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We clarify the meaning of spatial densities of hadrons. A physical density is given by the expectation
value of a local operator for a physical state, and depends on both the internal structure and the hadron’s
wave packet. In some particular cases, the physical density can be written as a convolution between a
density function that depends on the internal structure but not the wave packet, and a smearing function that
depends on the wave packet but not the internal structure. We show that the light front densities often
encountered in the literature have this property but that instant form densities do not. For hadrons prepared
in broad wave packets, physical instant form densities approximately obey such a convolution relation,
with Breit frame densities as the apparent internal densities. However, there is an infinite series of
relativistic corrections to this convolution formula.
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I. INTRODUCTION

There has lately been renewed interest and debate about
the proper manner for describing the internal structure of
hadrons in terms of spatial coordinates. This debate is
especially pertinent now with the increasing focus on the
energy momentum tensor and its associated densities in
the literature (see e.g. Refs. [1–3]). A major focus of the
upcoming Electron Ion Collider [4–6] is to provide a spatial
picture of the distributions of partons in hadrons, making it
vital that an accurate method for obtaining this spatial
picture is used.
For a long time, authors have primarily calculated

relativistic densities through three-dimensional Fourier
transforms of form factors, giving a result referred to as
the Breit frame density [7]. For almost as long, this approach
has been criticized [8–10] for failing to follow from the
elementary definition of a density in relativistic field theory
(i.e., the expectation value of a local operator). While the
majority of authors continue to use the Breit frame density
uncritically, multiple solutions to addressing the issue of
relativistic spatial densities have been advanced.
There are currently three established camps on the ques-

tion of relativistic spatial densities. The first camp uses the
formalism of Wigner phase space distributions to justify the

Breit frame densities as a slice of a six-dimensional phase
space distribution when the hadron momentum is zero [2].
The second camp obtains densities using expectation

values of local currents in light front coordinates, integrating
out the coordinate x− to produce a two-dimensional density
in the transverse plane [3,11,12]. Within this formalism, one
often localizes the hadron’s wave packet [3,9] or works with
Dirac delta functions [10,11,13] to remove dependence on
the wave packet.
The last camp attempts to define three-dimensional

densities in instant form coordinates in a similar manner
to the second camp, namely by taking the expectation value
of a local current for a physical state and localizing the
wave packet. This idea was first proposed by Fleming in
1974 [8], but the idea has recently been revived [14–16].
Fleming’s proposal was motivated by the fact that, in

nonrelativistic quantum mechanics, localizing the center-
of-mass wave packet of a composite system does reproduce
the internal charge density of the system as conventionally
defined. Without a clear notion of what constitutes the
internal charge density of a relativistic bound system,
using this procedure as a generalized definition for the
internal densities seems reasonable. However, the approach
exhibits several shortcomings, including the need to
assume spherical symmetry of the wave packet during
localization [8,14–18], suggesting lingering wave packet
dependence. Additionally, densities associated with the
energy-momentum tensor diverge [17,18], a manifestation
of the uncertainty principle.
The purpose of this work is to propose an alternative

definition of internal densities for relativistic composite
systems, which like Fleming’s proposal reproduces known
results when applied to the nonrelativistic domain. Within
this approach, we analyze when wave packet localization
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reproduces the internal densities and when it does not. In
particular, we follow a similar vein to recent work by Li
et al. [19], with a focus on separating physical densities into
wave packet dependent and independent pieces. Ultimately,
we find that localization does reproduce our results for a
handful of light front densities, but not for a class of cases
we refer to as “compound densities,” which includes all
densities in instant form coordinates.
This work is organized as follows. In Sec. II, we provide

our definitions and the physical motivation behind them. In
Sec. III, we obtain light front densities within the constraints
laid out in the previous section. These include the electro-
magnetic current and spatial distributions associated with
the energy-momentum tensor, reproducing previous find-
ings where they exist but without requiring wave packet
localization. In Sec. IV, we examine three-dimensional
densities in instant form coordinates, showing that exact
three-dimensional internal densities do not exist within our
proposed formalism. In the special case of diffuse wave
packets we find an infinite tower of internal densities that
make increasingly small contributions, with the Breit frame
density appearing as the leading term. We summarize and
conclude in Sec. V.

II. INTERNAL AND PHYSICAL DENSITIES

A physical density is defined as the expectation value of
a local operator for a physical state jΨi in Hilbert space:

ρphysðxÞ ¼ hΨjÔðxÞjΨi: ð1Þ

We assume jΨi is a single-hadron state. The physical
density will contain influences both from the internal
structure of the hadron, and from the wave packet that it
is prepared in. The goal of hadron structure research is to
isolate internal properties of hadrons that are independent
of artifacts of state preparation. It is thus vital to determine
under what circumstances a purely internal hadron density
can be defined.
It is moreover prudent to understand how the internal

densities contribute to the physical densities defined in
Eq. (1). The simplest scenario that can occur is that
the physical density corresponds to an internal density
being smeared over space at any particular fixed time τ
(which could be time in any of the forms of relativistic
dynamics [20]):

ρphysðx; τÞ ¼
Z

dnxSΨðR; τÞρintðx −RÞ: ð2Þ

Here SΨðR; τÞ is a smearing function that depends on the
wave packet but not on internal structure, whereas ρintðbÞ
contains no wave packet dependence. We have notated n
spatial dimensions for generality; we will have n ¼ 3 for
nonrelativistic densities and n ¼ 2 for relativistic light front

densities. We shall refer to the density in a scenario such as
Eq. (2) as a simple density.
Equation (2) has a clear physical interpretation: ρintðbÞ

describes the distribution of some quantity (such as charge
or energy) a displacement b from the barycentric position
R of the hadron, and SΨðR; τÞ gives a distribution for the
hadron’s barycenter itself. The convolution of both then
gives the physical density at a position x ¼ Rþ b. We
shall show in Sec. II A how such a formula naturally arises
in the context of nonrelativistic quantum mechanics.
In an old work that has found recent attention,

Fleming [8] noticed that the nonrelativistic charge density
took the form of Eq. (2), with the smearing function being
the probability density SΨðRÞ ¼ Ψ�ðRÞΨðRÞ. If the wave
packet is localized in this case, the physical density
approaches the internal density. In fact, this will always
happen when the physical density is a simple density and
the smearing function is the barycentric probability density.
Fleming extrapolated beyond this simple case and postu-
lated that localizing the wave function would always
produce an internal density.
However, localization will not reproduce the desired

internal densities whenever the physical density does not
obey Eq. (2). There will be cases that the physical density is
actually a sum of different internal structures, each
weighted by a different smearing function:

ρphysðx; τÞ ¼
Z

dnxSð1Þ
Ψ ðR; τÞρð1Þint ðx −R; τÞ

þ
Z

dnxSð2Þ
Ψ ðR; τÞρð2Þint ðx −R; τÞ þ… ð3Þ

Here, ρð1Þint ðx −R; τÞ and ρð2Þint ðx −R; τÞ correspond to differ-
ent internal spatial distributions, which are each independent
of the wave packet Ψ. We shall refer to such a density as a
compound density. In the light front formalism (Sec. III), we
shall see that the energydensity and stress tensor are examples
of compound densities. We shall also see—assuming con-
vergence of the series—that instant form densities are always
compound densities with infinitely many contributions, as
previously found by Li et al. in Ref. [19].

A. Example from nonrelativistic quantum mechanics

Let us consider a simple nonrelativistic example where
Eq. (2) naturally arises. We consider two particles with
masses m1 and m2 bound to a system with mass
M ¼ m1 þm2 − ε. The wave function for the barycentric
position is ΨðR; tÞ, and the wave function for the relative
position is ψðrÞeiεt. If the positions of the particles are r1
and r2, the barycentric and relative coordinates are defined:

R ¼ m1r1 þm2r2
m1 þm2

ð4aÞ

r ¼ r2 − r1: ð4bÞ
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We define a density for some quantity Q, which may
be electric charge or mass for instance, and for which
particles 1 and 2 carry an amount q1 and q2 respectively.
The density is

ρQðx; tÞ ¼
Z

d3R
Z

d3rjΨðR; tÞj2jψðrÞj2

× fq1δð3Þðx − r1Þ þ q2δð3Þðx − r2Þg: ð5Þ

To integrate out the delta functions, we must use the
inversion of Eq. (4), which gives

ρQðx; tÞ ¼
Z

d3RjΨðR; tÞj2
�
q1

����ψ
�
m1 þm2

m2

ðR − xÞ
�����2

þ q2

����ψ
�
m1 þm2

m1

ðx −RÞ
�����2
�
: ð6Þ

This has the form of Eq. (2), with

SΨðR; tÞ ¼ jΨðR; tÞj2 ð7aÞ

ρintðbÞ¼ q1

����ψ
�
−
m1þm2

m2

b

�����2þq2

����ψ
�
m1þm2

m1

b

�����2:
ð7bÞ

If, at some moment of time t0 we have jΨðR;t0Þj2¼δ3ðRÞ,
then we obtain ρQðx; t0Þ ¼ ρintðxÞ. This is a generic feature
of simple densities where the smearing function is equal to
the probability distribution.

III. INTERNAL DENSITIES IN LIGHT
FRONT COORDINATES

In this section, we demonstrate that the light front
densities encountered in the literature [2,3,9,11,21–26]
are faithfully reproduced in our formalism. We also
determine how they relate to their associated physical
densities. Although much of the previous literature tended
to use a localization procedure with a specific wave packet
form (or simply used delta function wave packets) to obtain
these results, we will show that the results are in fact
independent of the wave packet.
For simplicity, we will focus exclusively on spin-zero

targets. This work is meant to provide conceptual clarity
and rigor to the research program of hadron densities rather
than to be an exhaustive catalog. Higher-spin targets with
general polarization will contain complications from hel-
icity-flip contributions [22,23,25,27], so densities that are
simple for spin-zero targets will often be compound for
higher-spin targets.

A. General expression for physical densities

We will derive the general expression for the physical
light front densities of spin-zero targets, without making
any specific assumptions about the wave packet.
The Lorentz-invariant completeness relation for states in

the Hilbert subspace of single-particle spin-zero states is

Z
dpþd2p⊥
2pþð2πÞ3 jp

þ;p⊥ihpþ;p⊥j ¼ 1: ð8Þ

We define the momentum space wave function as

Ψðpþ;p⊥Þ ¼
1ffiffiffiffiffiffiffiffiffi
2pþp hpþ;p⊥jΨi; ð9aÞ

so that it obeys the normalization condition,

Z
dpþd2p⊥
ð2πÞ3 jΨðpþ;p⊥Þj2 ¼ 1: ð9bÞ

We define the position-space wave function through a
Fourier transform:

Ψðz−;z⊥Þ¼
Z

dpþd2p⊥
ð2πÞ3 Ψðpþ;p⊥Þe−ipþz−eþip⊥·z⊥ ; ð10aÞ

so that it obeys the normalization condition

Z
dz−

Z
d2z⊥jΨðz−; z⊥Þj2 ¼ 1: ð10bÞ

Using the completeness relation twice with momenta p and
p0, integrating out x−, and defining a change of variables,

P⊥ ¼ 1

2
ðp⊥ þ p0⊥Þ ð11aÞ

Δ⊥ ¼ p0⊥ − p⊥ ð11bÞ

Pþ ¼ pþ ¼ p0þ; ð11cÞ

we obtain

ρLFðx⊥Þ ¼
Z

dPþd2P⊥
2Pþð2πÞ3

Z
d2Δ⊥
ð2πÞ2 hΨjP

þ;p0⊥i

×
hPþ;p0⊥jÔð0ÞjPþ;p⊥i

2Pþ

× hPþ;p⊥jΨie−iΔ⊥·x⊥ : ð12Þ

Rewriting in terms of the position-space wave functions
gives
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ρLFðx⊥Þ ¼
Z

dR0−
Z

d2R0⊥
Z

dR−
Z

d2R⊥
Z

dPþd2P⊥
ð2πÞ3

×
Z

d2Δ⊥
ð2πÞ2 e

−iPþðR0−−R−ÞeiP⊥·ðR0⊥−R⊥Þ

× e−iΔ⊥·ðx⊥−
R⊥þR0⊥

2
ÞΨ�ðR0−;R0⊥Þ

×
hPþ;p0⊥jÔð0ÞjPþ;p⊥i

2Pþ ΨðR−;R⊥Þ: ð13Þ

To proceed, the dependence on Pþ and P⊥ must be
removed from the matrix element. This can be accom-
plished by noting (for instance)

i
2
ð∇ðRÞ

i −∇ðR0Þ
i ÞeiP⊥·ðR0⊥−R⊥Þ ¼ Pi⊥eiP⊥·ðR0⊥−R⊥Þ

i
2
ð∇ðRÞ

i −∇ðR0Þ
i Þe−iΔ⊥·ðx⊥−

R⊥þR0⊥
2

Þ ¼ 0:

Thus any factors of Pi⊥ that appear in the matrix element
can be transformed into differences of gradients, and
integration by parts can be used to move the gradients to
act on the barycentric wave functions. A similar trick can be
applied to Pþ, with the end result being that the following
substitutions can be made:

Pi⊥ → −
i
2
∇↔i ð14aÞ

Pþ → þ i
2
∂

↔

−; ð14bÞ

with the two-sided derivatives to be placed between the
barycenter wave function and its conjugate. With these
substitutions made, it is possible to do the Pþ and P⊥
integrals, which produce delta functions, and these delta
functions can be eliminated by doing the R0− and R0⊥
integrals. Performing these steps gives

ρLFðx⊥Þ ¼
Z

dR−
Z

d2R⊥
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·ðx⊥−R⊥Þ

×Ψ�ðR−;R⊥Þ
hPþ;p0⊥jÔð0ÞjPþ;p⊥i

2Pþ

×ΨðR−;R⊥Þ; ð15Þ

where any Pþ or Pi⊥ appearing in this formula should be
understood in terms of the substitutions of Eq. (14). To
proceed any further, specific local operators must be
considered.

B. Electromagnetic current

Let us first consider electromagnetic current of a spin-
zero hadron. The matrix element of the electromagnetic
four-current jμð0Þ between momentum kets is

hPþ;p0⊥jjμð0ÞjPþ;p⊥i ¼ 2PμFðtÞ; ð16Þ

where FðtÞ is the electromagnetic form factor, and

t ¼ ðp0 − pÞ2 ¼ −Δ2⊥: ð17Þ
For the plus component of this current—the light front
charge density—the physical density takes a simple form:

jþLFðx⊥Þ ¼
Z

dR−
Z

d2R⊥jΨðR−;R⊥Þj2

×
Z

d2Δ⊥
ð2πÞ2 Fð−Δ

2⊥Þe−iΔ⊥·ðx⊥−R⊥Þ: ð18Þ

This constitutes a simple density in the form of Eq. (2), with
an internal density:

jþintðb⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 Fð−Δ

2⊥Þe−iΔ⊥·b⊥ ; ð19Þ

which is the standard result [12], and a smearing function:

PðR⊥Þ ¼
Z

dR−jΨðR−;R⊥Þj2; ð20Þ

which is the transverse probability density for the bary-
centric position. We have thus obtained the standard result
for the light front charge density of a spin-zero target,
but without making any assumptions about the hadron
wave packet nor localizing it. Note, however, that if
PðR⊥Þ ¼ δð2ÞðR⊥Þ, then jþLFðx⊥Þ ¼ jþintðx⊥Þ, which is
why previous treatments with localized states obtained
the correct internal charge density.
It is possible to also obtain the transverse current.

One need only use μ ¼ 1; 2 instead of μ ¼ þ. It will be
necessary to use the rules of Eq. (14):

hPþ;p0⊥jji⊥ð0ÞjPþ;p⊥i
2Pþ ¼ Pi⊥

Pþ FðtÞ → −
∇↔i

∂

↔

−

FðtÞ: ð21Þ

Since R− is integrated out in defining smearing functions, it

is possible to turn the ∂

↔

− into an expectation value:

−
∇↔i

∂

↔

−

FðtÞ → −i∇↔i

2

�
1

Pþ

	
FðtÞ: ð22Þ

We find thus that

j⊥ðx⊥Þ ¼
�

1

Pþ

	Z
d2R⊥V⊥ðR⊥Þjþintðx⊥ −R⊥Þ ð23Þ

V⊥ðR⊥Þ ¼
Z

dR−Ψ�ðR−;R⊥Þ
−i∇

↔

⊥
2

ΨðR−;R⊥Þ: ð24Þ
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The transverse electromagnetic current is thus also a simple
density, and in fact involves the same internal density as the
electric charge density. The only difference is how the
smearing function distributes the internal density.

C. Momentum densities and energy density

We next consider momentum and energy densities, which
are given by matrix elements of the energy-momentum
tensor (EMT). Matrix elements between momentum kets
are [1]

hPþ;p0⊥jTμνð0ÞjPþ;p⊥i¼2PμPνAðtÞþΔμΔν−gμνΔ2

2
DðtÞ;
ð25Þ

where AðtÞ and DðtÞ are called gravitational form fac-
tors [1,28,29], and t is given in Eq. (17). Themomentum and
energy densities are given by considering μ ¼ þ specifi-
cally, for which

hPþ;p0⊥jTþνð0ÞjPþ;p⊥i
2Pþ ¼ PνAðtÞ þ gþν Δ2⊥

4Pþ DðtÞ: ð26Þ

The momenta densities are those with ν ¼ þ; 1; 2, while the
energy density is given by ν ¼ − and is the only density to
which DðtÞ contributes.
The Pþ density is the most straightforward, since the Pþ

multiplying AðtÞ just becomes an expectation value. The
physical density is given by

Tþþ
LF ðx⊥Þ ¼ hPþi

Z
d2R⊥PðR⊥ÞTþþ

int ðx⊥ −R⊥Þ; ð27Þ

where the smearing function is defined in Eq. (20) and the
internal density is given by

Tþþ
int ðb⊥Þ ¼

Z
d2Δ⊥
ð2πÞ2 Að−Δ

2⊥Þe−iΔ⊥·b⊥ ; ð28Þ

which is the standard result [2,3]. Although it was unnec-
essary to consider a localized wave packet to obtain this
result, if we consider a localized state PðR⊥Þ ¼ δð2ÞðR⊥Þ,
then Tþþ

LF ðx⊥Þ ¼ hPþiTþþ
int ðx⊥Þ, which is why Ref. [3]

obtained the correct result.
The P⊥ density is similarly straightforward. The sub-

stitution rule of Eq. (14a) must be used, which ends up
giving

Tþi
LFðx⊥Þ ¼

Z
d2R⊥Vi⊥ðR⊥ÞTþþ

int ðx⊥ −R⊥Þ; ð29Þ

where the smearing function was defined in Eq. (23).
So far, the situation is similar to what we saw for the
electromagnetic current: the intrinsic Pþ density can be
convolved with a different smearing function to obtain

either the physical Pþ density or the physical P⊥ density.
The former is in fact proportional to the barycentric
probability density.
Let us look at the energy density (i.e., the P− density)

next. The matrix element contains a factor P−, which is
given by

P− ≡ p− þ p0−

2
¼ M2 þ P2⊥ þ 1

4
Δ2⊥

2Pþ : ð30Þ

The appropriate matrix element thus takes the form

hPþ;p0⊥jTþ−ð0ÞjPþ;p⊥i
2Pþ

¼M2þP2⊥þ 1
4
Δ2⊥

2Pþ AðtÞþ Δ2⊥
4PþDðtÞ

→

�
1

2Pþ

	��
M2−

1

4
∇
↔2

⊥þΔ2⊥
�
AðtÞþΔ2⊥

2
DðtÞ

�
; ð31Þ

where we used the substitution rule in Eq. (14a). To
proceed, we need to define both a new smearing function,

W−ðR⊥Þ ¼
Z

dR−Ψ�ðR−;R⊥Þ
−∇
↔2

⊥
4

ΨðR−;R⊥Þ; ð32Þ

and a new internal density,

Tþ−
int ðb⊥Þ¼

Z
d2Δ⊥
ð2πÞ2

��
M2þΔ2⊥

4

�
Að−Δ2⊥Þþ

Δ2⊥
2
Dð−Δ2⊥Þ

�
×e−iΔ⊥·b⊥ : ð33Þ

With this, we find the physical energy density to be a
compound density:

Tþ−
LF ðx⊥Þ ¼

�
1

2Pþ

	�Z
d2R⊥W−ðR⊥ÞTþþ

int ðx⊥ −R⊥Þ

þ
Z

d2R⊥PðR⊥ÞTþ−
int ðx⊥ −R⊥Þ

�
: ð34Þ

This compound density exhibits a curious structure. The
first term can be interpreted as a kinetic term and the second
as a dynamical term. The smearing function W−ðR⊥Þ in
the first term arises from P2⊥ in the momentum-space matrix
element, and describes the kinetic motion of the barycenter.
The convolution with the internal Pþ density then distrib-
utes the barycentric kinetic motion over the constituents.
Because of this first term, if PðR⊥Þ ¼ δð2ÞðR⊥Þ, then
Tþ−
LF ðx⊥Þ diverges. This is in effect a manifestation of

the uncertainty principle [10].
The second term in Eq. (34) encodes every contribution

to the hadron energy aside from barycentric kinetic motion.
In models of internal hadron dynamics that frame the
hadron as a many-body system, this includes masses of
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constituents, kinetic energy of the constituents relative to
the center-of-momentum, and potential energy. This can be
seen by considering the general form of the light-front
Hamiltonian for an N-body system:

H ¼
XN
i¼1

m2
i þ p2

i⊥
2pþ

i
þ V: ð35Þ

Here, V is the potential energy, and the absolute momenta
are related to relative momenta and light front momentum
fractions by

pþ
i ¼ xiPþ ð36aÞ

pi⊥ ¼ xiP⊥ þ ki⊥; ð36bÞ

and these obey sum rules:

XN
i¼1

xi ¼ 1 ð36cÞ

XN
i¼1

ki⊥ ¼ 0: ð36dÞ

Using these definitions and the sum rules, it follows that

H ¼ P2⊥
2Pþ þ 1

2Pþ
XN
i¼1

m2
i þ k2

i⊥
xi

þ V: ð37Þ

The P2⊥=ð2PþÞ term of course corresponds to the first term
in Eq. (34), and thus the remaining terms in Eq. (37)—
which are exactly the aspects of the internal energy we have
listed—must correspond to the remaining second term of
Eq. (34). It is for this reason that we identify Tþ−

int ðb⊥Þ as
the internal energy density. In fact, the presence of DðtÞ in
this density, which has a well-established connection to
internal stresses [1–3,30], helps indicate the dynamical
nature of this term. Of course, one must bear in mind that
quantum chromodynamics, as a quantum field theory, is an
infinite-many-body theory, and that hadrons have an
indefinite number of constituents. To be sure, the derivation
of Eq. (34) did not require us to assume that the hadron has
a finite number of pointlike constituents, but considering
such an approximate scenario helps give intuition into the
breakdown of the energy density we have presented.
It is worth mentioning that the internal energy density is

equivalent to the light front energy density in the Drell-Yan
frame in the formalism ofWigner phase space distributions,
which is discussed in Ref. [2].

D. Stress tensor

The light front stress tensor is given by Tij
LFðx⊥Þ with i,

j ¼ 1; 2. As remarked previously in Ref. [3], the stress

tensor contains contributions from hadron flow and a
“comoving” piece. Accordingly, the stress tensor consti-
tutes a compound density in the manner of Eq. (3). We will
now derive the exact form of this compound density.
The relevant matrix elements for the stress tensor are

hPþ;p0⊥jTijð0ÞjPþ;p⊥i
2Pþ ¼ Pi⊥P

j
⊥

Pþ AðtÞ

þ Δi⊥Δ
j
⊥ − δijΔ2⊥
4Pþ DðtÞ; ð38Þ

for which the substitution rules of Eq. (14) must be used.
The presence of 2 factors of P⊥ in front of AðtÞ requires
defining a new smearing function,

WijðR⊥Þ ¼
Z

dR−Ψ�ðR−;R⊥Þ
�
−i∇

↔i

⊥
2

��
−i∇

↔j

⊥
2

�
×ΨðR−;R⊥Þ; ð39Þ

which is related to the smearing function in Eq. (32) by

W−ðR⊥Þ ¼ δijWijðR⊥Þ: ð40Þ

If we define the internal stress tensor as

Tij
intðb⊥Þ ¼

1

4

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − δijΔ2⊥ÞDð−Δ2⊥Þe−iΔ⊥·b⊥ ;

ð41Þ

then the physical stress tensor can bewritten as a compound
density:

Tij
LFðx⊥Þ ¼

�
1

Pþ

	�Z
d2R⊥WijðR⊥ÞTþþ

int ðx⊥ −R⊥Þ

þ
Z

d2R⊥PðR⊥ÞTij
intðx⊥ −R⊥Þ

�
: ð42Þ

The quantity Tij
intðb⊥Þ is (aside from a factor Pþ) identical

to the pure stress tensor of Ref. [3]. The first and second
terms in Eq. (42) can be identified as a flow tensor and
comoving stress tensor respectively [3,31], so that the
physical stress tensor essentially takes the classical con-
tinuum form [31]. It is interesting to note that while
diagonal elements of Tij

intðb⊥Þ correspond to internal or
static pressures as seen by observers comoving with the
motion of the hadron, diagonal elements of Tij

LFðx⊥Þ
instead correspond to dynamic pressures, which includes
impulses that would be imparted by the hadron’s motion
and which is akin to radiation pressure (see discussion in
Refs. [3,26,31,32]).
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E. Regarding wave packet localization

Deriving Eq. (34) for the energy density required fore-
going localization of the wave packet. For a localized wave
packet, the energy density actually diverges, which can be
understood in terms of the uncertainty principle [10].
Let us consider what might happen if we attempt to

localize the wave packet by a procedure similar to that in
Refs. [3,8,14,15], but as in Ref. [33] in particular, we
absorb the divergence into a normalization constant. The
wave function is localized by a scaling transformation,

ΨðR−;R⊥Þ →
1

σ
Ψ
�
R−;

R⊥
σ

�
; ð43Þ

which transforms the smearing functions as

PðR⊥Þ →
1

σ2
P
�
R⊥
σ

�
ð44aÞ

W−ðR⊥Þ →
1

σ4
W−
�
R⊥
σ

�
: ð44bÞ

Using the variable change Y⊥ ¼ σR⊥, the energy density
can be written:

Tþ−
LF ðx⊥Þ¼

�
1

2Pþ

	�Z
d2Y⊥PðY⊥ÞTþ−

int ðx⊥−σY⊥Þ

þ 1

σ2

Z
d2Y⊥W−ðY⊥ÞTþþ

int ðx⊥−σY⊥Þ
�
: ð45Þ

Defining the normalization

N∞ ¼ lim
σ→0

1

σ2

�
1

2Pþ

	Z
d2Y⊥W−ðY⊥Þ; ð46Þ

the energy density in the limit σ → 0 becomes

Tþ−
LF ðx⊥Þ⟶

σ→0
N∞T

þþ
int ðx⊥Þ: ð47Þ

The dynamical term was dropped because it remains finite
in the σ → 0 limit, and therefore is dominated by the kinetic
term. The problem should be immediately clear: by
localizing the compound density and keeping only the
dominating term, we lose important information about the
internal structure of the hadron. In fact, the internal density
corresponding to dynamics is precisely what was lost, and
the remaining kinetic term is actually trivial and uninter-
esting in this context. On the other hand, organizing the
physical density into a power series in σ will lead to
additional complications, since σ appears within the inter-
nal densities. In particular, derivatives of the internal Pþ

density will mix with the internal P− density at order σ0, so
collecting order σ0 terms together as done in Refs. [17,18]

does not reproduce the internal P− density as defined in our
formalism.
This example should prove a cautionary tale about the

localization procedure. In several special cases—namely
charge and Pþ density—the internal light front densities
were obtained from localization because these are simple
densities. As we shall see in Sec. IV, however, none of the
physical instant form densities associated with the electro-
magnetic current or energy-momentum tensor are simple.
We are thus skeptical of the instant form densities that arise
from wave packet localization.

F. Numerical illustrations

1. Soft wall holographic pion

The formulas we obtained above are fully general, and
do not require the application of light front dynamics.
Nonetheless, it may be especially enlightening to examine
the densities in a light front Hamiltonian model, especially
since having a light front Hamiltonian allows an explicit
breakdown of the energy density into kinetic and potential
energy pieces.
As a simple example, we consider Brodsky and

de Teramond’s model of the pion in soft wall holographic
QCD [34]. At large Q2, or small transverse separations, the
system is approximately described by the light front
Hamiltonian

Hinternal ¼
k2⊥
x

þ k2⊥
1 − x

þ κ4xð1 − xÞy2⊥ − 2κ2; ð48Þ

and the pion ground state is described by the internal wave
function

ψðx; y⊥Þ ¼
κffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
e−

1
2
κ2xð1−xÞy2⊥ ; ð49Þ

where κ ¼ 0.375 GeV. We have followed Soper [35] in
denoting the transverse separation as y⊥, and reserve b⊥ for
the actual transverse distance from the barycenter to the
transverse coordinate—i.e., for the impact parameter. The
transverse separation is related to the actual transverse
positions via

y⊥ ¼
�
r1⊥ −R⊥
1 − x

�
¼ b1⊥

1 − x
¼ −

�
r2⊥ −R⊥

x

�
¼ −

b2⊥
x

:

ð50Þ

The charge density is the most straightforward case to
consider. We assume a πþ to avoid a trivially zero result.
There is an up quark with charge Qu and a down antiquark
with charge −Qd, and the physical charge density is just
given by the sum of the single-particle distributions
weighted by their charges:
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jþLFðx⊥Þ¼
Z

dR−
Z

d2R⊥jΨðR−;R⊥Þj2
Z

1

0

dx

×
Z

d2y⊥jψðx;y⊥Þj2

×fQuδ
ð2Þðx⊥− r1⊥Þ−Qdδ

ð2Þðx⊥−r2⊥Þg; ð51Þ

where Qu ¼ 2=3 and Qd ¼ −1=3. Comparing to Eq. (18)
and Eq. (19), the internal internal charge density is

jþtrueðb⊥Þ ¼
Z

1

0

dx

�
Qu

ð1 − xÞ2
����ψ
�
x;

b⊥
1 − x

�����2

−
Qd

x2

����ψ
�
x;
b⊥
x

�����2
�
: ð52Þ

The integral can be done analytically for the wave function
in Eq. (49), and the result is

jþintðb⊥Þ ¼
κ2

π
eκ

2b2⊥ðE1ðκ2b2⊥Þ − E2ðκ2b2⊥ÞÞ; ð53Þ

where

EnðzÞ ¼
Z

∞

1

dt
e−zt

tn
ð54Þ

is the generalized exponential integral function [36]. The
result is plotted in the left panel of Fig. 1.
By a similar token, the internal Pþ density is given by

Tþþ
int ðb⊥Þ ¼

Z
1

0

dx

�
x

ð1 − xÞ2
����ψ
�
x;

b⊥
1 − x

�����2

þ 1 − x
x2

����ψ
�
x;
b⊥
x

�����2
�
; ð55Þ

which can be evaluated using the wave function in
Eq. (49) as

Tþþ
int ðb⊥Þ¼

κ2

π
eκ

2b2⊥ð2E1ðκ2b2⊥Þ−4E2ðκ2b2⊥Þþ2E3ðκ2b2⊥ÞÞ:
ð56Þ

This result is also plotted in the left panel of Fig. 1.
The last internal density we consider is the internal

energy density. Now, it is straightforward to find the part of
the internal energy density associated with quark kinetic

energy, using just the substitution rule k⊥ → − i
2
∇
↔

ðyÞ, since
this energy is spatially attached to the quark in question:

Tþ−
kin ðb⊥Þ¼−

Z
1

0

dx

�
1

xð1−xÞ2ψ
�
�
x;

b⊥
1−x

�
∇
↔2

4
ψ

�
x;

b⊥
1−x

�

þ 1

ð1−xÞx2ψ
�
�
x;
b⊥
x

�
∇
↔2

4
ψ

�
x;
b⊥
x

��
: ð57Þ

For the wave function in Eq. (49), we note that

−
1

4
ψ�ðx; y⊥Þ∇

↔

i∇
↔

jψðx; y⊥Þ

¼ 1

2
κ2xð1 − xÞδijψ�ðx; y⊥Þψðx; y⊥Þ; ð58Þ

and the kinetic energy density can be explicitly found to be

Tþ−
kin ðb⊥Þ ¼

2κ4

π
eκ

2b2⊥ðE2ðκ2b2⊥Þ − E3ðκ2b2⊥ÞÞ: ð59Þ

The potential energy cannot be assigned to either quark,
however, so some additional hypothesis about its spatial
distribution is needed to proceed. The y2⊥ term has the form
of an elastic potential, so we hypothesize that the corre-
sponding energy is distributed along a string or flux tube
between the quarks. The energy density operator so defined
is thus:

T̂þ−
stringðs⊥ðτÞÞ ¼ λ

Z
1

0

dτðṡ⊥ðτÞÞ2δð2Þðx⊥ − s⊥ðτÞÞ; ð60Þ

FIG. 1. Internal pion densities in Brodsky’s soft wall holographic model. Left: charge and momentum densities. Right: energy density,
including its breakdown into kinetic and potential energy.
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where s⊥ðτÞ parametrizes the location of the string in the
transverse plane and λ is the string energy density. For a
straight line,

s⊥ðτÞ ¼ r2⊥ þ τy⊥: ð61Þ

To reproduce the y2⊥ term, an energy density λ¼κ4xð1−xÞ
is sufficient. For lack of a better hypothesis for the −2κ2
term, we distribute this energy evenly over the same string.
This makes the necessary string energy density

λðx;b⊥Þ ¼ κ4xð1 − xÞ − κ2

y2⊥
: ð62Þ

The internal energy density associated with this string
is then

Tþ−
pot ðb⊥Þ ¼

Z
1

0

dx
Z

1

0

dτ
b2⊥

ðτ − xÞ4
����ψ
�
x;

b⊥
τ − x

�����2

× λ

�
x;

b⊥
τ − x

�
: ð63Þ

It is more difficult to obtain an exact analytic result for this
integral than for the other integrals we have considered. An
easy form to work with numerically for the result is

Tþ−
pot ðb⊥Þ ¼

κ4

π

�
eκ

2b2⊥ðE2ðκ2b2⊥Þ − E3ðκ2b2⊥ÞÞ

−
3
ffiffiffi
π

p
κb⊥

Z
π=2

0

dθsin2θcos2θerfcðκb⊥ tan θÞ
�
;

ð64Þ

where erfc is the complementary error function [36]:

erfcðzÞ ¼ 2ffiffiffi
π

p
Z

∞

z
dze−z

2

: ð65Þ

The results for the internal densities in this model are
plotted in Fig. 1. The left panel includes both the charge and
momentum densities, both of which are normalized to 1.
The charge density is broader than the momentum density.
The right panel includes the internal energy density, as well
as its breakdown into potential and kinetic energy con-
tributions. An interesting feature of the energy density is
that it can be negative, in contrast to the momentum density
which is positive definite.

2. Phenomenological multipole model

Although illuminating, a light front Hamiltonian model
is not necessary to obtain the light front densities. In fact,
quantum chromodynamics is a quantum field theory, and its
bound states thus have an indefinite number of constituents,
so any few-body model of hadron structure will necessarily

be incomplete. The definitions for light front densities do
not require assuming the pion to be a two- or even N-body
system, however—they require only the Poincaré-invariant
form factors to be provided.
The form factors AðtÞ and DðtÞ can be obtained from

phenomenology. Multipole forms are reasonable for the
form factors, based on analyticity rules for the scattering
amplitude. For the pion in particular,

AðtÞ ¼ 1

1 − t=m2
f2

ð66aÞ

DðtÞ ¼ −1
ð1 − t=m2

f2
Þð1 − t=m2

σÞ
: ð66bÞ

The monopole form for AðtÞ is supported by large-Nc
phenomenology [37], and the presence of an f2ð1270Þ
pole is suggested by spin-two meson dominance as a
gravitational analogy to vector meson dominance in electro-
magnetic form factors. Moreover, mf2 ¼ 1270 MeV
reproduces the pion radius reported by Kumano et al.’s
analysis of Belle data [38], as well as the proton radius
suggested by Kharzeev’s analysis of GlueX data [39] [using
a dipole form for the proton’s AðtÞ form factor]. The
presence of an additional σ pole inDðtÞ comes fromdressing
of the graviton-quark vertex [40], and the valueDð0Þ ¼ −1
comes from a low-energy pion theorem [1,41,42]. Using
mσ ¼ 630 MeV reproduces the DðtÞ slope reported in
Ref. [38].
From these multipole forms of the form factors, we

obtain an internal momentum density,

Tþþ
int ðb⊥Þ ¼

m2
f2

2π
K0ðmf2b⊥Þ; ð67Þ

where K0ðxÞ is a modified Bessel function of the second
kind [36]. The internal energy density is given by

Tþ−
int ðb⊥Þ¼

�
m2

π−
m2

f2

4

�
m2

f2

2π
K0ðmf2b⊥Þþ

m2
f2

4
δð2Þðb⊥Þ

þ 1

4π

m2
f2
m2

σ

m2
f2
−m2

σ
ðm2

σK0ðmσb⊥Þ−m2
f2
K0ðmf2b⊥ÞÞ:

ð68Þ

In the left panel of Fig. 2, we compare the pion energy
density obtained with this phenomenological multipole
parametrization to the result found using the soft wall
holographic model. The energy densities look radically
different, suggesting a need for additional measurements of
hard exclusive reactions to further experimentally constrain
the pion’s gravitational form factors. A curious feature that
models have in common is that the internal energy density
becomes negative at short distances.
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In the right panel of Fig. 2, we present the physical
energy density using a Gaussian wave packet of the form

ΨðR⊥Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
1

4σ2
R2⊥ ; ð69Þ

along with the phenomenological multipole model at
several values of the wave packet width σ and with
2Pþ ¼ mπ for concreteness. It can be seen clearly that
the physical density does not approach the internal density
as the wave packet is localized, and is qualitatively quite
different. This is a stark manifestation of how wave packet
localization will not always distill the desired aspects of a
hadron’s internal structure.

IV. INTERNAL DENSITIES IN INSTANT
FORM COORDINATES

To investigate physical densities in instant form coor-
dinates in a wave packet independent way, we need an
analogous formula to that in Eq. (15). We shall proceed to
obtain such a relation. The procedure we follow here
closely mirrors the derivation first reported in Ref. [19],
but with a different convention for defining the position-
space wave function (which in both our approach and in
Li’s is not a true wave function).
The Lorentz-invariant completeness relation for states

in the Hilbert subspace of single-particle spin-zero
states is

Z
d3p

2Epð2πÞ3
jpihpj ¼ 1: ð70Þ

We define the momentum space wave function as

ΨðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2Ep

p hpjΨi; ð71aÞ

so that it obeys the normalization condition:

Z
d3p
ð2πÞ3 jΨðpÞj

2 ¼ 1: ð71bÞ

We similarly define the position-space wave function:

ΨðrÞ ¼
Z

d3p
ð2πÞ3ΨðpÞe

ip·r; ð72aÞ

so that it obeys the normalization condition

Z
d3rjΨðrÞj2 ¼ 1: ð72bÞ

It should be noted that this position-space wave function is
normalized differently than that of Li et al. in Ref. [19].
Several of our results thus differ cosmetically from Li’s, but
are in agreement when the difference in conventions for the
position-space wave function is accounted for. Following
an analogous process to that outlined in Sec. III, it can be
shown that

ρphysðxÞ ¼
Z

d3R0⊥
Z

d3R⊥
Z

d3P
ð2πÞ3

Z
d3Δ
ð2πÞ3 e

iP·ðR0−RÞ

× e−iΔ·ðx−
RþR0

2
ÞΨ�ðR0Þ hp

0jÔð0Þjpi
2
ffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0

p ΨðRÞ: ð73Þ

As with the light cone case, we need a substitution rule for
P when it shows up in the matrix element. The appropriate
rule can be shown to be

P → −
i
2
∇
↔
: ð74Þ

FIG. 2. Pion energy densities associated with the phenomenological multipole model. (Left panel) compares the internal energy
density in the multipole model to the soft wall holographic model. (Right panel) presents the physical pion energy density (see Eq. (34))
for a Gaussian wave packet for several wave packet widths and with 2Pþ ¼ mπ .
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Wherever P0 shows up, it is necessary to write it out in
terms of P:

P0¼EpþEp0

2

¼1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ

�
P−

Δ
2

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ

�
PþΔ

2

�
2

s !
; ð75Þ

and then use Eq. (74) on each instance of P here. With such
substitutions implicitly applied, the instant form equivalent
of Eq. (15) is

ρphysðxÞ ¼
Z

d3R⊥
Z

d3Δ
ð2πÞ3 e

−iΔ·ðx−RÞΨ�ðRÞ

×
hp0jÔð0Þjpi
2
ffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0

p ΨðRÞ; ð76Þ

where any P are to be implicitly understood in terms of
Eq. (74). This is the furthest we can go without looking at
specific local operators. Obtaining a simple or finite
compound density will depend on the matrix element
factorizing in its Δ and P dependence, or else breaking
down into a finite number of terms that factorize as such.
We will presently see that this does not happen.

A. Electric charge and energy densities

The appropriate matrix element for the electric charge
density is

hp0jj0ð0Þjpi¼ 2P0FðtÞ

¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2þ
�
P−

Δ
2

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ

�
PþΔ

2

�
2

s !

×FðtÞ: ð77Þ
In instant form coordinates, t is given by

t ¼ ðp0 − pÞ2 ¼ −Δ2 þ 2

 
M2 þ P2 þ Δ2

4
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2 þ P2 þ 1

4
Δ2

�
2

− ðP · ΔÞ2
s !

: ð78Þ

The physical charge density thus takes the form

j0physðxÞ ¼
1

2

Z
d3R⊥

Z
d3Δ
ð2πÞ3 e

−iΔ·ðx−RÞΨ�ðRÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 1
4
ð−i∇↔ − ΔÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

4
ð−i∇↔ þ ΔÞ2

q �
½ðM2 − 1

4
∇
↔2 þ 1

4
Δ2Þ2 þ 1

2
ð∇↔ · ΔÞ2�1=4

× F

 
−Δ2 þ 2

 
M2 −

1

4
∇
↔2 þ 1

4
Δ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2 −

1

4
∇
↔2 þ 1

4
Δ2

�
2

þ 1

2
ð∇↔ · ΔÞ2

s !!
ΨðRÞ: ð79Þ

The problem is immediately clear: it is impossible to write this as a finite number of terms whose R and Δ dependence

factorizes. At best, we could expand the expression as an infinite formal series in ∇
↔

and obtain an infinitely compound
density. Convergence of the series will depend on the wave packet taking a specific form, which is precisely what we need to
avoid to obtain a truly internal density.
The instant form energy density is similarly unfactorizable. The relevant matrix element is [1]

hp0jT00ð0Þjpi ¼ 1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

�
P −

Δ
2

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

�
Pþ Δ

2

�
2

s !2

AðtÞ þ Δ2

2
DðtÞ; ð80Þ

where t is again defined in Eq. (78). This makes the physical instant form energy density

T00
physðxÞ ¼

Z
d3R⊥

Z
d3Δ
ð2πÞ3 e

−iΔ·ðx−RÞΨ�ðRÞ
�ðEp þ Ep0 Þ2

4
ffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0

p AðtÞ þ Δ2

4
ffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0

p DðtÞ
�
ΨðRÞ; ð81Þ

where we have neglected to explicitly write the substitution rules in order to keep the formula compact. However, a quick
glance at Eq. (79) should convince the reader that this expression is not factorizable into either a simple density in the
manner of Eq. (2), or a finite compound density in the manner of Eq. (3).
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In fact, we shall see below that the instant form densities
are at best infinitely compound densities, but convergence
of this series depends on the form of the wave packet.

B. Diffuse wave packets and Breit frame densities

We have shown that physical densities are infinitely
compound in instant form coordinates. Nonetheless, it may
be worth clarifying the approximate form of the physical
densities when they are expanded as a formal series in the
derivative, assuming that this expansion is controlled by a
small parameter. This can be the case for diffuse wave
packets, for which the derivative of the wave function is
smaller than the wave function.
Let us consider the first few terms in the physical charge

density when expanded out in powers of the derivative. The
result is an infinite series of internal densities weighted by
different smearing functions. Li et al. [19] refer to the
resulting tower of internal densities as multipole moment
densities. Odd powers of the derivative cancel in the
expansion, so we will consider the up to the second power.
The leading terms take the form

j0physðxÞ ¼
Z

d3RPðRÞj0Breitðx −RÞ

þ
Z

d3RQijðRÞjijnewðx −RÞ þ…; ð82aÞ

where the smearing functions

PðRÞ ¼ Ψ�ðRÞΨðRÞ ð82bÞ

QijðRÞ ¼ Ψ�ðRÞ
�
−
i∇
↔

i

2M

��
−
i∇
↔

j

2M

�
ΨðRÞ ð82cÞ

and internal density functions

j0BreitðbÞ ¼
Z

d3Δ
ð2πÞ3 Fð−Δ

2Þe−iΔ·b ð82dÞ

jijnewðbÞ ¼
Z

d3Δ
ð2πÞ3

ΔiΔj

1þ Δ2

4M2

�
1

8M2

Fð−Δ2Þ
1þ Δ2

4M2

þ F0ð−Δ2Þ
�

× e−iΔ·b ð82eÞ

appear. These of course are only the first two terms in an
infinite series, and we reiterate that the convergence of the
series depends on the wave packet being diffuse. This series
expansion for the physical charge density, along with an
explicit result for the “new” term, was first reported by Li
et al. in Ref. [19]. The apparently different result we obtain
for the “new” term is due to a difference in convention for
defining the position-space wave function.
A similar expansion can be made for the instant form

energy density:

T00
physðxÞ ¼

Z
d3RPðRÞT00

Breitðx −RÞ

þ
Z

d3RQijðRÞQij
newðx −RÞ þ…; ð83Þ

where the standard Breit frame density is given by [1]

T00
BreitðbÞ ¼ 2M2

Z
d3Δ
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ Δ2

p
�
Að−Δ2Þ

þ Δ2

4M2
½Að−Δ2Þ þDð−Δ2Þ�

�
e−iΔ·b; ð84Þ

and the new higher-order internal structure by

Qij
newðbÞ ¼ M2

Z
d3Δ
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 þ Δ2

p
�
δij
�
Að−Δ2Þ − Δ2

4M2 þ Δ2
Dð−Δ2Þ

�

þ 2ΔiΔj

�
A0ð−Δ2Þ þ Δ2

4M2 þ Δ2

�
Dð−Δ2Þ
4M2 þ Δ2

þD0ð−Δ2Þ
��

e−iΔ·b: ð85Þ

For both the charge density and energy density, the leading
term for diffuse wave packets is a convolution between the
probability density of the barycenter and the standard Breit
frame density. This suggests that, after all, the Breit frame
densities do actually encode an internal hadron density.
However, their interpretation as an internal density relies on
an assumption about the wave packet—namely, that it is
spatially diffuse.

Through the consideration of diffuse wave packets, we
have reproduced the finding of Ref. [19] that Breit frame
densities provide a leading-order description for the inter-
nal densities of hadrons in diffuse wave packets. Moreover,
by providing the next-to-leading order corrections, we have
also provided a means to numerically test the breakdown of
their applicability. We shall numerically study this break-
down in Sec. IV C.
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C. Numerical illustration of Breit frame
density breakdown

We will illustrate the domain of applicability of Breit
frame densities using a simple wave packet—a Gaussian
with average momentum P:

ΨðRÞ ¼ 1

ð2πσ2Þ3=4 e
−R2

4σ2eiP·R: ð86Þ

For such a wave packet,

−
1

4
Ψ�ðRÞ∇↔i∇

↔

jΨðRÞ¼
�
PiPjþ

δij
4σ2

�
Ψ�ðRÞΨðRÞ; ð87Þ

meaning that the expansion considered in Sec. IV B is valid
when both jPj is small (a slow wave packet) and σ is large
(a diffuse wave packet). The second-order smearing func-
tion for this wave packet is given by

QijðRÞ ¼
�
PiPj

M2
þ δij
4σ2M2

�
PðRÞ: ð88Þ

We shall consider a case with protonlike kinematics, using
M ¼ 940 MeV and simple multipole models for the form
factors

Fð−Δ2Þ ¼ 1

ð1þ Δ2=m2
ρÞ2

ð89aÞ

Að−Δ2Þ ¼ 1

ð1þ Δ2=m2
f2
Þ2 ð89bÞ

Dð−Δ2Þ ¼ −1
ð1þ Δ2=m2

f2
Þ3 ; ð89cÞ

with mρ ¼ 776 MeV and mf2 ¼ 1270 MeV. Although the
proton is a spin-half particle, this calculation is meant only
for illustrative purposes.

For a numerical example, we consider wave packets with
zero average momentum. The leading approximations for
the physical instant form charge density are presented in
Fig. 3 for two wave packet widths. The more diffuse packet
has a width equal to the Compton wave length,

λc ¼
2π

M
≈ 1.3 fm; ð90Þ

and the more localized packet has a width of the reduced
Compton wavelength, smaller by a factor of 2π. For the
more diffuse packet, corrections to the charge density from
structures beyond the Breit frame density are negligible.
For the more localized packet, however, there are signifi-
cant corrections to the physical density from the first
higher-order term. This indicates that the Breit frame
charge density encodes one aspect of the internal distri-
bution of charge in the hadron, but does not tell the entire
story, since there are corrections when the hadron wave
packet is localized to smaller distance scales than its
Compton wavelength.
We next repeat this exercise for the physical instant form

energy density in Fig. 4. Just as with the charge density, the
Breit frame density dominates other aspects of internal
hadron structure for sufficiently diffuse wave packets, and a
width as large as the Compton wavelength is sufficient. For
smaller wave packets, however, the Breit frame density is
no longer sufficient to reproduce the physical density,
indicating that the Breit frame density gives only a partial
picture of a hadron’s internal energy distribution.
There is one significant difference between Figs. 3 and 4:

the higher-order term in Fig. 4 changes the normalization.
In fact, for the smaller wave packet, it should: a more
localized wave packet means a greater uncertainty in
momentum, and accordingly, a greater expectation value
for the total energy. The integral of the physical energy
density should give the expected value of the energy, but
integrating the leading term in Eq. (83) only gives the mass.

FIG. 3. Leading approximations of the physical instant form charge density for a spin-zero target with protonlike properties, calculated
according to Eq. (82). Both wave packets use Eq. (86) with P ¼ 0.
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It may be tempting to interpret the leading term of
Eq. (83) as a mass density and the corrections as kinetic
energy densities, but this would be erroneous. There is no
“kinetic charge” in the charge density, yet there were
higher-order corrections to the instant form charge density.
The higher-order corrections to the energy density certainly
contain barycentric kinetic energy, but it is unclear how to
separate these from higher-order corrections to the mass
density. Isolating a barycentric kinetic energy for the light
front energy density (see Sec. III) was possible only
because of the Galilean subgroup, which does not manifest
in instant form coordinates.

V. SUMMARY AND CONCLUSIONS

In this work, we proposed and developed a formalism for
identifying internal densities of hadrons in a fully wave
packet independent manner. Physical densities are identi-
fied as matrix elements of local operators, which neces-
sarily mix internal structure with wave packet dependence.
When the dependence on internal structure and wave
packet can be cleanly separated within a convolution
relation—or the physical density can be written as a sum
of such convolutions—an internal density can be defined.
When using light front coordinates with x− integrated

out, internal densities can always be identified, owing to
invariance of the remaining coordinates under the Galilean
subgroup. The scenario is thus analogous to the situation in
nonrelativistic quantum mechanics. For several simple
cases such as the charge density and Pþ density, the
physical density approaches the internal density when

the wave packet is localized, explaining why previous
derivations of these quantities through localized wave
packets obtained the correct results.
By contrast, when using instant form coordinates, it is

not possible in general to separate wave packet and internal
structure dependence. A special case occurs when the
hadron is prepared in a diffuse state (i.e., broad in
coordinate space), in which case the physical density
can be expanded as an infinite series of convolutions
between internal densities and wave packet dependent
smearing functions—a result previously found by Li
et al. [19], who refer to the tower of internal densities as
“multipole moment densities.” For sufficiently broad wave
packets, on the order of the Compton wavelength or wider,
the physical density is dominated by a convolution between
the barycentric probability density and the conventional
Breit frame density. Thus, the Breit frame density can be
identified as one of infinitely many internal densities that
describe hadron structure in instant form coordinates, but
one which dominates for diffuse wave packets. Breit frame
densities therefore have a legitimate claim to describe an
aspect of hadron structure, but they do not provide a
complete description.
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FIG. 4. Leading approximations of the physical instant form energy density for a spin-zero target with protonlike properties, calculated
according to Eq. (83). Both wave packets use Eq. (86) with P ¼ 0.
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