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We compute the gravitational form factor DðtÞ of various nuclei in the generalized Skyrme model where
nuclei are described as solitonic field configurations each with a definite baryon number B. We separately
discuss the cases B ¼ 1 (nucleons), B ¼ 2 (deuteron), B ¼ 3 (helium-3 and tritium), and extrapolate to
larger B-values. Configurations with B > 1 are in general not spherically symmetric, and we demonstrate
how group theory helps to extract the form factor. Numerical results are presented for the configurations
with B ¼ 1; 2; 3; 4; 5; 6; 7; 8, 32, 108. We find that the B-dependence is consistent with a power-law
Dð0Þ ∝ Bβ with β ¼ 1.7–1.8. Other gravitational form factors can be calculated in the same framework,
and we show the result for the JðtÞ form factor associated with the angular momentum for the B ¼ 3

solution.
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I. INTRODUCTION

The gravitational form factors (GFFs) are form factors
associated with the QCD energy momentum tensor
Tμν [1,2]. Much like the electromagnetic form factors,
they contain a wealth of information about the structure of
the nucleons, or more generally hadrons and nuclei.
However, unlike the latter which have enjoyed more than
70 years of continual theoretical and experimental efforts,
it was not until recently that GFFs started to attract
community-wide attention [3]. A major catalyst is the
Electron-Ion Collider (EIC) project [4] poised to uncover
the mass and spin structure of the nucleons and nuclei.
Since the energy momentum tensor encodes mechanical
properties such as mass, angular momentum, internal
forces, and their distribution, the study of GFFs is perfectly
aligned with the core missions of the EIC. In a sense, GFFs
are more “quintessentially QCD” than the electromagnetic
form factors since they can be defined without reference to
quark electric charges, and are directly sensitive to the
gluonic degrees of freedom.
Among the various GFFs, of particular interest is theDðtÞ

form factor related to the “pressure” distribution inside
hadrons and nuclei [3]. Its value at vanishing momentum
transfer Dðt ¼ 0Þ, often referred to as the D-term, is a

fundamental constant similar to the magnetic moment.
While the value is presently unknown, even for the nucleons,
in principle the form factor DðtÞ can be experimentally
accessed in deeply virtual Compton scattering [5,6] and
near-threshold quarkonium photo- and electroproduction in
electron-nucleon scattering [7–13]. See [14–16] for recent
experimental efforts. The same methods could be used to
measure the DðtÞ form factor of light nuclei at the EIC.
In this paper, we compute DðtÞ for a number of nuclei in

the Skyrme model [17]. In this model, the nucleon is
realized as a finite-energy solitonic configuration of meson
fields with a nontrivial topological number identified
with the baryon number B ¼ 1. The model has been
successful in explaining the low energy properties of the
nucleon [18,19]. Subsequently it has been extended to
describe light nuclei, such as the deuteron (B ¼ 2) [20,21],
the helium-3 or the tritium (B ¼ 3) [22], and so on. At
the moment, solutions up to B ¼ 108 are known [23,24],
and they have been even extrapolated to infinite crystals
(B ¼ ∞) [25,26] to discuss the properties of nuclear
matter [27] and neutron stars [28,29]. Moreover, low-lying
excited states of various nuclei have been systematically
studied [30–32]. Concerning form factors, the electromag-
netic and axial form factors have been calculated for the
B ¼ 2 [33] and B ¼ 3 [34] solutions, as well as for larger-B
solutions with zero isospin [35]. However, the application
of the model to GFFs has been so far limited to the B ¼ 1

sector (nucleons and their excited states) [36–38] which
is relatively tractable due to the spherical symmetry of
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the classical solution. In fact, all the known skyrmion
solutions with B > 1 are not spherically symmetric. Yet,
each solution possesses a (discrete) symmetry group, and
techniques from group theory can greatly facilitate the
extraction of form factors as demonstrated by Carson [34]
in the context of the electromagnetic form factors. We shall
adapt this method to the computation of GFFs using the
state-of-the-art numerical skyrmion solutions.
It should be mentioned that the form factor DðtÞ for

nuclei has been evaluated in the liquid drop model [39], in
the Walecka model [40], and from the nonrelativistic
nuclear spectral functions [41]. We shall study the depend-
ence of the D-term on the baryon number and compare the
result with these previous works.

II. SKYRMIONS IN THE GENERALIZED
SKYRME MODEL

The generalized Skyrme model that we will consider is
given by the following Lagrangian density:

LSK ¼ −
f2π
16

TrfLμLμg þ 1

32e2
Trf½Lμ; Lν�2g

− λ2π4BμBμ þm2
πf2π
8

TrfU − 1g; ð1Þ

where we use the metric convention ημν ¼ diagð1;−1;
−1;−1Þ. U ∈ SUð2Þ contains the fundamental mesonic
degrees of freedom, parametrized as the coordinates of the
SUð2Þ group element

U ¼ σ1þ iπaτa ≡ iϕατ̄α; ϕα ¼ ðσ; πÞ;
τ̄α ¼ ð−i1; τÞ; ð2Þ

with τa (a ¼ 1; 2; 3) being the Pauli matrices. Lμ ¼ U†
∂μU

are the components of the associated left-invariant Maurer-
Cartan form, 1 is the 2 × 2 identity matrix, and Bμ is the
topological current,

Bμ ¼ ϵμνρσ

24π2
TrfLνLρLσg: ð3Þ

Although only the first two terms (namely, the quadratic
and quartic terms in Lμ) in (1) were originally considered
by Skyrme [17], the other two terms have been sub-
sequently included in order to achieve a better agreement
with nuclear phenomenology. Indeed, the potential term
explicitly breaks chiral symmetry and provides a mass term
for the pions. On the other hand, the sextic term in Lμ, first
proposed in [42] (see also [43]), can be seen as an effective
pointlike interaction that describes the repulsive exchange
of omega vector mesons, which becomes relevant at
sufficiently high densities. Such a term has recently proven
to be crucial for an accurate description of the high density
equation of state of neutron stars, allowing one to reach

sufficiently high maximum masses and sound velocities
above the conformal limit [28,44].
We will consider static solutions of the Skyrme field, and

for numerical purposes we adopt the usual Skyrme units of
energy and length,

Es ¼
3π2fπ
e

; xs ¼
1

fπe
; ð4Þ

unless otherwise specified. The static energy functional in
these units becomes

E ¼ 1

24π2

Z
d3x

�
−
1

2
TrfL2

i g −
1

4
Trf½Li; Lj�2g

þ 8λ2π4f2πe4ðB0Þ2 þ
�
mπ

fπe

�
2

Trf1 −Ug
�

¼ 1

24π2

Z
d3x½ð∂iϕαÞ2 þ ð∂iϕα∂jϕβ − ∂iϕβ∂jϕαÞ2

þ c6ðϵαβγδϕα∂1ϕβ∂2ϕγ∂3ϕδÞ2 þ c0ð1 − σÞ�; ð5Þ
where ϵαβγδ is the totally antisymmetric tensor with ϵ1234¼1

and we have defined c6 ¼ 2λ2f2πe4 and c0 ¼ 2m2
π=ðfπeÞ2.

The energy momentum tensor of the model can be obtained
via the Hilbert prescription, which for our sign convention is
given by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
¼ −

2ffiffiffiffiffiffi−gp ∂ðL ffiffiffiffiffiffi−gp Þ
∂gμν

ð6Þ

so that we have

Tμν ¼
1

2
Trf−2LμLν þ ημνLρLρg − 1

4
Trf−4½Lμ; Lρ�½Lν; Lρ�

þ ημν½Lρ; Lσ�2g þ 8π4c6BμBν − 4π4c6BρBρημν

þ c0ð1 − σÞημν: ð7Þ

Note that the definition of Bμ involves a Levi-Civita tensor;
hence it transforms as a tensor density of rank one, and each
must include a factor of jgj−1

2 when coupled to a nontrivial
gravitational field [45].
We shall be mainly interested in the μν ¼ i, j (spatial)

components. The relevant traces we need to compute are

Trf−LiLjg ¼ Trf∂iU†
∂jUg ¼ 2∂iϕ

α
∂jϕ

α; ð8Þ

TrfLiLjLkLlg ¼ Trf∂iU†
∂jU∂kU†

∂lUg
¼ 2∂iϕ

α
∂jϕ

β
∂kϕ

γ
∂lϕ

δð2δαβδγδ þ δαγδβδ

− δαδδβγ − ϵαβγδÞ; ð9Þ

and contractions of these. We have used the properties of the
τα (see, e.g., Appendix D in [46]). Classical solutions are
obtained as minimizers of the static energy functional (5), via
the (accelerated) gradient flow algorithm (see Sec. V).
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A. Quantization

Nucleons and nuclei are described within the Skyrme
model as classical solitonic configurations through the
identification of the skyrmion topological charge and the
baryon number of nuclear states. However, other quantum
numbers such as the spin and isospin of quantum nuclear
states are not described at the classical level. Hence, a
quantization of the skyrmion field is needed in order to take
into account the relevant quantum numbers. This is done in
the semiclassical approach by promoting the zero modes of
the soliton to dynamical degrees of freedom.
To do so, we introduce the rotational and isorotational

degrees of freedom through a pair of time-dependent SUð2Þ
transformations of the classical (static) solitonic solution,
representing the isorotation and the spatial rotation zero
modes, respectively, as well as a time-dependent vector
X⃗ðtÞ representing the translational zero modes:

Uðt; xÞ ¼ AðtÞU0ðRBðtÞðx − XðtÞÞÞA†ðtÞ; ð10Þ

where Rij
B ¼ 1

2
TrfτiBτjB†g ∈ SOð3Þ is the corresponding

rotation matrix in space. AðtÞ; BðtÞ ∈ SUð2Þ and XðtÞ
together form the collective coordinates of the soliton.1

The semiclassical quantization of the skyrmion then con-
sists of substituting (10) into the Skyrme Lagrangian (1),
which yields the Lagrangian of an effective dynamical
system in terms of the collective coordinates fAðtÞ; BðtÞ;
XðtÞg, and quantizing such a system via standard canonical
methods. Performing this substitution yields

Lcol ¼
Z

d3xLSK ¼ −Mþ 1

2
MẊiẊi þ

1

2
aiUijaj

− aiWijbj þ
1

2
biVijbj; ð11Þ

where

aj ¼ −iTrτjA−1Ȧ; bj ¼ iTrτjḂB−1

are the angular velocities in isospace and physical space,
respectively. We have also introduced the corresponding
inertia tensors

Uij ¼
1

24π2

Z
d3x

h
−TrfTiTjg − Trf½Ti; Lk�½Tj; Lk�g

þ c6
16

TrfTi½La; Lb�gTrfTj½La; Lb�g
i
; ð12Þ

Vij ¼
1

24π2

Z
d3xϵilmϵjnpxlxn

h
−TrfLpLmg

− Trf½Lp; Lk�½Lm; Lk�g þ
c6
16

TrfLp½La; Lb�g

× TrfLm½La; Lb�g
i
; ð13Þ

Wij ¼
1

24π2

Z
d3xϵjlmxl

h
TrfTiLmg þ Trf½Ti; Lk�½Lm;Lk�g

−
c6
16

TrfTi½La;Lb�gTrfLm½La;Lb�g
i
; ð14Þ

given in terms of the suð2Þ-valued currents

Lk ¼ U†
0∂kU0; Ti ¼

i
2
U†

0½τi; U0�: ð15Þ

For notational simplicity, here and below we do not
distinguish upper (xi, τa) from lower (xi, τa) indices for
three-dimensional vectors and tensors when we deal with
purely three-dimensional expressions.
Once we have the Lagrangian (11) (and thus the

corresponding Hamiltonian), we may perform the quanti-
zation of the system by finding an irreducible representa-
tion of the algebra of observables associated with the
quantum degrees of freedom defined on the Hilbert space of
states, H. We start by noting that the term quadratic in the
time derivatives of the translational coordinates Xi in (11) is
the standard kinetic term of a nonrelativistic free particle.
The associated observables will be the translational coor-
dinates Xi and momenta Pi ¼ MẊi, and the corresponding
quantum operators satisfy the standard canonical commu-
tation relations,

½X̂i; P̂i� ¼ iδij: ð16Þ
Hence, the corresponding states associated with the trans-
lational zero modes will be those of a quantum, non-
relativistic free particle. Let Hf:p: be the Hilbert space of
such states. A complete basis forHf:p: is given by the set of
momentum eigenstates, jpi.
On the other hand, a transformation of the form (10) with

X ¼ 0 corresponds to an element g ¼ ðA;BÞ ∈ SUð2Þ ×
SUð2Þ≡G of the most general symmetry group of the
Skyrme Lagrangian. Therefore, the quantum mechanical
spin and isospin states of a skyrmion belong to the Hilbert
space HG ¼ L2ðG; μÞ of square integrable functions on G2

with the inner product

hψ ;ϕi ¼
Z
G
dμðgÞψ�ðgÞϕðgÞ; ð17Þ

where dμðgÞ is the Haar measure on G. The observables
associated with these states correspond to the rotational and

1For spherically symmetric solutions, rotation in coordinate
space can be undone by that in isospin space, and one can devise
a simpler quantization procedure without introducing the matrix
BðtÞ [18]. The present treatment is more general and can be
used also for nonspherical solutions that we shall be mainly
interested in. 2Actually, on some cover of G [47].
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isorotational collective coordinates A, B and their canoni-
cally conjugate momenta, the body-fixed isospin and spin
angular momentum operators Kj and Lj, obtained in terms
of the angular velocities aj and bj via the relations

Ki ¼ Uijaj −Wijbj;

Li ¼ −WT
ijaj þ Vijbj; ð18Þ

where T denotes transpose. These operators are related to
the usual space-fixed isospin and spin angular momentum
operators Ij and Jj via

Ii ¼ −RijðAÞKj; Ji ¼ −RijðBÞTLj; ð19Þ

implying I2 ¼ K2 and J2 ¼ L2. The set of operators, I, J,
K, and L, form an irreducible representation of the Lie
algebra of OI;K ⊗ OLnJ, the symmetry group of two rigid
rotators, and obey the commutation relations

½Ii; Ij� ¼ iϵijkIk; ½Ki; Kj� ¼ iϵijkKk;

½Ji; Jj� ¼ iϵijkJk1; ½Li; Lj� ¼ iϵi;jkLk: ð20Þ

From these, we may produce a complete set of commuting
observables to define an eigenstate basis of HG. We
construct such a basis with states of the form

jGi ¼ ji; i3; k3i ⊗ jj; j3; l3i≡ ji; i3; k3; j; j3; l3i; ð21Þ

where j and j3 correspond to the eigenvalues of the
corresponding total angular momentum and the third
component of angular momentum operators. Thus the total
Hilbert space H ¼ Hf:p: ⊗ HG is spanned by the states
ji; i3; k3; j; j3; l3; pi, where −i ≤ i3; k3 ≤ i and −j ≤ j3;
l3 ≤ j. In particular, the subspace of fixed i; i3; j; j3
and momentum p, labeled by the states jk3; l3i, is
ð2iþ 1Þð2jþ 1Þ-dimensional.

III. THE D-TERM

In this section, we introduce the gravitational form
factors and outline our strategy to compute the DðtÞ form
factor for the B ¼ 1 (nucleons), B ¼ 2 (deuteron), and
B ¼ 3 (helium-3 and tritium) solutions. These three exam-
ples are representative of different situations one encoun-
ters in the computations of DðtÞ in the Skyrme model.
Despite the differences, however, under certain assump-
tions we shall arrive at the same formula in all cases. This
motivates us to extrapolate our discussion to solutions with
arbitrary values of B. The actual computation of the form
factor is carried out in the next section.

A. B= 1: The nucleons

We start with the nucleons (proton and neutron) with
B ¼ 1. The off-forward (i.e., nonzero momentum transfer)

nucleon matrix element of the QCD energy momentum
tensor can be parametrized as

hp0jTμνjpi ¼ ūðp0Þ
�
γðμPνÞAðtÞ þ

iPðμσνÞρqρ

2MN
BðtÞ

þ qμqν − ημνq2

4MN
DðtÞ

�
uðpÞ; ð22Þ

where Pμ ¼ ðpμ þ p0
μÞ=2 and q ¼ p0 − p is the momentum

transfer with t ¼ q2. AðμBνÞ ¼ AμBνþAνBμ

2
denotes symmet-

rization. uðpÞ is the nucleon spinor normalized as
ūðpÞuðpÞ ¼ 2MN with MN being the mass of the nucleon.
The same formula applies to all the spin-1=2 nuclei with
trivial changes. The gravitational form factors A, B, D are
scalar, renormalization-group invariant functions of t. In
the zero momentum transfer limit, i.e., t ¼ 0, the values of
Aðt ¼ 0Þ and Bðt ¼ 0Þ are constrained to 1 and 0 due to
momentum and angular momentum conservation, respec-
tively. However, the so-called D-term D ¼ Dðt ¼ 0Þ is not
constrained by any symmetry, and this is our main object of
interest.
The DðtÞ form factor can be isolated by working in the

Breit frame (p0 ¼ −p ¼ q=2, t ¼ −q2) and taking the
spatial i, j ¼ 1; 2; 3 components

hp0jTijjpi ¼ 2P0
DðtÞ
4MN

ðqiqj − q2δijÞ≈
DðtÞ
2

ðqiqj − q2δijÞ;

ð23Þ

where we used the nonrelativistic approximation in the last
expression. Classically, in the Skyrme model, DðtÞ can be
obtained by simply Fourier-transforming the classical
energy momentum tensor Tcl

ij (7). For spherically symmet-
ric configurations such as the B ¼ 1 solution, the energy
momentum tensor can be written in terms of the “shear”
and “pressure” distributions

Tcl
ijðxÞ ¼

�
xixj
x2

−
1

3
δij

�
sðxÞ þ pðxÞδij: ð24Þ

(Below we shall write jxj ¼ x and jqj ¼ q for simplicity.) It
then follows that

DðtÞ ¼ −6MN

Z
d3x

�
xixj −

1

3
δijx2

�
j2ðqxÞ
ðqxÞ2 Tcl

ijðxÞ: ð25Þ

In particular,

Dðt ¼ 0Þ ¼ −
2MN

5

Z
d3x

�
xixj −

1

3
x2δij

�
Tcl
ijðxÞ

¼ −
4MN

15

Z
d3xx2sðxÞ: ð26Þ
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We see that the D-term is related to the distribution of shear
forces inside the nucleon, parametrized in the spherically
symmetric case by the function sðxÞ. It is interesting to
note that in the so-called Bogomol’nyi-Prasad-Sommerfield
Skyrme model, a solution that saturates the Bogomol’nyi
bound exists [48]. For this particular solution, the energy
momentum tensor is that of a perfect liquid [49]; that is, the
shear force vanishes. Therefore, theD-term is exactly zero in
this limit. From a physical point of view, the passing of a
gravitational wave causes a volume preserving deformation
of the nucleon, which is precisely a symmetry in the
Bogomol’nyi-Prasad-Sommerfield model [48]. Therefore,
in this limit, nucleons are transparent to gravitons.
Returning to general situations with sðxÞ ≠ 0, we now

consider the effect of quantization (10) and write the matrix
element between momentum eigenstates as

hq=2jTij½UðRðBÞðx−XÞÞ�j− q=2i

¼ e−iq·xRT
iaðBÞRT

jbðBÞ
Z

d3x0 expfiq · RTðBÞx0gTabðx0Þ;

ð27Þ

where

TabðxÞ ¼ Tcl
ab½U0ðxÞ� þOðI2; J2Þ: ð28Þ

Both RT and Tab in (27) are operators which act on spin
and isospin eigenstates (21). In general, the calculation of
their matrix elements is a complicated task. However, since
our main objective is to evaluate the DðtÞ-form factor for a
wide variety of nuclei with different spin/isospin quantum
numbers rather than focusing on a particular nucleus, we
neglect the OðI2; J2Þ terms in (27). This may be partially
justified by the large-Nc approximation.
Even after this approximation, Eq. (27) still contains

the spatial rotation matrix RT which acts on external spin
states. To deal with it, we expand the exponential on the
right-hand side in partial waves l ¼ 0; 1; 2;…,

expfiq · RTðBÞxg ¼ j0ðqxÞ þ iqcRT
ckðBÞxk

3j1ðqxÞ
qx

−
1

2

�
qcqd −

1

3
δcdq2

�
RT
ckðBÞRT

dlðBÞ

×

�
xkxl −

1

3
δklx2

�
15j2ðqxÞ
ðqxÞ2 þ � � � :

ð29Þ

In order to extract the DðtÞ-form factor, it suffices to focus
on the l ¼ 2 tensor term and read off the coefficient of qiqj.
One then needs to evaluate the integral

Tabkl ¼
Z

d3x

�
xkxl −

1

3
δklx2

�
15j2ðqxÞ
ðqxÞ2 Tcl

abðxÞ: ð30Þ

For a spherically symmetric solution, the tensorial structure
is completely fixed by symmetry

Tabkl ¼
1

10

�
δakδbl þ δilδjk −

2

3
δijδkl

�
Tcdcd: ð31Þ

Note that the trace part Tcl
ab ∼ δab does not contribute to

the integral (30). Substituting (31) into (27), we see that
the RT matrices disappear due to the orthogonality relation
RRT ¼ 1, and we recover the formula (25).
One might wonder that, since we have neglected the

OðJ2; I2Þ terms in (28), what the effects of quantization are
in the present calculation. The point is that if the classical
solution is not spherically symmetric, the tensor Tabkl does
not have the canonical form (31) in general. The intro-
duction of the R-matrix then becomes crucial to restore the
symmetry. We shall see examples of this below.

B. B= 2: The deuteron

Next we consider the B ¼ 2 sector, the “deuteron,” with
spin J ¼ 1. For spin-1 nuclei, there are in general six
independent gravitational form factors [50] related to the
fact that the nuclear wave function is not spherically
symmetric. In particular, it is well-known that the deuteron
wave function has quadrupole deformation. In terms of
the energy momentum tensor matrix element, this is most
clearly shown by the following multipole expansion in the
Breit frame in the nonrelativistic limit [51]

hp0σ0jTijjpσi

¼ 1

2
ðqiqj − δijq2ÞD1ðtÞϵ�σ0 · ϵσ

þ ðqjqkQik þ qiqkQjk − q2Qij − δijqkqlQklÞσ0σD2ðtÞ

þ 1

2M2
D
ðqiqj − δijq2ÞqkqlQkl;σ0σD3ðtÞ þ � � � ; ð32Þ

where MD is the deuteron mass. ϵσ are the polarization
vectors of the deuteron with spin σ ¼ �1, 0 measured
along the x3-direction (not helicity). Qij;σ0σ ≡ hσ0jQ̂ijjσi is
the matrix element of the quadrupole operator

Q̂ij ¼
1

2

�
JiJj þ JjJi −

4

3
δij

�
; ð33Þ

where Ji is the spin-1 operator with matrix elements
hσ0jJijσi ¼ −iϵijkϵ�σ0jϵσk. While the quadrupole part is
of interest in its own right (see recent extractions for the
ρ-meson [52,53]), in this work we focus on the monopole
part D1. The Q-dependent terms can be eliminated by
averaging over the three spin states thanks to the identity
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X�;0

σ

Qij;σσ ¼ 0: ð34Þ

Restricting ourselves to this simpler situation, we write

1

3

X
σ

hp0σjTijjpσi ¼
1

2
ðqiqj − δijq2ÞDðtÞ; ð35Þ

where we renamed DðtÞ ¼ D1ðtÞ to emphasize the corre-
spondence with (23).
Turning now to the Skryme model, we recall that the

classical B ¼ 2 solution has toroidal symmetry [21]
and is mainly characterized by a c-number quadrupole
tensor Qij [51],

Tcl
ij ≈ Yij

2 sðxÞ þ pðxÞδij þ 2s0ðxÞðQikY
kj
2 þQjkYki

2

− δijQabYab
2 Þ þ p0ðxÞQij −

1

M2
D
Qkl

∂k∂lðp00ðxÞδij

þ s00ðxÞYij
2 Þ; ð36Þ

where we abbreviated Yij
2 ¼ xixj

x2 − δij
3
. In principle, Qij can

be numerically extracted from a given skyrmion configu-
ration. But in parallel with the spin-averaging procedure
above, we eliminate it by forming the moment (25) and
using the integrals

Z
d2ΩYij

2 ¼ 0;
Z

d2ΩYij
2 ðQikY

kj
2 þQjkYki

2 − δijQabYab
2 Þ ¼ 0;

Qkl

Z
d2ΩYij

2 ∂k∂lðs00ðxÞYij
2 Þ ¼ 0; ð37Þ

where we used the traceless property Qii ¼ 0. We thus see
that the DðtÞ form factor as defined in (35) can be
calculated via the same formula (25) with the trivial
replacement MN → MD even if the classical solution is
not spherical.

C. B= 3 and beyond

Next we turn to the B ¼ 3 sector relevant to the helium-3
nucleus (3He) and the tritium (3H). Since they have spin
1=2, GFFs are parametrized by the same formula (22) as in
the nucleon case. However, in the Skyrme model, theB ¼ 3
classical solutions are not spherically symmetric, but rather
have the shape of a tetrahedron [22] [see Fig. 1(a) below]. It
is then not obvious how one can recover the same set of
form factors in the present semiclassical approach.
In order to answer this question, we need some elements

of group theory. The tetrahedral group Td [54] consists of
24 discrete transformations such as a 120° rotation around
one of the four vertices of a tetrahedron. It turns out that this

symmetry imposes strong constraints on various moments
of classical configurations [34]. For example, consider the
following integral:

Aab ¼
Z

d3xTcl
abðxÞj0ðqxÞ; ð38Þ

which appears in the l ¼ 0 partial wave in (30). Let g be
an element of the tetrahedral group. Changing variables as
x → gx, we find

Aab ¼ gTaig
T
bj

Z
d3x0T 0cl

ijðx0Þj0ðqx0Þ ¼ gTaig
T
bjAij; ð39Þ

where we used T 0cl
ij ¼ Tcl

ij due to symmetry. This means that
Aab ∝ δab. Mathematically, the integral transforms as the
singlet (A1) representation contained in the product of two
vector representations (T1) of the tetrahedral group

T1 × T1 ¼ A1 þ Eþ T1 þ T2; ð40Þ

along with the two-dimensional (E) and axial vector (T2)
representations [54].
Consider, then, the transformation properties of the

tensor Tabkl defined in (30) under the tetrahedral group.
Since the trace part of the energy momentum tensor Tcl

ab
does not play a role, Tabkl can be viewed as the product of
two symmetric and traceless tensors formed by T1 vectors

ðT1 × T1Þ × ðT1 × T1Þ; ð41Þ

where ðT1 × T1Þ ¼ Eþ T1 denotes the traceless part. We
are interested in the components that transform as the
irreducible, singlet representation A1. There are two such
structures3 which can be rearranged in the form [34]

Tabkl ¼
1

10

�
δakδbl þ δalδbk −

2

3
δabδkl

�
Tcdcd þ Cabkl:

ð42Þ

The first structure is the same as before (31). The second
tensor C is symmetric and traceless in any pair of indices
ða; b; k; lÞ (see [34] for the details). Plugging (42) into (27),
we obtain

hq=2jTijð−RXÞj−q=2ijl¼2

¼ −
�
qiqj −

δij
3
q2
�
Tcdcd

10
−
1

2

�
qcqd −

1

3
δcdq2

�

× RT
iaðBÞRT

jbðBÞRT
ckðBÞRT

dlðBÞCab;kl: ð43Þ

3One coming from E × E ¼ A1 þ A2 þ E, the other from
T1 × T1 ¼ A1 þ Eþ T1 þ T2. The cross term E × T1 ¼ T1 þ
T2 does not contribute to the trivial representation.
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The operator in the second term is totally symmetric and
traceless in the four indices i, j, c, d. It is thus a spin-4
operator whose matrix element between spin-1=2 states
vanishes. The first term then leads to the same formula (25)
for the D-form factor. We now appreciate the effect of the
rotation matrix R in the present calculation. Had we
neglected R’s, namely, RT

ia → δia, etc., in (43), the second
term would have contributed extra terms quadratic in qi, in
contradiction with the unique tensor structure (23) for a
spin-1=2 nucleus. By introducing R’s, we have minimally
included quantum effects in order to restore the original
spherical symmetry of the problem.
The above argument can be broadly generalized. Each

skyrmion solution possesses a symmetry group [32]. For
B ≥ 3, the group consists of discrete symmetry trans-
formations, and this puts strong constraints on the possible
tensor structures of the integral (30). For example, the

B ¼ 4 solution (the helium-4 nucleus, or the “alpha”
particle) has cubic symmetry [55]. The associated octahe-
dral group Oh has irreducible representations which cor-
respond to those of the tetrahedral group A1 → A1g,
T1 → T1u, etc. We can then immediately conclude that the
D-form factor is again given by (25).4 A similar argument
can be repeated for larger-B solutions. (Spin-averaging is
understood for spin ≥ 1 nuclei.) We thus use (25), withMN
replaced by nuclear masses, as a working definition for all
nuclei in the Skyrme model.

FIG. 1. Energy density isosurfaces of the classical skyrmion configurations used in this paper.

4For a spinless nucleus such as the helium-4, there are only two
GFFs which we parametrize as

hp0jTμνjpi ¼ 2AðtÞPμPν þ
DðtÞ
2

ðqμqν − ημνq2Þ: ð44Þ
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IV. ANGULAR MOMENTUM FORM
FACTOR JðtÞ

Although our main interest in this paper is theDðtÞ-form
factor, our approach can be straightforwardly generalized to
the other gravitational form factors. As an example, let us
consider the form factor

JðtÞ ¼ 1

2
ðAðtÞ þ BðtÞÞ; ð45Þ

for spin-1=2 nuclei where AðtÞ and BðtÞ are defined in (22).
Physically, JðtÞ represents the form factor associated with
the total angular momentum of the system. The forward
value Jð0Þ ¼ 1=2 is constrained by angular momentum
conservation. In the Skyrme model, JðtÞ has been com-
puted for the B ¼ 1 solutions [36,38]. Here, for the first
time, we compute it for the B ¼ 3 (helium-3, tritium)
solution.
In the Breit frame, the J-form factor appears in the

following components of the energy momentum tensor
matrix element (22):

hp0; s0jT00ð0Þjp; si
2P0

¼ M

�
AðtÞ − t

4M2
½AðtÞ − 2JðtÞ þDðtÞ�

�
δss0 ; ð46Þ

hp0; s0jT0ið0Þjp; si
2P0

¼ −JðtÞiϵijk
τjs0s
2

qk: ð47Þ

Note that the mixed (timelike-spacelike) components
vanish in the classical limit which corresponds to a static
configuration. Once the quantization of the skyrmion is
taken into account, we find a nonzero, operator-valued
result

T0i ¼ Iijaj − Jijbj; ð48Þ

where

Iij ¼ −
1

24π2
½TrfLiTjg þ Trf½Lk; Li�½Lk; Tj�g�; ð49Þ

Jij ¼
1

24π2
ϵjklxk½TrfLiLlg þ Trf½La; Li�½La; Ll�g�: ð50Þ

Both of the above tensor densities transform as the product
of a vector and an axial vector; i.e., they belong to the
T2 × T1 representation which does not contain an irreduc-
ible trivial component A1. Therefore, their contribution
must vanish at first order (l ¼ 0) in the partial wave
expansion (30). At the next order l ¼ 1, we find

hq=2jT0ið−RXÞj − q=2ijl¼1 ¼ RT
ijðBÞ

Z
d3x expfiq · RTðBÞxgT0jðxÞ

¼ iRT
ijðBÞRT

klðBÞqk
Z

d3x
3j1ðqxÞ

qx
½Ijmam − Jjmbm�xl: ð51Þ

Defining the currents

IijkðqÞ ¼
Z

d3x
3j1ðqxÞ

qx
Iijxk;

JijkðqÞ ¼
Z

d3x
3j1ðqxÞ

qx
Jijxk; ð52Þ

we can identify their irreducible component that transforms
as A1 ∈ T2 × T1 × T1, which is totally antisymmetric in the
three indices [34]:

Iijk ¼ ϵijkIðqÞ; Jijk ¼ ϵijkJ ðqÞ; ð53Þ

where

IðqÞ ¼ 1

3!
ϵabcIabcðqÞ; J ðqÞ ¼ 1

3!
ϵabcJabcðqÞ: ð54Þ

Substituting (53) into (51), we get

hq=2jT0ið−RXÞj − q=2i
¼ iRT

ijðBÞRT
klðBÞqkϵjml½IðqÞam − J ðqÞbm�

¼ iϵijkqkRT
jmðBÞ½IðqÞam − J ðqÞbm�: ð55Þ

At this point, we need to invert the relations in (18) between
the spin and isospin velocities in terms of the associated
angular momentum operators. This is a complicated task in
general, but for the specific B ¼ 3 solution at hand, the
tensors defined in Eqs. (12)–(14) are proportional to the
identity, i.e., Uij ¼ uδij, Vij ¼ vδij, Wij ¼ wδij. In that
case, we have [34]

am ¼ vKm þ wLm

uv − w2
; bm ¼ wKm þ uLm

uv − w2
; ð56Þ
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and we may write

RT
lmðBÞ½IðqÞam − J ðqÞbm�

¼ 1

uv − w2
f½IðqÞðw − vÞ þ J ðqÞðw − uÞ�RT

lmðBÞLm

þ ½vIðqÞ − wJ ðqÞ�RlmðBÞMmg; ð57Þ

where we have defined the operator M ¼ K þ L. Also,
taking into account (19) and the fact that the B ¼ 3 ground
states are M ¼ 0 singlets [22], we find our final result

JðtÞ ¼ IðqÞðw − vÞ þ J ðqÞðw − uÞ
uv − w2

: ð58Þ

Comparing the definitions in Eqs. (49), (50), and (54), with
Eqs. (13) and (14), we get the following relations:

lim
q→0

IðqÞ ¼ −
1

6
Wii ¼ −

1

2
w;

lim
q→0

J ðqÞ ¼ −
1

6
Vii ¼ −

1

2
v; ð59Þ

and thus Jðt ¼ 0Þ ¼ 1
2
as required by Lorentz invariance.

V. NUMERICAL RESULTS

In order to compute the gravitational form factors of
light nuclei, we start by generating the static energy-
minimizing classical field configuration corresponding to
each of the topological sectors. We do this by first
constructing a numerical ansatz using the rational map
approximation [31], and allowing this initial configuration
to relax to the true minimizer via gradient descent. We
remark that this is an increasingly difficult task for values of
the topological charge B≳ 8, not only due to the increase
of the solution’s mean radius, which requires a numerical
simulation on a lattice with an increasing number of points,
but also because of the flatness of the field configuration
landscape, which in general presents multiple local minima
with very similar energies but different symmetries and
shapes, as recently shown by Gudnason and Halcrow [24].
This fact points toward the failure of the rigid quantization
approximation—in which quantum effects do not modify
the classical shape of the skyrmions—for higher baryon
charges in general. We have, nevertheless, constructed also
solutions with a large baryon charge and cubic symmetry,
namely, the B ¼ 32 ¼ 4 × 23 and B ¼ 108 ¼ 4 × 33 sky-
rmions, which are expected to not be affected by spin nor
isospin quantum effects in their ground state, and are
considered to be the minimum energy configurations due
to their high degree of symmetry. These solutions are
illustrated in Fig. 1(a) (1 ≤ B ≤ 8) and Fig. 1(b) (B ¼ 32,
108) where energy density isosurfaces are plotted. For

B ¼ 8, we consider two energy-degenerate solutions5 with
different symmetries.
After obtaining the classical solutions, we used the

formula (25) (with MN replaced by the respective nuclear
masses) to compute the D-form factor for the first eight
topological sectors, for which the ground state is well-
known, as well as for the B ¼ 32 and B ¼ 108 cubic
skyrmions. The results for the first three skyrmions are
shown in Fig. 2. We have used the same values for the
parameters in the Lagrangian as in [36]. Thus the B ¼ 1
result is in agreement with [36], while the B ¼ 2, 3 results
are new. In the same plot, we also show the results obtained
with a second set of parameters which includes a nonzero
value of the sextic coupling constant λ2 ¼ 3 MeV fm3. This
choice is motivated by some previous studies on the
symmetry energy of infinite nuclear matter within the same
model [27], as well as the Equation of State of neutron
stars [44]. Finding classical solutions with nonzero λ via
gradient-descent based algorithms becomes numerically
more challenging for arbitrarily large values of this param-
eter. With our choice of λ2 ¼ 3 MeV fm3, we have been
able to obtain trustable solutions only up to B ¼ 32. We
find that the main effect of the sextic interaction is to
increase the magnitude (in absolute value) of the D-term
Dð0Þ. This can be traced back to the fact that the sextic term
represents a repulsive interaction, which makes the size of
the soliton to grow to pick up more contributions from the
large-radius region in the integral (26). However, appa-
rently it contradicts with the recent observation [56] in the
Sakai-Sugimoto model [57] that the repulsive interaction
due to the omega meson exchange decreases the magnitude
of the D-term. Unlike in [56], in the present model the

FIG. 2. The D gravitational form factor of the skyrmions with
B ¼ 1; 2; 3, normalized by B, for λ ¼ 0 (solid lines) and λ2 ¼
3 MeV fm3 (dashed lines).

5The difference in energies of both solutions is less than 1%.
The precise number (and even its sign) will depend on the
parameter values.
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omega meson is treated as a static field represented by the
sextic coupling [42], and induces only a diagonal term
Tij ∝ c6δij in the energy momentum tensor (7) which does
not directly contribute to the D-form factor. Thus the value
of the D-term seems to be rather sensitive to different
(static or dynamical) treatments for the omega meson field.
With the choice λ2 ¼ 3 MeV fm3, our result Dð0Þ ≈ −7 for
B ¼ 1 is on the higher end in magnitude among model
results in the literature; see, e.g., [36,56,58–61].
The results for the B > 3 solutions with λ ¼ 0 are plotted

in Figs. 3 and 4, and the values at the origin Dð0Þ are

summarized in Table 1. All the curves start with a negative
value, with their absolute value increasing with B, and cross
zero at least once for some value of jtj. The number of
nodes increases with B, and they appear earlier for higher
values of B. That Dðt ¼ 0Þ is negative is consistent with
the general expectation [3], but the sign of DðtÞ for t ≠ 0
is not constrained by any physical argument. Technically,
the oscillation is caused by the spherical Bessel function j2
in (25) convoluted with the increasingly flatter density
profile of larger-B solutions.
The particular values of the DBð0Þ for each topological

sector will depend strongly on the specific values of the
parameters of the model. However, their scaling with the
topological charge, or atomic number, of the nuclei is a
genuine prediction of the Skyrme model. We have found
that theB-dependence is very well fitted by a simple power-
law DBð0Þ ∝ Bβ, or equivalently,

β≡ log DBð0Þ
D1ð0Þ

logB
ð60Þ

is a constant as demonstrated in Fig. 5. The value of β is
found to be β ≈ 1.8 for λ2 ¼ 0 and β ≈ 1.7 for λ2 ¼
3 MeV fm3. In comparison, we note that the liquid drop
model of nuclei predicts β ¼ 7=3 [39] which is consistent
with the result in the Walecka model β ≈ 2.26 [40]. On the
other hand, a microscopic approach using the nonrelativistic
nuclear spectral function predicts β ¼ 1 [41].
Finally, in Fig. 6 we show the results for the angular

momentum form factor Jðq2Þ together with the isospin I
and rotation J currents defined in (53) for the B ¼ 1, 3

FIG. 3. The D gravitational form factor of the skyrmions with
B ¼ 4, 5, 6, and 7, normalized by B, for the λ ¼ 0 case.

FIG. 4. The D gravitational form factor (absolute value, not
normalized by B) of the skyrmions with B ¼ 8, 32, 108, and also
for λ ¼ 0. Cusps mean that the form factor flips signs and
oscillates around zero.

TABLE I. The values of the D-term Dðt ¼ 0Þ at λ ¼ 0.

B 1 2 3 4 5 6 7 8a 8b 32 108

Dð0Þ −3.701 −13.126 −26.757 −43.304 −62.72 −85.95 −106.596 −128.368 −140.816 −1.874 × 103 −2.152 × 104

FIG. 5. Dependence of the D-term on the baryon charge B for
skyrmions with B ≤ 8, B ¼ 32, and B ¼ 108. The cases λ2 ¼ 0

(dark blue line and λ2 ¼ 3 MeV fm3 (light blue line) are shown.
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solutions. For B ¼ 1, I and J are equal due to the
symmetry of the hedgehog configuration. The total J-form
factor reproduces the result in [36]. See, e.g., [58–60] for
calculations in other models. For B ¼ 3, we see that the
angular momentum distribution is more localized at small
momentum transfer, or at a larger radius in position space.

VI. CONCLUSIONS

In this paper, we have calculated one of the gravitational
form factors, the DðtÞ-form factor, for nuclei with baryon
numbers B ¼ 1; 2; 3; 4; 5; 6; 7; 8, 32, 108 in the Skyrme
model. While the electromagnetic and axial form factors
have been previously computed for light nuclei in this model
[33,34], its application to nuclear GFFs is new. Despite
different patterns of nuclear deformation, the monopole
DðtÞ-form factor is given by the single formula (25) which
can readily be evaluated for a given classical configuration.
Our approach can be generalized to other GFFs, and we have
presented a concrete example, the angular momentum form
factor JðtÞ, for the B ¼ 3 solution.
There are a number of future directions. In this work we

neglected theOðJ2; I2Þ terms in (28) invoking the large-Nc
approximation. However, these quantum corrections are
necessary to classify different isobars and study the detailed
spin and isospin effects for individual nuclei and their
excited states. For the B ¼ 1 solution, they have been
included in [38] to compute the GFFs of the Δ-resonances.
Additional complications arise for B > 1 solutions due to
their nonsphericity, and it remains to be seen whether group
theory techniques help to mitigate the problem. We also
neglected the spin-dependent quadrupole gravitational
form factors for the deuteron. In future work, they can
be evaluated and extended to other spin-1 nuclei. Moreover,
we have not explored solutions with B > 8 except for the
rather special B ¼ 32, 108 solutions which are realized
as cubic “α-clusters.” Numerical solutions are available in
the literature [23], and they can be used to study the
B-dependence of GFFs more closely. An important caveat
when considering large skyrmions is the failure of the rigid

body quantization. A more involved quantization pro-
cedure, including some vibrational degrees of freedom
and allowing for deformations of the classical skyrmion
shape has been developed during the past decade with
relatively successful applications to light nuclei, such as the
B ¼ 5 [62], B ¼ 7 [63], or B ¼ 16 [64] solutions. The
study of the GFF of larger skyrmions within a vibrational
quantization is also a straightforward extension of our
present work, which nevertheless falls outside our original
scope, namely, to determine the dominant contribution to
the D-term of each skyrmion. Last but not least, recently
in [56], the nucleonD-term has been studied in holographic
QCD in the Sakai-Sugimoto model [57]. It has been
observed that, in order to properly compute GFFs at finite
t ≠ 0, one must include glueballs. While it is known that
the Skyrme model can be derived from the Sakai-Sugimoto
model, glueballs are usually lost in this reduction. It
appears to be a challenging task to consistently restore
these degrees of freedom and study their impact on GFFs.
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FIG. 6. Left: Values of the functions IðqÞ and J ðqÞ for the B ¼ 1 and B ¼ 3 cases. Right: The gravitational form factor Jðq2Þ for the
same nuclei.
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