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An extended Roy equation including a bound state pole is used to study ππ scatterings at unphysical
large pion masses when σ becomes a bound state in one situation and stays as a broad resonance in the other
case. The coupled integral equations at large pion masses are solved by taking the lattice driving terms and
the Regge amplitudes as inputs. Relying on the solutions of Roy equations that respect unitarity, analyticity
and crossing symmetry, we give predictions to the phase shifts with IJ ¼ 00, 11, 20 in the elastic energy
region. We then perform analytic continuation into the complex s plane to search for various poles, all of
which are inside the validity domain of the Roy equation. This is the first time that lattice data at unphysical
large pion masses are analyzed within the rigorous Roy equation method.
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I. INTRODUCTION

Meson-meson scatterings offer a valuable framework to
study QCD in the nonperturbative region. Roy equation
analyses [1–4] possessing crossing symmetry to meson-
meson scatterings that involve rather different types of
resonances from channels with different quantum num-
bers, turn out to be quite useful to put strong constraints on
the resonance properties [5–9] and the scattering ampli-
tudes [2,4,10–12]. In addition, the similar Roy-Steiner
equation analyses have been introduced into the baryon
sector to study the πN scattering amplitudes [13–16] and
nucleon resonances [17]. For the lightest QCD resonance
σ=f0ð500Þ, the precise determination of its mass and width
is reached upon the use of the rigorous ππ Roy equation [5],
though there has been a long-standing effort aiming at
the establishment of its existence in history (for recent
reviews, see Refs. [18,19]). The convincing results from
Roy-like equation analysis are rooted in its rigorous
implementation of analyticity and crossing symmetry
from the analytic S-matrix theory [20]. Crossing symmetry
implies delicate relations among the nonresonant force in

the IJ ¼ 20 case, the scalar σ=f0ð500Þ in the IJ ¼ 00
channel, the vector ρð770Þ with IJ ¼ 11 and other heavier
resonance states appearing in ππ scattering. It is demon-
strated in Refs. [21,22] that only when resonances in the s
and crossed channels are simultaneously included one can
obtain consistent results from the matching with chiral
perturbation theory (χPT) in different IJ channels. Such
delicate relations among the amplitudes in different chan-
nels required by crossing symmetry can be specially useful
to constrain the lattice results at unphysical quark masses,
which generally bear large uncertainties in the numerical
simulations nowadays. This is also one of the key motiva-
tions of our study.
Rapid developments in meson-meson scatterings have

been made by lattice QCD simulations, where the scattering
phase shifts can be obtained by mapping lattice finite-
volume spectra, see a recent review [23]. Although to tackle
unstable hadrons in meson-meson scatterings is challenging
in lattice QCD simulations, remarkable progresses have
been made not only on the ρð770Þ [24] but also on the
σ=f0ð500Þ [25,26], where the lattice calculations are
typically carried out at unphysical large quark masses.
Depending on the channels in question, the amplitudes at
large quark masses can be either similar to or drastically
different from those at physical masses. E.g., the resulting
resonance spectra with mπ ¼ 391 MeV [24–26] turn out to
be rather different from the physical ones: the ρð770Þ width
becomes around one-order magnitude smaller and the σ,
strikingly, transforms from a broad resonance into a bound
state below the two-pion threshold, while the ππ phase shifts
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with IJ ¼ 20 at different quark masses share qualitatively
similar trends [27,28]. These indicate that the fulfillment of
crossing symmetry at large lattice masses can be nontrivially
different from the situations at physical ones. Such an
interesting feature was not addressed in previous works
relying on unitarized chiral amplitudes and data-driven
N=D method [29–32], due to the loss of exact crossing
symmetry in those approaches. By contrast, the use of Roy
equation that faithfully obey analyticity, unitarity and
crossing symmetry, allows us to make a rigorous inves-
tigation into this intriguing problem.
On the other hand, the ππ phase shifts at large quark

masses, which although clearly reveal the bound state
solution for the σ=f0ð500Þ, are still determined with sizable
uncertainties in the present lattice simulations [25,26].
Demanding computing resources will be needed in lattice
QCD calculations to reduce the uncertainties. Furthermore,
the behavior of σ changing from a broad resonance to
a typical shallow bound/virtual state has been recognized for
a long time [33] when gradually increasing the pion masses,
but the consensus about the exact pole contents is not
reached yet [29,34–36], especially in the situation when σ
turns into a bound state. The coupled integral Roy equations
from different IJ channels with crossing symmetry and
analyticity can provide useful theoretical constraints to give
a more definite conclusion on the various pole contents and
to pin down the error bars of the lattice phase shifts, which
procedure also gives more reliable phase shifts for future
phenomenological studies due to the implementation of
crossing symmetry. It is noted that to what extent such
analyses can constrain the amplitudes at the unphysical
large quark mass is still rarely studied in literature. Our key
task is to carry out the rigorous investigation of such
problem within the Roy equation approach.
The paper is organized as follows. In Sec. II we derive the

set of Roy equations that we intend to solve. The procedure
is similar to the pioneer work [1], but we add the scalar-
isoscalar bound state pole terms used in the dispersive
integrals to accommodate the lattice data. Our goal is to
show how does (exact) crossing symmetry give a new
analytic structure for partial-wave amplitudes. After discus-
sing the available lattice inputs and the asymptotic Regge
amplitudes for mπ ¼ 391 MeV, the relations between the
multiplicity index of the solution within the additional
constraints and the unique solution of Roy equations are
discussed in detail in Sec. III. Next, in Sec. IV we solve the
equations numerically, and some comments on other uni-
tarized methods are also given. The phenomenological
discussions on the S-wave scattering lengths, pole informa-
tion, the pion-mass trajectory for the σ pole and the relevant
results atmπ ¼ 236 MeV can be found in Sec. V. The paper
ends with summary in Sec. VI. The demonstration of the
existence of a virtual state pole in scalar-isotensor channel
and the details to solve Roy equations for mπ ¼ 236 MeV
are deferred to Appendices A and B respectively.

II. EXTENDED ROY EQUATIONS

In order to describe the bound state σ in ππ scatterings at
large pion masses revealed in Refs. [25,26], one needs to
modify the coupled dispersive Roy equations by explicitly
including in the scattering amplitude the scalar-isoscalar
bound state pole terms, which are absent in the conven-
tional Roy equation for the physical pion case [1,5].1 The
key point is to write a twice subtracted fixed-t dispersion
relation with a bound state pole sσ with the quantum
number IJ ¼ 00 for the full amplitude T⃗ðs; t; uÞ in the
isospin space,

T⃗ðs; t; uÞ ¼ Cst½C⃗ðtÞ þ ðs− uÞD⃗ðtÞ�

þ 32πg2σππ

�
1

sσ − s
þ 1

sσ − u
Csu

�0B@
1

0

0

1
CA

þ 1

π

Z
∞

4m2
π

ds0

s02

�
s2

s0 − s
þ u2

s0 − u
Csu

�
ImT⃗ðs0; t; u0Þ:

ð1Þ
We will follow the convention of Refs. [1,2] for the explicit
representation of C⃗ðtÞ; D⃗ðtÞ and the crossing matrices
Cst; Csu. The bound state scalar σ pole accompanied by
the σππ coupling squared g2σππ in Eq. (1), appears not only
in the s channel but also in the crossed u channel for the
fixed-t dispersion relation. After the partial-wave (PW)
projection of the full amplitudes (1), one can give the
extended Roy equations for the PW amplitudes

RetIJðsÞ ¼ kIJðsÞ þ
X2
I0¼0

X1
J0¼0

Z
�

sm

4m2
π

ds0KII0
JJ0 ðs0; sÞImtI

0
J0 ðs0Þ

þ dIJðsÞ; ð2Þ

where ‘
R�’ represents the principal value integral, the kernel

functions KII0
JJ0 ðs0; sÞ are the same as those in Ref. [2], sm

stands for the matching point, the driving terms (DTs) dIJðsÞ
include the effects of S- and P-waves from higher energy
region beyond sm and also the higher PWs.2 The subtraction

1In fact, we have explicitly verified that there would be no
sensible solution to Roy equation at mπ ∼ 391 MeV by only
including two negative S-wave scattering lengths given in
Refs. [25,28] and excluding the bound state σ pole term.

2It is arbitrary to choose the value of the matching point sm in
principle. Above the matching point, the corresponding DTs
require the inputs from the experiments, lattice and even Regge
models, and the phase shifts below this point can be directly
solved numerically using Roy equation (we focus on the low-
energy S- and P-waves here). As long as the inputs, such as the
various DTs, are provided and suitable numerical methods are
taken, we can get the solutions of Roy equations which can be
then used to calculate the low-energy S- and P-waves phase shifts
below the matching point.
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terms and the σ pole terms are collected in kIJðsÞ and they read

k00ðsÞ ¼ a00 þ
s − 4m2

π

12m2
π

ð2a00 − 5a20Þ þ
g2σππ
12

�
16m2

πð4s − sσÞ − 4ð2s − sσÞðsþ 2sσÞ
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π − sσÞsσðsσ − sÞ −
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�
;
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k20ðsÞ ¼ a20 −
s − 4m2

π
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g2σππ
3

�
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þ 2Lσ

4m2
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�
; ð3Þ

with the logarithm Lσ ¼ lnðsþsσ−4m2
π

sσ
Þ. It is easy to verify

that kIJðsÞ reduces to the scattering length at ππ threshold
due to lims→4m2

π
ðk00; k11; k20ÞðsÞ ¼ ða00; 0; a20Þ. It is worth

noting that the last terms inside the brackets accompanied
by g2σππ in Eqs. (3) correspond to the bound state σ in the
IJ ¼ 00 channel, which also contributes to the other two
channels via crossing. We point out that within the various
unitarized chiral amplitude approaches [29–31,33] and
data-driven N=Dmethod [32] when tuning the pion masses
to some specific large values the bound state pole of σ can
be generated in the s channel, however due to the loss of

exact crossing symmetry its effects in the crossed channels
are usually neglected.
Furthermore, the so-called Balachandran-Nuyts-Roskies

(BNR) relations [37–39] derived from crossing symmetry
can impose constraints among PWamplitudes with different
IJ quantum numbers in the subthreshold energy region
between 0 and 2mπ . Interestingly, as noticed in Ref. [34], the
BNR relations could be specially useful for large pion
masses when the σ becomes a bound state below ππ
threshold. Only five relations are related to S- and P-waves
(see, e.g., Ref. [40]), which are some integral relations of PW
amplitudes,
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where Rj
i are polynomials of s,

R0
0 ¼ 1; R1

0 ¼ 1;

R0
1 ¼ 3s − 4m2

π; R1
1 ¼ 5s − 4m2

π;

R0
2 ¼ 10s2 − 32sm2

π þ 16m4
π; R1

2 ¼ 21s2 − 48sm2
π þ 16m4

π;

R0
3 ¼ 35s3 − 180s2m2

π þ 240sm4
π − 64m6

π: ð5Þ

The integration region of the BNR relations covers not only
the bound state σ pole in t00ðsÞ but also part of the left-hand
cuts (LHCs) generated by the σ in the crossed channel, since
the LHCs of PWs are now extended to ð−∞; 4m2

π − sσ�

instead of ð−∞; 0� due to the crossed-channel exchange of
σ. A novel observation is found in our study that the
contribution from the σ pole term of the s channel in the
BNR relation is exactly canceled by the LHCs generated by
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the crossed-channel exchanges of σ. This implies that when
neglecting the LHCs generated by the bound state σ pole in
the ππ scattering amplitudes as done in Ref. [34] one
probably would introduce artificial effects in order to fulfill
the BNR relations.
It is demonstrated here that the rigorous Roy equation

analysis enables us to take the full consideration of the
bound state σ in all channels, as shown in Eqs. (3). The σ
pole position sσ and its coupling gσππ , together with the
scattering lengths a00 and a20, will be tuned to solve the
coupled integral Eqs. (2).

III. INPUTS TO SOLVE ROY EQUATIONS:
LATTICE DATA AND REGGE AMPLITUDES

In this work, our main focus is to determine the phase
shifts only in the elastic energy region from the ππ
threshold up to the matching point

ffiffiffiffiffi
sm

p ¼ 2mK ¼
1098 MeV for mπ ¼ 391 MeV, when σ becomes a bound
state [25,26]. The key inputs of Eqs. (2) are the DTs dIJðsÞ,
which contain the information of high energy and
high PWs.

A. Inputs from lattice calculations

In practice, the DTs consist of two parts: inputs of
S-, P- and D-waves from lattice data up to 1.8 GeV, and the
higher energy and higher PW contributions. For the
DTs of S-, P-waves in the energy region from KK̄
threshold to 1.8 GeV and D-waves in the energy region
from ππ threshold to 1.8 GeV, we exploit the results
from the HadSpec collaboration [24,26,28]. Due to the
limited lattice resources, HadSpec collaboration does not
always provide data up to 1.8 GeV for all the channels,
so it requires us to extrapolate lattice results to 1.8 GeV.
Fortunately, the impact of extrapolation on the final
results is minor and almost negligible, due to the high
energy suppression 1=s03 in the kernel functions KII0

JJ0 ðs0; sÞ
in Eqs. (2) [5]. The various uncertainties from the
lattice data themselves and also the extrapolations are
then propagated to the final results through bootstrap
method.
For the IJ ¼ 00 channel, the available lattice data are

up to around 1.5 GeV [26]. An important observation is
that the impacts of mπ variations gradually decrease with
the increase of energy, so physical data can give some
insights in the high energy region. Since physical Imt00ðsÞ
shows a slow downtrend when

ffiffiffi
s

p
> 1.3 GeV [41], we

adopt a conservative extrapolation to set Imt00ðsÞ as
constants with large uncertainties in the energy region
1.5–1.8 GeV, and in this way it also accounts for the
complicated coupled-channel effects. For the IJ ¼ 20

channel, the available lattice data are up to around

1.5 GeV [28].3 Due to the moderate mass-dependence
of the phase shifts in IJ ¼ 20 channel and the minor
inelastic effects below 1.8 GeV at mπ ¼ 391 MeV [28],
we utilize a linear extrapolation of phase shift in the energy
region 1.5–1.8 GeV and assume elastic approximation
simultaneously [28]. For the IJ ¼ 11 channel, the available
lattice data are only up to

ffiffiffiffiffi
s0

p ≃ 1.1 GeV [24]. By assum-
ing δ11ð∞Þ ¼ π, we use a convenient extrapolation scheme
δ11ðsÞ¼πþðδ11ðs0Þ−πÞ 2

1þðs=s0Þ3=2, as proposed in Ref. [42].

Another contribution comes from the D-wave amplitude
with the f2ð1270Þ, which turns out to be the most important
one among the various higher PW DTs. Fortunately, the ππ
scattering amplitude in the IJ ¼ 02 channel is calculated
precisely up to 1.8 GeV [26], but for the IJ ¼ 22 channel,
the available lattice data are up to around 1.5 GeV [28].
Because the IJ ¼ 22 channel is a nonresonant case and also
shows a slow downward trend, we take the elastic approxi-
mation and extrapolate the phase shifts as a function of
energy squared from 1.5 GeV to 1.8 GeV.
We verify that the final results are robust with these

extrapolations because in the twice subtracted dispersion
relation the corresponding contributions from the extrapo-
lated high energy region are suppressed and play a minor
role in the final results (see the next section). To be
specific, the main conclusions are almost unaffected by
these extrapolation methods.

B. Inputs from Regge models

In addition, higher PWs and the DTs above 1.8 GeV are
estimated by the Regge pole theory [43,44]. Although the
physical ππ Regge amplitudes can be constructed by fitting
the experimental cross sections as done in Refs. [4,11,45],
the ππ Regge amplitudes at unphysical large pion masses
are poorly known due to lacking of the lattice constraints. In
this work we will exploit an improved Veneziano-Lovelace-
Shapiro model [46–48] to analyze the asymptotic behavior
of the scattering amplitude, see Ref. [2] for more details. A

3Notice that the isotensor lattice data in Refs. [28] correspond
to mπ ¼ 396 MeV, not 391 MeV. However, such mismatch can
be nearly ignored, and the reason is twofold. Firstly, we work in
the isospin symmetric limit by ignoring the mass difference of the
charged pions/kaons and the neutral ones. In practice, the two
different thresholds for KþK− and K0K0 are separated by several
MeVs, which are however ignored in the isospin limit. The
variation between 391 MeV and 396 MeV is actually at the same
level of isospin breaking effects that are neglected in the current
study. Second, the ππ phase shifts in the isotensor channel only
moderately depend on the pion masses and the small variation of
the pion masses is not expected to give noticeable effects.
Therefore we claim the effects of the pion mass variation from
mπ ¼ 396 MeV to mπ ¼ 391 MeV can be ignored in this work.
As for matching condition of phase shift δ20 (see the next section),
we will simply set the same matching point

ffiffiffiffiffi
sm

p ¼ 2mK ¼
1098 MeV as the common one used in the IJ ¼ 00 and 11
channels.
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Regge trajectory with isospin It gives a contribution ∝ sαðtÞ to the t channel isospin amplitude ImTðItÞðs; tÞ, which is related
to the s channel amplitude ImTIsðs; tÞ via

ImTðItÞðs; tÞ ¼
X
Is

CItIs
st ImTIsðs; tÞ: ð6Þ

The asymptotic behaviors of the s channel isospin amplitudes take the form [2]

ImTIs¼0ðs; tÞ ¼ 1

3
βππP eb

ππ
P t

�
s
s1

�
þ 1

3
βfðtÞ

�
s
s1

�
αfðtÞ þ βρðtÞ

�
s
s1

�
αρðtÞ þ ðt ↔ uÞ;

ImTIs¼1ðs; tÞ ¼ 1

3
βππP eb

ππ
P t

�
s
s1

�
þ 1

3
βfðtÞ

�
s
s1

�
αfðtÞ þ 1

2
βρðtÞ

�
s
s1

�
αρðtÞ

− ðt ↔ uÞ;

ImTIs¼2ðs; tÞ ¼ 1

3
βππP eb

ππ
P t

�
s
s1

�
þ 1

3
βfðtÞ

�
s
s1

�
αfðtÞ

−
1

2
βρðtÞ

�
s
s1

�
αρðtÞ þ ðt ↔ uÞ; ð7Þ

where the normalization factor is chosen as s1 ¼ 1 GeV2.
In this model, the ρ- and f-trajectories are linear and
assumed to be degenerate, i.e., αðtÞ≡ αρðtÞ ¼ αfðtÞ ¼
α0 þ α1t, and α1 ¼ 1

2ðm2
ρ−m2

πÞ ¼ 0.87 GeV−2, α0 ¼ 1
2
−

α1m2
π ¼ 0.37, where we have taken mρ ¼ 854.1 MeV for

mπ ¼ 391 MeV [24]. In addition, the explicit parametriza-

tion of the ρ- and f- residues are βρðtÞ ¼ 2
3
βfðtÞ ¼ η

πλααðtÞ
1

Γ½αðtÞ�
[2] with λ ¼ 96πΓρm2

ρðm2
ρ − 4m2

πÞ−3=2 ¼ 67.34, where at
mπ ¼ 391 MeV we have taken Γρ ¼ 12.4 MeV [24]. As
indicated in Ref. [2], this model overestimates the magni-
tude of the Regge residues, thus a significant fraction
thereof should be transferred to the Pomeron term. It is
suggested that the value of the strength factor η can be set to
0.5� 0.2 to estimate the effects from the Pomeron [2].
Unfortunately, the Pomeron residues βππP and bππP are

unknown at unphysical large pion masses, and the available
lattice data cannot give a direct determination of their
values yet. In this work we will rely on the so-called
additive-quark rule of the Pomeron exchange (see e.g.
Sec. 3 of [49] for details) to estimate the Pomeron residues.
The additive-quark rule of Pomeron exchange says that the
total cross section of a process σab (or the imaginary part of
the corresponding amplitude) is proportional to the num-
bers of light valence (specifically u, d) quarks na, nb in the
hadrons a and b. In particular, the residue of Pomeron

exchange βabP satisfies βabP ðtÞ ∝ nanb, e.g., β
πp
P ∶ βppP ≈ 2∶3.

It can be also generalized to include s quark. The minor
difference is that the coupling between Pomeron and s
quark is about 70% of that with u, d quarks. The additive-
quark rule has been verified by various experiments [49],
although its QCD origin has not been fully understood.
Since the unphysical large pion mass (∼391 MeV) is not so
different from the physical kaon mass (∼496 MeV), we
will take a rough estimation βππP ∼ 0.7βππPhyP ¼ 65.8 and
bππP ¼ bππPhyP , where βππPhyP ¼ 94 and bππPhyP ¼ 2.5 GeV−2

[11]. For illustration, we compare the imaginary part of
TðItÞðs; 0Þ resulting from the lattice data and the Regge
asymptotic amplitudes with η ¼ 0.5� 0.2 in Fig. 1.
The DTs are obtained via dispersive integrals above sm to

infinity. We verify that the contributions by the dispersive
integrals above 1.8 GeV from the Regge model are very
small in all the three cases with IJ ¼ 00, 11, 20 and the DTs
are mainly given by S-, P and D-wave contributions below
1.8 GeVas shown in Fig. 2. The sums from the various DTs
are shown as black solid lines in Fig. 2. The contribution
from the asymptotic high energy region and high partial
waves estimated by Regge model are around one order of
magnitude smaller, which makes our main analyses almost
unaffected by the Regge contributions. In Fig. 2, we also
compare the contributions from lattice input, the extrapo-
lated data, and Regge asymptotic effects. It is observed that
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FIG. 1. Comparison of ImTðItÞðs; 0Þ constructed from lattice data and the Regge asymptotic amplitudes.
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the extrapolated data play a minor role in DTs. The only
exception occurs for P-wave, where the main contribution
comes from the extrapolated data. However, as depicted
later in Fig. 4, the DT in the P-wave amplitude Ret11ðsÞ, is
totally negligible, thus one almost needs not to worry about
such an effect from extrapolation. In order to assess the
influence of the separation point between the extrapolated
data and the Regge contributions, we also try to set the
separation point at 1.5 GeV during the calculation and the
results are shown in Fig. 2 together with the curves obtained
at 1.8 GeV. The differences between two cases turn out to be
very small.

C. Additional constraints and uniqueness of solutions

As a group of coupled integral equations, the number of
independent solutions for Roy equations is dependent on
the input phase shifts at the matching point sm, which can
be extracted from the HadSpec simulations [24,26,28]:
δ00ðsmÞ ¼ ð15.5þ5.5

−3.5Þ°, δ11ðsmÞ ¼ 170.1°, δ20ðsmÞ ¼ −ð16.3�
1.0Þ°. According to the discussion in Refs. [2,50,51], the
multiplicity index in this situation is m ¼ 0þ 1 − 1 ¼ 0,
while m ¼ 0 in the physical case. In the latter case, the
subtractions kIJðsÞ, i.e. the scattering lengths, in Eqs. (3) are
taken as external inputs and the pole terms are absent,
which gives the multiplicity index m ¼ 0 and leads to the
unique solution [2].4

However, in the large pion mass situation, the scattering
lengths a00; a

2
0, the position and the residue of the bound

state pole sσ; gσππ usually bear comparatively large uncer-
tainties, as discussed in Refs. [25,26,29–32,34], and their
precise values are still loosely determined. Since there are
four parameters in our case, it is hard to obtain a multi-
parameter universal band.5 In practice, it is more reliable to
set sσ; gσππ; a00; a

2
0 as free parameters when solving the

extended Roy equations, which implies m ¼ 0 → 4 and
Roy equations will then have a four-parameter solution
family. To pin down the unique one in the solution family,
four additional independent constrains are required.
We utilize a numerical method based on the constraints of

the phase shifts at the matching point sm [15]. It requires that
the derivatives of the phase shifts at this point either are
continuous (no-cusp condition) or have a certain divergence
behavior (when an additional strongly coupling channel
appears at sm). This can provide three constraints on the
solutions of the phase shifts in three different channels
with IJ ¼ 00, 11, 20. In practice, the lattice phase shift for
P-wave [24] is precise enough to pin down the mass of the ρ
resonance directly, because at mπ ¼ 391 MeV ρ becomes a
very narrow resonance with the width Γρ ∼ 10 MeV. Such
condition almost gives a direct constraint on the location s0

for δ11ðs0Þ ¼ π=2. Thus, it is more appropriate to set the
position s0 where δ11ðs0Þ ¼ π=2 as the fourth constraint
rather than a theoretical output. As a result, we are able to fix
the two scattering lengths in the IJ ¼ 00 and 20 channels,
the location and the residue of the σ pole by means of the
aforementioned four constraints. In this way the four
parameters a00; a

0
2; sσ and jgσππj are not taken as external

inputs but correspond to the predictions of this procedure.
Our case is analogous to πN Roy-Steiner equation study in
Ref. [15]. We will follow the method in Ref. [2] to
numerically solve Roy equations, and it turns out to be
crucial to choose convenient parametrizations for the phase
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FIG. 2. Decomposition of the DTs in terms of lattice input, extrapolated data and Regge pole theory. The black solid line labeled as
DTTotal corresponds to the sum of the aforementioned three parts where the Regge contributions are introduced in the energy region
above 1.8 GeV. For the brown line labeled as DT1.5, the corresponding Regge contributions are included in the energy region above
1.5 GeV. See the main text for details.

4The reality, however, is more complicated. In Ref. [2], it was
observed that only P-wave amplitude shows a prominent peak
around

ffiffiffiffiffi
sm

p ¼ 0.8 GeV and the solutions of Roy equations in
general develop a strong cusp in P-wave. Indeed, such a cusp can
be removed by tuning the isotensor scattering length a20, while the
isoscalar scattering length a00 is usually fixed at the value predicted
by χPT. In practice, the cusps in two S-waves are very weak, so
that effectively they play negligible roles in constraining param-
eters. In brief, once a00 is fixed at a specific value, then the solutions
of Roy equations would become a single parameter family
depending on a02. In practice, the no-cusp condition on P-wave
can constrain a20 to reach final central solution (one parameter þ
one constraint ⇒ the unique solution).

5In the physical case, it was proved that the for any reliable
value of the scattering length a00, the S- and P-wave cusps could
be removed by tuning a20, resulting in a one-parameter solution
family, the so-called universal band [2].
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shifts in different channels in order to obtain precise Roy
equation solutions.

IV. NUMERICAL PROCEDURES TO SOLVE
ROY EQUATIONS

A. Numerical determination of the solutions

According to Refs. [2,3,15], we pursue the following
strategy to solve Roy equations: the phase shifts of each
channel in the region ð4m2

π; smÞ are conveniently para-
metrized with a few parameters, which are matched to the
input PWs above sm in a reasonableway. Finally, the process
of solving the equations is converted into optimizing these
parameters to minimize certain objective functions. One of
the crucial steps is to properly parametrize the phase shifts in
different channels.
The phase shift δ00ðsÞ at the KK̄ threshold has a strong

cusp effect, indicating that the derivative of the phase shift
is not continuous and diverges. For a generic Roy solution,
the divergence depends on the value of the phase shift at the
matching point in the following way [50]:

d
ds

δ00ðsÞj
s→s−m

∝ ðsm − sÞα−1; α ¼ 2δ00ðsmÞ
π

− 2: ð8Þ

Particularly by combining the two-coupled-channel unitar-
ity and the Roy equations, one has [8]

d
ds

δ00ðsÞj
s→s−K

¼ AðsK − sÞ−1
2; A¼ ρπðsKÞjg00ðsKÞj2

2cosð2δKÞ ffiffiffiffiffi
sK

p ; ð9Þ

where ρπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

and g00ðsÞ is the PW ππ → KK̄
amplitude with IJ ¼ 00. In our case, the matching point
sm coincides with the KK̄ threshold sK ¼ 4m2

K. It is
expected that the derivative of the phase shift will exhibit
a square-root singularity. This divergence is weaker than
the generic matching point divergence (8) provided the
phase shift at threshold is not too large, i.e. δ00ðsKÞ < 225°,
which is indeed fulfilled in the present study [26]. Guided
by these requirements, a modification of the Schenk
parametrization [52] is used for δ00ðsÞ:

tan δ00ðsÞ ¼ ρπðsÞða00 þ B0
0q

2 þ C0
0q

4 þD0
0q

6Þ 4m
2
π − s00

s − s00

×
σKðsπÞ þ β

σKðsÞ þ β
; ð10Þ

where σKðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK=s − 1

p
and β ¼ sinð4δKÞ

4ρπðsKÞjg00ðsKÞj2
. In

Ref. [26], it is analyzed that jg00ðsKÞj2 ∼ 1.36, leading to
β ∼ 0.23. In practice, we leave it as a constrained param-
eter, 0.13 < β < 0.33, in order to get the approximate
solution for s close to sK but not necessarily reproducing
the “exact” limiting behavior for s ¼ sK. In the IJ ¼ 00
channel, Eq. (9) and the matching condition requiring

δ00ðsmÞ ¼ δ00ðsm þ 0þÞjinput ¼ 15.5° are two constraints in
the optimization process. For the IJ ¼ 11 channel, a
conformal parametrization is adopted [4],

cot δ11ðsÞ ¼
ffiffiffi
s

p
2q3

ðM2
R − sÞ

�
2m3

π

M2
R

ffiffiffi
s

p þ B0 þ B1wðsÞ

þ B2w2ðsÞ
�
;

wðsÞ ¼
ffiffiffi
s

p
− ffiffiffiffiffiffiffiffiffiffiffiffi

s0 − s
p

ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p : ð11Þ

The matching and no-cusp conditions require δ11ðsmÞ ¼
δ11ðsm þ 0þÞjinput ¼ 170.1° and dδ1

1
ðsmÞ
ds ¼ dδ1

1
ðsmþ0þÞ
ds jinput ¼

6.2° GeV−2 [24]. Moreover, the additional constraint
δ11ðsρÞ ¼ π corresponds to ffiffiffiffiffisρp ¼ MR ¼ ð854.1� 1.1Þ
MeV [24]. The parametrization in the IJ ¼ 20 channel
is similar to Eq. (10),

tan δ20ðsÞ ¼ ρπðsÞða20 þ B2
0q

2 þ C2
0q

4 þD2
0q

6Þ 4m
2
π − s20

s − s20
;

ð12Þ

which is also accompanied by two constraints: δ20ðsmÞ ¼
δ20ðsm þ 0þÞjinput ¼ −16.3° and

dδ2
0
ðsmÞ
ds ¼ dδ2

0
ðsmþ0þÞ
ds jinput ¼

−12.2° GeV−2 [28].
As discussed above, we need to treat these parameters

fB0
0;C

0
0;D

0
0; s

0
0;β;B0;B1;B2; s0;B2

0;C
2
0;D

2
0; s

2
0g on the same

footing as a00; a
2
0; sσ and gσππ . Therefore we are dealing

altogether with 5þ 4þ 4þ 4 ¼ 17 free variables and
2þ 3þ 2 ¼ 7 constraints when solving Roy equations. It
is natural to re-express the parameters of the phase shifts as a
function of the input phase and its derivative at sm, so that we
restrict ourselves to a set of solutions where these conditions
are fulfilled automatically. More details about how to match
the parametrizations and the lattice input at sm can be seen in
Sec. 5.1 of Ref. [15]. All the parameters are determined from
the optimization procedure by minimizing a χ2-like function,

χ2 ¼
X
I;J

XN
i¼1

�
RetIJðsiÞ − F½tIJ�ðsiÞ

ξIJ

�
2

; ð13Þ

where ξIJ are the weight factors fixed to ξ
0
0 ¼ ξ11 ¼ 5ξ20 ¼ 1,6

fsig denotes a set of energy points between threshold and
matching point, and F½tIJ� stands for the right-hand side of
the extended Roy equations (2). We have checked the

6Since the amplitude t20 is smaller than other amplitudes,
setting different weight factors to different channels can accel-
erate the convergence efficiency in the optimization process.
Whatever weight factors are chosen, the final solutions are all
the same.
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stability of the solution with respect to the choice of ξIJ, as
well as the number of grid points, which is varied between
20 and 30, and in the end fixed toN ¼ 25. Finally, we obtain
χ2 ∼ 10−3, indicating that the optimization procedure is
converging to a real solution. The accuracy of the solutions
is illustrated in Fig. 3. Numerical values of the parameters
describing the phase shifts of Eqs. (10) (11) and (12) in the
Roy solutions are given in Table I. In Fig. 4 we show the
effects of different parts in the right-hand side of Roy
equations (2). Notice that in all the channels the σ pole terms
dominate in the high energy region and are largely canceled
by the subtraction and the kernel contributions. The DTs
have a minor effect in all the three amplitudes RetIJðsÞ with
IJ ¼ 00, 11, 20.
It is an interesting point to compare the size of the

Cauchy-kernel contributions in (2). As shown in Fig. 5, only
P-wave shows “s-channel dominance,” i.e., the Cauchy-
kernel contribution in the P-wave is the main contribution in
the kernel terms, KTðsÞ, because the ultra narrow ρ
resonance largely dominates the feature of the P-wave.
The reason behind vector meson dominance is the fact that
the LHC contributions are kinematically suppressed for the
P-wave. In contrast, LHC contributions in S-waves are
usually non-negligible. On the other side, by increasing the
pion masses, the LHC contributions could still be relevant
and even become more important in special cases. Actually,
according to Ref. [53], the LHC effects depend on only the
interaction range in potential scattering theory. In the
present study, the emergence of the near-threshold bound
state σ at large pion mass is found to give rather important

LHC. Most unitarized χPT amplitudes methods, for in-
stance, the inverse-amplitude method (IAM) [54–56], which
is very similar to the Páde-approximation method, obtains
the resonances via the sum of the s-channel bubble loops
and neglects the resonance effects in the crossed channels.
To our knowledge, the LHC caused by the bound state σ at
mπ ∼ 391 MeV has not been addressed by previous studies.
Besides, the degree to which the IAM (and other unitarized
χPT methods) can correctly handle (exact) crossing sym-
metry is a subject under debate [57–61]. At the large NC
limit, it is clearly demonstrated in Refs. [21,22], that the
improper way to include resonances in the crossed channels
cannot be correctly matched to χPT in the low energy
region. According to Ref. [60], unitarized chiral amplitudes
usually underestimate the LHC contributions, whose effects
are simulated by spurious pole contributions.

B. Error estimations

The procedure of evaluating theoretical uncertainties
consists in performing random variations of the various
inputs, which include the D-wave contributions, the floating
inputs at the matching point δIJðsmÞ, the S- and P-wave
lattice phase shifts above the KK̄ threshold and the
asymptotic Regge contributions. As one of the key inputs,
the lattice result above the inelasticKK̄ region still has large
uncertainty [26], and this prevents us from predicting the
lattice phase shifts between s ¼ 4m2

π and s ¼ 4m2
K within

the Roy equation method as precise as the physical
situations. Nevertheless, we can still give predictions to
the phase shifts in Fig. 6 after solving the Roy equations that
respect crossing symmetry. For the complete error estima-
tions of the Roy-type equations in the physical case, see the
discussions in Refs. [2,3,15].
In the present study, we analyze the uncertainties con-

tributed by the variations of matching phase shifts
δ00ðsmÞ; δ20ðsmÞ, the lattice DTs below 1.8 GeV and the
asymptotic Regge amplitudes. Besides, the rough estima-
tion of the “cusp” parameter β ¼ 0.23� 0.1 in Eq. (10)
can also give rise to some non-negligible uncertainties.
According to Ref. [26], we roughly set δ00ðsmÞ ¼
ð15.5þ5.5

−3.5Þ°. For δ20ðsmÞ [28], we perform “global” fits based
on a K-matrix parametrization in the energy region 782 <ffiffiffi
s

p
< 1550 MeV and “local” fits in which one considers

separately a small energy region surrounding the matching

TABLE I. Parameters for the solutions of the extended Roy equations. All parameters are given in appropriate powers of GeV.

a00 B0
0 C0

0 D0
0 s00 β B0 B1 B2

−3.78 4.88 × 10 −2.04 × 102 2.49 × 102 3.94 × 10 2.61 × 10−1 8.55 × 10−1 6.59 × 10−1 6.81 × 10−1

s0 MR (input) a20 B2
0 C2

0 D2
0 s20 sσ gσππ

1.57 8.54 × 10−1 −2.10 × 10−1 −2.08 5.99 × 10 −2.55 × 102 −6.96 × 10 5.76 × 10−1 4.93 × 10−1

0.80 0.85 0.90 0.95 1.00 1.05
–4

–3

–2

–1

0

1

FIG. 3. Left-hand sides of the Roy equations (lines) compared
to the right-hand sides (points) after minimization for mπ

¼ 391 MeV.
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point 1000 <
ffiffiffi
s

p
< 1200 MeV (see Ref. [3] for more

details). In the small energy region, an approximation to
δ20ðsÞ as a function of quadratic polynomial of energy

ffiffiffi
s

p
is

enough. We consider the differences of δ20ðsmÞ obtained
from the two different fits as an additional source of
uncertainty in our study. In summary, the difference of
the phase shifts between these two fits at the matching point
is about 1°, thus we set δ20ðsmÞ ¼ −ð16.3� 1.0Þ°. It is
explicitly verified that variations of the inputs in the energy
region

ffiffiffi
s

p
> 1.8 GeV have negligibly small influences. So

we will mainly analyze the inputs in the energy region
1.1 <

ffiffiffi
s

p
< 1.8 GeV, especially for the result from the

IJ ¼ 00 channel, which turns out to dominate the uncer-
tainties among the DTs above the KK̄ threshold. We utilize

various extrapolations of δ00ðsÞ in the energy region 1.44 <ffiffiffi
s

p
< 1.8 GeV to test the robustness of the solutions. Based

on these variations of inputs, the uncertainties of the phase
shifts in the IJ ¼ 00, 11, 20 channels and the pole positions
are obtained using the bootstrap approach.

V. PHENOMENOLOGICAL DISCUSSIONS
AT LARGE PION MASSES

A. Results for phase shifts and the S-wave
scattering lengths

Relying on the aforementioned solutions of extended Roy
equations, we are ready to reveal the corresponding phe-
nomenological consequences at large pion masses. The ππ
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FIG. 5. Comparison between the size of the Cauchy-kernel contribution (“KTCauchy”) in (2) and the complete kernel contribution
(“KT”) manifesting crossing symmetry.

0.80 0.85 0.90 0.95 1.00 1.05
–5

0

5

10

0.80 0.85 0.90 0.95 1.00 1.05

–0.9

–0.4

0.1

0.6

1.1

0.80 0.85 0.90 0.95 1.00 1.05

–2

–1

0

1

FIG. 4. Decomposition of the right-hand sides of Roy equations (2) into the different contributions. Black solid lines correspond to the
sum of all the contributions. Red dashed lines denote the subtraction contribution (“Sub”), whereas the blue dashed lines refer to the σ
pole terms (“σ Pole“). The kernel terms (“KT”) are given by the green dot-dashed lines, and finally the driving terms (“DT”) are
described by the orange dot-dashed lines.
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FIG. 6. ππ phase shifts at mπ ¼ 391 MeV from Roy equation solutions: S0, P and S2 stand for the results of the
IJ ¼ 00, 11, 20 channels, respectively. For the sources of the shaded error bands, see the main text for details. The lattice data
are taken from Refs. [24–26,28].
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phase shifts that respect crossing symmetry at mπ ¼ 391
MeV are provided in Fig. 6, where blue shaded uncertainty
areas are obtained by including all the error sources from
DTs dIJðsÞ, such as the D-wave contributions, the floating
inputs at the matching point δIJðsmÞ, S- and P-wave lattice
inputs in the energy region above the KK̄ threshold and the
asymptotic Regge amplitudes. The resulting uncertainty for
IJ ¼ 00 is obviously larger than those in IJ ¼ 20 and 11
channels. It is verified that in our study the uncertainties of
phase shifts with IJ ¼ 00 are dominated by input phase shift
δ00ðsÞ at the matching point

ffiffiffiffiffi
sm

p ¼ 1098 MeV and the
parameter β in Eq. (10). This can be clearly seen by
artificially assigning smaller errors to these two constraints,
e.g., δ00ðsmÞ ¼ ð15.5þ3.5

−1.5Þ° and β ¼ 0.23� 0.05, the error
band of phase shift δ00ðsÞwill then considerably shrink to the
yellow region as shown in Fig. 6. Our results of phase shifts
clearly give a useful constraint for future lattice QCD
simulations and phenomenological studies.
The corresponding parameters that give the solutions in

Fig. 6 are

a00 ¼ −ð3.8þ1.1
−1.2Þ; a20 ¼ −ð0.21þ0.02

−0.03Þ;ffiffiffiffiffi
sσ

p ¼ 759þ7
−16 MeV; jgσππj ¼ 493þ27

−46 MeV: ð14Þ

Our determination for the σ mass agrees with the N=D
determination of 758(5) MeV from Ref. [32], and are also
roughly compatible with other results in Refs. [26,29,31,34]
after taking into account the uncertainties. We find that the
value of the scalar-isoscalar scattering length a00 has a
significant correlation with the σ mass in numerical opti-
mization, probably because the σ is too close to the
threshold. It directly leads to the presence of a “platform”
near the numerical solution (14), which signals the existence
of flat directions in the four-dimensional-parameter space to
which the Roy equation constraints are only weakly
sensitive.7 The presence of this “platform” gives a possible
explanation about the spread values for a00 and sσ from
different approaches [26,29,31,32,34].

B. Pole contents in the complex plane

Next we perform the analytic continuation into the
complex s plane to look for poles in the second
Riemann sheet (RS). In the PW amplitude with IJ ¼ 00,
apart from the bound state pole for σ in the physical RS, we
further find several other poles in the second RS, whose
positions are

ffiffiffiffiffiffiffi
ssub

p ¼ ð269þ40
−25Þ − ið211þ26

−23Þ MeV;ffiffiffiffiffiffi
sfI

0

p ¼ ð1142þ53
−46Þ − ið112þ59

−45Þ MeV;
ffiffiffiffiffiffi
sfII

0

p ¼ ð1434þ167
−223Þ − ið371þ97

−49Þ MeV: ð15Þ

The coupled-channel analysis by explicitly including
ππ; KK̄ and ηη in Ref. [26] reveals a pole in the second
RS at ð1166� 45Þ − i

2
ð181� 68Þ MeV (advocated as the

f0ð980Þ resonance in the previous reference), which is
consistent with the fI0 pole in Eq. (15). While, the broad
pole fII0 in our determination (15) could correspond to a
second RS shadow pole of the long-debated f0ð1370Þ
resonance [62,63]. Notice that the position of the fII0 pole
is already above the ηη threshold, therefore it is possible that
this pole position could be visibly shifted when including the
inelastic KK̄ and ηη amplitudes. Although to explicitly
include the latter heavier states as dynamical channels is
clearly beyond the scope of this study that exploits the Roy
equation method in the elastic case, we try to estimate the
high energy influence on the heavy fI0 and fII0 poles by
varying the DTs. Notice that both fI0 and fII0 are wider than
in the physical case, one possible explanation may be that,
unlike the ρ meson (which may be understood as an SUð2Þ
isospin gauge boson [64]—hence its relation to mπ could be
simple and trivial), fI0 may be more appropriately described
as a KK̄ molecule [65–67]. Hence its mass and decay phase
space also depend onmπ , and there is no simple expectation
on the mπ dependence of its width. It is also verified that all
the poles in Eq. (15) fall in the validity domain of the Roy
equation, see Fig. 7.8 An intermediate task is to discern how
the different poles can affect the amplitudes on the real axis.
For this purpose, we give in Fig. 8 the contour plot for the
S-matrix with IJ ¼ 00 in the second RS, i.e. S0II0 ðsÞ ¼
1=S00ðsÞ ¼ 1=ð1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π=s − 1
p

t00ðsÞÞ. The prominent
pole structures corresponding to fI0 and fII0 can be clearly
seen in this figure. The remaining question is how to
understand the subthreshold complex pole close to s ¼ 0,
i.e. the broad pole

ffiffiffiffiffiffiffi
ssub

p ¼ ð269þ40
−25Þ − ið211þ26

−23Þ MeV in
Eq. (15). It should be reiterated that this subthreshold
complex pole is inside the validity domain of the extended
Roy equations, as shown in Fig. 7.
Recently a near threshold virtual state pole, apart from

the bound state pole of σ, was introduced in Ref. [34]
within the PKU parametrization of S-matrix formalism,9 in

7Such behavior in the parameter space has been thoroughly
investigated in the Roy-Steiner equation analyses of πN scatter-
ing [15].

8The validity domain relies both on the Lehmann-Martin
ellipse and the double spectral function of ππ scatterings. When
there is a bound state sσ (< 4m2

π), the right extremity rðs0Þ of ππ
Lehmann-Martin ellipse (i.e. the double spectral function)
changes from minf16s0m2

π=ðs0 − 4m2
πÞ; 4s0m2

π=ðs0 − 16m2
πÞg [5]

to minf4sσð1 − sσ=ðs0 − 4m2
πÞÞ; 4ðm2

π − s2σ=ðs0 − 4sσÞÞg.
9Actually, the general discussions about the existence of a

virtual state (resulting from the two conjugate σ poles in the
physical case) were previously given in Ref. [33] based on χPT
and IAM.
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order to simultaneously describe the recent lattice phase
shifts and fulfill crossing symmetries imposed by the BNR
relations at mπ ¼ 391 MeV. This virtual state pole is later
challenged by the authors of Ref. [35], who claim that the
virtual state pole does not exist when including the
dynamics in the energy region above the inelastic KK̄ or
even ηη channels. Our study provides a more complete
picture about the pole contents for ππ scatterings at
mπ ¼ 391 MeV. Two broad resonance poles above KK̄
threshold, namely fI0 and fII0 , are found in our amplitudes.
Below the ππ threshold, compared with the virtual state pole
on the real axis as introduced in Ref. [34], our study reveals
a pair of broad complex poles in complex plane in the IJ ¼
00 amplitude. One reason behind this discrepancy could be
that in Ref. [34] the LHC contributed by the bound state σ
pole is omitted, which can play important roles in the
fulfillment of the BNR relations, since the integral region of
the BNR relations covers part of the σ-induced LHC.
We are not able to trace the continuous σ pole trajectory

with different values of mπ , because there are not enough
lattice inputs. Therefore we focus on two special cases:
mπ ¼ 391 MeV and mπ ¼ 236 MeV (more details see
below), the former corresponds to a bound state σ and

the latter corresponds to a broad resonance. The pole
contents in Eq. (15) could already imply a more involved
pion-mass trajectory for the σ pole as demonstrated in Fig. 9,
rather than the simple ones illustrated in Refs. [33,34].
When gradually increasing the pion masses from its

physical value, the pair of broad physical σ resonance poles
will move toward the real axis from the complex plane and
meet on the real axis below the threshold sth ¼ 4m2

π

becoming a pair of virtual state poles at a specific value
of mπ (see, e.g. Refs. [29,30,33]). By further increasing the
pion masses, one of the virtual state pole (denoted as VS-I)
will move left along the real axis, and the other one moves
right across the threshold to the first RS and becomes a
bound state pole. At the same time, the bound state pole
will cause a new LHC singularity via crossing as shown in
Eqs. (3), and the corresponding branch point at sth − sσ
extends to the real axis above s ¼ 0. From Eqs. (2) and (3),
it can be proved that the S-matrix S00ðsÞ will change from
positive infinity to negative infinity10 when approaching the
LHC caused by the bound state σ. The sharp change of
S00ðsÞ from þ∞ to −∞ in the vicinity of sth − sσ implies
that it must cross the real axis once in the range
sth − sσ < s < sth. The interception point corresponds to
a zero for S00ðsÞ in the first RS, and it also denotes a virtual
state pole for the S-matrix in the second RS.11 In another
words, it indicates that an additional virtual state pole
(denoted as VS-II) is generated from the σ-induced LHC,
which completely comes from the analysis of crossing
symmetry. Finally, it is natural to conjecture that the two
virtual state poles, i.e. VS-I (evolved from the physical σ
resonance) and VS-II (generated from the new LHC), will

FIG. 8. jS0II0 ðsÞj obtained from the extended Roy equation,
analytically continued to the lower-half complex s plane.

0 20 40 60 80
–40

–20

0

20

40

FIG. 7. Validity domain of extended Roy equation for
mπ ¼ 391 MeV. The dashed red boundary represents the validity
domain by dropping the effects of the bound state σ, and the blue
boundary corresponds to the complete validity domain within
uncertainty from the location of the σ. The poles in the
validity domain in the second RS are from left to right, as shown
in Eq. (15).

FIG. 9. The qualitative trajectory of the σ pole on the second RS
of the s plane with varying mπ . See the main text for the meaning
of the labels “VS-I,II”.

10Note that in Eqs. (3), lims→4m2
π−sσþ0þk

0
0ðsÞ → −∞.

11Analyticity and unitarity tell us that SIIðsÞ ¼ 1=SðsÞ, namely
the first sheet zero exactly corresponds to a second sheet pole.
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collide at a specific value of mπ , evolve into complex poles
by further increasing mπ and they finally give rise to the
pair of subthreshold complex poles we find here at
mπ ¼ 391 MeV. Therefore, we consider that the pair of
subthreshold complex poles corresponds to “companion
pole” of the bound state pole “σ,” since one of its origins
comes from the conjectured virtual pole caused by the
LHCs of the bound state σ. It is worth emphasizing again
that the trajectory in Fig. 9 should be considered as a
semiconjecture—only the poles at two specific values of
mπ , i.e., mπ ¼ 391 MeV and mπ ¼ 236 MeV are derived
from Roy equation analyses of lattice results. It is the
existence of the broad pole on the complex plane below the
ππ threshold that drives us to conclude that one additional
virtue pole VS-II should be generated from the LHC caused
by the bound state σ at mπ ¼ 391 MeV. Clearly, our study
provides a new insight into the pole trajectories of σ as a
function of the pion mass.
In Fig. 10, we plot the pole locations in the complex

ffiffiffi
s

p
plane for the IJ ¼ 00 amplitudes at mπ ¼ 391 MeV. For
comparison, the result of f0 poles reported by the HadSpec
collaboration [26] are also shown. Our determination of the
fI0 is consistent with its values within uncertainties.
Interestingly, we find that by dropping the contributions
from the Regge amplitudes and the inputs in the 1.44 <ffiffiffi
s

p
< 1.8 GeV from the IJ ¼ 00 channel, all the poles are

barely affected except the fII0 one. This explicitly demon-
strates that the Roy equation solutions in the low energy
region are insensitive to the inputs in high energy region.
Meanwhile, it also indicates that the heavy fII0 pole could be
noticeably affected by the dynamics in the high energy
region, and the coupled-channel effects can be important to
precisely pin down the properties of this resonance.
Therefore, the result of the fII0 pole in (15) from Roy
equation analysis should be considered as qualitative only.
The resonance pole position in the IJ ¼ 11 amplitude

reads ffiffiffiffiffisρp ¼ ð853.3þ1.1
−1.1Þ − ið6.7þ0.2

−0.7Þ MeV, which is in
agreement with the result of Ref. [24]. For the nonresonant

channel with IJ ¼ 20, we also find a virtual state pole in
the second RS at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sv;IJ¼20

p ¼ 435þ4
−12 MeV, which value is

somewhat larger than that in Ref. [34] but compatible with
the prediction of next-to-next-to-leading order (NNLO)
χPT within the uncertainties that will be addressed later in
the next subsection. Actually such a virtual state pole also
exists in the case of physical mass, it is a prediction by
combining the current algebra result, relativistic kinematics
and the S-matrix theory [68,69]. We provide an illustrative
explanation about the simple fact that there should be a
virtual state pole in the IJ ¼ 20 amplitude in Appendix A.
We also give the coupling jgππj of all poles mentioned
above extracted from the residues of the amplitudes tIJðsÞ at
the pole g2ππ ¼ lims→s0 ðs0 − sÞtIJðsÞ in Table II.

C. Remarks about the results at mπ = 236 MeV from
Roy equation analyses

In addition, the HadSpec collaboration has also per-
formed the simulation at mπ ¼ 236 MeV [25,70]. The key
difference between the two sets of simulations at mπ ¼
236 MeV and 391 MeV is that the phase shifts with IJ ¼
00 at mπ ¼ 236 MeV reconcile with the broad resonance
description for σ, in contrast with the bound state behavior
at mπ ¼ 391 MeV. In principle, it would be straightfor-
ward to take a Roy equation analysis for the lattice data at
mπ ¼ 236 MeV. However, in practice, due to the lack of
the lattice inputs of IJ ¼ 20 phase shifts and the DTs
(especially the amplitudes above the KK̄ threshold in the
IJ ¼ 00 case), our predictions at mπ ¼ 236 MeV are
considered to be less substantial comparing with the
Roy equation analyses at mπ ¼ 391 MeV.
The phase shifts with IJ ¼ 00, 11, 20 predicted by the

Roy equations at mπ ¼ 236 MeV are shown in Fig. 11. As
discussed previously, since the crucial inputs to solve the
Roy equations in the case of mπ ¼ 236 MeV are still not
available, we consider the calculation in this case a
preliminary attempt. Therefore in this work we only give
the central solutions of Roy equations at mπ ¼ 236 MeV,
without providing the error analyses. The numerical
procedures and the relevant ingredients to solve Roy
equations for the case of mπ ¼ 236 MeV are more or less

0.0 0.5 1.0 1.5

–0.4

–0.2

0.0

0.2

0.4

FIG. 10. Poles of the amplitudes with IJ ¼ 00 from the
extended Roy equation studies. The green dot-dashed lines
denote the positions of the left-hand cut (LHC) contributed by
the σ and the thresholds of ππ and KK̄.

TABLE II. Comparison of the residues jgππj (all in MeV) of
various poles from Roy equation analyses and the K-matrix
approaches in lattice studies at mπ ¼ 391 MeV [26,70].

Poles Roy equation K-matrix

σ 493þ27
−46 521� 23

fI0 783þ171
−129 710� 140

fII0 1189þ322
−260 � � �

Sub. pole (I ¼ 0) 112þ23
−30 � � �

ρ 162þ2
−2 162� 4

VS. pole (I ¼ 2) 165þ3
−7 � � �
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similar to the discussions in the previous section for
mπ ¼ 391 MeV, although there are some subtleties regard-
ing the inputs above the matching point. The details about
the numerical discussions to solve Roy equations at mπ ¼
236 MeV are relegated to the Appendix B. We focus on the
phenomenological outputs from the Roy equation solu-
tions here.
The ππ phase shifts below the matching point

ffiffiffiffiffi
sm

p ¼
800 MeV at mπ ¼ 236 MeV based on the Roy equation
solutions that respect crossing symmetry and unitarity are
shown in Fig. 11. The lattice determinations of the phase
shifts of all the three channels seem compatible with our
Roy equation results. We also extrapolate the amplitudes
from Roy equation analyses into complex s plane to search
the various poles at mπ ¼ 236 MeV. The pole positions
and their residues read:

ffiffiffiffiffi
sσ

p ¼ 543 − i250 MeV, jgππj ¼
624 MeV; ffiffiffiffiffisρp ¼ 785 − i43 MeV, jgππj ¼ 289 MeV;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sv;IJ¼20

p ¼ 117 MeV, jgππj ¼ 49 MeV. The present
determination of the ρ position is consistent with
Refs. [34,70]. Notice that the σ pole positions at mπ ¼
236 MeV from various approaches still span a broad range
[25,30–32,34,73]. Again a virtual state pole is also found
in the amplitude with IJ ¼ 20 at mπ ¼ 236 MeV.
Adler zeros in ππ scattering amplitudes are characteristic

predictions of chiral symmetry and can be considered as
important constraints to various model setups. At NNLO of
the two-flavor χPT, the analytic PW amplitudes of the ππ

scatterings are available in Ref. [74]. By taking the values of
the low energy constants F ¼ 85.96ð42Þ MeV, lr1 ¼
−4.03ð63Þ × 10−3, lr2 ¼ 1.87ð21Þ × 10−3, lr3 ¼ 0.8ð3.8Þ ×
10−3 and lr4 ¼ 6.2ð1.3Þ × 10−3, rr1 ¼ −0.6 × 10−4,
rr2 ¼ 1.3 × 10−4, rr3 ¼ −1.7 × 10−4, rr4 ¼ −1.0 × 10−4,
rr5 ¼ 1.1 × 10−4, rr6 ¼ 0.3 × 10−4, rrF ¼ 0.0 × 10−3 from
Refs. [75–79] and μ ¼ 0.77 GeV, we can straightforwardly
calculate the Adler zeros in IJ ¼ 00, 20 channels and the S-
matrix zero below the ππ threshold in the first RS
(corresponding to the virtual state pole in the second RS)
in IJ ¼ 20 channel. The results are given in Table III, where
the error bars are conservatively estimated, since different
low energy constants are assumed to be uncorrelated. For
the error bars from Roy equations, they are obtained by
taking the same inputs as previously discussed. It is worth
noting that the Adler zero, sA;IJ¼00, moves to complex plane
in Roy equation analysis at mπ ¼ 391 MeV due to the
appearance of the LHCs generated by the σ in the crossed
channel, which also hints that the situation in the IJ ¼ 00
channel at mπ ¼ 391 MeV is certainly beyond the range of
applicability of χPT due to the new LHCs generated by the
bound state pole.
The future lattice simulations in the energy region above

KK̄ threshold for the IJ ¼ 00 case at mπ ¼ 236 MeV are
expected to be the key ingredient to improve the accuracy
of predictions for phase shifts and pole contents in the Roy
equation analyses.

Roy solution S0
Roy solution S2
HadSpec, 17
M. Mai, et.al., 19
J. Bulava, et.al., 16
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–20
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120
Roy solution P
HadSpec, 15
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0
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FIG. 11. Roy equation solutions S0, S2, P for the phase shifts of the IJ ¼ 00, 20, 11 channels, respectively. The data come from
Refs. [25,70–72].

TABLE III. The resulting positions of Adler zeros in IJ ¼ 00, 20 channels and the virtual state pole in IJ ¼ 20
channel from the Roy equation and NNLO χPT at mπ ¼ 236, 391 MeV. All numbers are given in units of MeV.

mπ ¼ 236 MeV mπ ¼ 391 MeV

Roy equation χPTNNLO Roy equation χPTNNLOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA;IJ¼00

p
162 140þ46

−29 ð206þ29
−18 Þ � ið218þ3

−18Þ 225þ131
−115ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sA;IJ¼20
p

326 334þ13
−16 601þ8

−17 546þ41
−73ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sv;IJ¼20
p

117 167þ8
−9 435þ4

−12 410þ30
−41
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VI. SUMMARY

In this work we derive an extended Roy equation by
including a bound state pole and apply this formalism to
ππ scatterings at unphysical large pion mass when the σ
becomes a bound state. By taking the lattice phase shifts
above the KK̄ threshold in the IJ ¼ 00, 11, 20 channels,
the Regge amplitudes and the D-wave contributions as the
inputs of the driving terms in Roy equation, we obtain the
phase shifts in the elastic region by solving the coupled
integral equations at mπ ¼ 391 MeV. We then extrapolate
the amplitudes into the complex s plane to search for the
poles. The pole positions of σ and f0ð980Þ from our
studies are similar to those of HadSpec collaboration. In
addition, we also find two additional types of poles for the
IJ ¼ 00 channel in the second Riemann sheet: a pair of
subthreshold complex poles near s ¼ 0 and a broad
resonance pole fII0 , where the former may correspond to
a “companion pole” of the bound state pole “σ” and the
latter could correspond to a second Riemann sheet
(shadow) pole of the f0ð1370Þ at large pion mass case.
We have shown that the constraints from crossing sym-
metry play a crucial role in ππ scatterings at large pion
masses, especially when there exists a bound state pole.
Our predictions to the phase shifts at large pion masses are
now consistent with the requirement of crossing symmetry,
therefore they can be considered as a set of reference
values for future phenomenological studies. Similar Roy
equation analyses are also carried out for the situation at
mπ ¼ 236 MeV, in which we give predictions to phase
shifts, resonance poles and Adler zeros.
Anticipated improvements in the precision of lattice

QCD calculations will definitely increase the needs to
rigorously extract the resonance information. In this work,
we have demonstrated that the sophisticated dispersive
Roy equation can provide a powerful and rigorous tool to
analyze lattice data. To our knowledge, this is also the first
time that lattice data at unphysical large pion masses are
analyzed by the model-independent Roy equation method,
which strictly respects crossing symmetry. It is interesting
to perform similar Roy equation analyses to more com-
plicated πK and even πN scatterings at unphysical quark
masses, which can be helpful to understand chiral sym-
metry of low-energy QCD.
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APPENDIX A: DEMONSTRATION
OF THE EXISTENCE OF A VIRTUAL STATE

POLE IN IJ = 20 CHANNEL

We do find a virtual state pole in the S-matrix on the
second Riemann sheet for the ππ isotensor channel. This
phenomenon was firstly discussed in [81] (rediscovered in
ππ scatterings [69,82], in πN scatterings [17,83]).
Taking for example the ππ scattering amplitude

t20ðsÞ to illustrate, the partial wave S-matrix S20ðsÞ ¼
1–2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π=s − 1
p

t20ðsÞ is a real function in the range
between the threshold 4m2

π and the branch point sL of
the left-hand cut, where sL ¼ 0 formπ ¼ 139, 236MeVand
sL ¼ 4m2

π − sσ for mπ ¼ 391 MeV. Since there are no
bound states, S20ðsÞ is bounded in the range between sL
and 4m2

π. Furthermore, since there is no anomalous thresh-
old, S20ðsÞ ¼ 1 at 4m2

π . According to Eq. (3), it can be
proved that S20ðsÞ approaches negative infinity when s gets
close to the branch point of the left-hand cut. Therefore
S20ðsÞ must have at least one zero on the first Riemann sheet
as shown in Fig. 12. Analyticity and unitarity tell us that
SIIðsÞ ¼ 1=SðsÞ, namely the first sheet zero exactly corre-
sponds to a second sheet pole. In this way, we demonstrate
that the zero of S20ðsÞ in the range (sL; 4m2

π] corresponds to a
virtual state pole of SIIðsÞ on the second sheet. The above
conclusion can be confirmed from the prediction of χPT at
s ¼ 0þ, which leads to t20ð0þÞ > 0. In the energy region of

ðsL; 4m2
π�, using S20ðsÞ ¼ 1–2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π=s − 1
p

t20ðsÞ we can

obtain S20ðsÞ ∼s→0þ−t20ð0þÞs−1=2 →
s→0þ

−∞. While at s ¼ 4m2
π ,

S20ðsÞ¼1–2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π=s−1
p

t20ðsÞ approaches to 1. This leads to
the conclusion that there must be at least one zero for the
S-matrix S20ðsÞ in the physical Riemann sheet in the range
ðsL; 4m2

π�, which in turn means that there is a virtual pole in
the second RS.

FIG. 12. The PW S-matrix S20ðsÞ below the ππ threshold. Note
that S20ðsÞ is real below the ππ threshold. The intersection point
between S20ðsÞ and s axis, corresponds to the virtual state position.
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We have verified that the virtual state pole s0 appearing
in SIIðs0Þ, i.e. when Sðs0Þ ¼ 0, is quite stable by taking
the different kinds of t20ðsÞ in the S-matrix S20ðsÞ ¼
1–2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π=s − 1
p

t20ðsÞ, namely by using the leading-order
current algebra result, the perturbative Oðp4Þ and Oðp6Þ
χPT amplitudes, the unitarized IAM expression and the Roy
equation solution for t20ðsÞ. All the discussions given above
strongly supports and explains our numerical findings of
such virtual state pole in the Roy equation analyses.
Therefore this enables us to conclude that the virtual state
pole in the IJ ¼ 20 channel is a pure prediction by
combining χPT, relativistic kinematics and S-matrix theory.

APPENDIX B: PROCEDURES AND INPUTS
TO NUMERICALLY SOLVE ROY EQUATIONS

AT mπ = 236 MeV

1. Inputs of the driving terms

For the lattice simulations at mπ ¼ 236 MeV, the phase
shifts δ00 above 800 MeVare still not available. Since they
are crucial inputs when solving the Roy equation, it could
be difficult to get robust predictions to the low-energy
phase shifts in the case of mπ ¼ 236 MeV. Fortunately,
according to the results in Ref. [25], the phase shifts δ00 at
mπ ¼ 236 MeV are only slightly larger than the physical
ones, and the kaon mass mK ¼ 501 MeV is also close to
its physical value 496 MeV in this case. Therefore, we will
take a very rough estimation by simply using the physical
phase shifts and inelasticities above the KK̄ threshold up
to 1.4 GeV from Ref. [41] and smoothly extrapolate the
phase shifts between the matching point

ffiffiffiffiffi
sm

p ¼ 800 MeV
and the KK̄ threshold. In addition, there are no lattice
phase shifts with IJ ¼ 20 at mπ ¼ 236 MeV from the
HadSpec collaboration. By taking into account of
the moderate pion mass-dependence of the phase shifts
in the IJ ¼ 20 channel [27,28,84], we will estimate such
phase shifts from Refs. [71,72] which perform the lattice
simulations at similar pion masses with mπ ¼ 224,

230 MeV. For the D-wave contributions to the DTs, we
show that dIJ (especially d00) is dominated by the con-
tribution from the resonance f2ð1270Þ, whose mass and
width can be estimated by chiral extrapolation of the
resonance χPT [85]: mf2 ≃ 1330 MeV, Γf2→ππ ≃
150 MeV at mπ ¼ 236 MeV. Using the narrow width
approximation, expanding the relevant kernel in the
inverse powers of s0 ¼ m2

f2
and retaining only the leading

term at the order of 1=s03, we obtain [5]

d00;DðsÞ ≃
5ðs − 4m2

πÞð11sþ 4m2
πÞΓf2→ππ

9m4
f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f2
− 4m2

π

q ;

d11;DðsÞ ≃ −
5ðs − 4m2

πÞ sΓf2→ππ

9m4
f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f2
− 4m2

π

q ;

d20;DðsÞ ≃
10ðs − 4m2

πÞðsþ 2m2
πÞΓf2→ππ

9m4
f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f2
− 4m2

π

q : ðB1Þ

Since our current work in the mπ ¼ 236 MeV case is a
preliminary attempt, we will simply neglect the Regge
contributions above 1.4 GeV, whose effects are believed to
be much less relevant than the previous assumptions about
the inputs of phase shifts above the KK̄ threshold.

2. Details of the optimization strategy

For the lattice simulations at mπ ¼ 236 MeV, the
phase shifts at the matching point

ffiffiffiffiffi
sm

p ¼ 800 MeV are
[25,70–72]: δ00ðsmÞ ¼ 87.5°, δ11ðsmÞ ¼ 99.1°, δ20ðsmÞ ¼
−13.0°, which lead to the multiplicity index
m ¼ 0þ 1 − 1 ¼ 0. Due to the similarity between this
situation and the physical pion mass case, we adopt an
analogous optimization strategy following Ref. [2]. However,
since the scattering length a00 at mπ ¼ 236 MeV is still
poorly known, we will take it as a free parameter. For the
scattering length a20 at mπ ¼ 236 MeV, it can be accurately
determined from the NLO χPT [30]. Another constraint in

the IJ ¼ 11 channel, i.e. dδ1
1
ðsmÞ
ds ¼ dδ1

1
ðsmþ0þÞ
ds jinput ¼

12.9 rad · GeV−2 [70], will be included as well. During
the optimization process, we adopt a Schenk-like paramet-
rization for δ00ðsÞ,

tan δ00ðsÞ ¼ ρπðsÞða00 þ B0
0q

2 þ C0
0q

4 þD0
0q

6Þ 4m
2
π − s00

s − s00
;

ðB2Þ

and the parametrizations for δ11ðsÞ and δ20ðsÞ are same as
Eqs. (11) and (12). The accuracy of the solutions is illustrated
in Fig. 13.
Numerical values of the parameters that give the Roy

solutions in Fig. 13 are collected in Table IV.
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FIG. 13. Left-hand sides of the Roy equations (lines) compared
to the right-hand sides (points) after minimization at mπ

¼ 236 MeV.
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