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We compute the gravitational form factor D(¢) of various nuclei in the generalized Skyrme model where
nuclei are described as solitonic field configurations each with a definite baryon number B. We separately
discuss the cases B = 1 (nucleons), B = 2 (deuteron), B = 3 (helium-3 and tritium), and extrapolate to
larger B-values. Configurations with B > 1 are in general not spherically symmetric, and we demonstrate
how group theory helps to extract the form factor. Numerical results are presented for the configurations
with B =1,2,3,4,5,6,7,8, 32, 108. We find that the B-dependence is consistent with a power-law
D(0) « B? with g = 1.7-1.8. Other gravitational form factors can be calculated in the same framework,
and we show the result for the J(z) form factor associated with the angular momentum for the B =3

solution.
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I. INTRODUCTION

The gravitational form factors (GFFs) are form factors
associated with the QCD energy momentum tensor
T,, [1,2]. Much like the electromagnetic form factors,
they contain a wealth of information about the structure of
the nucleons, or more generally hadrons and nuclei.
However, unlike the latter which have enjoyed more than
70 years of continual theoretical and experimental efforts,
it was not until recently that GFFs started to attract
community-wide attention [3]. A major catalyst is the
Electron-Ion Collider (EIC) project [4] poised to uncover
the mass and spin structure of the nucleons and nuclei.
Since the energy momentum tensor encodes mechanical
properties such as mass, angular momentum, internal
forces, and their distribution, the study of GFFs is perfectly
aligned with the core missions of the EIC. In a sense, GFFs
are more “quintessentially QCD” than the electromagnetic
form factors since they can be defined without reference to
quark electric charges, and are directly sensitive to the
gluonic degrees of freedom.

Among the various GFFs, of particular interest is the D()
form factor related to the “pressure” distribution inside
hadrons and nuclei [3]. Its value at vanishing momentum
transfer D(z = 0), often referred to as the D-term, is a
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fundamental constant similar to the magnetic moment.
While the value is presently unknown, even for the nucleons,
in principle the form factor D(#) can be experimentally
accessed in deeply virtual Compton scattering [5,6] and
near-threshold quarkonium photo- and electroproduction in
electron-nucleon scattering [7—13]. See [14-16] for recent
experimental efforts. The same methods could be used to
measure the D(r) form factor of light nuclei at the EIC.
In this paper, we compute D(7) for a number of nuclei in
the Skyrme model [17]. In this model, the nucleon is
realized as a finite-energy solitonic configuration of meson
fields with a nontrivial topological number identified
with the baryon number B = 1. The model has been
successful in explaining the low energy properties of the
nucleon [18,19]. Subsequently it has been extended to
describe light nuclei, such as the deuteron (B = 2) [20,21],
the helium-3 or the tritium (B = 3) [22], and so on. At
the moment, solutions up to B = 108 are known [23,24],
and they have been even extrapolated to infinite crystals
(B = o0) [25,26] to discuss the properties of nuclear
matter [27] and neutron stars [28,29]. Moreover, low-lying
excited states of various nuclei have been systematically
studied [30-32]. Concerning form factors, the electromag-
netic and axial form factors have been calculated for the
B =2 [33]and B = 3 [34] solutions, as well as for larger-B
solutions with zero isospin [35]. However, the application
of the model to GFFs has been so far limited to the B = 1
sector (nucleons and their excited states) [36-38] which
is relatively tractable due to the spherical symmetry of
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the classical solution. In fact, all the known skyrmion
solutions with B > 1 are not spherically symmetric. Yet,
each solution possesses a (discrete) symmetry group, and
techniques from group theory can greatly facilitate the
extraction of form factors as demonstrated by Carson [34]
in the context of the electromagnetic form factors. We shall
adapt this method to the computation of GFFs using the
state-of-the-art numerical skyrmion solutions.

It should be mentioned that the form factor D(z) for
nuclei has been evaluated in the liquid drop model [39], in
the Walecka model [40], and from the nonrelativistic
nuclear spectral functions [41]. We shall study the depend-
ence of the D-term on the baryon number and compare the
result with these previous works.

II. SKYRMIONS IN THE GENERALIZED
SKYRME MODEL

The generalized Skyrme model that we will consider is
given by the following Lagrangian density:

f%Tr{L L# }+ ! Tr{[ L)%}

f2
8

Lsg =

— A*n*B,B* + Tr{U -1}, (1)
where we use the metric convention 7** = diag(1,—1,
—1,—1). U € SU(2) contains the fundamental mesonic
degrees of freedom, parametrized as the coordinates of the
SU(2) group element

U=o0l+ir,z, =ip*7,, P* = (o, 7),
7 = (—il ), )

with 7% (a = 1, 2, 3) being the Pauli matrices. L, = U*d#U
are the components of the associated left-invariant Maurer-
Cartan form, 1 is the 2 x 2 identity matrix, and B* is the
topological current,

eHvpo
B =5 Tr{LL, L} (3)

Although only the first two terms (namely, the quadratic
and quartic terms in L) in (1) were originally considered
by Skyrme [17], the other two terms have been sub-
sequently included in order to achieve a better agreement
with nuclear phenomenology. Indeed, the potential term
explicitly breaks chiral symmetry and provides a mass term
for the pions. On the other hand, the sextic term in Lﬂ, first
proposed in [42] (see also [43]), can be seen as an effective
pointlike interaction that describes the repulsive exchange
of omega vector mesons, which becomes relevant at
sufficiently high densities. Such a term has recently proven
to be crucial for an accurate description of the high density
equation of state of neutron stars, allowing one to reach

sufficiently high maximum masses and sound velocities
above the conformal limit [28,44].

We will consider static solutions of the Skyrme field, and
for numerical purposes we adopt the usual Skyrme units of
energy and length,

3n? 1
ES — —‘f‘ﬂ’ xs = —,
e fre
unless otherwise specified. The static energy functional in
these units becomes

4)

1 1 1
E= Sx|—=Tr{L?} ——Tr{[L;, L]
s [ @r[5 R gLy

+ 82274 f2e*(BY)? + (}n—';)zTr{l - U}}

= 2an dx[(0i0)* + (0:ho0,p — 0:p50,bs)?
+ C6(€aﬂy5¢aal¢ﬂaz¢ya3¢5)2 + Co(l — 0)], (5)

where €, is the totally antisymmetric tensor with €534 = 1
and we have defined cq = 24%f2e* and ¢y = 2m2/(fe)>.
The energy momentum tensor of the model can be obtained
via the Hilbert prescription, which for our sign convention is
given by

Twr 2 S _ 2 a(ﬁ\/_) (©)
N T N
so that we have
T, :—Tr{ -2L,L, +n,L,L" }——Tr{ —4[L,.L,][L,,L"]
+ MLy, L} + 87 csB, B, — 4n*ccB,B'ny,
+co(1 =0 (7)

Note that the definition of B¥ involves a Levi-Civita tensor;
hence it transforms as a tensor density of rank one, and each

must include a factor of | g|‘% when coupled to a nontrivial
gravitational field [45].

We shall be mainly interested in the uv = i, j (spatial)
components. The relevant traces we need to compute are

Tr{-L,L;} = Tr{o,U0;U} = 20,¢"0,¢*,  (8)

Tr{L;L,L,L;} = Tr{0,U"0;U0, U 9,U}

= 20,070,004 01¢° (26,565 + 8Os
€(1/3y5)? (9)
and contractions of these. We have used the properties of the
7, (see, e.g., Appendix D in [46]). Classical solutions are

obtained as minimizers of the static energy functional (5), via
the (accelerated) gradient flow algorithm (see Sec. V).

— 8us0p, —
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A. Quantization

Nucleons and nuclei are described within the Skyrme
model as classical solitonic configurations through the
identification of the skyrmion topological charge and the
baryon number of nuclear states. However, other quantum
numbers such as the spin and isospin of quantum nuclear
states are not described at the classical level. Hence, a
quantization of the skyrmion field is needed in order to take
into account the relevant quantum numbers. This is done in
the semiclassical approach by promoting the zero modes of
the soliton to dynamical degrees of freedom.

To do so, we introduce the rotational and isorotational
degrees of freedom through a pair of time-dependent SU(2)
transformations of the classical (static) solitonic solution,
representing the isorotation and the spatial rotation zero
modes, respectively, as well as a time-dependent vector

X (1) representing the translational zero modes:
U(t.x) = A()Uy(Rp(1)(x — X(1)))A" (1), (10)

where R} =1 Tr{z'B/B'} € SO(3) is the corresponding
rotation matrix in space. A(r),B(r) € SU(2) and X(r)
together form the collective coordinates of the soliton.'
The semiclassical quantization of the skyrmion then con-
sists of substituting (10) into the Skyrme Lagrangian (1),
which yields the Lagrangian of an effective dynamical
system in terms of the collective coordinates {A(7), B(r),
X ()}, and quantizing such a system via standard canonical
methods. Performing this substitution yields

1 .. 1
Lo = /d3x£SK =-M +§MX5X:' +§aiUijaj

1
+=b,V,;:b; (11)

_aiW J 7 ijYj»

ijb

where

a;=—iTrr;A”'A,  b; = iTrr;BB™"

are the angular velocities in isospace and physical space,

respectively. We have also introduced the corresponding
inertia tensors

U= Ex[~THT T~ Te{(T LT L)

U 2452
ST L, L)) THT L, L)), (12)

'For spherically symmetric solutions, rotation in coordinate
space can be undone by that in isospin space, and one can devise
a simpler quantization procedure without introducing the matrix
B(r) [18]. The present treatment is more general and can be
used also for nonspherical solutions that we shall be mainly
interested in.

1
Vij = m d3xe,~lm€jnpxlxn [—Tr{Lme}
C
- Tr{ [Lp’ Lk] [Lm» Lk]} + %Tr{Lp[Lav Lh]}
X Te{ Ly (Lo L]} (13)
1
W,’j = 247[2 / d3xej1mx1 |:TI'{T,Lm} + Tr{[Ti, Lk] [Lm’ Lk]}

— SETR{T L Ly} Tr{Ln[La L]} . (14)
given in terms of the 81(2)-valued currents

Ti:iU(-g[Ti?UO]- (15)

Ly = Ugo, U, 5

For notational simplicity, here and below we do not
distinguish upper (x', 7) from lower (x;, 7,) indices for
three-dimensional vectors and tensors when we deal with
purely three-dimensional expressions.

Once we have the Lagrangian (11) (and thus the
corresponding Hamiltonian), we may perform the quanti-
zation of the system by finding an irreducible representa-
tion of the algebra of observables associated with the
quantum degrees of freedom defined on the Hilbert space of
states, H. We start by noting that the term quadratic in the
time derivatives of the translational coordinates X; in (11) is
the standard kinetic term of a nonrelativistic free particle.
The associated observables will be the translational coor-
dinates X; and momenta P; = MJX;, and the corresponding
quantum operators satisfy the standard canonical commu-
tation relations,

[Xiyﬁi] = iéij' (16)

Hence, the corresponding states associated with the trans-
lational zero modes will be those of a quantum, non-
relativistic free particle. Let H;,, be the Hilbert space of
such states. A complete basis for H; , is given by the set of
momentum eigenstates, |p).

On the other hand, a transformation of the form (10) with
X = 0 corresponds to an element g = (A, B) € SU(2) x
SU(2) =G of the most general symmetry group of the
Skyrme Lagrangian. Therefore, the quantum mechanical
spin and isospin states of a skyrmion belong to the Hilbert
space Hg = L2(G, p) of square integrable functions on G
with the inner product

(w. ) = /G du(g)y*(9)p(9), (17)

where du(g) is the Haar measure on G. The observables
associated with these states correspond to the rotational and

2Actually, on some cover of G [47].
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isorotational collective coordinates A, B and their canoni-
cally conjugate momenta, the body-fixed isospin and spin
angular momentum operators K ; and L, obtained in terms
of the angular velocities a; and b; via the relations

K;=Uja;— Wb,
Li=~-Wla;+ Vb, (18)

where T denotes transpose. These operators are related to
the usual space-fixed isospin and spin angular momentum
operators /; and J; via

I = —R;(A)K

ij J» -]i :_R<B)TL

1

. (19)
implying I = K? and J?> = L?. The set of operators, I, J,
K, and L, form an irreducible representation of the Lie
algebra of O; x ® O, ;, the symmetry group of two rigid
rotators, and obey the commutation relations

i 1] =

Vi d ] =

irvj

i€;jil (K, K| = i€;jx Ky,

i€;jrd k1 [L;,L;] = ie; jLy. (20)
From these, we may produce a complete set of commuting
observables to define an eigenstate basis of Hg;. We
construct such a basis with states of the form

\G> = |i’ i3’k3> ® |J'7J'3,l3> = |i’ i3,k3;j,j3,l3), (21)

where j and j; correspond to the eigenvalues of the
corresponding total angular momentum and the third
component of angular momentum operators. Thus the total
Hilbert space 'H = H;, ® Hy is spanned by the states
/i3, k33 j, j3, 33p), where —i <i3 k3 <i and —j < js,
[3 £ j. In particular, the subspace of fixed i,1is,J,J3
and momentum p, labeled by the states |ks,l3), is
(2i + 1)(2j + 1)-dimensional.

III. THE D-TERM

In this section, we introduce the gravitational form
factors and outline our strategy to compute the D(¢) form
factor for the B =1 (nucleons), B = 2 (deuteron), and
B = 3 (helium-3 and tritium) solutions. These three exam-
ples are representative of different situations one encoun-
ters in the computations of D(z) in the Skyrme model.
Despite the differences, however, under certain assump-
tions we shall arrive at the same formula in all cases. This
motivates us to extrapolate our discussion to solutions with
arbitrary values of B. The actual computation of the form
factor is carried out in the next section.

A. B=1: The nucleons

We start with the nucleons (proton and neutron) with
B = 1. The off-forward (i.e., nonzero momentum transfer)

nucleon matrix element of the QCD energy momentum
tensor can be parametrized as

iP,0,),9"
M,y

Dmpm» (22)

wme=awﬂmawm+ B(1)
+ 99y — ”ﬂl/qz
4M N

where P, = (p, + p,)/2and g = p’ — p is the momentum

. A,B,+A
transfer with t = g2 -AuBy) = % denotes symmet-

rization. u(p) is the nucleon spinor normalized as
a(p)u(p) = 2My with M, being the mass of the nucleon.
The same formula applies to all the spin-1/2 nuclei with
trivial changes. The gravitational form factors A, B, D are
scalar, renormalization-group invariant functions of z. In
the zero momentum transfer limit, i.e., = 0, the values of
A(t =0) and B(t = 0) are constrained to 1 and 0 due to
momentum and angular momentum conservation, respec-
tively. However, the so-called D-term D = D(z = 0) is not
constrained by any symmetry, and this is our main object of
interest.

The D(t) form factor can be isolated by working in the
Breit frame (p' = —p = ¢/2, t = —¢°?) and taking the
spatial i, j = 1,2,3 components

D(1)

4M

D(1)

—(f] q; — 251‘,;),

(23)

(P'|Tylp) =2P°—*(q:q9;, — ¢°5;j) ~

where we used the nonrelativistic approximation in the last
expression. Classically, in the Skyrme model, D(¢) can be
obtained by simply Fourier-transforming the classical
energy momentum tensor T,C-Jl- (7). For spherically symmet-
ric configurations such as the B = 1 solution, the energy
momentum tensor can be written in terms of the “shear”
and “pressure” distributions

TSi(x) = <x;2€j - 151‘]') s(x) + p(x)d;;. (24)

(Below we shall write |x| = x and |g| = ¢ for simplicity.) It
then follows that

D(1) = —6My, / d3x(xixf' ;511 2) (;"))Td( ). (25)

In particular,

2M 1
SN/d3 (xin_gxz(Sij>Tfjl(x>

4My 3.2
_I—S/d xx*s(x). (26)
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We see that the D-term is related to the distribution of shear
forces inside the nucleon, parametrized in the spherically
symmetric case by the function s(x). It is interesting to
note that in the so-called Bogomol’nyi-Prasad-Sommerfield
Skyrme model, a solution that saturates the Bogomol’nyi
bound exists [48]. For this particular solution, the energy
momentum tensor is that of a perfect liquid [49]; that is, the
shear force vanishes. Therefore, the D-term is exactly zero in
this limit. From a physical point of view, the passing of a
gravitational wave causes a volume preserving deformation
of the nucleon, which is precisely a symmetry in the
Bogomol’nyi-Prasad-Sommerfield model [48]. Therefore,
in this limit, nucleons are transparent to gravitons.

Returning to general situations with s(x) # 0, we now
consider the effect of quantization (10) and write the matrix
element between momentum eigenstates as

(¢/2|T;[UR(B)(x - X))]| —q/2)
— ~4*RT (B)R’, (B) / & exp {iq- RT(B)x'}T 0y ('),

(27)
where

Top(x) = TS, [Ug(x)] + O2, J?). (28)

Both RT and T, in (27) are operators which act on spin
and isospin eigenstates (21). In general, the calculation of
their matrix elements is a complicated task. However, since
our main objective is to evaluate the D(¢)-form factor for a
wide variety of nuclei with different spin/isospin quantum
numbers rather than focusing on a particular nucleus, we
neglect the O(I%, J?) terms in (27). This may be partially
justified by the large-N,. approximation.

Even after this approximation, Eq. (27) still contains
the spatial rotation matrix R7 which acts on external spin
states. To deal with it, we expand the exponential on the
right-hand side in partial waves [ =0, 1,2, ...,

. . . 3j1(gx
exp{iq - RT(B)x} = jo(gqx) + quRZk(B)xk%

1 1
) <ch[l 3 5cdq2> RZk(B>R£l(B)
1 15j(gx)
— 5, x| =L
(oo =gt S0+

(29)

In order to extract the D(7)-form factor, it suffices to focus
on the [ = 2 tensor term and read off the coefficient of g;q;.
One then needs to evaluate the integral

1 15j
T i = /d3x <xkxl - _5k1x2> MTZI/?(JC)- (30)

3 (gx)*

For a spherically symmetric solution, the tensorial structure
is completely fixed by symmetry

1 2
Topks = T <5ak5b1 + 6ubji — 3 5ij5kz> Tegea- (31)

Note that the trace part Tzlh ~ d,, does not contribute to
the integral (30). Substituting (31) into (27), we see that
the R” matrices disappear due to the orthogonality relation
RRT =1, and we recover the formula (25).

One might wonder that, since we have neglected the
O(J?, I?) terms in (28), what the effects of quantization are
in the present calculation. The point is that if the classical
solution is not spherically symmetric, the tensor 7T ,;;; does
not have the canonical form (31) in general. The intro-
duction of the R-matrix then becomes crucial to restore the
symmetry. We shall see examples of this below.

B. B=2: The deuteron

Next we consider the B = 2 sector, the “deuteron,” with
spin J = 1. For spin-1 nuclei, there are in general six
independent gravitational form factors [50] related to the
fact that the nuclear wave function is not spherically
symmetric. In particular, it is well-known that the deuteron
wave function has quadrupole deformation. In terms of
the energy momentum tensor matrix element, this is most
clearly shown by the following multipole expansion in the
Breit frame in the nonrelativistic limit [51]

<P/0/|Tij|l70>

1
=5 (9:9; — 6:;4*) Dy (1)€ - €,

+ (9,9:Qix + 0Ok — 4 Qij — 61j4x919w1) D2 (1)

1
+ M2, (9:9; — :;47)0x91Qu1.06 D3 (1) + -+, (32)

D
where M, is the deuteron mass. €, are the polarization
vectors of the deuteron with spin ¢ = 1, 0 measured
along the x3-direction (not helicity). Q; ioe = (0 10, ilo) is

the matrix element of the quadrupole operator

A1

4
0; =5 (J,Jj + I - 55,,) : (33)

where J; is the spin-1 operator with matrix elements
(o’|Jilo) = —ie,-jkez’;,jegk. While the quadrupole part is
of interest in its own right (see recent extractions for the
p-meson [52,53]), in this work we focus on the monopole
part D;. The Q-dependent terms can be eliminated by
averaging over the three spin states thanks to the identity

034014-5
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+0
Z Qij,ao‘ =0. (34)
Restricting ourselves to this simpler situation, we write
1 ! 1 2
52@ o|Tijlpo) = 5 (4i4; = 6;;4°)D(1),  (35)

where we renamed D(7) = D, (¢) to emphasize the corre-
spondence with (23).

Turning now to the Skryme model, we recall that the
classical B =2 solution has toroidal symmetry [21]
and is mainly characterized by a c-number quadrupole
tensor Q;; [S1],

T~ Vs (x) + p(x)3y; + 25' (1) (QueY5 + Qe ¥¥
1 .
= 6,;0aY5") +P'(x)Q;; - v 0"0,0,(p" (x)87
D
+5"(x)Yy). (36)
where we abbreviated Y ’21 = x)‘% - % In principle, Q;; can
be numerically extracted from a given skyrmion configu-
ration. But in parallel with the spin-averaging procedure

above, we eliminate it by forming the moment (25) and
using the integrals

/ QY =0,
/d?gygf'(Q,-kY’;f + QY = 6,;0,Y5") = 0.
QX / QY 0,0,(s"(x)YY) =0, (37)

where we used the traceless property Q;; = 0. We thus see
that the D(¢r) form factor as defined in (35) can be
calculated via the same formula (25) with the trivial
replacement My — M even if the classical solution is
not spherical.

C. B=3 and beyond

Next we turn to the B = 3 sector relevant to the helium-3
nucleus (*He) and the tritium (°H). Since they have spin
1/2, GFFs are parametrized by the same formula (22) as in
the nucleon case. However, in the Skyrme model, the B = 3
classical solutions are not spherically symmetric, but rather
have the shape of a tetrahedron [22] [see Fig. 1(a) below]. It
is then not obvious how one can recover the same set of
form factors in the present semiclassical approach.

In order to answer this question, we need some elements
of group theory. The tetrahedral group 7; [54] consists of
24 discrete transformations such as a 120° rotation around
one of the four vertices of a tetrahedron. It turns out that this

symmetry imposes strong constraints on various moments
of classical configurations [34]. For example, consider the
following integral:

Ay = / T, () o (g). (38)

which appears in the [ = 0 partial wave in (30). Let g be
an element of the tetrahedral group. Changing variables as
x — gx, we find

Ay = gZing/d3x’T’?}(x’)jo(qX’) = gni9hiAij»  (39)
where we used 77§} = T’} due to symmetry. This means that
A,y x 04, Mathematically, the integral transforms as the

singlet (A) representation contained in the product of two
vector representations (7')) of the tetrahedral group

TlXT1:A1+E+T1+T2, (40)

along with the two-dimensional (E) and axial vector (T,)
representations [54].

Consider, then, the transformation properties of the
tensor T ,;;; defined in (30) under the tetrahedral group.
Since the trace part of the energy momentum tensor Tfllb
does not play a role, T ;,; can be viewed as the product of
two symmetric and traceless tensors formed by 7'; vectors

(T xTy) x (T xTy), (41)

where (T x T;) = E + T, denotes the traceless part. We
are interested in the components that transform as the
irreducible, singlet representation A;. There are two such
structures® which can be rearranged in the form [34]

1 2
T i = 10 (5ak5b1 + S8uibpr — §5ab5k1) Tigca+ Cop-
(42)

The first structure is the same as before (31). The second
tensor C is symmetric and traceless in any pair of indices
(a, b, k, 1) (see [34] for the details). Plugging (42) into (27),
we obtain

(q/2|Tj(-RX)|-q/2)|,_,

Oji Tegea 1 1
== <61in - —‘512> # 5 <61c61d —§5ch12>

x Rz?;z(B)ij<B)RZk(B)Rz§Z(B)Cab,kl- (43)

4w
=

One coming from E X E =A; + A, + E, the other from
Ty xT;=A,+E+T,+T, The cross term ExT; =T, +
T, does not contribute to the trivial representation.
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(a) Skyrmions with baryon number from 1 to 8, including the two energy-degenerate
solutions with different symmetries, 8a (second row) and 8b (third row).

(b) The B = 32 and B = 108 Skyrmions. They present a manifest cubic symmetry, as
they can be thought of being composed of individual B = 4 “bricks”.

FIG. 1.

The operator in the second term is totally symmetric and
traceless in the four indices i, j, ¢, d. It is thus a spin-4
operator whose matrix element between spin-1/2 states
vanishes. The first term then leads to the same formula (25)
for the D-form factor. We now appreciate the effect of the
rotation matrix R in the present calculation. Had we
neglected R’s, namely, RiTa — J,,, €tc., in (43), the second
term would have contributed extra terms quadratic in ¢;, in
contradiction with the unique tensor structure (23) for a
spin-1/2 nucleus. By introducing R’s, we have minimally
included quantum effects in order to restore the original
spherical symmetry of the problem.

The above argument can be broadly generalized. Each
skyrmion solution possesses a symmetry group [32]. For
B >3, the group consists of discrete symmetry trans-
formations, and this puts strong constraints on the possible
tensor structures of the integral (30). For example, the

Energy density isosurfaces of the classical skyrmion configurations used in this paper.

B =4 solution (the helium-4 nucleus, or the ‘“alpha”
particle) has cubic symmetry [55]. The associated octahe-
dral group O, has irreducible representations which cor-
respond to those of the tetrahedral group A; — A,
T, — Ty,, etc. We can then immediately conclude that the
D-form factor is again given by (25).* A similar argument
can be repeated for larger-B solutions. (Spin-averaging is
understood for spin > 1 nuclei.) We thus use (25), with My
replaced by nuclear masses, as a working definition for all
nuclei in the Skyrme model.

*For a spinless nucleus such as the helium-4, there are only two
GFFs which we parametrize as

(P'|Twlp) =2A()P,P, + @ (9,90 —wd®).  (44)
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IV. ANGULAR MOMENTUM FORM
FACTOR J (1)

Although our main interest in this paper is the D(t)-form
factor, our approach can be straightforwardly generalized to
the other gravitational form factors. As an example, let us
consider the form factor

J(1) =5 (A1) + B(1)), (45)

| =

for spin-1/2 nuclei where A(7) and B(t) are defined in (22).
Physically, J(7) represents the form factor associated with
the total angular momentum of the system. The forward
value J(0) = 1/2 is constrained by angular momentum
conservation. In the Skyrme model, J(7) has been com-
puted for the B = 1 solutions [36,38]. Here, for the first
time, we compute it for the B =3 (helium-3, trititum)
solution.

In the Breit frame, the J-form factor appears in the
following components of the energy momentum tensor
matrix element (22):

<P,7 S/|Too(0)
2P0

= M[A(1) = 313 AG) = 200) + DO 3 (46)

p.S)

(P, s'ITi(0)|p. 5)
2pP°

o7
= —J(t)iej ;S q~. (47)

Note that the mixed (timelike-spacelike) components
vanish in the classical limit which corresponds to a static
configuration. Once the quantization of the skyrmion is
taken into account, we find a nonzero, operator-valued
result

TOi = I,Ja/ _]Ub]’ (48)
where
1
I;jj = ey [Tr{L,T;} + Tr{[Ly. L;][Ly, T;]}],  (49)
Jij = Wejkzxk [Tr{L,L,;} + Tr{[L,.L;][L,.L,]}]. (50)

Both of the above tensor densities transform as the product
of a vector and an axial vector; i.e., they belong to the
T, x T representation which does not contain an irreduc-
ible trivial component A;. Therefore, their contribution
must vanish at first order (/ =0) in the partial wave
expansion (30). At the next order [/ = 1, we find

(@/2/Toi(~RX)| = q/2)|._, = RE(B) / Prexpliq - RT(B)x} Ty (x)

J

. 3j1(gx) m
= lRiTj(B)R,{,(B)qk/d%‘—[l-ma = Jmb™]x. (51)

Defining the currents

ijv o

3j1(qx)
Lijk(q) —/d3x71 x
3j1(gx
ia) = [ @x2ED g0 (52)

we can identify their irreducible component that transforms
asA; € T, x Ty x Ty, which is totally antisymmetric in the
three indices [34]:

Lij = eijkI(Q)v Jijp = eijkj(q)’ (53)

where

(@) = L eme g (q). (54)

1
I(Q) = _eabclabc(q)’ 3'

3!

qx

|
Substituting (53) into (51), we get

(q/2|Toi(—RX)| —q/2)
= iR],(B)R},(B)q"€;u[Z(q)a™ — T (q)b™]
= ie;jq" R}, (B)[Z(q)a™ — T (q)b™]. (55)

At this point, we need to invert the relations in (18) between
the spin and isospin velocities in terms of the associated
angular momentum operators. This is a complicated task in
general, but for the specific B = 3 solution at hand, the
tensors defined in Eqgs. (12)—(14) are proportional to the

identity, i.e., Ul] = ”51‘]" Vl] = ’Uéij, WU = Wél] In that
case, we have [34]
Km LM KM Lm
g =MW PR R (s6)
uv —w uv —w
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and we may write

R}, (B)[Z(q)a™ = T (q)b™]

= L {[T(g)w ) + T () v~ w)]RE, (B

+ [vZ(q) = wT (q)|Ry(B)M™}, (57)

where we have defined the operator M = K + L. Also,
taking into account (19) and the fact that the B = 3 ground
states are M = O singlets [22], we find our final result

(@)w =) + T(g)(w—u)

uv — w?

s =1L (58)

Comparing the definitions in Egs. (49), (50), and (54), with
Egs. (13) and (14), we get the following relations:

[a—

1

imZ(g) = —=W,; = ——

mZ(q) = —gWa=—7w.
lim7(g) 1V ! (59)
1m — V. = ——
q—0 d 6 " 2 v

and thus J(r = 0) = 1 as required by Lorentz invariance.

V. NUMERICAL RESULTS

In order to compute the gravitational form factors of
light nuclei, we start by generating the static energy-
minimizing classical field configuration corresponding to
each of the topological sectors. We do this by first
constructing a numerical ansatz using the rational map
approximation [31], and allowing this initial configuration
to relax to the true minimizer via gradient descent. We
remark that this is an increasingly difficult task for values of
the topological charge B = 8, not only due to the increase
of the solution’s mean radius, which requires a numerical
simulation on a lattice with an increasing number of points,
but also because of the flatness of the field configuration
landscape, which in general presents multiple local minima
with very similar energies but different symmetries and
shapes, as recently shown by Gudnason and Halcrow [24].
This fact points toward the failure of the rigid quantization
approximation—in which quantum effects do not modify
the classical shape of the skyrmions—for higher baryon
charges in general. We have, nevertheless, constructed also
solutions with a large baryon charge and cubic symmetry,
namely, the B =32 =4 x 23 and B = 108 = 4 x 3% sky-
rmions, which are expected to not be affected by spin nor
isospin quantum effects in their ground state, and are
considered to be the minimum energy configurations due
to their high degree of symmetry. These solutions are
illustrated in Fig. 1(a) (1 < B < 8) and Fig. 1(b) (B = 32,
108) where energy density isosurfaces are plotted. For

=104+ I, — B:
/

12/ —— B=2
1
/ —— B=3

_14-II

00 01 02 03 04 05 06 07
—q? (GeVQ)

FIG. 2. The D gravitational form factor of the skyrmions with
B =1,2,3, normalized by B, for A =0 (solid lines) and 1> =
3 MeV fm® (dashed lines).

B = 8, we consider two energy-degenerate solutions® with
different symmetries.

After obtaining the classical solutions, we used the
formula (25) (with My replaced by the respective nuclear
masses) to compute the D-form factor for the first eight
topological sectors, for which the ground state is well-
known, as well as for the B =32 and B = 108 cubic
skyrmions. The results for the first three skyrmions are
shown in Fig. 2. We have used the same values for the
parameters in the Lagrangian as in [36]. Thus the B =1
result is in agreement with [36], while the B = 2, 3 results
are new. In the same plot, we also show the results obtained
with a second set of parameters which includes a nonzero
value of the sextic coupling constant A> = 3 MeV fm?>. This
choice is motivated by some previous studies on the
symmetry energy of infinite nuclear matter within the same
model [27], as well as the Equation of State of neutron
stars [44]. Finding classical solutions with nonzero 4 via
gradient-descent based algorithms becomes numerically
more challenging for arbitrarily large values of this param-
eter. With our choice of 12 = 3 MeV fm?, we have been
able to obtain trustable solutions only up to B = 32. We
find that the main effect of the sextic interaction is to
increase the magnitude (in absolute value) of the D-term
D(0). This can be traced back to the fact that the sextic term
represents a repulsive interaction, which makes the size of
the soliton to grow to pick up more contributions from the
large-radius region in the integral (26). However, appa-
rently it contradicts with the recent observation [56] in the
Sakai-Sugimoto model [57] that the repulsive interaction
due to the omega meson exchange decreases the magnitude
of the D-term. Unlike in [56], in the present model the

>The difference in energies of both solutions is less than 1%.
The precise number (and even its sign) will depend on the
parameter values.
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TABLE 1. The values of the D-term D(z = 0) at 1 = 0.
B 1 2 3 4 5 6 7 8a 8b 32 108
D(0) -3.701 —13.126 -26.757 —43.304 —-62.72 -85.95 -106.596 —128.368 —140.816 —1.874x 10> —2.152 x 10*

omega meson is treated as a static field represented by the
sextic coupling [42], and induces only a diagonal term
T;;j « c66;; in the energy momentum tensor (7) which does
not directly contribute to the D-form factor. Thus the value
of the D-term seems to be rather sensitive to different
(static or dynamical) treatments for the omega meson field.
With the choice 2> = 3 MeV fm?, our result D(0) ~ —7 for
B =1 is on the higher end in magnitude among model
results in the literature; see, e.g., [36,56,58—61].

The results for the B > 3 solutions with 4 = 0 are plotted
in Figs. 3 and 4, and the values at the origin D(0) are

0 4
_2 4
_4 4
A
~ —6 1
=
= -8
Q
_10 4
—_ 2 4
! —— B=4 —— B=6
—149 —— B=5 —— B=7
-16 L— . . . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
—¢* (GeV?)
FIG. 3. The D gravitational form factor of the skyrmions with

B =4,5, 6, and 7, normalized by B, for the 1 = 0 case.

00 01 02 03 04 05 06 07 08
—¢* (GeV?)

FIG. 4. The D gravitational form factor (absolute value, not
normalized by B) of the skyrmions with B = 8, 32, 108, and also
for 1 =0. Cusps mean that the form factor flips signs and
oscillates around zero.

summarized in Table 1. All the curves start with a negative
value, with their absolute value increasing with B, and cross
zero at least once for some value of |¢|. The number of
nodes increases with B, and they appear earlier for higher
values of B. That D(r = 0) is negative is consistent with
the general expectation [3], but the sign of D(¢) for 7 # 0
is not constrained by any physical argument. Technically,
the oscillation is caused by the spherical Bessel function j,
in (25) convoluted with the increasingly flatter density
profile of larger-B solutions.

The particular values of the Dg(0) for each topological
sector will depend strongly on the specific values of the
parameters of the model. However, their scaling with the
topological charge, or atomic number, of the nuclei is a
genuine prediction of the Skyrme model. We have found
that the B-dependence is very well fitted by a simple power-
law Dg(0)  B?, or equivalently,

D,4(0)
log 5/0)

log B

ﬂ = (60)

is a constant as demonstrated in Fig. 5. The value of f is
found to be f~1.8 for 2>=0 and f~ 1.7 for 1> =
3 MeV fm?. In comparison, we note that the liquid drop
model of nuclei predicts f = 7/3 [39] which is consistent
with the result in the Walecka model f ~ 2.26 [40]. On the
other hand, a microscopic approach using the nonrelativistic
nuclear spectral function predicts f = 1 [41].

Finally, in Fig. 6 we show the results for the angular
momentum form factor J(g?) together with the isospin Z
and rotation 7 currents defined in (53) for the B=1, 3

— A2=0
103 .
S
QH 102 4
S
Q
ST
100 .
FIG. 5. Dependence of the D-term on the baryon charge B for

skyrmions with B < 8, B = 32, and B = 108. The cases 4> = 0
(dark blue line and 1> = 3 MeV fm? (light blue line) are shown.
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—q* (GeV)

FIG. 6. Left: Values of the functions Z(g) and 7 (q) for the B = 1 and B = 3 cases. Right: The gravitational form factor J(¢?) for the

same nuclei.

solutions. For B=1, Z and J are equal due to the
symmetry of the hedgehog configuration. The total J-form
factor reproduces the result in [36]. See, e.g., [58-60] for
calculations in other models. For B = 3, we see that the
angular momentum distribution is more localized at small
momentum transfer, or at a larger radius in position space.

VI. CONCLUSIONS

In this paper, we have calculated one of the gravitational
form factors, the D(t)-form factor, for nuclei with baryon
numbers B =1,2,3,4,5,6,7,8, 32, 108 in the Skyrme
model. While the electromagnetic and axial form factors
have been previously computed for light nuclei in this model
[33,34], its application to nuclear GFFs is new. Despite
different patterns of nuclear deformation, the monopole
D(t)-form factor is given by the single formula (25) which
can readily be evaluated for a given classical configuration.
Our approach can be generalized to other GFFs, and we have
presented a concrete example, the angular momentum form
factor J(¢), for the B = 3 solution.

There are a number of future directions. In this work we
neglected the O(J2, I?) terms in (28) invoking the large-N.,.
approximation. However, these quantum corrections are
necessary to classify different isobars and study the detailed
spin and isospin effects for individual nuclei and their
excited states. For the B =1 solution, they have been
included in [38] to compute the GFFs of the A-resonances.
Additional complications arise for B > 1 solutions due to
their nonsphericity, and it remains to be seen whether group
theory techniques help to mitigate the problem. We also
neglected the spin-dependent quadrupole gravitational
form factors for the deuteron. In future work, they can
be evaluated and extended to other spin-1 nuclei. Moreover,
we have not explored solutions with B > 8 except for the
rather special B = 32, 108 solutions which are realized
as cubic “a-clusters.” Numerical solutions are available in
the literature [23], and they can be used to study the
B-dependence of GFFs more closely. An important caveat
when considering large skyrmions is the failure of the rigid

body quantization. A more involved quantization pro-
cedure, including some vibrational degrees of freedom
and allowing for deformations of the classical skyrmion
shape has been developed during the past decade with
relatively successful applications to light nuclei, such as the
B =5 [62], B=17 [63], or B= 16 [64] solutions. The
study of the GFF of larger skyrmions within a vibrational
quantization is also a straightforward extension of our
present work, which nevertheless falls outside our original
scope, namely, to determine the dominant contribution to
the D-term of each skyrmion. Last but not least, recently
in [56], the nucleon D-term has been studied in holographic
QCD in the Sakai-Sugimoto model [57]. It has been
observed that, in order to properly compute GFFs at finite
t # 0, one must include glueballs. While it is known that
the Skyrme model can be derived from the Sakai-Sugimoto
model, glueballs are usually lost in this reduction. It
appears to be a challenging task to consistently restore
these degrees of freedom and study their impact on GFFs.
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