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In a previous work by one of the authors, it was demonstrated that the discrepancy between the fixed-
order and contour-improved (CIPT) perturbative expansions for τ-lepton decay hadronic spectral function
moments, which had been affecting the precision of αs determinations for many years, is related to the
CIPT expansion being inconsistent with the standard formulation of the operator product expansion. Even
though the problem can be alleviated phenomenologically for the most part by employing a renormalon-
free scheme for the gluon-condensate matrix element, the principal inconsistency of CIPT remains. The
CIPT expansion is special because it is not a power expansion, but represents an asymptotic expansion in a
sequence of functions of the strong coupling. In this article we provide a closer look at the mathematical
aspects of the asymptotic sequence of the functions the CIPT method is based on, and we expose the origin
of the CIPT inconsistency as well as the reasons for its apparent good convergence at low orders. Our
results are of general interest, and may in particular provide a useful tool to check for the consistency of
expansion methods that are similar to CIPT.
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I. INTRODUCTION

The comparison of moments of the inclusive hadronic
τ-decay invariant-mass spectral distribution obtained at
LEP [1] with the corresponding theoretical predictions,
based on finite-energy sum rules involving the Adler
function, is one of the most precise methods to determine
the QCD strong coupling αs at the scale of the τ lepton
mass [2]. The theoretical predictions for these finite-energy
sum rules involve perturbative series for weighted contour
integrals over the invariant mass of the vacuum polarization
function that encode the main dependence of the moments
on αs. For many years a systematic theoretical discrepancy
has persisted for these perturbative series [3,4] related
to two renormalization scale-setting prescriptions, called
fixed-order perturbation theory (FOPT) and contour-
improved perturbation theory (CIPT) [5,6]. While FOPT
represents a simple expansion in powers of the strong
coupling at a certain renormalization scale, CIPT is based
on integrations over the strong coupling renormalization
scale and is therefore an expansion in nontrivial functions
of the strong coupling. In moments for which the leading

nonperturbative correction, coming from the dimension-
four gluon-condensate (GC) matrix element in the operator
production expansion (OPE), becomes suppressed due to
the integration with the corresponding weight function
(which are the most relevant for αs determinations) the
CIPT scale setting leads to systematically smaller values for
the truncated perturbative series, resulting in larger values
for the extracted strong coupling.
It was claimed in Refs. [7,8], based on the study of

renormalon models of the Adler function, that the discrep-
ancy between CIPT and FOPT is due to an inconsistency of
the CIPT expansion. In Refs. [9,10], it was shown that for
these moments the CIPT expansion, in contrast to FOPT,
does not lead to a corresponding suppression of the
moment’s quartic sensitivity to infrared (IR) momenta,
and the associated suppression of the infrared renormalon
does not take place. This renders CIPT, as a matter of
principle, inconsistent with the standard formulation of the
OPE, even though the CIPT series typically exhibits an
apparently excellent behavior at low orders. As far as the
hadronic τ decay spectral function moments are concerned,
where this issue is numerically dominated by the
dimension-four GC renormalon [9,10], the CIPT problem
can be alleviated phenomenologically to a large extent by
employing a renormalon-free scheme for the GC matrix
element [11,12]. Even though the CIPT problem for
hadronic τ-decay spectral function moments can therefore
be considered as resolved for phenomenological purposes
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and a quantitative description of the CIPT inconsistency
(called the “asymptotic separation”) has been provided in
Refs. [9,10], the deeper mathematical background of why
CIPT turns out to be inconsistent with the OPE has not yet
been studied.
It is the purpose of this article to provide such a

mathematical examination. An important motivation for
our study is that, once the mathematical origin of the
problem is specified in a way independent of the applica-
tion to the τ hadronic spectral function moments, the
consistency of other perturbative expansion methods where
integrations over the strong coupling renormalization scale
are employed can be checked. For the most part of our
study we use the leading logarithmic (one-loop) approxi-
mation for the strong coupling evolution and the large-β0
approximation, where essentially at all stages of our
analysis we can rely on fully analytical results. We also
check by numerical analyses that all our conclusions are
(beyond any reasonable doubt) valid as well in full QCD.
Our main finding can be summarized in the following
simple statement: “A convergent series in FOPT in general
leads to a divergent series in CIPT”. We provide the general
mathematical criteria on which this statement is based, and
also clarify why CIPT frequently appears to provide a more
convergent series expansion than FOPT at low orders.
The article is organized as follows: In Sec. II we set up

our notation and prove that the set of expansion functions
of CIPT indeed form well-defined asymptotic sequences,
which ensures that CIPT provides well-defined asymptotic
expansions. However, these asymptotic sequences lack an
important type of uniformity property due to zeros for
coupling values that become ever smaller at large orders.
Here we also prove analytically that a generic factorially
divergent series contained in the Adler function (related
to an infrared renormalon), which yields a FOPT series
with a finite radius of convergence when the corresponding
OPE correction vanishes, leads to a divergent CIPT series
for any value of the strong coupling. This fact was already
discussed in Refs. [9–11] based on phenomenological
finite-order studies, but not proved rigorously based on
the all-order behavior of the actual series. In Sec. III we
discuss the reexpansion of CIPT series in terms of FOPT
and vice versa. We demonstrate that, while the functions
defining the asymptotic expansion of CIPT can be repre-
sented by FOPT series with a finite radius of convergence,
the reverse is not true. In fact, the asymptotic expansion of a
single power of the strong coupling in terms of the CIPT
expansion functions is divergent for any value of αs. We
provide arguments supporting that this property is related
to the nonuniformity and the zeros of the CIPT expan-
sion functions. This finding is the basis of the statement
between quotation marks above and the central result of
this work. All these results are based on explicit analytic
expressions derived using the leading logarithmic strong
coupling evolution and the large-β0 approximation. Finally,

in Sec. IV we provide numerical evidence that these
findings also apply in full QCD, where explicit all-order
analytical expressions are not available. In Sec. V we
conclude. Lastly, we also add Appendix, where we state a
number of mathematical definitions, theorems, and corol-
laries that we use in the main body of the article concerning
the convergence properties of series, series of functions,
and the concept of asymptotic expansions. Even though we
assume that they are familiar to many researchers, we quote
them in the article explicitly for completeness, since some
of them, such as the Weierstrass double series theorem, are
rarely used in high-energy physics applications. In par-
ticular we quote the definition for so-called asymptotic
sequences which generalize the concept of asymptotic
power expansions. This generalization is relevant because
CIPT is not an expansion in powers of the strong coupling
but in more complicated functions of the strong coupling
with a nontrivial analytic structure. We recommend the
reader not familiar with this general definition of asymp-
totic expansions or the Weierstrass theorem to start the
article with the Appendix.

II. SPECTRAL FUNCTION MOMENT SERIES
IN THE LARGE-β0 APPROXIMATION

A. Notation and conventions

We write the perturbative series for the reduced Adler
function for strange plus nonstrange light-quark production
in the form1

D̂ðsÞ ¼
X∞
n¼1

c̄n;1anð−sÞ ¼
X∞
n¼1

an
Xn
k¼1

kc̄n;klnk−1ð−xÞ;

ð2:1Þ

where we define (β0 ¼ 11 − 2nf=3 with nf ¼ 3)

aðμ2Þ≡ β0αsðμ2Þ
4π

; ð2:2Þ

for the rescaled strong coupling. In Eq. (2.1) and in what
follows we use the shorthand notation a≡ aðs0Þ and
x ¼ s=s0, where frequently in phenomenological applica-
tions one has s0 ¼ m2

τ . The series for the τ hadronic spectral
function moments which are derived from the Adler
function are defined by the contour integrals

δð0ÞWðxÞðaÞ ¼
1

2iπ

I
jxj¼1

dx
x
WðxÞD̂ðs0xÞ; ð2:3Þ

1The coefficients c̄n;k are defined in the perturbative expansion
of the vacuum polarization function, which reads Πðs; μ2Þ ¼
− 1

4π2
½LþP

n¼1 a
iðμ2ÞPn

k¼0 c̄n;kL
k�, with L ¼ lnð−s=μ2Þ. The

reduced Adler function is defined by the relation D̂ðsÞ ¼
−4π2s dΠðsÞ

ds − 1 and is renormalization scale invariant.
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where the contour starts/ends at x¼ 1� i0 (or s ¼ s0 � i0)
and is a counterclockwise path in the complex x-plane
(or s-plane) around the origin [6,13]. The weight function
WðxÞ is a polynomial with the property Wð1Þ ¼ 0 for
physical applications. Note that we suppress the depend-
ence of the moments on the physical scale s0 since it
comes solely from the argument of a ¼ aðs0Þ. In the
following we also frequently use the shorthand notation

δð0Þl instead of δð0ÞWðxÞ when considering the simple monomial

weight function WðxÞ ¼ ð−xÞl.
The CIPTexpansion for δð0ÞWðxÞ starts from the perturbative

series for D̂ðsÞ given in powers of að−sÞ, and the contour
integral is done over powers of the complex-valued strong
coupling að−sÞ ¼ að−xs0Þ. This yields

δð0ÞCIPT;lðaÞ ¼
X∞
n¼1

c̄n;1Hn;lðaÞ; ð2:4Þ

where

Hn;lðaÞ≡ 1

2iπ

I
jxj¼1

dx
x
ð−xÞlanð−xs0Þ: ð2:5Þ

The resulting series is an asymptotic expansion in terms
of the functions Hn;lðaÞ with fixed l depending on the
reference strong coupling a, which is the quantity deter-
mined from the comparison to experimental data in strong

coupling determinations. The FOPT expansion for δð0ÞWðxÞ
starts from the perturbative series for D̂ðsÞ given in powers
of a ¼ aðs0Þ. Complex phases then appear from the powers
of lnð−xÞ in the coefficients of this series, and the contour
integral is computed over the polynomials in lnð−xÞ. This
yields

δð0ÞFOPT;lðaÞ ¼
X∞
n¼1

dFOPTn;l an; dFOPTn;l ¼
Xn
k¼1

kc̄n;kIk−1;l;

ð2:6Þ
where

Ik;l ≡ 1

2iπ

I
jxj¼1

dx
x
ð−xÞl lnkð−xÞ: ð2:7Þ

The integrals Ik;l can be determined analytically and read,

Ik≠0;l≠0 ¼
Γðkþ 1; iπl;−iπlÞ

2iπð−lÞkþ1

¼ −
k!ð−1Þl
2ð−lÞk

Xk−1
j¼0

ðilπÞj½1þ ð−1Þj�
ðjþ 1Þ!

¼ πkð−1Þlþk
X∞
n¼0

ðπlÞn
ðkþ 1Þnþ1

cos

�
π

2
ðkþ nÞ

�
;

ð2:8Þ

Ik;0 ¼
ðiπÞk½1þ ð−1Þk�

2ðkþ 1Þ ¼ ð−πÞk
kþ 1

cos

�
πk
2

�
; ð2:9Þ

where Γðn; a; bÞ≡ Γðn; aÞ − Γðn; bÞ and I0;l ¼ δl;0.
Note that the second equality of Eq. (2.8) stems from
Eq. (A2) and the third from the identity in Eq. (A5). The
notation ðbÞk stands for the Pochhammer symbol
ðbÞk ¼ Γðbþ kÞ=ΓðbÞ. Note that for l ¼ 0 only the lead-
ing term of the sum over n in the second line survives,
yielding the expression for Ik;0 given in the last line. The

series δð0ÞFOPT;l is a common power expansion in a. Once the
CIPT and FOPT moment series are determined, it is not
possible any more to change between the FOPT and
CIPT expansions through a change of renormalization
scale, since the CIPT series represents a coherent analytic
weighted combination of complex-valued strong coupling
series with different renormalization scales. It is this
difference which is at the core of our investigations.
In the large-β0 approximation the QCD β-function for

the evolution of aðμ2Þ has the simple leading logarithmic
form daðμ2Þ=d ln μ2 ¼ −a2ðμ2Þ yielding

aðμ2Þ ¼ aðμ20Þ
1þ aðμ20Þ lnðμ

2

μ2
0

Þ
; ð2:10Þ

as the relation of the coupling at different scales. In the large-
β0 approximation the Adler function is determined from
single-gluon exchange diagrams dressed with infinitely
many insertions of one-loop massless-quark vacuum polari-
zationbubbleswithnf flavors.Subsequently thereplacement
nf → −3β0=2 is imposed to yield an approximation for the
fullQCDresults includinggluoniccorrections.Thisapproxi-
mation provides the correct OðαsÞ next-to-leading order
(NLO) QCD corrections and is known to have many
qualitative features of full QCD concerning corrections
beyond NLO. It has the advantage that essentially all
calculations can be carried out analytically to all orders. It
is this property which we rely on in most of the following
sectionsof this article. Still, it is essential to reconfirm that the
qualitative insights gained in the large-β0 approximation also
apply in full QCD. This is what we address in Sec. IV.
In the large-β0 approximation the all-order perturbative

series for the Adler function can be conveniently written
down in closed form [14]

D̂ðsÞ ¼
Z

∞

0

du½BðuÞ�Taylore−
u

að−sÞ

¼
Z

∞

0

du½BðuÞe−u lnð−xÞ�Taylore−u
a; ð2:11Þ

where the Borel functions in the brackets need to be Taylor
expanded in powers of u and the relation

R
∞
0 duun−1e−

u
x ¼

ΓðnÞxn is used. The two equalities yield the two expansions
in Eq. (2.1) in powers of að−sÞ or a. The function BðuÞ
reads [14]
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BðuÞ ¼ 128

3β0

e
5u
3

2 − u

X∞
k¼2

ð−1Þkk
½k2 − ð1 − uÞ2�2

¼ 8

3β0

e
5u
3

ð2 − uÞðu − 1Þ
�
ψ ð1Þ

�
3

2
−
u
2

�
− ψ ð1Þ

�
2 −

u
2

�
þ ψ ð1Þ

�
u
2
þ 1

�
− ψ ð1Þ

�
u
2
þ 1

2

��

¼ 128

3β0
e
5u
3

�
3

16ð2 − uÞ þ
X∞
p¼3

�
d2ðpÞ

ðp − uÞ2 −
d1ðpÞ
p − u

�
−

X−∞
p¼−1

�
d2ðpÞ

ðu − pÞ2 þ
d1ðpÞ
u − p

��
; ð2:12Þ

where ψ ð1ÞðxÞ ¼ d2

dx2 ln½ΓðxÞ� is the first-order polygamma
function and d2ðpÞ ¼ ð−1Þp

4ðp−1Þðp−2Þ, d1ðpÞ ¼ ð−1Þpð3−2pÞ
4ðp−1Þ2ðp−2Þ2.

Each (single or double) pole at u ¼ p along the positive
real u axis corresponds to an equal-sign factorially diverg-
ing asymptotic series contribution in the coefficients of
the Adler function, indicating a sensitivity of the Adler
function to IR momenta Λ of OðΛ2pÞ. These poles (as well
as the corresponding factorially diverging series contribu-
tions) are called “IR renormalons”. Each such IR renor-
malon contribution has a one-to-one association with a
higher dimensional OPE correction term ∼hOpi=sp0 , which
effectively compensates for the resulting ambiguity of the
perturbation series. Here, hOpi stands for a dimension 2p
nonperturbative low-energy QCD matrix element that
cannot be determined with perturbative methods [15–17].
For a moment with weight function WðxÞ ¼ ð−xÞl all

OPE matrix-element corrections of the form const ×
hOpi=sp0 for p ≠ l are eliminated by the contour integration
as can be seen from the residue theorem. As a consequence,
perturbative expansion methods consistent with the OPE
must yield a convergent series, at least within some region

of a, for those terms in the Borel functionBðuÞwith a single-
pole renormalon of the form 1=ðp − uÞ [15–17]. In the
following two subsections we prove analytically that FOPT
satisfies this requirement, while CIPT does not. Therefore,

we consider the moment δð0Þl in the FOPT and the CIPT
expansions arising from the term BpðuÞ ¼ 1=ðp − uÞ with
p ¼ 2; 3;…, which yields the coefficients

c̄n;k;p ¼ ð−1Þkþ1ΓðnÞ
pn−kþ1Γðkþ 1Þ ; ð2:13Þ

in the Adler function series of Eq. (2.1).

B. FOPT series

The contribution of the single pole 1=ðp − uÞ renorma-
lon to the FOPT moment series coefficients dFOPTn;l;p , defined
using the coefficients of Eq. (2.13) in Eq. (2.6), can be
written down immediately from the expressions given
above. We found closed analytic expressions for these
coefficients, simply carrying out the sums in the rightmost
expression of Eq. (2.6), for any l ∈ N0 and p ∈ N:

dFOPTn;0;p ¼ ð−1ÞpΓðnþ 1; iπp;−iπpÞ
2iπnpnþ1

;

dFOPTn;l>0;p≠l ¼ l−nΓðn; iπl;−iπlÞ − ð−1Þlþpp−nΓðn; iπp;−iπpÞ
2iπðl − pÞ ;

dFOPTn;p;p ¼ Γðn; iπpÞ þ Γðn;−iπpÞ
2pn þ Γðnþ 1;−iπp; iπpÞ

2πipnþ1
: ð2:14Þ

Note that we have dFOPT1;l>0;p ¼ 0. Using the expansion of the incomplete gamma function Γðn; zÞ for jnj → ∞ quoted in
Sec. A 3 we can obtain the large-n asymptotic expression for the coefficients dFOPTn;l;p which we can use to apply the root test
according to Theorem A.2. From Eqs. (A4) and (A5) we find

dFOPTn;l;p −
ΓðnÞ
pn δl;p ¼ ð−1Þlþ1πn

X∞
k¼1

ðpπÞk−1
ðnÞkþ1

sin

�
π

2
ðkþ nÞ

�Xk−1
j¼0

�
l
p

�
j
; ð2:15Þ

where the sum over k on the rhs refers to the kth leading
term as n → ∞ when p ≠ l. This sum is actually abso-
lutely convergent. It is conspicuous that there is a universal
formula for the (asymptotic) expansion in the cases p ¼ l

and p ≠ l as n → ∞. Furthermore, for p ≠ l the leading
large-n expression (for k ¼ 1) does not depend on p, and its
only dependence on l is through the factor ð−1Þl. The
latter property implies that for p ≠ l the leading term as
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n → ∞ in Eq. (2.15) always cancels for physical weight
functions which have the propertyWð1Þ ¼ 0. Interestingly,
also the first j subleading terms cancel if also the first j
derivatives of WðxÞ vanish at x ¼ 1 (W0ð1Þ ¼ W00ð1Þ ¼
� � � ¼ WðjÞð1Þ ¼ 0), i.e., if W is j-fold pinched. So for the
kinematic weight function WτðxÞ ¼ ð1 − xÞ3ð1þ xÞ ¼
1–2xþ 2x3 − x4, which is relevant for the inclusive
τ hadronic decay width, we have Wð1Þ ¼ W0ð1Þ ¼
W00ð1Þ ¼ 0. Here the terms for k ¼ 1; 2; 3 shown in
Eq. (2.15) cancel for all p ≠ 3; 4. We note that the case
p ¼ 1 does not arise in the Adler function, see Eq. (2.12).
It is now straightforward to determine the limit superior
that we need for the root convergence criterion,

lim sup
n→∞

jdFOPTn;l;p≠lj1=n ¼ π;

lim sup
n→∞

jdFOPTn;l;p¼lj1=n ¼ ∞: ð2:16Þ

From the πn global factor displayed in Eq. (2.15) we see
that the limit superior of Eq. (2.16) is obtained also for any
linear combination of dFOPTn;l;p≠l coefficients in l including
those arising from physical weight functions where the
leading k ¼ 1 term or potentially subleading terms for
larger k cancel. Here we used that the limit superior of
j cosðnπ=2Þj1=n or j sinðnπ=2Þj1=n can be obtained from the
infinite subseries with even (or odd) n for which the
modulus is unity. This proves that for l ≠ p the FOPT
moment series is absolutely convergent for any complex a
within the circle of convergence jaj < 1=π.2 The FOPT

expansion of Eq. (2.6) is therefore consistent with the OPE.
We also mention that for any region within this circle of
convergence the FOPT series is also uniformly convergent
according to Corollary A.5.1. We can analytically sum the
FOPT series, and for the case of monomial weight
functions and positive real a we find,3

δð0ÞFOPT;0;p≠l ¼ 1

πp
arctanðaπÞ þ ð−1Þp

p
e−

p
a

�
1

2πi
Γ
�
0;

−
p
a
− iπp;−

p
a
þ iπp

�
− 1

�
; ð2:17Þ

δð0ÞFOPT;l≥1;p≠l

¼ 1

p− l

�
e−

l
a

�
1

2πi
Γ
�
0;−

l
a
þ iπl;−

l
a
− iπl

�
þ 1

�

− ð−1Þlþpe−
p
a

�
1

2πi
Γ
�
0;−

p
a
þ iπp;−

p
a
− iπp

�
þ 1

��
:

ð2:18Þ

For illustration, we have displayed the truncated moment

series δð0ÞFOPT;l;p≠l for the values ðl; pÞ ¼ ð0; 2Þ; ð1; 2Þ in
Fig. 1 as red dots using a ¼ 0.2256 which corresponds to

α
ðnf¼3Þ
s ðs0Þ ¼ 0.315. The dashed horizontal lines indicate

the series sums. The visible oscillations of the FOPT series
are substantially damped for physical weight functions due

(a) (b)

FIG. 1. Partial sums in FOPT (red dots) and CIPT (blue dots) for the spectral function moments δð0Þl;p defined in Eq. (2.3) using
monomial weight functions of type ð−xÞl with l ¼ 0 (left panel) and l ¼ 1 (right panel), including up to n terms. The results assume
the large-β0 approximation and are obtained from the Adler function coefficients c̄n;k;2 given in Eq. (2.13). The horizontal, red, dashed

lines indicate the value the series converges to. For our numerics, α
ðnf¼3Þ
s ðm2

τ Þ ¼ 0.315 (a ¼ 0.2256) is employed.

2We note that in Ref. [18] the radius of convergence of
anomalous dimensions in Soft-Collinear Effective Theory and
boosted Heavy-Quark Effective Theory as well as for the MS-
mass were studied in the large-β0 approximation. It was found
that the series converge for jaj < 2.5, which represents a much
larger region of convergence than for FOPT moments with l ≠ p.

3At first sight it may appear that the small a expansion of
Eqs. (2.17) and (2.18) is only a divergent asymptotic series as it
involves the asymptotic expansion in Eq. (A6) for the incomplete
gamma function for a large second argument. However, the
coefficients combine to the convergent coefficients dFOPTn;l;p≠l when
all terms contributing to a single power an are combined. The
same comment also applies to the small a expansions of the
Hn;lðaÞ functions in Eqs. (2.22) and (4.7).
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to the cancellation of the leading asymptotic contributions
mentioned before.
We note that since the size of the strong coupling αs is

only known with an uncertainty and furthermore depends
on the observable (through the value of s0), we do not
discuss the particular case jaj ¼ 1=π. This case does not
have any specific meaning in practice. So when we talk
about convergent series, we always refer to absolutely
convergent series in the rest of this article, and it is the fact
that a finite interval of convergence for a exists that matters
for the consistency with the OPE. We also acknowledge
that an indirect proof of the convergence using the Borel
representation of the spectral function moment series
based on Eq. (2.11) with the unexpanded Borel function
BpðuÞ ¼ 1=ðp − uÞ for p ¼ 2; 3;… and using the renor-
malon calculus has been given in the Appendix of
Ref. [11]. The proof presented above directly deals with
the actual series.4

C. CIPT series

In the large-β0 approximation the CIPT expansion
functions Hn;lðaÞ can be readily computed by rewriting
the integral of Eq. (2.5) in terms of the phase angle x ¼ eiϕ,
which gives

Hn;lðaÞ ¼
1

2π

Z þπ

−π
dϕeilϕ

�
a

1þ iaϕ

�
n

¼ i
π
e−

l
a

Z
tþ

t−

dtð−2tÞ−ne−2lt; ð2:19Þ

where the integral in the second equality is obtained by a
change of variable to t ¼ − 1

2að−xs0Þ with the integration

boundaries t� ¼ − 1
2að−s0�i0Þ ¼ − 1

2a�
¼ − 1�iaπ

2a . The

Hn;lðaÞ functions have poles at a ¼ �i=π since the phase
integral becomes singular at one of the boundaries �π
(or one of the t� is zero and starts at the pole singularity at
t ¼ 0). We define the phase integral in the interval ½−π;þπ�
strictly along the real axis. Since Re½t�� ¼ − Re½a�

2jaj2 and

Im½t�� ¼ 1
2

�
Im½a�
jaj2 ∓ π

	
this corresponds to a complex path

in t that is in the straight vertical downward direction.

The definition with a fixed ϕ integration path, where the
distance to the origin at ϕ ¼ 0 is bounded, ensures that
Hn;lðaÞ is analytic at least in some finite neighborhood
of the origin a ¼ 0 and that lima→0Hn;lðaÞ ¼ 0 from all
directions in the complex a plane. In fact, at the origin the
Hn;0ðaÞ vanish like an, while the Hn;l≥1ðaÞ vanish like
anþ1 because of the complex phase eilϕ in Eq. (2.19). In
other words, Hn;lðaÞ ¼ Oðanþ1−δl;0Þ as a → 0.5

Our path prescription provides an unambiguous defini-
tion of the integrals for all complex a besides where there
are cuts. Such cuts arise when the strong coupling Landau
pole at ϕ ¼ i=a traverses through the path of ϕ that goes
along the real axis from −π to þπ (or the straight path of t
from t− to tþ traverses through t ¼ 0). With our definition
these cuts are located along the straight lines ð−i∞;−i=πÞ
and ðþi=π;þi∞Þ on the imaginary axis of the complex a
plane. Any other path definition would lead to the same
poles and branch points at a ¼ �i=π, but to a different
curve of the cut connecting the branch points. A path for ϕ
deformed into the positive (negative) imaginary plane
corresponds to a path for x with jxj ≤ 1 (jxj ≥ 1) in
Eq. (2.5). Thus, if the ϕ integration contour would be
deformed far away from the real axis, it is possible that the
minimal distance of the cut curve to the origin at a ¼ 0
becomes smaller than 1=π. Our definition is the most
obvious one, as it is the standard path used for real a, see
Eq. (2.5), and leads to branch cuts along the imaginary axis
away from the origin. However, these cuts only truly arise
when the Landau pole leads to a simple pole in the
integrands in Eq. (2.19), i.e., when there is a finite residue
that can make a contribution when the Landau pole at ϕ ¼
i=a crosses the integration path. Since the residue has the
general form 1

2πi
ln−1
ΓðnÞ e

−l=a, cuts only arise for ðn;lÞ ¼
ð1; 0Þ or when l ≥ 1. There are no cuts for l ¼ 0 and
n ≥ 2. Except for the poles and the cuts (if they arise), the
Hn;lðaÞ are analytic in the entire complex a plane. In any
case, for any sensible contour path choice (with ϕ being
close to the real axis or jxj being equal or close to (1) in
Eq. (2.5) the Hn;lðaÞ functions are all analytic within the
circle with radius 1=π around the origin, where they can
also be expanded in a convergent an Taylor series.
The analytic results for complex a read

H1;0ðaÞ ¼
1

2πi
log

�
a−
aþ

�
¼ 1

π
arctanðπaÞ; ð2:20Þ

Hn≥2;0ðaÞ ¼
an−1− − an−1þ
2πiðn − 1Þ ¼

�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2π2
p

�
n−1 sin½ðn − 1Þ arctanðaπÞ�

πðn − 1Þ ; ð2:21Þ

4The proof based on the Borel transform in Ref. [11] also applies in full QCD.
5This is associated to the fact that the OðaÞ FOPT term in the moments δð0ÞFOPT;l≥1 always vanish. The absence of this term for l ≥ 1

entails some notation subtleties in expressions we present later in this article.
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Hn;l≥1ðaÞ ¼
ð−1Þl
π

Xn−1
k¼1

lk−1

ðn − kÞk

�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2π2
p

�
n−k

sin½ðn − kÞ arctanðπaÞ�

þ ln−1e−
l
a

ΓðnÞ
�
1

2iπ
Γ
�
0;−

l
aþ

;−
l
a−

�
þ ΘðaÞ

�

¼ ð−1Þl
π

Xn−1
k¼1

lk−1

ðn − kÞk
an−k− − an−kþ

2πi
þ ln−1e−

l
a

ΓðnÞ
�
1

2iπ
Γ
�
0;−

l
aþ

;−
l
a−

�
þ ΘðaÞ

�

¼ e−
l
aln−1

�ð−1Þn
2iπ

Γ
�
1 − n;−

l
aþ

;−
l
a−

�
þ ΘðaÞ

ΓðnÞ
�
; ð2:22Þ

with

ΘðaÞ ¼ θ½ReðaÞ�θ
����aþ i

2π

��� − 1

2π

��
1 − θ

�
1

2π
−
���a −

i
2π

���
��

; ð2:23Þ

where in addition we have Hn;lð0Þ ¼ 0 since one cannot
simply insert a ¼ 0 in Eq. (2.22). The term proportional
to ΘðaÞ arises from the definition of the incomplete
gamma function in Eq. (A1) which otherwise leads to a
mismatch related to the residue at t ¼ 0 already quoted
above. We remind the reader that the residue becomes
relevant due to the use the incomplete gamma functions,
which implies a path deformation in the t variable
through real þ∞. The step function θðxÞ appearing in
ΘðaÞ is defined as θðxÞ ¼ 1 for x ≥ 0 and θðxÞ ¼ 0 for
x < 0. We note that the particular dependence of ΘðaÞ on
the step function θðxÞ-definition at x ¼ 0 arises due to
the convention used for the incomplete gamma function
when the second argument is negative real. The result as
shown above arises due to the definition Γða; xÞ≡
Γða; xþ i0Þ for negative real x, as it is used e.g., in
Wolfram Mathematica [19]. We note that the analytic
evaluation of the integrals in Eq. (2.19) in terms of the
incomplete gamma function (where the t path is always
deformed through positive real infinity) implies that for
values of a on the cut curves, i.e., when i=a is in the
interval ð−π;þπÞ, the ϕ integration is deformed around
the pole into the positive imaginary half-plane. Also note
that for the first two equalities in Eq. (2.22) we have used
Eq. (A3). Interestingly, they provide the asymptotic
expansion of Hn;l≥1ðaÞ as n → ∞, where the k ¼ 1 term
represents the leading contribution.
The analytic properties of the functions Hn;lðaÞ imply

that they can be expanded in Taylor series around a ¼ 0
which are absolutely convergent for jaj < 1=π,

Hn;lðaÞ ¼
X∞
k¼n

sln;ka
k: ð2:24Þ

The expansion coefficients sln;k are directly related to the
expressions for Ik;l defined in Eq. (2.7) and read

sln;k ¼
ð−1ÞkþnIk−n;l
ΓðnÞðkÞ1−n

; ð2:25Þ

where we note that sln;n ¼ δl;0. Therefore, the sln;k form
upper-triangular matrices if we take n and k as the row and
column indices, respectively. Using the third equality of
Eq. (2.8), we also find the infinite series representation

sln;k ¼
ð−1Þlπk−n

ΓðnÞ
X∞
j¼0

ðlπÞj
ðkÞj−nþ2

cos

�
π

2
ðjþ k − nÞ

�
; ð2:26Þ

which is absolutely convergent, but also provides an
(asymptotic) expansion as k → ∞, where the j ¼ 0 term
is the leading contribution. For l ¼ 0 only the first term in
the j-sum survives. Since there is an infinite subsequence in
k such that the modulus of the cosine functions is in the
interval ½δ; 1� for a 0 < δ < 1 and using Stirling’s formula
for the gamma functions (contained in the Pochhammer
symbol) we find

lim sup
k→∞

jsln;kj1=k ¼ π: ð2:27Þ

This reconfirms our statement above concerning the con-
vergence radius of the Taylor expansion around the
origin of the Hn;l functions in the complex a plane. For
illustration we have displayed the results for jsln;kj1=k as a
function of k in Fig. 2(a) for various combinations of ðn;lÞ.
We have explicitly checked that summing the series in
Eq. (2.24) indeed converges to the analytic expression in
Eqs. (2.22), (2.21), and (2.22) for all complex a with
jaj < 1=π. It is an interesting fact that, similar to the FOPT
coefficients dFOPTn;l;p≠l, as discussed following Eq. (2.15), the
leading and potentially subleading asymptotic terms cancel
in linear combinations of l that arise for physical weight
functions WðxÞ, but the limit superior remains π even for
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such linear combinations due to the global factor of πk

shown in Eq. (2.26).
From the expressions in Eqs. (2.21) and (2.22) it is

straightforward to determine the limit superior of
jHn;lðaÞj1=n as n → ∞. The result reads

lim sup
n→∞

jHn;lðaÞj1=n ¼ maxðjaþj; ja−jÞ

¼ jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jaj2π2 − 2πjImðaÞj

p : ð2:28Þ

Interestingly, we yet again find that the leading (and
potentially subleading) asymptotic contributions as n →
∞ cancel in linear combinations of the Hn;l functions that
arise for physical weight functions WðxÞ in analogy to the
discussion following Eqs. (2.15) and (2.26). The limit
superior given in Eq. (2.28) also applies for these linear
combinations, as we can see from the form of the
subleading asymptotic terms given in Eq. (2.22).
From Eqs. (2.21) and (2.28) we see that the n scaling of

the Hn;l functions is in powers of a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p
. The

fact that jaj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p
< minðjaj; 1=πÞ for real a, is one

of the reasons why the CIPT expansion typically exhibits
a better behavior of the series at low orders than the
power an expansion of FOPT, see also Fig. 3, were

Hn;0ðaÞ=ða=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p
Þn−1 is shown for 1 ≤ n ≤ 10 in

the interval [0, 1]. It is clearly visible that this scaling
property does not only arise for large n, but is active for
all n values.
It is now straightforward to examine the convergence

of the single pole 1=ðp − uÞ renormalon series contribution

in the Adler function to the CIPT moment series δð0ÞCIPT;l;p≠l
in Eq. (2.4). Using the leading asymptotic expressions of
the coefficients c̄n;1;p ¼ ΓðnÞ=pn from Eq. (2.13) and the
result of Eq. (2.28), we find

lim sup
n→∞

jc̄n;1;pHn;lðaÞj1=n ¼ ∞: ð2:29Þ

We see that the limit superior diverges for any value of a.
The outcome is the same for any linear combination ofHn;l

functions in l including those arising from the physical
weight functions as can be seen from the form of the
subleading asymptotic terms in Eq. (2.22).
We have displayed the truncated moment series

δð0ÞCIPT;l;p≠l, in Fig. 1 for ðl; pÞ ¼ ð0; 2Þ; ð1; 2Þ, and a ¼
0.2256 as the blue dots.We can clearly see that CIPT shows a
much better apparent behavior at low orders than FOPT (red
dots). The CIPT series does in particular not show the
oscillatory behavior of FOPT. This is due to the scaling of
theHn;l functions just mentioned above, as well as the zeros
of theHn;l functions visible in Fig. 3, which further suppress
the size of Hn;lðaÞ. These zeros, which appear to have a
considerable benefit at this point, turn out to play an
important additional role in the further considerations of
this article. However, the fact that theCIPT series is divergent

for any value of a renders δð0ÞCIPT;l;p≠l inconsistent with the
OPE. The consistency with the OPE demands that the series
must be convergent for l ≠ p. The visible discrepancy6

FIG. 3. The functions Hn;0ðaÞ=ða=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2π2

p
Þn−1 for 1≤n≤10

illustrating that they are bounded in the interval [0, 1].

(a) (b)

FIG. 2. The kth root of the s and t expansion coefficients jsln;kj1=k (panel (a) and jtln;kj1=k (panel (b) as a function of k, to visualize the
Cauchy root test concerning the convergence of the series in Eqs. (2.24) and (3.1). Red, blue, and green refer to ðn; lÞ ¼ ð1; 0Þ, (2,2),
and (4,3), respectively.

6This discrepancy has been called the asymptotic separation
and has been quantified analytically in Refs. [9,10].
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between the value the CIPT series appears to approach at
intermediate orders 10 < n < 15 and the (correct physical)
value of the FOPT series (red dashed horizontal line)
renders the CIPT method phenomenologically inconsistent
because the Adler function series contains IR renormalon
contributions.
We want to remind the reader, however, that CIPT can

still be used as a viable phenomenological method once the
dominant IR renormalons (with the smallest values of p)
contained in the Adler function are removed by subtrac-
tions [11,12] as the problematic aspects of CIPT just
discussed can then be suppressed to a negligible level in
the presence of the experimental uncertainties in τ-decay
spectral data and truncations of the perturbative series. In
the absence of any factorially divergent behavior in the
coefficients c̄n;1, such that lim supn→∞jc̄nj would be finite
(which is not true for the Adler function), the CIPT series in
Eq. (2.4) would have a finite interval of convergence and
also yield not only an absolutely but also a uniformly
convergent series in any subinterval of the interval of
convergence. The important property of uniform conver-
gence in such a situation7 can be seen from Eqs. (2.21)
and (2.22). The expressions show that for real a the
functions Hn;lðaÞ [or any physical linear combination of
Hn;lðaÞ] are bounded by ðjaj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p
Þn−1 for n larger

than some integer n̄. This is illustrated in Fig. 3 for the
functions Hn;0ðaÞ, which are bounded by the function
ðjaj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p
Þn−1 for all n ∈ N. Since the latter expres-

sion is bounded in any subinterval, that CIPT series would
also be uniformly convergent in any such subinterval
according to the Weierstrass criterion for uniform con-
vergence in Theorem A.5.
We conclude this section with the confirmation that the

CIPT expansion in the functions Hn;lðaÞ in Eq. (2.4) is
indeed an asymptotic expansion from the mathematical
perspective. Even though the CIPT expansion has now
been used in phenomenological analyses for a number of
decades, it is useful to proceed with the discussion on the
mathematical aspects of CIPT at this basic level. Since
the following considerations are somewhat mathematical,
we refer the reader not familiar with the quoted definitions
and theorems to Appendix A 2.
According to the general definition of an asymptotic

expansion as a → 0, quoted in Definition A.11, it is
mandatory that the Hn;l functions form an asymptotic
sequence fHn;lðaÞg ¼ fH1;lðaÞ; H2;lðaÞ;…g as a → 0

for any complex domain R containing the origin as a limit
point. This means that they obey the “little o” order relation
Hnþ1;l ¼ oðHn;lÞ as a → 0 for all n ∈ N and for any
l ∈ N0, see Def. A.9. The definition of the little-order

relation is quoted in Definition A.8. The property of an
asymptotic sequence then ensures that the coefficients of
the asymptotic expansion can be determined in an unam-
biguous way by the recursion relation formulated in
Corollary A.11.1. Since the Hn;l functions are nonzero
in at least some neighborhood of a ¼ 0 (excluding a ¼ 0,
where the Hn;l functions vanish), the little-order relation
already follows from the property

lim
a→0

jHnþ1;lðaÞj
jHn;lðaÞj

¼ 0; ð2:30Þ

for any n ∈ N. This can be seen from the form of their
Taylor expansions in Eq. (2.24) and the fact that the
Hn;0ðaÞ vanish like an and the Hn;l≥1ðaÞ vanish like
anþ1 as a → 0.
However, the fHn;lðaÞg form nonuniform asymptotic

sequences, see Definition A.10, as one has to consider
smaller and smaller domains around the origin a ¼ 0
such that the ratio shown in Eq. (2.30) is small. This is
due to the zeros already mentioned above and also visible
in Fig. 3. To see this at the analytic level let us first con-
sider the case l ¼ 0. The ratio of two consecutive Hn;0

functions reads

Hnþ1;0ðaÞ
Hn;0ðaÞ

¼ aðn − 1Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2π2

p sin½n arctanðaπÞ�
sin½ðn − 1Þ arctanðaπÞ� : ð2:31Þ

From the oscillatory properties of the sine function it is
easy to see that, if R contains intervals of the real axis
(containing the origin or having the origin as a limit point),
there is no neighborhood Uϵ of a ¼ 0 such that the ratio in
Eq. (2.30) is smaller than a given small ϵ for all n. In other

words, there always exists such a neighborhood UðnÞ
ϵ for

any n, but the maximal distance of the points in UðnÞ
ϵ to

a ¼ 0 shrinks to zero as n increases if a can be real. This is
because the fHn;0ðaÞg have zeros besides a ¼ 0 along
the real a axis, which happen to approach zero as n
increases. These zeros arise from the phase oscillations
due to the iaϕ term in Eq. (2.19) and follow the condi-
tion ðn − 1Þ arctanðaπÞ ¼ kπ with k ∈ Z which holds
only if arctanðaπÞ ∈ R. Concretely, they are located at
ãð0Þðn; kÞ ¼ 1

π tanð kπ
n−1Þ for − n−1

2
< k < n−1

2
, where k ¼ 0

corresponds to Hn;lð0Þ ¼ 0. While the number of zeros
increases with n, the zeros ãð0Þðn; k ≠ 0Þ all vanish like 1=n
as n → ∞ for any k. The zeros are displayed graphically in
Fig. 4 exemplarily for a number of n values. For l > 0

zeros with analogous qualitative characteristics ãðlÞðn; kÞ
arise as well since the factor ð−xÞl in Eq. (2.19) only
provides an additional modulation of the phase cancella-
tions. However, finding an analytic expression for the zeros
is harder. We have displayed them in Fig. 4 as well for a
number of l values obtained from numerical evaluations.
An approximate analytic insight on the zeros for l > 0
can, however, be gained with the large-n asymptotic

7We note that the uniformity of the convergence of a series in
functions ϕ1ðxÞ;ϕ2ðxÞ;…, and the property of uniformity of the
asymptotic sequences fϕnðxÞg discussed below are two different
mathematical aspects that must not be confused.
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behavior of the Hn;l≥0ðaÞ functions as n → ∞ already
given in Eq. (2.22).

III. HAVING A DEEPER LOOK

After having discussed the analytic properties of the
CIPT expansion functions Hn;lðaÞ in the previous sec-
tion we now proceed to have a deeper look into the
mathematical circumstances why the expansion in terms
of the asymptotic sequences fHn;lðaÞg is divergent in cases
where physics requires a convergent perturbative series.
The aim is to identify the mathematical property of the
functionsHn;lðaÞ that leads to this behavior, independently
of the application in the context of the τ hadronic spectral
function moments. We remind the reader that the motiva-
tion of this analysis is to identify mathematical criteria to
scrutinize also other expansion methods where integrations
over the renormalization scale are employed.
To this end we consider transformations of the CIPT or

FOPT series by reexpanding one of the series in terms
of the other expansion functions. We thus also need the
expansion of any power an in terms of the Hk;lðaÞ
functions for each l ¼ 0; 1; 2;… in addition to the reverse
expansion already given in Eq. (2.24). It has the form

an ¼
X∞

k¼nþðδl;0−1Þ
tln;kHk;lðaÞ: ð3:1Þ

Note that for l ≥ 1 the relation only matters for
n ¼ 2; 3;…, and the Kronecker delta δl;0 shown here
and below arises for the reason explained in Footnote 5
in order to make terms that do not contribute explicit.
So we consider the series transformations

X∞
n¼1

cnHn;lðaÞ →
X∞
n¼1

X∞
k¼nþδl;0

cnsln;ka
k; ð3:2Þ

X∞
n¼2−δl;0

dnan →
X∞

n¼2−δl;0

X∞
k¼nþðδl;0−1Þ

dntln;kHk;lðaÞ; ð3:3Þ

which represent the transformation of a single series into a
double series. Note that at this point our notation does not
imply any particular ordering prescription for the summa-
tion of the double series. So one should think of the
emerging double series as two-dimensional arrays. For
example, we have

X∞
n¼1

X∞
k¼n

en;k ∼

0
BBBBB@

e1;1 e1;2 e1;2 � � �
0 e2;2 e2;3 � � �
0 0 e3;3 � � �
..
. ..

. ..
. . .

.

1
CCCCCA
; ð3:4Þ

where the horizontal lines arise from the series of the
expansion function used for the series prior to the double
series transformation. A particular summation prescription
is indicated explicitly by additional parentheses. Thus, in
the example

P∞
n¼1ð

P∞
k¼n en;kÞ stands for summing the

horizontal series first and the results of these horizontal
sums afterwards. On the other hand

P∞
k¼1ð

P
k
n¼1 en;kÞ

stands for summing the vertical series first and the results
of these vertical sums afterwards. For the cases discussed
below, the limits of the sums are a bit more involved due to
the appearance of δl;0, which is, however, not significant
for the main purpose of the discussion.

A. Double series transformations

We start by discussing the transformation of a CIPT
series into a double series of power terms, see Eq. (3.2).
Consider a CIPT series

P∞
n¼1 cnHn;lðaÞ that is convergent

according to the root criterion for some a ¼ a0 within the

(a) (b)

FIG. 4. Positive zeros of Hn;lðaÞ. All zeros are located on the real axis. Panel (a): Position of the zeros of Hn;lðaÞ in the interval
(0,0.2). Each horizontal line corresponds to a value of n, and lines are grouped according to l. Panel (b): Position of the positive zero
closest to the origin as a function of n for l ¼ 0 (blue), l ¼ 1 (red), and l ¼ 3 (green).
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region of convergence. It is then also absolutely convergent
as well as uniformly convergent at least in the circle around
zero with radius ja0j. The property of uniform convergence
follows from the fact that the Hn;lðaÞ are bounded as we
discussed already at the end or Sec. II C. In addition, the
horizontal lines from the expansion of the Hn;lðaÞ func-
tions in powers of a are absolutely convergent in the circle
around zero with radius r < 1=π. According to the
Weierstrass double series Theorem A.6 these conditions
are sufficient so that doing either horizontal or vertical sums

first leads to the same result,
P∞

n¼1ð
P∞

k¼nþδl;0
cnsln;ka

kÞ ¼P∞
k¼1þδl;0

ðPk−δl;0
n¼1 cnsln;ka

kÞ for jaj < maxða0; rÞ. In other
words, an absolutely convergent CIPT series can be
reexpanded into a convergent FOPT series which sums
to the same value. Furthermore, from the discussions in
Sec. II we also know that it is possible that a divergent CIPT
series can be reexpanded into an absolutely convergent
FOPT series. So starting from a CIPT series and reexpand-
ing it in FOPT does not make its convergence property
worse, but can even improve it.
Let us now consider the transformation of a FOPT seriesP∞
n¼1 dna

n into a double series of Hn;lðaÞ functions, see
Eq. (3.3). It is a straightforward but rather cumbersome task
to determine the coefficients of the expansion of a power an

in terms of the Hk;lðaÞ functions given in Eq. (3.1), but the
expressions can also be determined in closed analytic form
by inverting the triangular matrix of the sln;k coefficients.
The result reads

t0n;k ¼
ðiπÞk−nð2 − 2k−nÞΓðkÞ
Γðk − nþ 1ÞΓðnÞ Bk−n;

tl≥1n;k ¼ ð−1Þl
n − 1

×

� ðk − 1Þt0n−1;k−1 nþ k even

−lt0n−1;k nþ k odd
; ð3:5Þ

where Bn are the Bernoulli numbers. It is now instructive
to have a look at the asymptotic expression for these

coefficients as k → ∞. Accounting for the factorial asymp-
totic growth of the Bernoulli numbers, see Eq. (A8), the
result reads

t0n;k ≍
k→∞ 2ik−nΓðkÞ

ΓðnÞ ð1 − 2n−kþ1Þ cos
�ðk − nÞπ

2

�
: ð3:6Þ

This gives

lim sup
k→∞

jtln;kHk;lðaÞj1=k ¼ ∞: ð3:7Þ

The rather interesting outcome is that the expansion of a
simple power an in terms of the Hn;lðaÞ functions does not
have any region of convergence and is factorially diverging
for any value of a. For illustration, we have displayed the
expressions for jtln;kj1=k as a function of k for different
values of ðn;lÞ in Fig. 2b. So if we start from an absolutely
convergent FOPT series, the resulting CIPT series will, in
general, be divergent for any a. The simplest example of an
absolutely convergent FOPT series is that of a single term
an. We have shown the Hk;l expansions of an truncated at
orderN for n ¼ 1; 2; 3; 4, l ¼ 0 and a ¼ 0.25 in Fig. 5. We
see that all the series look quite good and convergent at low
orders, but they eventually diverge. Furthermore, in the
range of orders N, where the series stabilize (and closely
approach a particular value), the truncated series show a
finite systematic discrepancy to the actual value of an

(indicated by the horizontal dashed lines). Hence, for a
general absolutely convergent FOPT series the horizontal
sums

P∞
k¼nþðδl;0−1Þ dnt

l
n;kHk;lðaÞ in Eq. (3.3) do not con-

verge for any n or l. The sum over k of the vertical series

values sk ¼
Pkþδl;0

n¼2−δl;0 dnt
l
n;kHk;lðaÞ (which by themselves

are finite due to the zeros of the array below the diagonal) is
in general divergent as well, as we have demonstrated in the
examples discussed in Sec. II C. It is possible that the sum
of the vertical series values sk is convergent as we have seen
just above for the opposite transformation. However, this

(a) (b)

FIG. 5. The series of Eq. (3.1) for l ¼ 0: Expansion of an in terms of the functionsHk;0ðaÞ for a ¼ 0.25. We show results for n ¼ 1; 2
in panel a and n ¼ 3; 4 in panel b. Dashed horizontal lines represent the exact value for an.

MATHEMATICAL ASPECTS OF THE ASYMPTOTIC EXPANSION … PHYS. REV. D 108, 034013 (2023)

034013-11



case is not the general one. For the application to τ hadronic
spectral function moments, the latter case would arise in
the situation that the Adler function series of Eq. (2.1)
were convergent. This situation does, however, not take
place due to the unavoidable appearance of IR renorma-
lons. It is also impossible that the divergent behavior of the
coefficients tln;k as k → ∞ may somehow compensate for a
divergent behavior in a FOPT series yielding a convergent
CIPT series for any value of a as this would contradict our
findings from the beginning of this subsection.
In the discussion above we have considered the CIPT

expansion in terms of Hn;l functions for a single l. In
phenomenological applications, linear combinations of l
always arise due to the property Wð1Þ ¼ 0 already men-
tioned several times before. In this case, the same linear
combinations of sln;k coefficients arise in the analogue of
Eq. (2.24). The associated inverse tn;k coefficients, how-
ever, cannot be determined from the expressions in
Eq. (3.5), and no closed analytic expressions in analogy
to Eqs. (3.5) can be given due to the many possible forms
for the weight functions WðxÞ. Analytic expressions for
definite values of n and k can, however, be obtained in a
straightforward way. We have checked for many physical
weight functions, including the important kinematic weight
function WτðxÞ ¼ ð1 − xÞ3ð1þ xÞ that the limit superior
for the resulting expressions jtn;kj1=k as k → ∞ is divergent
just as for a single l. In particular, we do not find any
cancellations of the kind discussed previously below
Eqs. (2.16), (2.26), and (2.28) for the case of physical
weight functions that change the outcome of the discussion
for a single l.

B. On the origin of the behavior
of the CIPT expansion

The overall observation from the previous considerations
is that using the CIPT expansion can turn a convergent
FOPT series into a factorially divergent one, while the
opposite can never ever happen. This means that CIPT is
a priori inconsistent with the OPE and must be applied with
great care, see Refs. [11,12]. The diagnostic instrument to
probe this behavior is to analyze the convergence properties
of the series in Eq. (3.1), where a simple power an is
expressed as a series in Hk;lðaÞ functions. This is the
approach as to how the consistency of other expansion
methods with the OPE, which are based on functions of the
strong coupling, may be tested as well. If the series for a
simple power an is showing a factorial divergence or does
not have a finite region of convergence, inconsistencies
with the OPE may arise. Even though this diagnostic tool is
quite efficient and straightforward to apply, it would be
instructive to have a more direct qualitative insight into
which particular property of the Hn;lðaÞ function is
actually responsible for this behavior, as this knowledge
may be highly useful in practice. It is the purpose of this
section to explore this question.

An essential difference between the asymptotic power
sequence fang and the asymptotic sequences fHn;lðaÞg is
that the latter are nonuniform. The uniform convergence of
series expansions in functions is an important aspect, as
uniformity states that there is a certain level of global
rapidity of the convergence valid for the whole interval for
which the expansion is defined. The uniform convergence
of the series expansion of a function FðxÞ ¼ P∞

n¼1 fnðxÞ in
terms of the functions fnðxÞ is frequently a sufficient
condition such that doing a linear operation on FðxÞ is
equivalent to doing this operation on the individual fnðxÞ
and a subsequent summation. Uniform convergence is
frequently assumed to be valid without proof in many
phenomenological particle-physics applications as it is
frequently also true. Even though the Hn;l functions are
bounded and series of the Hn;l functions can be uniformly
convergent, as we mentioned in the discussion below
Eq. (2.29), the nonuniformity of them as asymptotic
sequences fHn;lðaÞg appears to disrupt their convergence
properties in a serious way when a convergent power series
is transformed into a CIPT series.
As we have seen in Sec. II C, this is because the ratio

Hnþ1;lðaÞ=Hn;lðaÞ to be small in a region around a ¼ 0

requires the size of the region to shrink with 1=n when n
increases. This is related to the zeros in the functions
Hnþ1;lðaÞ which approach a ¼ 0 like 1=n when n
increases. We now explore whether these zeros, which
are actually one reason why the CIPT expansion exhibits a
quite rapid convergent appearance at lower orders, could be
the origin of the problem. In the following we consider a
number of simple toy asymptotic sequences to gain some
more concrete insight concerning the answer of this
question.
Let us discuss first the series transformation arising from

a usual change of renormalization scale. Starting from a
series in the powers an ¼ ½aðs0Þ�n we can consider the
reexpansion in terms of the powers ½aðμ2Þ�n as an expan-

sion in functions hðLÞn ðaÞ,

hðLÞn ðaÞ ¼ ½aðμ2Þ�n ¼ an

ð1þ aLÞn ; ð3:8Þ

with L ¼ logðμ2=s0Þ. The coefficients of the series

hðLÞn ðaÞ ¼ P∞
k¼n s

L
n;ka

k can be written down immediately

and read sLn;k ¼ ð−LÞk−nΓðkÞ
ΓðnÞΓðk−nþ1Þ. The coefficients of the inverse

relation an ¼ P∞
k¼n t

L
n;khkðaÞ are trivial to compute and

read tLn;k ¼ ð−1ÞkþnsLn;k. We have lim supk→∞jsLn;kj1=k ¼
lim supk→∞jtLn;kj1=k ¼ jLj and both series are absolutely
convergent for jaj < 1=jLj. We have displayed jsLn;kj1=k ¼
jtLn;kj1=k for jLj ¼ 1 as a function of k in Fig. 6. The
fhLn ðaÞg form a uniform asymptotic sequence since

jhðLÞnþ1ðaÞj=jhðLÞn ðaÞj ¼ ja=ð1þ aLÞj does not depend on

GRACIA, HOANG, and MATEU PHYS. REV. D 108, 034013 (2023)

034013-12



n. There are zeros in the functions hðLÞn ðaÞ at a ¼ −1=L, but
they are independent of n as well. So, as we can conclude
from the Weierstrass double series theorem A.6, using a
fixed-order expansion at a different renormalization scale
does not turn an absolute and uniformly convergent series
into a nonconvergent one or may change the value of the
series from the mathematical perspective, as long as L is
not too large. The usual approach of renormalization group
improved calculations is to adapt L such that the con-
vergence happens in a rapid way.
Let us now consider the toy expansion functions

ĥðmÞ
n ðaÞ ¼ anð1 − ξnaÞm; ð3:9Þ

with m a positive or negative integer and ξ some finite

number. We write the series of the ĥðmÞ
n functions in powers

of a as ĥðmÞ
n ðaÞ ¼ P∞

k¼n s
ðmÞ
n;k a

n and the series of an in

terms of the ĥðmÞ
n functions as an ¼ P∞

k¼n t
ðmÞ
n;k ĥ

ðmÞ
n ðaÞ The

fĥðmÞ
n ðaÞg form asymptotic sequences, but they are non-

uniform due to the zeros or pole singularities at

a ¼ 1=ðξnÞ. It is obvious that a series in ĥðmÞ
n functions

for negative m has bad properties since the singularities
make it impossible to approximate any function that
is continuous in some finite neighborhood of a ¼ 0. In
Figs. 7(a) and 7(b) we have displayed the values for

jsð−1Þn;k j1=k and jtð−1Þn;k j1=k for jξj ¼ 1 as a function of k, clearly

showing factorially diverging behavior of the tð−1Þn;k coef-

ficients while the sð−1Þn;k are well-behaved. In this case, this
does not come as a surprise. However, for positive m the
situation appears not to be that bad due to the absence
of the singularities and the emergence of zeros. So,
let us have a closer look at the case m ¼ 1. We have

sð1Þn;k ¼ δn;k − ξnδnþ1;k. The series only has two terms
and therefore trivially converges for all a. However, the

coefficients of the inverse series read tð1Þn;k ¼ ΓðkÞξk−n=ΓðnÞ
with tð1Þn;k ¼ 0 for k < n. We see immediately that this
expansion is factorially divergent and does not have any
finite region of convergence. For illustration we have

displayed jtð1Þn;kj1=k for n ¼ 1; 5 as a function of k in
Fig. 7(b) as well. The interesting insight gained by the

toy expansion functions ĥðmÞ
n ðaÞ is that zeros (for positive

m) as well as singularities (for negative m) yield the same

badly diverging behavior for the tðmÞ
n;k coefficients.

We have tested a number of other toy expansion
functions forming nonuniform asymptotic sequences due

(a) (b)

FIG. 7. The kth root of the jsðmÞ
n;k j (Panel (a) and jtðmÞ

n;k j (Panel (b) expansion coefficients defined on the model given in Eq. (3.9) for the
values ξ ¼ �1. Panel a: red, and blue (red and green) use m ¼ −1 (n ¼ 1) while green and orange (blue and orange) have m ¼ −2
(n ¼ 2). Panel b: red, and blue (red and green) usem ¼ −1 (n ¼ 1) while green and orange havem ¼ −2; green and orange correspond
to n ¼ 1 and 5, respectively.

FIG. 6. The k-th root of the s and t expansion coefficients
defined on the RG-inspired model of Eq. (3.8) for the values
L ¼ �1, to visualize Cauchy’s root test. Red, green, blue, and
orange correspond to the values n ¼ 1; 2; 3, and 4, respectively.
For this simple model, the absolute value of these coefficients is
the same and hence are shown in a single plot.
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to zeros or singularities approaching a ¼ 0 for large n, all
leading to factorially diverging tn;k coefficients. Even
though we do not claim that out findings provide the exact
mathematical specification under which the tn;k coefficients
factorially diverge as k → ∞, we believe that the presence
(or absence) of the uniformity property of the asymptotic
sequences fhnðaÞg plays an essential role for the expansion
functions to be consistent with the OPE. While it is obvious
that expansion functions, where the nonuniformity is
caused by pole-type singularities or other types of non-
analytic properties, are not suitable for phenomenological
applications, the certainly surprising aspect is that even
zeros, which may appear to have advantages for a rapid
convergence at first sight, can have the same bad effect.

IV. GENERALIZATION TO FULL QCD

We conclude this article by considering the case of full
QCD, where all terms of the QCD β-function are accounted
for. Even though it appears quite unreasonable to argue that
our observations concerning the asymptotic sequences
fang and fHn;lðaÞg in the large-β0 approximation may
not apply in full QCD, it is worth having a closer look.
However, in contrast to the large-β0 approximation, we
cannot obtain fully analytic results. We therefore rely on
numerical studies and evidences rather than strict proofs.
Still some closed formulas can be presented in the
C-scheme for the strong coupling αs [20]. The C-scheme
uses that only the one- and two-loop coefficients of the
QCD β-function are renormalization-scheme invariant. It is
therefore possible to adopt a scheme for αs where the QCD
β-function takes the all-order form

daðμ2Þ
d ln μ2

¼ −
½aðμ2Þ�2

1 − 2b̂1aðμ2Þ
; ð4:1Þ

where b̂1 ¼ β1=ð2β20Þ and β1 ¼ 102 − 38nf=3. We further-
more demand that the C-scheme strong coupling differs
from the common MS strong coupling by terms of order α3s
and higher, which unambiguously fixes the C-scheme
strong coupling to all orders. Furthermore, the QCD scale
ΛQCD agrees with the one in the MS scheme.8 For b̂1 ¼ 0

the C-scheme agrees with the large-β0 approximation. In
the following we gather sufficient evidence that all quali-
tative insights obtained in the previous sections in the large-
β0 approximation are true as well in full QCD.

A. Spectral function moment series in FOPT and CIPT

We start by considering the full QCD generalization of
the spectral function moment analysis of Sec. II. The full
QCD generalization (in the C-scheme) of the single pole

Borel function in the large-β0 approximation corresponding
to an OPE matrix-element corrections of the form const: ×

hOpi=sp0 in the Adler function reads Bp;b̂1
ðuÞ ¼ 1=ðp −

uÞ1þ2pb̂1 (with p ¼ 2; 3;…) and consistency with the OPE
again demands that the resulting perturbative series of the

spectral function moment δð0Þl≠p have a finite region of
convergence. The resulting coefficients in the Adler func-
tion series of Eq. (2.1) read

c̄n;1;p ¼ Γðnþ 2pb̂1Þ
pnþ2pb̂1Γð1þ 2pb̂1Þ

;

c̄n;k≥2;p ¼ −
1

k

Xn−1
j¼k−1

ð2b̂1Þn−j−1jc̄j;k−1;p: ð4:2Þ

Let us first analyze the FOPT series coefficients dFOPTn;l;p≠l.
We have derived them for many different choices for l ≠ p
and find that the sequences jdFOPTn;l;p≠lj1=n in n are indeed
consistent with sequences that converge for all cases. We
find that the limit superior approached by these series does
not depend on the values of l and p, but it does on the value
of b̂1. We also find that this limit superior agrees with the
one obtained for the series of a� ≡ að−s0 � i0Þ in powers
of a ¼ aðs0Þ. In Fig. 8(a) we have displayed jdFOPTn;l¼0;p¼2j1=n
for orders up to n ¼ 400 for different values of b̂1. Carrying
out a quadratic fit in 1=n we determined an accurate
estimate for the limit superior which depends linearly on
b̂1 to very good approximation. We have displayed the
outcome of this analysis for jdFOPTn;l¼0;p¼2j1=n in Fig. 8(b)

together with a fit function quantifying the coefficient of b̂1.
The outcome for a combined analysis using the coefficients
dFOPTn;l;p for l ¼ 0; 1; 2; 3; 4 and p ¼ 1; 2; 3; 4with l ≠ p and
including also the series for a� for orders 250 ≤ n ≤ 400
yields the result

lim sup
n→∞

jdFOPTn;l;p≠lj1=n ¼ π þ ð3.51� 0.05Þb̂1; ð4:3Þ

where the quoted uncertainty represents the values covered
by the individual analyses. For b̂1 ¼ 0 we obtain π with
very high accuracy, consistent with our analytic results in
the large-β0 approximation in Eq. (2.16). Our results
reconfirm the convergence proof in Ref. [11] based on
the renormalon calculus already mentioned at the end of
Sec. II B and can be used to determine the radius of

convergence of the FOPT series δð0ÞFOPT;l [and the expan-
sions of a� in powers of a ¼ aðs0Þ]. We have displayed the
convergent FOPT moment series for the cases ðl; pÞ ¼
ð0; 2Þ and (1,2) in Fig. 9 as the red dots. We note that we
have also checked the FOPT series coefficients for physical
weight functions withWð1Þ ¼ 0. In analogy to our analytic
findings for the large-β0 approximation we found that there
is a significant cancellation among the coefficients dFOPTn;l;p≠l,

8In Ref. [20] this strong coupling scheme was called the
(C ¼ 0)-scheme and it is numerically very close to the MS strong
coupling, see also the Appendix of Ref. [11].
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which does, however, not affect the limit superior. Also for
physical weight functions the result given in Eq. (4.3)
applies.
For nf ¼ 3, which is relevant for hadronic

τ decays, we have b̂1 ¼ 32=81 ≃ 0.395 which yields
lim supn→∞ j dFOPTn;l¼0;p¼2 j 1=n ¼ 4.528 � 0.020 giving
αsðs0Þ ¼ 0.3083� 0.0013 as the convergence radius in
the C-scheme. This corresponds to αsðs0Þ ¼ 0.3151�
0.0012 in the M̄S scheme which for s0 ¼ m2

τ is right
within the world average of the M̄S strong coupling at the τ
lepton scale αsðm2

τÞ ¼ 0.312� 0.015. This interesting fact
was already pointed out many years ago (albeit with much
lower precision) by Pich and Le Diberder in Ref. [6]. So
using FOPT may have issues as well. In practice, however,
the behavior of the FOPT series at low orders is still quite
good for all values close to the convergence radius due to
the cancellation among the dFOPTn;l;p coefficients for physical
weight functions mentioned above. It is furthermore easy to

check that the FOPT series behavior at intermediate orders
is similar regardless whether αsðm2

τÞ is chosen slightly
above or below the convergence radius. At this point we
remind the reader that here we discuss the behavior of
FOPT for a particular contribution in the hadronic τ spectral
function moment series. In full phenomenological appli-
cations, the FOPT series is asymptotic due to the unavoid-
able appearance of coefficients dFOPTn;l;p for l ¼ p. Our
finding, however, implies that high-precision determina-
tions of the strong coupling from hadronic τ spectral
function moments need to be interpreted with some care.
The CIPT expansion functionsHn;lðaÞ in full QCD have

been determined analytically in Ref. [9]9 as an infinite sum

(a) (b)

FIG. 9. Same as in Fig. 1 but for the C-scheme with b̂1 ¼ 32=81 ≃ 0.395 and where the value of the strong coupling in the MS is
αsðm2

τ Þ ¼ 0.315.

(a) (b)

FIG. 8. Left panel illustrates the root test for δð0ÞFOPT;l;p with l ¼ 0 and p ¼ 2 for various values of b̂1. The horizontal dashed lines
represent our estimates for the limit superior for this analysis, which are shown to have a linear dependence on b̂1 in the right panel. The
gray area represents the result of Eq. (4.3).

9We take the opportunity to point out a typo in Ref. [9];
Eq. (3.13) should read H̃ðn; 0;−1Þ ¼ −i=πð−t0Þn lnðtþ=t−Þ. So
the result on the rhs given in Ref. [9] is correct, but it belongs to a
different function than shown on the lhs.
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for positive real a. In the C-scheme the sum terminates due
to the form of the β-function and the integral representation
for the Hn;lðaÞ functions can be written as

Hn;lðaÞ ¼
i
π
e−

l
aa−2lb̂1

Z
tþ

t−

dt

�
1þ b̂1

t

�
e−2ltð−2tÞ−2lb̂1−n:

ð4:4Þ

The integral reduces to Eq. (2.19) in the large-β0 approxi-
mation, when b̂1 ¼ 0. The results can be given in closed
form in terms of a� ¼ að−s0 � i0Þ and read

H1;0ðaÞ ¼
1

2πi

�
2b̂1ðaþ − a−Þ þ log

�
a−
aþ

��
; ð4:5Þ

Hn≥2;0ðaÞ ¼
1

2πi

�
2b̂1ðanþ − an−Þ

n
−
an−1þ − an−1−

n − 1

�
; ð4:6Þ

Hn;l>0ðaÞ ¼
lnþ2lb̂1−1

a2lb̂1
e−

l
a

�
n

Γðnþ 2lb̂1 − 1Þ

þ e−iπb̂1lhn;lðaþ; b̂1Þ − eiπb̂1lhn;lða−; b̂1Þ
�
;

ð4:7Þ

where

hn;lða; b̂1Þ≡ ð−1Þnþ1

2πi

�
nΓ

�
−n − 2b̂1l;−

l
a

�

− e
l
a

�
−
a
l

�
nþ2b̂1l

�
: ð4:8Þ

Since the first two terms in the expansion of the strong
coupling at some scale in terms of powers of the strong
coupling at another scale in full QCD and the large-β0
approximation agree, the ratio of theHn;l functions defined

in Eq. (2.5) in full QCD to the ones in the large-β0
approximation approach unity in the limit a → 0. It is
therefore obvious that the fHn;lðaÞg also represent asymp-
totic sequences in full QCD. We also find that the Hn;l

functions again exhibit zeros along the positive real a axis
approaching zero as n → ∞. In Fig. 10 we display the
positive zeros of the Hn;l functions in full QCD for a large
number of l and n values for illustration in analogy to the
large-β0 approximation shown in Fig. 4. This shows that the
asymptotic sequences fHn;lðaÞg in full QCD are nonuni-
form as well. Using relation (A6) it is straightforward
to derive the asymptotic expressions for the Hn;l>0ðaÞ as
n → ∞ for positive real a yielding

Hn;lðaÞ ≍
n→∞

elð
ReðaþÞ
jaþj −

1
aÞ ðjaþj=aÞ2lb̂1 jaþjn

nπ

×

�
2b̂1 sinðθnÞ −

sinðθn−1Þ
jaþj

�
; ð4:9Þ

with θn ≡ ð2lb̂1 þ nÞ arctan½ImðaþÞ=ReðaþÞ�− lImðaþÞ=
jaþj2. This allows us to also determine the limit superior of
jHn;lðaÞj1=n as n → ∞ in full QCD, which is surprisingly
simple,

lim sup
n→∞

jHn;lðaÞj1=n ¼ jaþj: ð4:10Þ

As for the large-β0 approximation, we can now see

analytically that the CIPT series δð0ÞCIPT;l of Eq. (2.4) with the
coefficients in Eq. (4.2) diverge for any value of a,

lim sup
n→∞

jc̄n;1Hn;lðaÞj1=n ¼ ∞: ð4:11Þ

We have displayed the divergent CIPT moment series for
the cases ðl; pÞ ¼ ð0; 2Þ and (1,2) in Fig. 9 as the blue dots,
showing, just like in the large-β0 approximation, the
apparent convergence of the CIPT series at intermediate

(a) (b)

FIG. 10. Same as Fig. 4 for the C-scheme with b̂1 ¼ 0.395 in full QCD.
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orders and the discrepancy to the value of the convergent
FOPT series.
Finally, we also studied the large-order behavior of the

sln;k coefficient for the series of theHn;l functions in powers
of a and the tln;k coefficients for series of a

n in terms of the
Hn;l functions, see Eqs. (2.24) and (3.1), respectively. Our
findings are briefly summarized as follows: As for the
large-β0 approximation, the former series has a finite radius
of convergence, while the latter does not converge for any
value of a. Just like in the large-β0 approximation, we find
that the convergence radius arising from the sln;k coeffi-
cients for the expansion of the Hn;l functions in powers an

agrees with the convergence radius obtained from the
FOPT series coefficients and the expansion of the a� in
an powers, see Eq. (4.3). For the Hn;0 this can also be seen
directly from their analytic expressions given in Eqs. (4.5)
and (4.6) which are simple elementary functions of a�.
Their Taylor expansion in powers of a yields a limit
superior determined by the Taylor expansion of a�.

For the Hn;l>0 the same property follows from the fact
that the combination of the asymptotic expansions of the
two functions hn;l in Eq. (4.7) yields a convergent series,
see the comment in Footnote 3. Exemplarily, we have
displayed the results for jsln;kj1=k and jtln;kj1=k as a function
of k for different combinations of ðn;l; b̂1Þ in Figs. 11(a)
and 11(b), respectively. For the tln;k we again find that their
sequence in k diverges factorially just as in the large-β0
approximation for any l. The series of a and a2 in terms of
the functions Hn;lðaÞ is shown for different values of
ðl; b̂1Þ in Figs. 12(a) and 12(b) exhibiting again the
apparent convergence at intermediate orders, the discrep-
ancy to the actual value and the eventual divergence. The
results show a similar behavior for any other value of l and
the divergence also arises for physical weight functions.
Overall, we find beyond all reasonable doubt that all

features of the CIPT series expansion using the Hn;l

functions we found in the large-β0 approximation are also
present in full QCD. In particular, any finite FOPT series is

(a) (b)

FIG. 11. Same as Fig. 2 in full QCD, using the C-scheme for a number of scenarios: blue, red, and purple correspond to
ðn; l; b̂1Þ ¼ ð1; 0; 0.395Þ, (2,2,0.2), and (4,3,0.6), respectively.

(a) (b)

FIG. 12. Expansion (3.1) for full QCD using the C-scheme. The left panel shows the expansion of a in terms of Hn;lðaÞ for three
different values of b̂1: 0.2 (red), 0.395 (blue), and 0.6 (purple). The right panel shows the expansion of a2 in terms of Hn;lðaÞ with
b̂1 ¼ 0.395 fixed, for three different values of l: 0,1, and 3 for red, blue, and purple, respectively. Both panels use a ¼ 0.22.
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in general divergent when transformed into a CIPT
expansion.

V. SUMMARY AND CONCLUSIONS

In this article we have provided a detailed discussion on
the mathematical aspects of CIPT that has been used as a
main method to make perturbative predictions for τ
hadronic spectral function moments. In contrast to the
FOPT expansion in powers of the strong coupling at a
particular renormalization scale, ½αsðs0Þ�n, CIPT yields
expansions in functions where an integration over the
renormalization scale is carried out. So CIPT provides
series in nontrivial functions of the strong coupling that
differ fundamentally from the solutions of the RGE
equation for the strong coupling which are used in FOPT.
While previous discussions on the same subject were
predominantly based on explicit calculations of the series
to a particular order [21–23] or the renormalon calculus,
where different kinds of models for the Borel transform of
the actual series were considered [7–10,24–26], we have
carried out our analysis at a more basic level analysing
directly the actual series using the elementary definitions
and theorems on the (non)convergence of series and on
asymptotic expansions.
For the most part of this article we have used the large-β0

approximation, where all results can be obtained in an
analytic way and all conclusions and considerations can be
made in a mathematically rigorous way. We have recon-
firmed that CIPT provides a well-defined asymptotic
expansion, like the common power series expansion.
However, the CIPT expansion functions represent nonuni-
form asymptotic sequences due to zeros along the positive
axis that approach αs ¼ 0 at large orders. We have proved
that CIPT yields divergent series expansions without any
region of convergence in cases where the OPE demands the
existence of a region of convergence. This is in contrast to
FOPT which indeed leads to series with a convergence
region in these cases. We have found that the reason why
the CIPT expansions frequently exhibits better series
behavior than FOPT at low and intermediate orders is
related to the zeros and because the CIPT expansion
functions are bounded.
The most important finding of our analysis is that, while

each CIPT expansion function has a finite region of
convergence when written as a FOPT power series and
represents an absolutely convergent series in this region,
the inverse is not true. In other words, any FOPT power
term ½αsðs0Þ�n yields a divergent series when expressed as a
sum of CIPT expansion functions regardless of the value of
αsðs0Þ. There is a range of orders where the CIPT partial
sum stabilizes before it diverges, but the truncated value of
the CIPT series at these orders differs systematically from
the value ½αsðs0Þ�n. In other words, a convergent FOPT
series will in general diverge in CIPT, and using CIPT will
in general yield a degradation of the convergence properties

of a series and an apparent convergence may yield an
unphysical value inconsistent with the OPE. It is the latter
property that makes phenomenological applications of
CIPT dangerous. This does not exclude the use of CIPT
as a phenomenological expansion method, but it must be
used with great care. A phenomenologically consistent way
to apply CIPT was suggested in Refs. [11,12].
Using models for expansion functions forming asymp-

totic sequences, we have shown that this property appears
to be related to the zeros of the CIPT expansion functions
which approach αs ¼ 0 at high orders. It is kind of ironic
that these zeros appear to be harmless at first sight and even
beneficial as they suppress the numerical size of the CIPT
expansion functions. We have provided numerical evidence
that all our findings obtained in the large-β0 approximation
are also valid in full QCD. The primary use of our findings
is that they can be used as a tool to also test the consistency
of other expansion methods, where an integration over the
renormalization scale is carried out.
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APPENDIX: REVIEW OF DEFINITIONS AND
THEOREMS FOR MATHEMATICAL SERIES

In this appendix we collect a number definitions,
theorems and corollaries on series and series of functions,
as well as the concept of general asymptotic expansions,
which we refer to in the main body of the article. The
statements can be found scattered throughout the math-
ematical literature in various formulations, but we quote
them based on the presentations given in the classic text
books by K. Knopp [28] (for Sec. A 1) and A. Erdélyi [29]
(for Sec. A 2), where also explicit proofs can be found.

1. Series and series of functions

We start from the common definition concerning the
convergence of an infinite series.
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Definition A.1. An infinite series
P∞

i¼1 ci is called
convergent if there exists a number S such that for any
ϵ > 0 there exists an integer NðϵÞ with the property that the
sequence of partial sums sn ¼

P
n
i¼1 ci satisfies jsn − Sj <

ϵ for all n ≥ NðϵÞ. The number S is then called the sum of
the series, we say that the sum converges to S, and we write
S ¼ P∞

i¼1 ci. If no such number S exists the series is called
divergent. An infinite series

P∞
i¼1 ci is called absolutely

convergent if the series of absolute values
P∞

i¼1 jcij is
convergent. If

P∞
i¼1 ci converges, but

P∞
i¼1 jcij does not,

the series is called conditionally convergent.
For considerations concerning the convergence of series

we use the well-known and powerful root comparison test,
which is formulated in the following root criterion:
Theorem A.2. (Cauchy’s root criterion). Let

P∞
i¼1 ci be

an infinite series. Let us denote L≡ lim supn→∞jcnj1=n.
Then the series is absolutely convergent if L < 1, is
divergent if L > 1 or L ¼ ∞. If L ¼ 1 the series may be
either convergent or divergent.
The root test specifies the property of absolute conver-

gencewhich is sufficient for our discussions. Since we apply
our considerations for series in the strong couplingwhich has
uncertainties, the particular case L ¼ 1 has no particular
meaning for us, and will therefore not be discussed in any
way. Since we do not only consider power series, but also
series of functions we also introduce a generalization of the
circle of convergence known for power series.
Definition A.3. (Interval of convergence). An interval I

is called interval of convergence of a series of functionsP∞
i fiðxÞ, if for any x ∈ I all functions fiðxÞ are defined

and the corresponding series converges.
For infinite series of functions

P∞
i¼1 fiðxÞ that converge

to a function FðxÞ the property of uniform convergence is
important as linear operations on FðxÞ can then typically be
carried out by doing the operation on the individual
functions fiðxÞ and summing afterwards.
Definition A.4. (Uniform convergence) A series of

functions
P∞

i¼1 fiðxÞ that converges to the function FðxÞ
in the interval I is said to be uniformly convergent in an
interval I0 ⊆ I, if for any ϵ > 0, a number NðϵÞ independent
of x exists such that jPn

i¼1 fnðxÞ − FðxÞj < ϵ for all n ≥
NðϵÞ and all x ∈ I0.
Weierstrass has formulated a simple bound criterion for

uniform convergence. This theorem and the following
corollary are important in our discussions as well.
Theorem A.5. (Weierstrass’ uniform convergence theo-

rem) If each of the functions fiðxÞ is defined and bounded
in the interval I, i.e., jfiðxÞj ≤ γi for all x ∈ I, and if the
series of positive terms

P∞
i¼1 γi converges, the seriesP∞

i¼1 fiðxÞ converges uniformly in I.
Corollary A.5.1. A power series

P∞
i¼1 cix

i with inter-
val of convergence I converges uniformly in every sub-
interval I0 ⊂ I.
We finally quote the powerful and important Weierstrass

theorem on the reordering of double series without referring
to the absolute convergence of the double series.

Theorem A.6 (Weierstrass’ Double Series Theorem)
Consider an infinite set of functions fiðxÞ that are analytic
for jxj < r, so that the power expansions fiðxÞ ¼P∞

k¼0 a
ðiÞ
k xk exist and converge at least for jxj < r for all

i. Furthermore, consider a convergent series of these
functions FðxÞ ¼ P∞

i¼0 fiðxÞ that is uniformly convergent
for jxj ≤ ρ for every ρ < r, so that the series converges in
particular everywhere within the interval jxj < r and
defines the function FðxÞ there. Then, the infinite sums

Ak ¼
P∞

i¼0 a
ðiÞ
k are convergent and the infinite sumP∞

k¼0 Akxk converges to FðxÞ for jxj < r, so that FðxÞ ¼P∞
i¼0ð

P∞
k¼0 a

ðiÞ
k xkÞ ¼ P∞

k¼0ð
P∞

i¼0 a
ðiÞ
k Þxk and is analytic

for jxj < r.

2. Order symbols, asymptotic sequences,
and asymptotic expansions

In gauge quantum field theories perturbative series are
typically not convergent, but only asymptotic. We therefore
also specify the basis of asymptotic expansions collecting
the relevant mathematical definitions. In the following, R is
a domain in the complex plane and x0 a point in R̄, the
closure of R. The functions fðxÞ, gðxÞ, and the sequence of
functions ϕ1ðxÞ;ϕ2ðxÞ;ϕ3ðxÞ;…, are analytic in R. We
furthermore abbreviate the latter sequence of functions as
fϕnðxÞg. For the purpose of our considerations we always
assume that fϕnðxÞg is an infinite set so that n runs over all
natural numbers.
We start by quoting the definition of the well known

O-relation and the lesser known “little” o-relation of two
functions. While the O-relation is a statement on two
functions approaching a certain point at the same type of
“speed” (e.g., linear or quadratic), the “little” o-relation
states that one of the two function approaches that point
much faster. It is important for the definition of asymptotic
expansions.
Definition A.7. (O-relation) It is said that f ¼ OðgÞ as

x → x0 if there exists a constant A > 0 and a neighborhood
U of x0 so that jfðxÞj ≤ AjgðxÞj for all x ∈ R ∩ U.
Definition A.8. (o-relation) It is said that f ¼ oðgÞ as

x → x0, if for any ϵ > 0 there exists a neighborhood Uϵ of
x0 such that jfðxÞj < ϵjgðxÞj for all x ∈ R ∩ Uϵ. When
gðx ≠ x0Þ ≠ 0 in some neighborhood of x0, the condition is
equivalent to limx→x0 fðxÞ=gðxÞ ¼ 0.
So e.g., sinðxÞ ¼ OðxÞ as x → 0, while x2 ¼ oðsinðxÞÞ

as well as x2 ¼ OðsinðxÞÞ as x → 0. Note that f ¼ oðgÞ
always implies f ¼ OðgÞ.
Asymptotic expansions approximate a function as a sum

of other functions, which in order to be well-defined must
form asymptotic sequences [29]. The latter are specified by
the following definitions, where the special property of
uniformity plays an important role in this article.
Definition A.9. (Asymptotic sequence) An infinite

sequence of functions fϕnðxÞg ¼ fϕ1ðxÞ;ϕ2ðxÞ;…g is
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an asymptotic sequence as x → x0 in R if ϕnþ1 ¼ oðϕnÞ for
all n.
Definition A.10. (Uniform asymptotic sequence) A

sequence of functions fϕnðxÞg is an uniform asymptotic
sequence as x → x0 in R if ϕnþ1 ¼ oðϕnÞ uniformly in n.
This means that for any ϵ > 0 there exists a neighborhood
Uϵ of x0 such that jϕnþ1ðxÞj < ϵjϕnðxÞj for all x ∈ R ∩ Uϵ

and all n.
The requirement of an asymptotic sequence to be uni-

form excludes e.g., that the functions ϕn have singularities,
but also zeros which approach x0 for increasing n. The
sequence of power terms fxng is a uniform asymptotic
sequence as x → 0 in R as one can easily check from the
property that xnþ1=xn ¼ x independently of n.
We are now ready to state the definition of an asymptotic

expansion, where it is at this point not relevant whether the
asymptotic sequence involved is uniform in n or not.
Definition A.11. (Asymptotic expansion) The seriesP∞
n¼1 cnϕnðxÞ, with fϕnðxÞg an asymptotic sequence as

x → x0, is called an asymptotic expansion of fðxÞ as x →
x0 if fðxÞ −P

N
n¼1 cnϕnðxÞ ¼ oðϕNÞ as x → x0 for all

N ∈ N. At any finite order N we write the asymptotic

expansion in the form fðxÞ ≍
x→x0 PN

n¼1 cnϕnðxÞ.
From Definitions A.8 and A.11 one can derive the

following corollary which states how to determine the
coefficients cn:
Corollary A.11.1. The coefficients of the previously

defined asymptotic expansion of fðxÞ as x → x0 with
respect to the asymptotic sequence fϕnðxÞg can be deter-
mined through the following recurrence formula:
cn ¼ limx→x0 ½fðxÞ −

P
n−1
i¼1 ciϕiðxÞ�=ϕnðxÞ. Furthermore,

this implies that the coefficients are unique.

3. Useful asymptotic expansions of special functions

For the convenience of the reader we also quote some
relations and (asymptotic) expansions concerning the
incomplete gamma function since they are used frequently
in this article. The incomplete gamma function is defined
by the integral

Γðn; xÞ≡
Z

∞

x
tn−1e−tdt; ðA1Þ

for any n and x where for complex x the path is going
horizontally to real þ∞, with a branch cut along the
negative real x-axis if n ∉ N. For n ∈ N it can also be
written as a finite sum,

Γðn; xÞ ¼n∈Ne−xΓðnÞ
Xn−1
j¼0

xj

Γðj − 1Þ : ðA2Þ

It satisfies the recursive relation Γðnþ 1; xÞ ¼ e−xxn þ
nΓðn; xÞ, such that for an integer negative first argument
it can be expressed in terms of Γð0; xÞ and a finite sum,

Γð−n; xÞ ¼n∈N0ð−1Þn
�
Γð0; xÞ
Γðnþ 1Þ þ e−x

Xn
j¼1

ð−xÞj−n−1
ðnþ 1 − jÞj

�
:

ðA3Þ
Note that this expression also provides an asymptotic
expansion for large n being j ¼ 1 the leading term. The
expansion of Γðn; zÞ as jnj → ∞ for any finite z and n ≠
0;−1;−2… reads

Γðn; zÞ − ΓðnÞ ¼−n∉N0 − zne−z
X∞
k¼0

zk

ðnÞkþ1

: ðA4Þ

This expansion is even absolutely convergent for any finite z.
A particular case frequent in this work occurs when z ¼
�ilπ, withl a positive integer. The following identify holds:

Γðn;−ilπ; ilπÞ ¼ Γðn;−ilπÞ − Γðn; ilπÞ

¼−n∉N0
2ið−1Þl

X∞
k¼0

ðπlÞnþk

ðnÞkþ1

sin

�
ðnþ kÞ π

2

�
:

ðA5Þ
The asymptotic expansion of Γðn; zÞ for large jzj and
argðzÞ < 3π=2 reads

Γðn; zÞ ≍
jzj→∞

zn−1e−z
X∞
k¼0

ðn − kÞk
zk

: ðA6Þ

For n ∈ N the sum terminates at k ¼ n − 1 and Eq. (A6)
represents an exact identity.
The Bernoulli numbers Bn arise in the summation of

powers of integers and can be obtained from the Taylor
coefficients of the generating function x=ðex − 1Þ

x
ex − 1

¼
X∞
n¼0

Bn

n!
xn: ðA7Þ

For odd n ≥ 3 the Bernoulli numbers are zero. The leading
term in the asymptotic expansion of the Bernoulli numbers
as n → ∞ reads

Bn ≍
n→∞ ¼ −

2n!
ð2πÞn cos

�
nπ
2

�
; ðA8Þ

where the term cosðnπ=2Þ accounts for Bn being zero for
large odd n and the correct overall sign. We also quote

Stirling’s formula Γðnþ 1Þ ¼ n! ≍
n→∞ ffiffiffiffiffiffiffiffi

2πn
p ðn=eÞn, which

is used several times.
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