplace

transform with t > 0, corresponding to ImðuÞ ¼ �π, can
be worked out. The results are shown in Fig. 3. In
particular, the pole of GðwÞ at w ¼ 0 contributes to the
desired imaginary part �iπ in the case of the Laplace
transform when the end point W for the integration path
moves from the positive to negative axis. Similarly, the
aggregation of the imaginary parts �iπ due to the pole and
another ∓ i π

2
acquired in the vertical path when U goes

from ðReðWÞ; 0Þ to ðReðWÞ; ImðWÞÞ contributes to the
total �i π

2
in the case for the Fourier transform. The

analyticity structure for the Fourier-Laplace transform is
summarized in Fig. 4. There is clearly a one-to-one
correspondence between Figs. 3 and 4.

C. Asymptotics of the KNO scaling function

Given the analytic Fourier-Laplace transform, the behav-
ior of the scaling function fðzÞ follows readily. In fact, the

asymptotics of fðzÞ for large z is closely related to the
behavior of ZðtÞ around t ¼ −r, while the small-z behavior
of fðzÞ can be deduced from the large ReðtÞ → þ∞
asymptotics for ZðtÞ. We discuss them separately.

1. Small-z behavior

To determine the decay rate at small z, one needs to
work out the behavior for LðfÞðtÞ at large t or F ðfÞðωÞ
at large ω. It is sufficient to consider the Laplace trans-
form. Clearly, for t → ∞, ReðWÞ must go to −∞. More
precisely, the Laplace transform is determined by the
representation

ln t ¼
Z

0

−1
dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU − 2U − 2
p þ 1

U

�

þ
Z

−1

WðtÞ

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eU − 2U − 2

p ; ð62Þ

which will guarantee that for t → 0þ, one has the correct
boundary condition:

WðtÞ → −t: ð63Þ

For large jWj, we can expand

FIG. 3. We display different regions for the analytic continu-
ation forW. Explicitly shown are the trajectories for end points of
WðtÞ in Eq. (47), whereas the integration path is fromU ¼ 1 toW
without touching singularities. The branch cuts are shown as
horizontal lines. The labels F ðfÞ, LðfÞ denote the Fourier and
Laplace transforms of the underlying probability distribution f.
In particular, for t > 0, the end point W must be located at the
negative real axis, while the path runs from U ¼ 1 to U ¼ −jWj
along the real axis, with the pole at U ¼ 0 circumvented through
a small circle in the upper or lower half-plane, which gives rise to
the imaginary part�iπ for u. On the other hand, to get the Fourier
transform, u must have an imaginary part, � iπ

2
. For this, the end

point W must be located along the curve F ðfÞ, while the
integration path runs first from U ¼ þ1 to U ¼ −jReWj along
the real axis as before, and then vertically to ImW. In particular,
the πi

2
goes into the upper half-plane, and the − πi

2
goes into the

lower half-plane. The region Cþ and C− between the Laplace
transform and the Fourier transform is the usual analyticity region
for the characteristic function of a positively supported proba-
bility distribution.

FIG. 4. The analyticity structure of the Fourier-Laplace trans-
form of f. The Laplace transform corresponds to the positive real
axis, while the Fourier transform corresponds to the imaginary
axis. The singularity at t ¼ −r controls the large-z behavior of the
probability distribution, and it is the source of infinitely many
branch cuts corresponding to the roots. The outer ones shown
with arrows correspond to w1 and w̄1.
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Z jWj

1

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U−2þ2e−U

p

¼
Z jWj

1

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U−2

p þ
Z jWj

1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U−2þ2e−U
p −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U−2

p
�
:

ð64Þ

Now, for large jWj, the last integral is convergent, so that
for t → ∞,

ln t ¼
Z

0

−1
dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU − 2U − 2
p þ 1

U

�

þ
Z

∞

1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2U − 2þ 2e−U
p −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U − 2

p
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2W − 2

p
; ð65Þ

or

ln tþ 0.411926 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2W − 2

p
; → W ¼ −1 −

1

2
ln2ðαtÞ þO



e−

1
2
ln2ðαtÞ

�
; ð66Þ

which implies that for large t,

LðfÞðtÞ → exp

�
−1 −

1

2
ln2ðαtÞ

�
; ð67Þ

where α ¼ 1.50972 is a pure number. It is not hard to show
that the above gives the correct asymptotics for ZðtÞ with
ReðtÞ → þ∞.
Given the above, at small z, one can simply shift the

contour of inverse Fourier transform to 1
z þ it in order to

reach the asymptotic region. After simple algebra, one has

fðzÞ ¼ 1

2πz
exp

�
−
1

2
ln2

α

z

�Z
∞

−∞
dt

× exp

�
− ln

α

z
lnð1þ itÞ þ it −

1

2
ln2ð1þ itÞ

�
: ð68Þ

One must now determine the asymptotics of the integral at
small z. Applying the saddle-point analysis, one finally has

fðzÞ ¼ 1

z
ln
α

z
exp

�
−
1

2
ln2

α

z
− ln

α

z
ln ln

α

z
þ ln

α

z

−
1

2
ln2 ln

α

z
− 2þO

�
ln2 ln α

z

ln α
z

��
: ð69Þ

The speed of growth is much slower than the 0þ 1D
reduction, but much faster than the 1þ 2D case.

2. Large-z behavior

To determine the large-z behavior, we now use the
Fourier inverse transform,

fðzÞ ¼ −i
Z

i∞

−i∞

dt
2π

etzZðtÞ: ð70Þ

For large z, one would like to shift the integration path as
far left as possible. The singularity at t ¼ −r will prevent
shifting the contour further and gives rise to the leading
exponential decay. The singular part of Z near t ¼ −r along

the real axis has already been given in Eq. (53) in terms of
u ¼ lnð−tÞ. Expressed in terms of t, it reads

ZðtÞjt→−r ¼
2r2

ðtþ rÞ2 −
2r

tþ r
þ 1

3

�
−2 ln

tþ rffiffiffi
2

p
r
þ 13

6

�

þOððtþ rÞ lnðtþ rÞÞ: ð71Þ

The above applies to all the directions tþ r ¼ jtþ rjeiθ
when jθj ≤ π

2
, including the vertical line t ¼ −rþ ix:

Zð−rþ ixÞjx→0 ¼ −
2r2

x2
−
2r
ix

þ 1

3

�
−2 ln

ixffiffiffi
2

p
r
þ 13

6

�

þOðx lnðxÞÞ: ð72Þ

Now, shifting the contour with a small circle centered at
t ¼ −r, we have

fðzÞerz ¼
Z

−ϵ

−∞

dx
2π

eixzZð−rþ ixÞþ
Z

∞

ϵ

dx
2π

eixzZð−rþ ixÞ

þ
Z
Cϵ

dx
2π

eixzZð−rþ ixÞ: ð73Þ

Using the explicit form of the singularity for Zð−rþ ixÞ for
small x, and the fact that Zð−rþ ixÞ decays as e−ln2 ix

2 for
large ix, and is infinitely smooth when x ≠ 0, we obtain

fðzÞ ¼ 2r

�
rz − 1þO

�
ln z
z

��
e−rz; z → ∞: ð74Þ

Equations (69) and (74) are the major results of this section.

IV. DLA KNO SCALING VERSUS H1 DATA

Although the asymptotics of the DLA for fðzÞ can be
obtained exactly as presented in the previous section, the
full shape of fðzÞ can only be obtained numerically, with
the help of the inverse Fourier transform. For that, we
choose to invert with the complex valued path
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Cγ ¼ −x� γπ
ffiffiffiffiffi
2x

p
i; 0 < x < ∞; ð75Þ

in terms of which the inverse Fourier transform reads

fðzÞ¼−
i
2π

Z
Cγ

WdWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eW −2W−2

p exp½gðWÞþW−zWegðWÞ�;

gðWÞ¼
Z

0

W
dU

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eU−2U−2
p þ 1

U

�
: ð76Þ

This choice of the path guarantees that the integrand
decays exponentially for large x, for the parameter γ in
the range 1ffiffi

2
p ≤ γ ≤ 2. In fact, the natural path for the

Fourier transform asymptotically approaches C 1ffiffi
2

p . Clearly,

the result is path independent, provided that the path

ensures convergence at infinity. For convenience, the
numerical values of fðzÞ in the nonasymptotic regime
are tabulated in Table I.
In Fig. 5, we show in solid blue the numerical result for

fðzÞ [Eq. (76)] in the range 0.1 < z < 2, with a peak
around z ¼ 0.6. The result for the DLA fðzÞ compares
well to the measured KNO scaling function ΨðzÞ for the
charged particle multiplicities, reported by the H1
Collaboration [28]. The charged multiplicities are mea-
sured in ep DIS scattering, for

ffiffiffi
s

p ¼ 319 GeV, photon
virtualities 40 < Q2 < 100 GeV2, and charged particle
pseudorapidities in the range 0 < η < 4, for two different
inelasticities: 0.15 < yI < 0.3 (green) and 0.3 < yI < 0.6
(red). In Fig. 6, we compare the KNO scaling function in
the diffusive regime e−z (solid black) to the exact DLA
asymptotics [Eq. (74)] (solid blue). The DIS data at HERA
support the DLA solution we have presented for the entire
range of z, over the diffusive solution.

V. RELATION TO JET EVOLUTION

As we mentioned in our introductory remarks, the DLA
scaling function for Mueller’s dipole evolution is identical
to that of jet evolution [56,57].6 This is not accidental, and it
follows from the correspondence with the BK-BMS evo-
lution equation [58–62], as we now detail. When limited
to the virtual part only, this correspondence is also called
“soft rapidity” correspondence [64]. We will provide a

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

z

f(z
)

FIG. 5. The exact scaling of the KNO particle multiplicity fðzÞ as in Eq. (76) with a peak around z ¼ 0.6, following from the DLA of
Mueller’s dipole wave function evolution (solid blue curve). The data is the measured KNO scaling function ΨðzÞ for the charged
particle multiplicities in ep DIS scattering, as reported by the H1 Collaboration in Ref. [28], for

ffiffiffi
s

p ¼ 319 GeV, photon virtualities
40 < Q2 < 100 GeV2, and charged particle pseudorapidities in the range 0 < η < 4, for two different inelasticities: 0.15 < yI < 0.3
(green) and 0.3 < yI < 0.6 (red) [28].

TABLE I. Table of the scaling function.

z fðzÞ z fðzÞ
0.1 0.01 1.1 0.56
0.2 0.21 1.2 0.49
0.3 0.45 1.3 0.42
0.4 0.65 1.4 0.35
0.5 0.77 1.5 0.29
0.6 0.82 1.6 0.24
0.7 0.82 1.7 0.20
0.8 0.78 1.8 0.16
0.9 0.72 1.9 0.12
1.0 0.64 2.0 0.1

6This equality has been briefly pointed out in Ref. [65].
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pedagogical introduction to this correspondence at leading
order, using the generating functional approach in Ref. [8]
by emphasizing the underlying time and energy ordering of
the soft gluon emission. In particular, we will show that the
double logarithm limit in the BMS equation has the same
angular ordering as that in Refs. [56,57], which maps to the
dipole size ordering of the dipole evolution under the
conformal transformation discussed in Refs. [63,64]. As a
result, the two scaling functions are identical.

A. Generating function approach to BMS equation

The BMS equation, describing the “nonglobal” loga-
rithms in the eþe− annihilation process, is based on the
universal feature of the underlying branching process,
where a large number of soft gluons is released as
asymptotic final states, with infrared divergent contribu-
tions to the total cross section. In the eikonal approxima-
tion, which is sufficient for our purpose, the energetic
quark-antiquark pairs are represented by a Wilson-line cusp
consisting of lightlike gauge links with direction 4-vectors
p ¼ ð1; p⃗Þ and n ¼ ð1; n⃗Þ:

Wnp ¼ T


Peig

R
∞
0

dsp·AðpsÞPeig
R

0

∞
dsn·AðnsÞ

�
: ð77Þ

The amplitudes consisting of n soft gluons with momenta
k1;…kn emitted from the Wilson-line cusp Wnp as final
states, read

hk1;…knjWnpjΩi ¼ iMnðk1; k2;…knÞ: ð78Þ

The n-gluon contribution to the total cross section,

σn ¼
1

n!

Z
dΓ1dΓ2…dΓnjMnðk1; k2;…knÞj2; ð79Þ

normalizes to 1, thanks to unitarity:

X∞
n¼0

σn ¼ 1: ð80Þ

However, there are logarithmic IR divergences in σn,
represented as logarithms formed between the UV cutoff
E and the IR cutoff E0 ≫ ΛQCD. We are interested in the
“most singular” part of σn—namely, the part in which a
logarithm ln E

E0
always comes with αs. It turns out that this

part of the σn can be effectively generated through a simple
Markov process. More precisely,
(1) In time-order perturbation theory, the emitted soft

gluons are strongly ordered in energies: E ≫ ω1 ≫
ω2 ≫ � � �ωn ≫ E0.

(2) Softer gluons are emitted later in time; harder gluons
are emitted earlier in time.

(3) Each time a softer gluon with momentum k is
emitted from a harder gluon with momentum p, a
factor gpμ

p·k for the emission kernel follows, in the
eikonal approximation.

It is easy to check that for emission processes violating one
or more of the above properties, such as a softer gluon
emitted first, the contribution to σn will be less singular.

0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6
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FIG. 6. The exact asymptotic scaling of the KNO particle multiplicity fðzÞ as in Eq. (74), following from the DLA of Mueller’s dipole
wave function evolution (solid blue curve). For comparison, we show the KNO particle multiplicity e−z, following from the 0þ 1D
reduction or diffusive approximation of Mueller’s dipole wave function evolution (solid black curve). The data are from the H1
Collaboration in Ref. [28].
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For an illustration of the energy and time ordering, see Figs. 7 and 8.
We first consider the two-gluon diagram in Fig. 7. In covariant perturbation theory, the diagram is proportional to

Fig: 7 ¼ −
1

2
CACF

Z
d2Ω1d2Ω2

ð2πÞ4
Z

ω2
1ω

2
2dω1dω2

4ω1ω2ð2πÞ2
g4

ðk1 þ k2Þ · pk2 · pðk1 þ k2Þ · n

×
−ð2k1 þ k2Þμnν þ ð2k2 þ k1Þνnμ þ ðk1 − k2Þ · ngμν

ðk1 þ k2Þ2
pμpν; ð81Þ

where the color factor comes from ifabctatbtc ¼
i
2
fabc½ta; tb�tc ¼ − CACF

2
. Now, consider the region jk⃗1j ≫

jk⃗2j; in this case, the triple-gluon vertex simplifies to
−2kμ1nν þ kν1n

μ þ k1 · ngμν. The last term vanishes due to
p2 ¼ 0. The second term proportional to kν1 (longitudinal)
will cancel with contributions from polarization diagrams
after using Ward identities, leaving only the physically

motivated eikonal current 2k
μ
1
nν

2k1·k2
. As a result, the contribution

in this region in the CF ∼ Nc
2
(large color) limit, is

Fig: 7jω1≫ω2
¼

�
αsNc

2π

�Z
dω1

ω1

Z
dΩ1

4π

p · n

k̂1 ·pk̂1 · n

�
αsNc

2π

�

×
Z

dω2

ω2

Z
dΩ2

4π

k̂1 ·p

k̂2 · k̂1k̂2 ·p
; ð82Þ

with the desired factorized form, producing the leading
logarithm. On the other hand, in the region ω2 ≪ ω1, it is
clear that the energy integral is

Fig: 7jω2≫ω1
∝
Z

ω2
2dω2

2ω2 × ω4
2

× ω2

Z
ω2
1dω1

2ω1 × ω1

¼
Z

dω2

4ω2
2

Z
dω1 ¼

Z
dω2

4ω2

; ð83Þ

which only leads to a single logarithm. It is easy to check
that in the time-ordered perturbation theory, the energy
denominators are in one-to-one correspondence with the
eikonal propagators. For example, in the region ω1 ≫ ω2,
we have for the time order shown in Fig. 7

1

ω1 þ ω2 − p⃗ · ðk1!þ k2
!Þ

1

ω2 − p⃗ · k2
!

1

ω1 þ ω2 − jk1!þ k2
!j

×
1

ω1 þ ω2 − n⃗ · ðk1!þ k2
!Þ

∼
1

k1 · p
1

k2 · p
1

k2 · k̂1

1

k1 · n
:

ð84Þ

The contribution for another time ordering with a back-
ward-moving gluon on the conjugate amplitude side is
suppressed by more ( 1ω1

) and is therefore less singular.
Similarly, for Fig. 8, one can show that in either the ω1 ≫
ω2 or ω2 ≫ ω1 region, there will be no leading logarithm:

Fig: 8jω1≫ω2
∝
Z

ω1dω1

ω3
1

Z
ω2dω2

ω2

∝ ln
E
E0

; ð85Þ

Fig: 8jω2≫ω1
∝
Z

ω2dω1

ω3
2

Z
ω1dω1

ω1

∝ ln
E
E0

: ð86Þ

In the first case, the time-energy ordering is violated in the
conjugate amplitude side, while in the second case, the
energy-time ordering is violated in the amplitude side. It is
clear that the rule that softer gluons are emitted later carries

FIG. 7. A sample diagram with two real gluons. The direction
of time is shown as an arrow for the amplitudes (left of the cut),
and the opposite for the conjugate amplitudes (right of the cut).
The region ω1 ≫ ω2 contributes to the leading logarithm α2s ln2 E

E0

for σ2.
FIG. 8. Another two-gluon diagram which does not contribute
to order α2s ln2

E
E0

for σ2.
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to higher orders. The contribution for any leading n-gluon
diagram will have a factorized form as in Eq. (82).
As a result, the emission depends only on the color

charges that are already present in the final state and their
energy scales, but not on the history of how they are
emitted. In large Nc, the color charges effectively split the
original Wilson-line cusp into many “dipoles,” with the
subsequent emissions to different dipoles being completely
independent. To keep track of the above branching process,
we follow Mueller’s reasoning for the wave function
evolution, and introduce the generating functional

Z
�
E
E0

; n; p; λ

�
¼

X∞
n¼0

λnσn ð87Þ

for the n cross sections, which is readily seen to obey the
integral equation

Z
�
E
E0

;n;p;λ

�
¼ e−

αs
4π ln

E
E0

R
dΩk

p̂·n̂
k̂·p̂ k̂ ·n̂ þ ᾱs

4π
λ

Z
E

E0

dω
ω

× e−
ᾱs
4π ln

E
ω

R
dΩk

p̂·n̂
k̂·p̂ k̂ ·n̂

Z
dΩk

p̂ · n̂

k̂ · p̂ k̂ ·n̂

×Z
�
ω

E0

;n; k̂;λ

�
Z
�
ω

E0

;p; k̂; λ

�
; ð88Þ

where ᾱs ¼ αsNc
π . The first term is the Sudakov contribution

where all soft gluons are virtual, and the second term is the
contribution where at least one soft gluon is real (we pick
the hardest gluon with momentum k ¼ ωk̂, which splits the
Wilson-line cusp into two dipoles at energy scale ω, with or
without real contributions). The prefactor is αsNc

π instead of
αsNc
2π , as in Eq. (82), because for each real gluon emission
there are two contractions, whereas Fig. 7 shows only one
contraction for each of the two gluons. See Fig. 9 for an
illustration of the recursive relation [Eq. (88)]. It is easy to
check that for λ ¼ 1, one simply has Z ¼ 1, the required
normalization property. The above is nothing but the
integral form of the BMS equation [58,60]. To cast it as
a differential equation, one takes the derivative with respect
to ln E

E0
,

d
d ln E

E0

Z
�
E
E0

; n; p; λ

�

¼ ᾱs
4π

Z
dΩk

p̂ · n̂

k̂ · p̂ k̂ ·n̂

�
−Z

�
E
E0

; n; p; λ

�

þ λZ
�
E
E0

; n; k̂; λ

�
Z
�
E
E0

;p; k̂; λ

��
; ð89Þ

which is the standard form of the BMS equation in
Refs. [58,60].
After introducing the BMS equation, we would like

to provide a few comments from a field-theoretical per-
spective. The “power expansion” in asymptotically free
quantum field theories is distinct from that for super-
renormalizable or conformal field theories, by additional
logarithmic contributions that couple UVand IR scales.7 In
particular, the squared amplitudes for “asymptotic gluons”
integrated over their pertinent phase space suffers from
logarithmic IR divergences with an involved nonlinear
pattern as in Eq. (88). When these partial contributions are
used as building blocks for other quantities, sometimes
miracle cancellation occurs, and the logarithms in the final
result follow a much simpler linear pattern. This normally
happens when the IR scale E0 is introduced through
globally conserved quantities, such as the transverse
momentum Q⊥. However, in many other cases, the non-
linear pattern of logarithms survives. This is the case for the
original “BMS nonglobal logarithm” measuring the prob-
ability of energy flow less then E0 outside a certain jet
cone region Ωin [58], which is not a conserved quantity.
Another example is the total “transverse energy” ET ¼P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2i⊥ þm2

i

q
, for which factorization is known to break.

B. Connecting BMS and Mueller’s dipole

The generating functional approach to the BMS equation
makes the connection to small-x physics very transparent.
In fact, as shown by Mueller [8], small-x evolution

FIG. 9. Illustration of the recursive relation given in Eq. (88). S denotes the virtual Sudakov contribution. The first term after the equal
sign corresponds to the pure virtual contribution to the generating function Z. The second term corresponds to the contribution with at
least one real gluon—the hardest one, with momentum k ¼ ωk̂, is emitted first and splits the original “dipole” into two.

7The standard operator product expansion implies that these
logarithms are controlled asymptotically by perturbation theory,
as they couple to both IR and UV regimes.
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equations such as BFKL and BK are all based on the
distribution of virtual soft gluons in the light-front wave
functions (LFWFs). In the famous dipole picture, based
on light-front perturbation theory, it is easy to show that
the leading rapidity logarithms in the norm squares of the
dipole’s LFWFs can be effectively generated through a very
similar Markov process, where the soft gluons emitted are
strongly ordered in rapidity, x1 ≫ x2 � � � ≫ xn, and gluons
with larger x are emitted first. Based on this, one can write
out the evolution equation for the generating function of the
dipole distribution as in Sec. II.
Clearly, Eqs. (88) and (1) are very similar, in the sense

that they are both generating functions for distribution of
soft gluons in “final states,” and both originate from a
Markov branching process with the gluons strongly ordered
in the evolution variables. However, there are differences.
Mueller’s evolution equation is for a wave function, and the

evolution is towards the direction with more and more

“virtuality” (k
2
1⊥
2x1

≪ � � � ≪ k2n⊥
2xn

), while in BMS the evolution
is towards more and more “reality.” This suggests that
the mapping between the BMS and Mueller’s evolutions
flips the energy scale. This is only possible in the
conformal limit.
Indeed, one can perform a conformal transformation to

map Mueller’s dipole construct, to exactly the Wilson-line
cusp [63,64]. The transformation reads

ðxþ; x−; x⃗⊥Þ C∶ →

�
xþ −

x2⊥
2x−

;−
1

2x−
;

x⃗⊥ffiffiffi
2

p
x−

�
: ð90Þ

It is easy to check that Eq. (90) maps a Wilson-line cusp
Wnp pointing to positive infinity, onto a dipole propagating
along the LF time xþ from xþ ¼ −∞ to xþ ¼ 0:

P exp

�
ig
Z

∞

0

dsv · AðsvÞ
�

C∶ → P exp

�
ig
Z

0

−∞
dxþA−

�
xþ; 0;

v⃗⊥
2v−

��
: ð91Þ

The asymptotic soft gluons emitted into the scattering states
at t ¼ ∞ become the virtual gluons present in the wave
function at zero light-front time xþ. In this sense, the
mapping is a “virtual-real” duality, in addition to the
standard interpretation that it maps rapidity divergences
to UV divergences [64].8 Moreover, if one parametrizes the
direction vector as v ¼ v0ð1; n⃗Þ, then the conformal trans-
formation reduces to the standard stereographic projection,
that maps n⃗ ∈ S2 onto b⃗ ∈ R2. See Table II for a com-
parison between the BMS and dipole evolution.

C. The universal DLA limit

The BK/BMS equation resums single logarithms in
rapidity/energy. However, in both cases, there are two

types of divergences instead of one: in Mueller’s dipole,
there are UV divergences (in pn) in the large-k⊥ or small-
dipole region, while in the Wilson-line cusps, there are
“rapidity divergences” caused by emissions collinear to the
Wilson lines. It is natural to consider the double logarithms
(DLs) in terms of both.9 One can show that the leading
double logarithms are generated from the same branching
process, and that in addition to the strong ordering in kþ=ω,
one imposes strong ordering in dipole sizes/emitting angles
as well. The strong ordering in virtuality is preserved by
the DL limit. Clearly, the two DL limits and the under-
lying size/angle orderings map onto each other under the
conformal transformation [Eq. (90)]. We emphasize that
the DL limit dominates the large-Q2 limit of the eþe−
multiplicity

TABLE II. Mueller hierarchy and BMS hierarchy.

Dipole Cusp

Distribution in Virtual gluon in wave function Real gluon in asymptotic state
Large Nc Yes Yes
Evolution in Rapidity divergence Soft divergence
Kernel b2

10

b2
12
b2
20

n·p
k̂·nk̂·p

Virtual part TMD soft factor Sudakov form factor
Time ordering In LF time xþ In CM time t
Momentum ordering Decreasing kþ Decreasing energy ω
Virtuality ordering Increasing Decreasing
Markov property Yes Yes
DLA b10 ≫ b12 ≫ � � � θ01 ≫ θ12 ≫ � � �

8In nonconformal theory, the exact mapping breaks at two
loops already [62]. But for the virtual part, there is a way to
generalize the mapping to all orders [64].

9In fact, it is known that the Sudakov form factor is dominated
by a double logarithm in the exponential.
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neþe−ðQ2Þ ¼ exp

2
642

0
B@ Nc

2πβ0
ln

Q2

Λ2
QCD

ln
ln Q2

Λ2
QCD

ln Q2
0

Λ2
QCD

1
CA

1
2

3
75; ð92Þ

while the BFKL limit [60] only contributes to

nBFKL ∼ e

Nc ln 2
πβ0

ln

ln Q2

Λ2
QCD

ln
Q2
0

Λ2
QCD ;

smaller than the DLA result in the large-Q2 limit.
In Fig. 10, we show the exact scaling [Eq. (76)] of

the KNO particle multiplicity (solid black) versus the
measured multiplicities in ep DIS scattering by the H1
Collaboration [28] (red data points) and the charged
particle multiplicities from hadronic Z-decays from eþe−

annihilation with
ffiffiffi
s

p ¼ 91.2 GeV, as measured by the
ALEPHCollaboration [66] (gray data points). We have also
shown the exact asymptotic [Eq. (74)] (solid blue) and the
diffusive KNO multiplicity (dashed green) for comparison.
The agreement is very good, for both datasets, underlying
the universality of our results.

VI. IMPLICATION FOR THE ENTANGLEMENT
ENTROPY

As we have shown in Ref. [49], the reduced density
matrix measuring quantum entanglement between fast and
slow degrees of freedom in Mueller’s dipole wave function
has the generic form

ρ ¼
X
n

pnρn; ð93Þ

where pn is the total probability of finding n dipoles, and
the ρn is an effective reduced density matrix with n soft
gluons on the left and right. From Eq. (93), the entangle-
ment entropy for ρ can be found to be

S ¼ −
X
n

pn lnpn þ
X
n

pnsn; ð94Þ

where sn ¼ −trρn ln ρn is the entanglement entropy of the
reduced density matrix in the n-particle sector. Since the
wave function peaks at n ¼ n̄ for large n, it is natural to
expect that the entanglement entropy sn also peaks around
n ¼ n̄ and scales as sðnn̄Þ. Under this assumption, the
universal behavior follows

S ¼ ln n̄þ
Z

dzfðzÞð− ln fðzÞ þ sðzÞÞ: ð95Þ

In particular, in the DLA regime, the use of the asymptotic
form of Eq. (15) yields

Sðn̄ðy;Q2ÞÞ→ lnðn̄ðy;Q2ÞÞ≡ 2

0
B@Nc

πβ0
y ln

ln Q2

Λ2
QCD

ln
Q2

0

Λ2
QCD

1
CA

1
2

; ð96Þ

with β0 fixed in Eq. (9). The region of validity for the DLA
implies
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FIG. 10. The exact scaling [Eq. (76)] of the KNO particle multiplicity (solid black curve), its exact asymptotic [Eq. (74)] (solid blue
curve), and the diffusive KNO multiplicity (green dashed curve), compared to the measured particle multiplicities in ep DIS scattering
by the H1 Collaboration [28] (red data points), and the charged particle multiplicities from hadronic Z-decays from eþe− annihilation
with

ffiffiffi
s

p ¼ 91.2 GeV, as measured by the ALEPH Collaboration [66] (gray data points).
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y ∼ ln
ln Q2

Λ2
QCD

ln Q2
0

Λ2
QCD

→ ∞; ð97Þ

which shows that the largest logarithm is the double
logarithm. More explicitly, Eq. (97) implies that Q2 must
be very large, putting the saturation regime out of reach in
the DLA regime. The entanglement entropy [Eq. (96)] is
accessible to current and future DIS measurements.
We note that although both the DLA and diffusive

regimes support KNO scaling, the corresponding scaling
functions are very different. In the diffusive limit, the
distribution pn → e−n=n̄ is almost identical to the thermal
distribution for a quantum oscillator with n̄ ∼ T

ω ≫ 1, which
suggests maximal decoherence encoded in the large entan-
glement entropy S ∼ y. However, the multiplicity distribu-
tion in the DLA regime is far from thermal, with a much
smaller entanglement entropy S ∼ ffiffiffi

y
p

. Also, its KNO
scaling function fðzÞ carries still more structure (peak at
intermediate z).
Finally, due to the similarity in the branching process

underlying the BMS evolution and Mueller’s dipole, one
can define a reduced density matrix that entangles soft
gluons in the final state at different energy scales for the
leading-order BMS evolution. It satisfies a similar evolu-
tion equation that maps exactly to that for the Mueller’s
dipole, as we have shown in Ref. [49]. In the large-Q2 limit,
it produces a large entanglement entropy, responsible for
the large observed multiplicities in jets. In the DLA limit,
the entanglement entropy in jet emissivities is again given
by a result similar to Eq. (96),

Scuspðn̄ðQ2ÞÞ→ lnðn̄ðQ2ÞÞ→ 2

0
B@ Nc

2πβ0
ln

Q2

Λ2
QCD

ln
ln Q2

Λ2
QCD

ln Q2
0

Λ2
QCD

1
CA

1
2

:

ð98Þ
The rapidity gap between the quark-antiquark pair y ¼
ln Q2

Λ2
QCD

produces another logarithm in Q2. The argument of

the square root in Eq. (98) is the Sudakov double logarithm

jHsudaðQ2Þj2 ∼ e
− Nc
2πβ0

ln Q2

Λ2
QCD

ln ln Q2

Λ2
QCD

in the large-Q2 limit, namely

Scuspðn̄ðQ2ÞÞ → 2
ffiffiffi
2

p �
ln

�
1

jHsudaðQ2Þj
��1

2

: ð99Þ

The entanglement entropy [Eq. (98)] is also accessible to
currently measured emissivities from jets—say, from eþe−
annihilation. As mentioned before, in the case of eþe−, the
DLA dominates the large-Q2 limits in comparison to the
BFKL contribution.

VII. CONCLUSION AND OUTLOOK

We have presented an exact derivation of the leading
moments of the dipole emissivities from the dipole cascade
originating from Mueller’s wave function evolution in
1þ 3 dimensions by resumming the leading logarithms
in both large-Q2 and large-rapidity y ¼ ln 1

x, which we refer
to as the DLA limit. We have shown that the hierarchy of
moments allows for the reconstruction of a continuous
probability distribution fðzÞ supported in ð0;∞Þ, which is
simply the KNO scaling function of the dipole multiplicity
pn ¼ 1

n̄ fðnn̄Þ with z ¼ n
n̄. The behavior of fðzÞ at large and

small z can be exactly determined, while the result for all
values of z is only accessible numerically.
In principle, the virtual dipoles in the LFWF still need to

pass through the final-state evolution stage to become real
asymptotic states. However, the final-state evolution is less
rapidity divergent, and we expect the main features of the
dipole multiplicity distribution to hold. This distribution
can be used as a probe for the final hadron multiplicities, as
suggested in Refs. [29,51] (and references therein). Indeed,
our parameter-free result reproduces well the DIS multi-
plicities reported by the H1 Collaboration at HERA in the
highest Q2 range; in particular, the observed KNO scaling
function is in good agreement with the predicted dipole
scaling function, including the overall shape, the location of
the peak, and the large z ¼ n

n̄ tail. Our results show that the
currently available DIS data at HERA are more amenable to
the present DLA regime than to the diffusive or BFKL
regime. The gluon multiplicities for both large and small
z ¼ n

n̄ in the DLA regime should prove useful for more
detailed comparisons with present and future DIS data, at
large Q2 and small parton-x. We have provided a peda-
gogical introduction to the leading-order BMS evolution
equation and its relation to dipole evolution, from which the
universality of the KNO scaling function is manifest.
The entanglement entropy in the DLA regime of DIS, is

found to asymptote at S ¼ ln n̄, much like in the diffusive
(BFKL) regime. This is a general result of KNO scaling
of the ensuing gluon multiplicities, satisfied by both
regimes. However, the growth of the mean multiplicity
n̄ ¼ xGðx;Q2Þ is slower with n̄ ∼ e#

ffiffiffiffiffi
αsy

p
or S ∼ ffiffiffiffiffiffiffi

αsy
p

in
the DLA regime, and faster with n̄ ∼ e#αsy or S ∼ αsy in the
BFKL regime. We regard this as an indication of faster
scrambling of quantum coherence in the diffusive regime
(smaller and smaller off-diagonal entries in the entangled
density matrix). We emphasize that the entanglement
entropy for DIS and jets in the DLA regime is directly
accessible to current and future measurements.
Needless to say, the information encoded in the QCD

multiplicities in the DLA regime is far more detailed than
that captured by the entanglement entropy. However, the
latter can be used as a sharp characterization of saturation,
where the quantum cascade of dipoles reaches a state
of maximum decoherence. Recall that a pure state with
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maximal coherence carries zero entanglement entropy.
But what is the signature for this onset, and what is its
bound if any?
Saturation as a regime of maximal decoherence in the

QCD cascade evolution of dipoles as gluons is likely to
take place in the diffusive rather than the DLA regime,
where the entanglement entropy is substantially larger
with increasing rapidity. This is further supported by the
observation that the diffusive multiplicities at weak cou-
pling are very similar to the thermal distribution of a
quantum oscillator. It is therefore not surprising that the
same quantum entropy was noted in the dual string (a
collection of quantum oscillators) exchanged between
highly boosted hadrons (with emergent Unruh temper-
ature). The dual string quantum entropy is extensive with
the rapidity, commensurate with the transverse size growth
of the boosted hadron as a stretched string, and saturates
at one bit per string length squared [67]. These are the
signature and bound we are looking for in characterizing
the emitted hadronic multiplicities, as measured in both
DIS and hadron scattering with large rapidity gaps.
Remarkably, a similar signature and bound are observed
in a classical black hole, where information is maximally
scrambled on its near horizon and saturates to the lowest
bound of one bit per Planck length squared [68].
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APPENDIX: MULTIPLICITY DISTRIBUTIONS
IN SUPER-RENORMALIZABLE THEORIES

In this appendix, we show in two examples that the
multiplicity distribution in super-renormalizable theories
(real or virtual), is in general Gaussian-like in the scaling
region. This behavior is similar to the multiplicity distri-
bution observed for the onium’s LFWF in 1þ 2D
QCD [49]. In other words, KNO scaling holds only for
critical theories with dimensionless couplings [31,69].

1. Ising model

The first example is the multiplicity distribution in the
massive continuum limit of the 2D Ising model at zero
magnetic field [70,71], where the mass of the free fermion
equals m. We consider the spin-spin correlator GðrÞ ¼
hΩjσðrÞσð0ÞjΩi in its “form-factor expansion” [70–72]

GðrÞ ¼
X
n

Z Y
i

dpi

4πEi
jhΩjσð0Þjp1::pnij2e−r

P
n
i¼1

EðpiÞ:

ðA1Þ

The relative contribution from the n-particle sector can be
regarded as a multiplicity distribution

σnðrÞ ¼
1

GðrÞ
Z Y

i

dpi

4πEi
jhΩjσð0Þjp1::pnij2e−r

P
n
i¼1

EðpiÞ;

ðA2Þ

with the normalization
P

n σnðrÞ ¼ 1. To analyze this
distribution at small mr ≪ 1 or large energy Q ≫ m, we
consider the “lambda extension” [73]

Gðr;λÞ¼
X
n

λn
Z Y

i

dpi

4πEi
jhΩjσð0Þjp1::pnij2e−r

P
n
i¼1

EðpiÞ;

ðA3Þ

in terms of which the generating function for σn is

Zðλ; rÞ ¼ Gðr; λÞ
GðrÞ : ðA4Þ

For λ ≤ 1, Gðr; λÞ has representation in terms of special
solutions to Painlevé equations [70,73], with a small-r
asymptotic [73,74]

Gðr; λÞjr→0 ¼ τ0ðσÞðmrÞ−σ
2
ð1−σ

2
Þ; ðA5Þ

where we have defined

σ ≡ σðλÞ ¼ 2

π
ArcsinðλÞ; ðA6Þ

τ0ðσÞ ¼ Ae−3s
2 ln 2Γ2ð1þ sÞΓ2ð1 − sÞ; s ¼ 1 − σ

2
:

ðA7Þ

Here, Γ2ðzÞ is the Barnes G function, and the value of the
λ-independent constant A is not important. The mean
multiplicity in the small-r limit follows as

hni ¼ d
dλ

Zðλ; rÞjλ¼1 →
2 ln 8eγEþ1

mr

π2
þOðmrln2mrÞ∼ 2

π2
ln

1

mr
;

ðA8Þ

which is seen to grow logarithmically. On the other hand,
the mean square deviation of the distribution reads
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σ2 ¼ hn2i − hni2 ¼ d2

d2λ
Zðλ; rÞjλ¼1 þ hni − hni2

→
4

3π2
ln

1

mr
∼
2

3
hni: ðA9Þ

Therefore, the width is of order
ffiffiffi
n

p
, typical for a Poisson-

like distribution. More specifically, we have

lim
r→0

Z

�
1 −

t
σ
; r

��
1 −

t
σ

�
−hni

¼ e
t2
2 ; ðA10Þ

which implies

σn →
1

σ
e−

ðn−n̄Þ2
2σ2 : ðA11Þ

The multiplicities fall into the Poisson universality class.

2. Phi-4

The second example is the ground-state wave function in
terms of a free Fock basis in a super-renormalizable theory.
As an example, consider a 2D free massive scalar field ϕ,

supplemented by the quartic interaction term HI ¼ g
R L

2

−L
2

∶
ϕ4ðxÞ∶dx. In the Fock basis of the free theory, the ground-
state wave function of the interacting theory can be
expanded as

jΩðLÞi ¼
X
n

pnðLÞjΨni; hΨnjΨni ¼ 1; ðA12Þ

where pnðLÞ is the probability of finding n particles of the
free theory. As L → ∞, the average particle number goes to

infinity, and we would like to find out the distribution of pn
in this limit. For that, we introduce the generating function

Zðλ; LÞ ¼
X
n

λnpnðLÞ: ðA13Þ

In the large-L limit, as each connected diagram contributes
a single factor of L, and the disconnected diagrams
factorize (after summing over all time orderings), we have

Zðλ; LÞ ¼ e−LFð1;gÞeLFðλ;gÞ; ðA14Þ

where LFð1; gÞ is the “field renormalization factor” for the
vacuum. Here, Fðλ; gÞ is the sum over all the connected
“real contributions” weighted over the number of particles
in the “cut.” Clearly, when λ ¼ 1, Z ¼ 1. For large L, we
have

n̄ ¼ L
dFðλ; gÞ

dλ

				
λ¼1

; ðA15Þ

σ2 ¼ L
d2Fðλ; gÞ

d2λ

				
λ¼1

þ L
dFðλ; gÞ

dλ

				
λ¼1

: ðA16Þ

With this in mind, we can expand the generating function
around λ ¼ 1, with the result

lim
L→∞

Z

�
1 −

t
σ
; L

��
1 −

t
σ

�
−hni

¼ e
t2
2 : ðA17Þ

Again, this implies a Gaussian distribution for the limit-
ing pn.
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