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The elastic pion-proton and pion-pion scattering are studied in a holographic QCD model, focusing on
the Regge regime. Taking into account the Pomeron and Reggeon exchange, which are described by the
Reggeized 2þþ glueball and vector meson propagator respectively, the total and differential cross sections
are calculated. The adjustable parameters involved in the model are determined with the experimental data
of the pion-proton total cross sections. The differential cross sections can be predicted without any
additional parameters, and it is shown that our predictions are consistent with the data. The energy
dependence of the Pomeron and Reggeon contribution is also discussed.
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I. INTRODUCTION

Studying elastic hadron-hadron scattering at high ener-
gies is one of the important research topics in high energy
physics, since the cross sections include the information for
the internal structure of the involved hadrons. However,
since those cross sections in the quantum chromodynamics
(QCD) processes are basically nonperturbative physical
quantities, it is difficult to perform the analysis by the direct
use of QCD. Although in some quite limited kinematic
region, such as the high energy limit, the perturbative QCD
is available and important results have been obtained [1–3],
for most kinematic region effective approaches are required
to calculate the cross sections. It is particularly difficult to
perform the theoretical analysis on the high energy forward
scattering, since the underlying partonic dynamics is highly
nonperturbative. In this study we focus on the elastic pion-
proton (πp) and pion-pion (ππ) scattering in the forward
region, and investigate the total and differential cross
sections in the framework of holographic QCD, which is
one of the effective approaches for QCD. The pion is a
special particle, since it is identified as the lightest Nambu-
Goldstone boson. It is important to understand the structure
of the pion to deepen our understanding of the strong

interaction, and the pion-nucleon and pion-pion scattering
have been studied by various researchers so far [4–12].
Historically, it is known that the Regge theory can give

reasonable descriptions for various high energy forward
scattering processes in the Regge regime, in which the
condition, s ≫ t (s and t are the Mandelstam variables), is
satisfied. It is based on the analysis with the complex angular
momentum, and this theory has been successfully applied to
the hadron-hadron scattering [13,14]. In the Regge theory,
the scattering amplitudes can be obtained by considering the
Pomeron and Reggeon exchange, which can be interpreted
as the multigluon and meson exchange, respectively. In the
mediumenergy region, theboth contributions are substantial,
and the contribution of the Pomeron exchange becomes
dominant in the high energy region.
The description with the Pomeron and Reggeon can also

be realized in the framework of holographic QCD [15–22],
which is constructed based on the anti–de Sitter/conformal
field theory (AdS=CFT) correspondence [23–25]. The
holographic approach has been used to analyze the spec-
trum and structure of hadrons [26–35], and also has been
successfully applied to the high energy scattering [36–54].
The holographic approach in hadron physics is based on
the conjecture that is dual between QCD and the string
theory: the perturbative calculations of the string theory
map the dynamics of the nonperturbative strong interaction
in the higher dimensional curved spacetime. The S-matrix
in the Regge theory can be described by the bosonic strings,
which is useful to investigate the scattering processes in the
Regge regime, and it is known that the string amplitudes
show the correct Regge behavior. The glueball and mesons,
which correspond to the Pomeron and Reggeon, are des-
cribed in the closed and open string sector, respectively.
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The intercept of the leading Pomeron trajectory is close to 1
but slightly greater. On the other hand, the intercept of the
Reggeon trajectory is less than 1.
In the preceding work [52], the elastic πp and ππ

scattering were studied in holographic QCD, only consid-
ering the Pomeron exchange contribution. We extend it in
this study, and take into account both the Pomeron and
Reggeon contribution,which is basically required to correctly
describe the cross sections in the medium energy region. In
the present study the Pomeron and Reggeon exchange are
described by the Reggeized 2þþ glueball and vector meson
propagator, respectively. For the Pomeron-hadron couplings
the gravitational form factors, which can be obtained with
the bottom-up AdS/QCD models [55,56], are employed. We
derive the expressions for the total and differential cross
sections, and then numerically evaluate those.
Our model involves several parameters in total, which

shall be determined with the experimental data. However,
by virtue of the universality of the Pomeron and Reggeon,
the parameter values obtained in the preceding works
on the proton-proton (pp) and proton-antiproton (pp̄)
scattering [49,53] can directly be used in the present
analysis. The Pomeron-pion coupling constant was deter-
mined in Ref. [52], but the used data have large uncer-
tainties especially in the high energy region, which may
have caused non-negligible theoretical uncertainties. Hence
we newly determine it in this study. Besides, the Reggeon-
pion coupling constants are needed to be determined. Since
the charge difference affects the Reggeon couplings, we
need to determine the Reggeon-πþ and Reggeon-π−

coupling constants separately. All these three adjustable
parameters are determined with the experimental data of the
πp total cross sections. We show that the currently available
data can be well described within the model.
Once the parameters are fixed, the ππ total cross sections

and the πp and ππ differential cross sections can be
predicted without any additional parameters. We present
that our predictions for the πþp and π−p differential cross
section are consistent with the data. Furthermore, for both
the total and differential cross sections, the energy depend-
ence of the Pomeron and Reggeon contribution is dis-
cussed, considering the contribution ratios. Our results
presented in this paper can be tested with the data to be
taken in the future.
The structure of this paper is as follows. In Sec. II we

explain the holographic description of the elastic πp and ππ
scattering in the Regge regime, taking into account the
Pomeron and Reggeon exchange. The expressions for the
total and differential cross sections are derived. We present
our numerical results for the cross sections in Sec. III, and
give the conclusion of this work in Sec. IV.

II. MODEL SETUP

In this section the expressions for the total and differ-
ential cross sections of the elastic πp and ππ scattering are

derived, taking into account the Pomeron and Reggeon
exchange. The corresponding Feynman diagrams are
shown in Fig. 1. The Pomeron-hadron couplings are
determined by the lowest state on the Pomeron trajectory,
which is assumed as 2þþ glueball. The Reggeon-hadron
couplings are determined by the lowest state on the
Reggeon trajectory, which is assumed as the vector meson.
Since these two contributions can be considered separately,
the total amplitudes for the πp and ππ scattering can be
written as

AπpðππÞ
tot ¼ AπpðππÞ

g þAπpðππÞ
v ; ð1Þ

whereAg andAv represent amplitudes for the Pomeron and
Reggeon exchange, respectively. The upper index π stands
for πþ or π−.
The 2þþ glueball field is described as a second-rank

symmetric traceless tensor hμν, assuming that the coupling
of hμν to the QCD energy momentum tensor Tμν is
described by the action:

S ¼ λ

Z
d4xhμνTμν; ð2Þ

where λ is a respective coupling. The singlet state corre-
sponds to the graviton, and the vertex of the glueball-
proton-proton can be extracted from the matrix element of
the energy momentum tensor hp0; s0jTμνjp; si, which can be
expanded with three terms including the gravitational form
factors [57] and can be written as

hp0; s0jTμνjp; si ¼ ūðp0; s0Þ
�
ApðtÞ

γμPν
p þ γνPμ

p

2

þ BpðtÞ
ikpρðPμ

pσνρ þ Pν
pσ

μρÞ
4mp

þ CpðtÞ
kμpkνp − ημνk2p

mp

�
uðp; sÞ; ð3Þ

where ūðp0; s0Þ and uðp; sÞ are the nucleon spinors, mp is
the proton mass, the momentum transfer kp ¼ p0 − p ¼
p3 − p1, Pp ¼ ðp1 þ p3Þ=2 ¼ ðp2 þ p4Þ=2, ημν is the
Minkowski matrix tensor, and σμν ¼ i½γμ; γν�=2. Since in

FIG. 1. The left and right Feynman diagrams represent the
πpðππÞ scattering with the 2þþ glueball and vector meson
exchange, respectively. p1, p2 and p3, p4 are the initial and
final four-momenta in the t-channel, respectively. k is the
momentum transfer.
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the Regge regime p2 ≈ p4, we define Pp ¼ pp, where pp is
the proton four-momentum of the initial or final state. In the
above equation, ApðtÞ, BpðtÞ and CpðtÞ are the gravita-
tional form factors of the proton. The contribution of the
BpðtÞ involved term is negligible when the momentum
transfer is quite small. Since the proton is a fermion and its
wave function needs to satisfy the Dirac equation, the
contribution of the CpðtÞ involved term vanishes. Similarly,
the vertex of the glueball-pion-pion can be extracted from
the energy momentum tensor matrix element for the pion
expanded in terms of two gravitational form factors AπðtÞ
and CπðtÞ:

hπaðp2ÞjTμνjπbðp1Þi

¼ δab
�
2AπðtÞpμ

πpν
π þ

1

2
CπðtÞðk2πημν − kμπkνπÞ

�
; ð4Þ

where pπ is the pion four-momentum. The contribution of
the CπðtÞ involved term is negligible in the Regge regime.
In our numerical evaluations, which will be presented in
the next section, we employ the results obtained with the
bottom-up AdS/QCD models [55,56] to specify ApðtÞ
and AπðtÞ.
Focusing on the Regge regime, the glueball-proton-

proton vertex for the elastic scattering can be written as

Γμν
gpp ¼ iλgppApðtÞ

2
ðγμpν

p þ γνpμ
pÞ; ð5Þ

where λgpp is the coupling constant. Likewise, the glueball-
pion-pion vertex can be written as

Γμν
gππ ¼ 2iλgππAπðtÞpμ

πpν
π; ð6Þ

where λgππ is the coupling constant. The propagator of the
massive 2þþ glueball is expressed as [58]

Dg
αβγδ ¼ −i

dαβγδðkÞ
k2 þm2

g
; ð7Þ

in which mg is the glueball mass, and dαβγδðkÞ is explicitly
written as

dαβγδ ¼
1

2
ðηαγηβδ þ ηαδηβγÞ

−
1

2m2
g
ðkαkδηβγ þ kαkγηβδ þ kβkδηαγ þ kβkγηαδÞ

þ 1

24

��
k2

m2
g

�
2

− 3

�
k2

m2
g

�
− 6

�
ηαβηγδ

−
k2 − 3m2

g

6m4
g

ðkαkβηγδ þ kγkδηαβÞ þ
2kαkβkγkδ

3m4
g

: ð8Þ

The amplitude of the elastic πp scattering with the 2þþ
glueball exchange is given by

Aπp
g ¼ Γαβ

gππū4Γ
γδ
gppu2D

g
αβγδ: ð9Þ

The vertices of the vector-proton-proton and vector-pion-
pion can be expressed as

Γμ
vpp ¼ −iλvppγμ; ð10Þ

Γν
vππ ¼ −2iλvππpν

π; ð11Þ

respectively. The propagator of the vector meson is given
by [47]

Dv
μνðkÞ ¼ i

ημν
k2 þm2

v
; ð12Þ

wheremv is the vector meson mass. Hence the amplitude of
the elastic πp scattering with the vector meson exchange is
written as

Aπp
v ¼ Γν

vππū3Γvppu1Dv
μνðkÞ: ð13Þ

With these equations, the total amplitude of the elastic πp
scattering is expressed as

Aπp
tot ¼ iλgππλgppAπðtÞApðtÞpπμū4γμu2 ×

1

t −m2
g

þ 2iλvππλvpppπνū3γνu1 ×
1

t −m2
v
: ð14Þ

Similarly, the total amplitude of the elastic ππ scattering
can be obtained as

Aππ
tot ¼ −iλ2gppA2

πðtÞs2 ×
1

t −m2
g
þ 2iλ2vππs ×

1

t −m2
v
: ð15Þ

Then, the total invariant amplitudes of the elastic πp and ππ
scattering are derived as

Aπp
tot ¼ λgππλgppAπðtÞApðtÞs2 ×

1

t −m2
g
− 2λvππλvpps

×
1

t −m2
v
; ð16Þ

Aππ
tot ¼ λ2gππA2

πðtÞs2 ×
1

t −m2
g
− 2λ2vππs ×

1

t −m2
v
; ð17Þ

respectively.
In the equations introduced above, only the lightest states

on the Pomeron and Reggeon trajectory are considered,
and taking into account the excited states of the strings is
needed to include the higher spin states. The excited states
of the open and closed string correspond to the higher
spin states which lie on the Reggeon and Pomeron
trajectory, respectively. Following the Reggeization pro-
cedure explained in detail in Ref. [47], the bosonic open
string four-tachyon amplitude can be written as
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A4
oðs; t; uÞ ¼ Ãoðs; tÞ þ Ãoðu; tÞ þ Ãoðs; uÞ: ð18Þ

Ãoðx; yÞ is the Veneziano amplitude, which describes the
string scattering in the flat space and is given by

Ãoðx; yÞ ¼ iC
Γ½−aoðxÞ�Γ½−aoðyÞ�
Γ½−aoðxÞ − aoðyÞ�

; ð19Þ

where aoðxÞ is the trajectory of the open string. For the
Reggeon to be represented as the excited states, we replace
aoðxÞ with αRðxÞ, which is the Reggeon trajectory and
expressed as αRðxÞ ¼ αRð0Þ þ α0Rx. Ãoðs; uÞ has no con-
tribution to the amplitude due to that it has no pole in the
t-channel. The poles of Ãoðs; tÞ and Ãoðu; tÞ in the
t-channel are aoðtÞ ¼ n. Expanding them around the poles,
one finds

Ãoðs; tÞ ≈ iCe−iπaoðtÞðα0osÞaoðtÞΓ½−aoðtÞ�; ð20Þ

Ãoðu; tÞ ≈ iCðα0osÞaoðtÞΓ½−aoðtÞ�; ð21Þ

in which the open string amplitudes show the correct Regge
behavior (A ≈ sJ, where J is the spin of the exchange
particles). For the odd spin states, taking the difference
between Ãoðs; tÞ and Ãoðu; tÞ represents the amplitude
with the Reggeon exchange, which can be written as

A4
o ¼ Ãoðu; tÞ − Ãoðs; tÞ: ð22Þ

This can be expanded around the pole αRðtÞ ¼ 1 as

A4
R ¼ iCð1 − e−iπαvðtÞÞðα0RsÞαRðtÞΓ½−αRðtÞ�: ð23Þ

Comparing this equation to the second term in the right-
hand side of Eq. (16), one obtains

1

t −m2
v
→ α0Re

−iπαRðtÞ
2 sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�:

ð24Þ

The higher spin states on the Pomeron trajectory can be
described as the excited states of the bosonic closed string,
and the four-tachyon amplitude is given by

A4
cðs; t; uÞ

¼ 2πC
Γ½− acðtÞ

2
�Γ½− acðsÞ

2
�Γ½− acðuÞ

2
�

Γ½− acðsÞ
2

− acðtÞ
2
�Γ½− acðsÞ

2
− acðuÞ

2
�Γ½− acðtÞ

2
− acðuÞ

2
�
;

ð25Þ

where acðxÞ ¼ 2þ α0Px=2 is the Regge trajectory of the
closed string, and α0P=2 is the slope of the closed string
trajectory. The square of the closed string mass is
m2

c ¼ −4=α0P, and then sþ tþ u ¼ 4m2
c ¼ −16=α0P, which

leads to acðsÞ þ acðtÞ þ acðuÞ ¼ −2. The amplitude is
expanded around the pole acðtÞ ¼ 2 in the Regge regime as

A4
cðs; tÞ ≈ 2πCe−

iπacðtÞ
2

�
α0Ps
4

�
acðtÞ Γ½− acðtÞ

2
�

Γ½1þ acðtÞ
2
�
: ð26Þ

Since the 2þþ glueball represents the lowest state of the
Pomeron, acðtÞ needs to be replaced with αPðtÞ − 2. Since
the vertex is dimensionless in the string theory, comparing
this equation to the right-hand side of Eq. (16), one obtains

1

t −m2
g
→

α0P
2
e−

iπαPðtÞ
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

;

ð27Þ

where χ ¼ αPðsÞ þ αPðuÞ þ αPðtÞ.
With the Reggeized propagators introduced above, the

invariant amplitudes for the elastic πp and ππ scattering are
rewritten as

Aπp
tot ¼ λgππλgppAπðtÞApðtÞs2

α0P
2
e−

iπαPðtÞ
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

− 2λvππλvppsα0Re
−iπαRðtÞ

2 sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�; ð28Þ

Aππ
tot ¼

λ2gππ
2

A2
πðtÞs2α0Pe−

iπαPðtÞ
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

− 2λ2vππsα0Re
−iπαRðtÞ

2 sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�; ð29Þ

respectively.
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Then, the differential cross section of the πp scattering is derived as

dσπp

dt
¼ 1

16πs2
jAπp

tot j2

¼ 1

16π
ðλgππλgppAπðtÞApðtÞsÞ2

�
α0P
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

�
2

þ 1

4π
ðλvππλvppÞ2

�
α0R sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�

�
2

þ 1

8π
ðλgππλgppλvππλvppAπðtÞApðtÞsÞ

�
α0P
2
e−

iπαPðtÞ
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

;

α0ve−
iπαRðtÞ

2 sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�

��
; ð30Þ

where ½x; y�� ¼ xy� þ x�y, and the asterisk indicates complex conjugation. The three terms in the right-hand side represent
the contributions of the Pomeron exchange, the Reggeon exchange and the cross term, respectively. Similarly, the
differential cross section of the ππ scattering can be obtained as

dσππ

dt
¼ 1

16π
λ4gππA4

πðtÞs2
�
α0P
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αPðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

�
2

þ 1

4π
λ4vππ

�
α0R sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�

�
2

þ 1

8π
ðλ2gππλ2vππA2

πðtÞsÞ
�
α0P
2
e−

iπαPðtÞ
2

�
α0Ps
2

�
αPðtÞ−2 Γ½3 − χ

2
�Γ½1 − αgðtÞ

2
�

Γ½2 − χ
2
þ αPðtÞ

2
�

;

α0ve−
iπαRðtÞ

2 sin

�
παRðtÞ

2

�
ðα0RsÞαRðtÞ−1Γ½−αRðtÞ�

��
: ð31Þ

Applying the optical theorem, the total cross sections of the πp and ππ scattering can be expressed as

σπptot ¼
1

s
ImAπp

tot ðs; t ¼ 0Þ

¼ λgππλgpp
Γ½−χ�Γ½1 − α0Pð0Þ

2
�

Γ½αPð0Þ
2

− 1 − χ�

�
α0Ps
2

�
αPð0Þ−1

sin

�
παPð0Þ

2

�

− 2λvππλvppα
0
Rsin

2

�
παRð0Þ

2

�
ðα0RsÞαRð0Þ−1Γ½−αRð0Þ�; ð32Þ

σππtot ¼
1

2
λ2gππα

0
P

Γ½−χ�Γ½1 − α0Pð0Þ
2
�

Γ½αPð0Þ
2

− 1 − χ�

�
α0Ps
2

�
αPð0Þ−2

sin

�
παPð0Þ

2

�

− 2λ2vππα
0
Rsin

2

�
παRð0Þ

2

�
ðα0RsÞαRð0Þ−1Γ½−αRð0Þ�; ð33Þ

respectively.

III. NUMERICAL RESULTS

In this section we numerically evaluate the total and
differential cross sections of the πp and ππ scattering,

whose analytical expressions are introduced in the previous
section, and display the results. The present model involves
nine parameters in total. However, by virtue of the
universality of the Pomeron and Reggeon, for six of them
we can employ the values determined in the prece-
ding works. For the three parameters fαPð0Þ; α0P; λgppg
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we utilize the results obtained in Ref. [49], in which the pp
and pp̄ cross sections were studied by only considering
the Pomeron exchange, focusing on the high energy region.
For another three parameters fαRð0Þ; α0R; λvppg we utilize
the results obtained in Ref. [53], in which both the Pomeron
and Reggeon exchange were taken into account to inves-
tigate the pp and pp̄ cross sections in the medium energy
region. The parameter values taken from these preceding
works are summarized in Table I. The Pomeron-pion
coupling constant λgππ was determined in the previous
work [52], but the used data have large uncertainties
especially in the high energy region, which may have
caused non-negligible theoretical uncertainties. Hence, in
this study we newly determine it with the experimental
data. Besides λgππ , the Reggeon-pion coupling constants
are needed to be determined. Since the charge difference
affects the Reggeon couplings, we need to determine the
Reggeon-πþ and Reggeon-π− coupling constants, λvπþπþ
and λvπ−π− , separately.

We determine the three adjustable parameters
fλgππ; λvπ−π− ; λvπþπþg by numerical fitting with the exper-
imental data of the πp total cross sections, focusing on the
kinematic range, 5 ≤

ffiffiffi
s

p
≤ 100 GeV. To perform this,

TABLE I. Parameter values.

Parameter Value Source

αPð0Þ 1.086 Fit to ppðpp̄Þ data at high energies [49]
α0P 0.377 GeV−2 Fit to ppðpp̄Þ data at high energies [49]
λgpp 9.699 GeV−1 Fit to ppðpp̄Þ data at high energies [49]
αRð0Þ 0.444 Fit to ppðpp̄Þ data at medium energies [53]
α0R 0.925 GeV−2 Fit to ppðpp̄Þ data at medium energies [53]
λvpp 7.742 Fit to ppðpp̄Þ data at medium energies [53]
λgππ 3.361� 0.002 GeV−1 This work
λvπþπþ 4.528� 0.023 This work
λvπ−π− 6.049� 0.022 This work

FIG. 2. The πp total cross sections as a function of
ffiffiffi
s

p
. The

solid and dashed curves represent our calculations for the π−p
and πþp scattering, respectively. The experimental data are taken
from Ref. [60].

FIG. 3. Similar to Fig. 2, but for the wider
ffiffiffi
s

p
range.

FIG. 4. The πp and ππ total cross sections as a function of
ffiffiffi
s

p
.
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the MINUIT package [59] and the data summarized by the
Particle Data Group (PDG) in 2022 [60] are utilized.
The obtained parameter values are shown in Table I, and
the resulting πp total cross sections are displayed in Fig. 2.
It is seen from the figure that the both πþp and π−p data are
well described with the model in the whole considered
kinematic region. The newly determined value for λgππ is
smaller than that obtained in Ref. [52]. Since this also
affects the magnitudes of the total cross sections in the high
energy region, the previous results shall be updated. We
show in Fig. 3 our calculations in the wider

ffiffiffi
s

p
range. Since

the available data in the high energy region, in whichffiffiffi
s

p
> 100 GeV, are quite limited and the uncertainties of

those are huge, more precise data are necessary especially
in the TeV region to test our results. Focusing on the high

energy region, in which the Pomeron exchange contribu-
tion is dominant, the resulting total cross section ratios are
found to be

σπptot
σpptot

¼ 0.62;
σππtot
σpptot

¼ 0.28: ð34Þ

This ratio σπptot=σ
pp
tot is consistent with the result obtained in

Ref. [48] and the value which can be extracted from the
results presented in Ref. [61], although the other ratio
σππtot=σ

pp
tot is obviously smaller compared to the result in

Ref. [48]. Once the three adjustable parameters are deter-
mined, the ππ total cross sections and the πp and ππ
differential cross sections can be calculated without any
additional parameters. We display our predictions for the

FIG. 5. The πp and ππ differential cross sections as a function of jtj for ffiffiffi
s

p ¼ 5 and 20 GeV.

FIG. 6. The πþp differential cross section as a function of jtj for ffiffiffi
s

p
≥ 10 GeV. The dashed curves represent our predictions. The

experimental data are taken from Refs. [64–67].
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total cross sections in Fig. 4 and for the differential cross
sections in Fig. 5. From these figures it is seen that the
differences between πþ and π− become smaller as

ffiffiffi
s

p
increases.
Then, we present the comparisons between our predic-

tions and the experimental data for the πp differential
cross sections. To focus on the Regge regime and also
to avoid the effect of the Coulomb scattering [62,63],
we choose the data in the range,

ffiffiffi
s

p
≥ 10 GeV and

0.01 ≤ jtj ≤ 0.45 GeV2, for the πþp [64–67] and π−p
[64,66,68–70] scattering. We show the results for the
πþp scattering in Fig. 6. Although the

ffiffiffi
s

p
range, in which

the data exist, is narrow, it is found that our predictions
agree with the data in the whole considered kinematic
region. The results for the π−p scattering are displayed in
Fig. 7. In the first two panels for

ffiffiffi
s

p ¼ 10.178 and
10.211 GeV, we can find obvious deviations between
our predictions and the data. For these two the jtj=s values

FIG. 7. Similar to Fig. 6, but for the π−p scattering. The experimental data are taken from Refs. [64,66,68–70].

ZHIBO LIU and AKIRA WATANABE PHYS. REV. D 108, 034010 (2023)

034010-8



are relatively larger compared to the others, which may be
the possible reason. It is seen from the other panels that our
predictions are consistent with the data.
Finally, we show the energy dependence of the Pomeron

and Reggeon exchange contribution. We numerically
evaluate the both contributions to the total cross section
and divide by the total magnitude separately. We define

these as the contribution ratios, Rπþp
tot and Rπ−p

tot , for the π
þp

and π−p scattering, respectively. The
ffiffiffi
s

p
dependence of

these ratios is displayed in Fig. 8. It is seen that the ratio
for the Pomeron exchange contribution increases with

ffiffiffi
s

p
,

and it is opposite for the Reegeon exchange contribution.
This behavior is common to both the πþp and π−p cases,
but the Reggeon contribution in the π−p case is slightly
larger than that in the πþp case. For the both cases, the
Reggeon contribution almost completely vanishes aroundffiffiffi
s

p
∼ 100 GeV. Then we perform the similar analysis for

the differential cross sections, defining the contribution

ratios, Rπþp
diff and Rπ−p

diff , and display the results in Fig. 9.
Differently from the total cross section case, there is a
contribution from the cross term. The qualitative behavior
of the ratios for the Pomeron and Reggeon contribution is
similar to the total cross section case, and the ratio for the
cross term decreases as

ffiffiffi
s

p
increases. Not only the ratio for

the Reggeon contribution but also that for the cross term in
the π−p case are slightly larger than those in the πþp case.
From these results it is found that considering the Reggeon
exchange contribution is necessary to correctly describe the
cross sections, unless the energy is high enough.

IV. CONCLUSION

We have studied the elastic πp and ππ scattering in a
holographic QCD model, focusing on the Regge regime.

FIG. 8. The contribution ratios for the πþp (left) and π−p (right) total cross section as a function of
ffiffiffi
s

p
. The solid and dashed curves

represent the ratios for the Pomeron and Reggeon exchange, respectively.

FIG. 9. The contribution ratios for the πþp (left) and π−p (right) differential cross section at jtj ¼ 0.1 GeV2 as a function of
ffiffiffi
s

p
. The

solid, dashed, and dotted curves represent the ratios for the Pomeron exchange, the Reggeon exchange, and the cross term, respectively.
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To obtain the total and differential cross sections, we have
taken into account the Pomeron and Reggeon exchange,
which are described by the Reggeized 2þþ glueball and
vector meson propagator, respectively. For the Pomeron-
hadron couplings, the gravitational form factors, which can
be calculated with the bottom-up AdS/QCD models, are
utilized. Our model setup involves nine parameters in total,
but for six of them the values obtained in the preceding
works can be employed, by virtue of the universality of the
Pomeron and Reggeon.
We have determined the three adjustable parameters with

the experimental data of the πp total cross sections, and
shown that those data can be well described within the
model. Once those parameters are determined, the ππ total
cross sections and the πp and ππ differential cross sections
can be predicted without any additional parameters. We
have presented our predictions for all the charged pion
combinations for both the total and differential cross
sections. Then we have demonstrated the comparisons
between our predictions and the experimental data for
the πp differential cross sections, and shown that our
calculations are consistent with the data. Furthermore, we
have investigated the energy dependence of the Pomeron
and Reggeon contribution, focusing on the contribution

ratios. Our results indicate that taking into account the
Reggeon exchange contribution is necessary to correctly
describe the cross sections, unless the energy is high
enough.
In this study we have extended the previous work [52], in

which only the Pomeron contribution was considered, and
found that in a wider

ffiffiffi
s

p
range the present model can well

describe both the total and differential cross sections. The
results presented in this paper show the predictive ability of
the model, which may be useful for analyzing other high
energy forward scattering processes. However, it is also
true that the experimental data used for the comparisons
concentrate in some narrow kinematic region. In particular,
the data in the high energy region are quite scarce. It is
expected that the future data will help to further test the
model and to deepen our understanding of the nonpertur-
bative nature of the underlying strong interaction.
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