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We discuss a nonfactorizable (NF) contribution of a charm loop to the FCNC B-decay amplitude given
through the three-particle Bethe-Salpeter amplitude (3BS) of the B-meson. This 3BS contains one heavy-
quark field and two light fields (a light quark and a gluon). Our discussion is aimed at clarifying properties of
the B-meson 3BS necessary to describe properly charm-loop contributions to the amplitudes of FCNC
B-decays. We demonstrate that the dominant contribution of nonfactorizable charm to FCNC B-decay
amplitude is given in the heavy-quark limit by a convolution of some hard kernel and the B-meson 3BS in a
“double-collinear” light cone (LC) configuration: one of the light degrees of freedom ϕðxÞ, x2 ¼ 0, lies
on the (þ)-direction of the LC, whereas another light degree of freedom ϕ0ðx0Þ, x02 ¼ 0 lies along the
(−)-direction. We show the emergence of new constraints on the distribution amplitudes which parametrize
the 3BS in this double-collinear configuration.
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I. INTRODUCTION

Charming loops in rare flavor-changing neutral current
(FCNC) decays of the B-meson have impact on the B-decay
observables [1] and provide an unpleasant noise for the
studies of possible new physics effects (see, e.g., [2–9]).
A number of theoretical analyses of nonfactorizable

(NF) charming loops in FCNC B-decays have been
published. In [10], an effective gluon-photon local oper-
ator describing the charm-quark loop was calculated as an
expansion in inverse charm-quark mass mc and applied to
inclusive B → Xsγ decays (see also [11,12]). In [13] NF
corrections in B → K�γ using local operator product
expansion (OPE) have been studied. NF corrections
induced by the local photon-gluon operator were calcu-
lated in [14,15] in terms of the light cone (LC) 3-particle
antiquark-quark-gluon Bethe-Salpeter amplitude (3BS) of
K�-meson [16–18] with two field operators having equal
coordinates, h0js̄ð0ÞGμνð0ÞuðxÞjK�ðpÞi, x2 ¼ 0. However,
local OPE for the charm-quark loop in FCNC B decays
leads to a power series in ΛQCDmb=m2

c; numerically this
parameter is close to one. To sum up OðΛQCDmb=m2

cÞn
corrections, Ref. [19] obtained a nonlocal photon-gluon
operator describing the charm-quark loop and evaluated its

effect making use of 3BS of the B-meson in a collinear LC
configuration h0js̄ðxÞGμνðuxÞbð0ÞjBðpÞi, x2 ¼ 0 [20,21].
This approximation was later used for the analysis of other
FCNC B-decays [22].
The collinear LC configuration was known to provide

the dominant 3BS contribution to meson tree-level form
factors [23,24]; in particular, to form factors of semi-
leptonic (SL) B-decay induced by b → u weak charged
current (CC). It was tempting to use the collinear 3BS for
the description of FCNC B-decays. However, the 3BS
contribution to the CC B-decay and to the FCNC B-decay
have a qualitative difference. To demonstrate this differ-
ence, let us consider the B-decay in the B-meson rest
frame. In CC B-decays, the b-quark emits a fast light
u-quark which is later hit by a soft gluon and thus keeps
moving in the same space direction. In the case of
charming loops in FCNC B-decays, a fast light s-quark
and a pair of fast c-quarks emitted by the b-quark move in
the opposite space directions. In [25–27] it was demon-
strated that the FCNC B-decay amplitude is dominated not
by the collinear configuration of 3BS, but rather by a
double-collinear configuration h0jq̄ðxÞGμνðx0Þbð0ÞjBðpÞi,
x2 ¼ 0, x02 ¼ 0, but ðx − x0Þ2 ≠ 0. The first application
of a double-collinear 3BS to FCNC B-decays was pre-
sented in [28].
The noncollinear configuration of the B-meson 3BS

leads to the appearance of new Lorentz structures of the
type ðxμpν − xμpνÞ=ðxpÞ and ðx0μpν − x0μpνÞ=ðx0pÞ. These
Lorentz structures contain kinematical singularities at
1=ðxpÞ and 1=ðx0pÞ which should not be singularities of
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the physical 3BS. This requirement and the continuity of
the 3BS at the point x2 ¼ 0, x02 ¼ 0, xp ¼ 0, and x0p ¼ 0
yield constraints on the corresponding distribution ampli-
tudes (DAs). Moreover, these constraints turn out to be
valid also for those DAs which appear in the collinear 3BS.
To avoid complications related to the spinorial structure of
the 3BS in QCD, Sec. II demonstrates the derivation of
these constraints in the case of field theory with scalar
“quarks”. A generalization to QCD is straightforward.
In Sec. III we analyze Feynman diagrams of the type

corresponding to charming loops in FCNC B-decays (i.e.,
those diagrams in which the heavy field hits the middle
point of the line along which light degrees of freedom
propagate; hereafter referred to as FCNC-type diagrams)
and show that to the leading order in the heavy-quark (HQ)
expansion, the amplitude is given by the convolution of
the hard kernel composed of propagators of the light
degrees of freedom and the B-meson 3BS in the double-
collinear configuration. We also derive the exact expression
for the B-decay amplitudes of FCNC-type using the
α-representation and show that the exact amplitudes and
the double-collinear approximation for these amplitudes
coincide in the heavy-quark limit.

II. PROPERTIES OF THE 3BS WAVE FUNCTION
OF THE B-MESON

Leaving aside technical details related to the spins of the
constituent fields and of the bound state, and considering
heavy B-meson as bound state of scalar fields, one of
which, ϕbðxÞ, is heavy, the 3BS of the B-meson may be
parametrized as follows ([27] and references therein):

h0jϕðxÞϕbð0Þϕ0ðx0ÞjBðpÞi ¼
Z

Dðω;ω0Þe−ipxω−ipx0ω0

×Ψðω;ω0; x2; x02; ðx − x0Þ2Þ;
ð2:1Þ

where

Dðω;ω0Þ≡ dωdω0θðωÞθðω0Þθð1 − ω − ω0Þ: ð2:2Þ

For Ψðω;ω0; x2; x02; ðx − x0Þ2Þ one can write down Taylor
expansion in its variables x2, x02, ðx − x0Þ2 as

Ψðω;ω0; x2; x02; ðx − x0Þ2Þ ¼ Ψ0ðω;ω0Þ þ x2Ψ12ðω;ω0Þ
þ x02Ψ23ðω;ω0Þ
þ ðx − x0Þ2Ψ13ðω;ω0Þ þ…;

ð2:3Þ

where… stands for higher powers of x2; x02; ðx − x0Þ2. The
distribution amplitudes Ψi have support in the region
0 < ω, 0 < ω0, ωþ ω0 < 1, and peak at small values

ðω;ω0Þ ¼ OðΛQCD=MBÞ, reflecting the fact that the heavy
b-quark carries almost the full momentum of the heavy
B-meson, whereas the light degrees of freedom carry its
small fraction OðΛQCD=MBÞ. (In practical model calcula-
tions, the DAs may be nonzero in a narrower region, e.g.,
0 < ω, 0 < ω, ωþ ω0 < 2ω0 < 1.)
Interesting constraints on the DAs emerge in those cases

when the 3BS has a nontrivial Lorentz structure. We shall
consider a more complicated 3BS, when one of the light
scalar fields is replaced by the gauge field, ϕðxÞ → GμνðxÞ,1

h0jGμνðxÞϕbð0Þϕ0ðx0ÞjBðpÞi: ð2:4Þ

Our discussion will be technically rather simple but will
allow a direct generalization to QCD, in which case more
Lorentz structures emerge.

A. Collinear 3BS of B-meson

In the literature, much attention has been given to the
collinear 3BS, where the coordinates of the light degrees of
freedom are proportional to each other [24],

h0jGμνðuxÞϕbð0Þϕ0ðxÞjBðpÞÞi

¼
Z

Dðω;ω0Þe−iðuωþω0Þpx

×

�
xμpν − xνpμ

xp

�
½XAðω;ω0Þ þOðx2Þ�; 0 < u < 1:

ð2:5Þ

For x2 ¼ 0 and xp → 0, all components of the 4-vector xμ
vanish in the rest frame of the B-meson (pþ ¼ p−,
p⊥ ¼ 0),

xp ¼ xþp− þ x−pþ − x⊥p⊥ ¼ 0 ⇒ xþ ¼ −x−;

x2 ¼ 2xþx− − x2⊥ ¼ −2x2þ − x2⊥ ¼ 0 ⇒ xþ ¼ −x− ¼ 0;

x⊥ ¼ 0:

So, if (2.5) is defined only for x2 ¼ 0, one can introduce the
new variable τ, xμ ¼ τnμ, n2 ¼ 0 [nμ lies, e.g., along the
(þ) direction of the light cone]. Then the Lorentz structure
ðxμpν − xνpμÞ=xp has no singularity at τ → 0 and therefore
the amplitude (2.5) is finite at xp → 0 [21].
However, if one considers the collinear 3BS (2.5) also at

x2 ≠ 0, then the singularity at xp → 0 in the Lorentz
structure emerges. The 3BS (2.5) as the function of two
arguments x2 and xp should be continuous and finite at

1In QCD, the analogous 3BS is h0jq̄ðx0ÞGμνðxÞbð0ÞjBðpÞi.
This amplitude is not gauge-invariant as it contains field operators
at different locations. Gauge-invariant 3BS is constructed by
introducing the Wilson lines as follows: h0jq̄ðx0ÞUðx0; xÞ
GμνðxÞUðx; 0ÞÞbð0ÞjBðpÞi with Uðx; yÞ ¼ P expði R x

y AμðzÞdzμÞ.
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x2 ¼ 0 and xp ¼ 0, so one has to require that the kinemati-
cal singularity of the Lorentz structure should not be the
singularity of the 3BS (2.5). Expanding the exponential
in (2.5) and requiring the absence of a singularity at xp → 0
in the rhs of Eq. (2.5) leads to a well-known constraint [see
Eq. (5.5) of [21]],

Z
Dðω;ω0ÞXAðω;ω0Þ ¼ 0: ð2:6Þ

B. Generalization to a noncollinear kinematics

For a proper description of the nonfactorizable charm in
FCNC B-decay, 3BS of the B-meson in a noncollinear
configuration is necessary (see [25–28] and the demon-
stration in the next section). We therefore consider the
generalization of the amplitude (2.5) and allow the gluon
field GμνðxÞ and the light-quark field ϕ0ðx0Þ to have
arbitrary different noncollinear coordinates. Then a more
general decomposition emerges,2

h0jGμνðxÞϕbð0Þϕ0ðx0ÞjBðpÞi ¼
Z

Dðω;ω0Þe−iωxp−iω0x0p

×

��
xμpν − xνpμ

xp

�
Xð1Þ
A ðω;ω0Þ þ

�
x0μpν − x0νpμ

x0p

�
Xð2Þ
A ðω;ω0Þ þ…

�
: ð2:7Þ

The amplitude (2.7) contains factors 1=xp and 1=x0p in the
Lorentz structures. If (2.7) is defined for x2 ¼ 0 and x02 ¼ 0
only, one can introduce two new variables τ and τ0 such that
xμ ¼ τnμ, x0μ ¼ τ0n0μ, n2 ¼ 0 and n02 ¼ 0, but n0n ≠ 0 [e.g.,
nμ lies along the (þ)-direction of the light cone, and n0μ lies
along the (−)-direction, see also [28]]. Then the Lorentz
structure ðxμpν − xνpμÞ=xp has no singularity at τ → 0, the
Lorentz structure ðx0μpν − x0νpμÞ=x0p has no singularity at
τ0 → 0, and therefore the amplitude (2.7) has no singularity
at xp → 0 and x0p → 0.
However, the noncollinear 3BS (2.7) should be a regular

continuous function of its arguments at the point x2 ¼ 0,
x02 ¼ 0, xp ¼ 0, and x0p ¼ 0 independently of the way one
approaches this point. If one first takes the limit xp → 0

and x0p → 0 keeping x2 ≠ 0 and x02 ≠ 0, then the singu-
larities at xp → 0 and x0p → 0 in the Lorentz structures
emerge. To compensate these singularities, the DAs should
satisfy the following constraints [obtained by expanding the
exponential in (2.7)]

Z1−ω0

0

dωXð1Þ
A ðω;ω0Þ ¼ 0 ∀ω0 and

Z1−ω

0

dω0Xð2Þ
A ðω;ω0Þ ¼ 0 ∀ω: ð2:8Þ

For XA parametrizing the 3BS in the collinear limit,
x ¼ ux0, one finds the relation

XAðω;ω0Þ ¼ Xð1Þ
A ðω;ω0Þ þ Xð2Þ

A ðω;ω0Þ: ð2:9Þ

Obviously, the condition (2.6) follows from (2.8).
However, Eq. (2.8) shows that each of the parts of
XAðω;ω0Þ should satisfy more restrictive constraints.

For further use we introduce the primitives:

X̄ð1Þ
A ðω;ω0Þ ¼

Zω

0

dωXð1Þ
A ðω;ω0Þ;

Xð1Þ
A ðω;ω0Þ ¼ ∂ωX̄

ð1Þ
A ðω;ω0Þ; ð2:10Þ

X̄ð2Þ
A ðω;ω0Þ ¼

Zω0

0

dω0Xð2Þ
A ðω;ω0Þ;

Xð2Þ
A ðω;ω0Þ ¼ ∂ω0X̄ð2Þ

A ðω;ω0Þ: ð2:11Þ

By virtue of (2.8), we obtain the following constraints on
the primitives:

X̄ð1Þ
A ðω¼ 0;ω0Þ ¼ X̄ð1Þ

A ðω¼ 1−ω0;ω0Þ ¼ 0 ∀ω0; ð2:12Þ

X̄ð2Þ
A ðω;ω0 ¼ 0Þ ¼ X̄ð2Þ

A ðω;ω0 ¼ 1−ωÞ ¼ 0 ∀ω: ð2:13Þ

These relations mean that the primitives should vanish on
the boundary of the DA’s support region.
Performing parts integration in ω or ω0, and taking

into account that the surface terms vanish due to (2.12)
and (2.13), we may rewrite (2.7) in the form that does not
contain factors 1=xp and 1=x0p,3

2We do not display here further structures like ðxμx0ν − x0μxνÞ=
ððxpÞðx0pÞÞ. The way one should properly treat the correspond-
ing DAs will become obvious.

3Note, the functions of the type XA extensively used in the
literature [19,21,22] do not satisfy (2.8). In this case, the surface
terms do not vanish and the 3BS given by Eqs. (2.7) and (2.14)
are not equivalent to each other.

THREE-PARTICLE DISTRIBUTION IN THE B MESON AND … PHYS. REV. D 108, 034007 (2023)

034007-3



h0jGμνðxÞϕbð0Þϕ0ðx0ÞjBðpÞi

¼ i
Z

Dðω;ω0Þe−iωxp−iω0x0p

× fðxμpν − xνpμÞX̄ð1Þ
A ðω;ω0Þ

þ ðx0μpν − x0νpμÞX̄ð2Þ
A ðω;ω0Þ þ…g: ð2:14Þ

Let us summarize the material of this section. We
required that the noncollinear 3BS is a continuous function
of its arguments at x2 ¼ 0, x02 ¼ 0, xp ¼ 0, and x0p ¼ 0
and has a finite value at this point. Then, the kinematical
singularities in the Lorentz structures at xp → 0 and x0p →
0 should be compensated by certain properties of the DAs:
namely, for the DA of the XA-type, its primitives should
vanish on the boundary of XA-support region. This property
also guarantees that two forms of the 3BS, Eqs. (2.7)
and (2.14), are equivalent and may be safely applied to the
calculation of the amplitudes of B-meson decays.

III. B-DECAY IN THE KINEMATICS OF
CHARMING LOOPS IN FCNC DECAYS

In this section we focus on 3BS contributions involving
charming loops in FCNC B-decays and show that to the
leading order in the HQ expansion the amplitude is given
by the convolution of the hard kernel and the B-meson 3BS
in the noncollinear kinematical configuration.

A. The dominant contribution to the FCNC B-decay
amplitude involving charming loops

As noticed in [27] (see the Appendix for details) the
kinematics of FCNC B-decay amplitudes involving charm-
ing loops is equivalent to the 3BS correction to the B-decay
form factor with the difference that the heavy field, ϕbð0Þ,
is in the middle of the quark line. Placing the heavy-quark
field at zero, ϕbð0Þ, we have [Fig. 1]

Aðpjq; q0Þ ¼
Z

dxdx0dkdk0

ðμ2 − k2Þðm2 − k02Þ e
iqxþikxþiq0x0−ik0x0

× h0jϕðxÞϕbð0Þϕ0ðx0ÞjBðpÞi; ð3:1Þ

where ϕ and ϕ0 are light degrees of freedom (in practical
calculations, the gluon and the light quark). We are going to
derive the leading-order behavior of this amplitude.

1. The x-vertex

Let us discuss the x-vertex and introduce κ ¼ kþ q, the
momentum carried by the constituent field ϕðxÞ,

Z
dxdκ

μ2 − ðκ − qÞ2 e
iκxh0jϕðxÞ…jBðpÞi: ð3:2Þ

We consider the case q2 ¼ q02 ¼ 0 and work in the rest
frame of the B-meson and take the axes such that
momentum q is along (þ)-axis, whereas momentum q0
is along the (−)-axis. [One can formulate this in a covariant
form by introducing vectors nμ and n̄μ [21,28].]
Due to the properties of the B-meson 3BS, the vector κ

is soft, i.e., all its components are κμ ∼OðΛQCDÞ. The
component qþ is large, qþ ∼MB, and the propagator is
highly virtual, μ2 − 2κ−ðκþ − qþÞ þ κ2⊥ ∼ ΛQCDMB.
Let us expand the field operator ϕðxÞ near x ¼ 0 (this

would correspond to considering a tower of local operators
of the increasing dimension). The expansion in powers of
x− and x⊥ leads to a well-behaved Taylor series as

x−eiκþx−
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥

→
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥
∂κþe

iκþx−

→ eiκþx−∂κþ

�
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥

�

→ eiκþx−
κ−

ðμ2 − 2κ−ðκþ − qþÞ þ κ2⊥Þ2
: ð3:3Þ

Since κ− ¼ OðΛQCDÞ and the virtuality of the propagator
is OðΛQCDMBÞ, any term ðx−Þn is suppressed by a factor
ð1=MBÞn compared to the term ðx−Þ0. The same property
holds for ðx⊥Þn.
However, for powers of the variable xþ the situation is

different,

xþeiκ−xþ
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥

→
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥
∂κ−e

iκ−xþ

→ ∂κ−

�
1

μ2 − 2κ−ðκþ − qþÞ þ κ2⊥

�
eiκ−xþ

→ eiκ−xþ
qþ

ðμ2 − 2κ−ðκþ − qþÞ þ κ2⊥Þ2
: ð3:4Þ

Since qþ ∼MB, all powers of xnþ in the expansion of ϕðxþÞ
near xþ ¼ 0 have the same order of magnitude. The Taylor

k
(x)

ϕ
b(0)

k

ϕ

B(p)

xκ q(x )ϕ

xκ

x=0
μ

m

q

FIG. 1. The generic 3BS amplitude of the form factor topology.
If the field ϕb is heavy, while other fields ϕ and ϕ0 are light, the
diagram corresponds to the topology of charming loops in FCNC
B-decay amplitude.
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expansion of ϕðxþÞ near xþ ¼ 0 leads to no hierarchy in the
corresponding expansion of the B-decay amplitude, and we
need to keep the full xþ dependence of the operator ϕðxþÞ
on the light cone (x2 ¼ 0). This result is valid for two
phenomenologically interesting cases: (i) the charm-quark
loop contribution to the FCNC amplitude, μ2 ∼m2

c ¼
OðΛQCDmbÞ; and (ii) the light-quark loop contribution to
the FCNC amplitude, μ being the light-quark mass.
So, the leading term of the expansion of the B-decay

amplitude related to the x-vertex corresponds to the
expansion near x− ¼ 0, x⊥ ¼ 0 and has the form

Z
dxþdx−dx⊥dκþdκ−dκ⊥

1

μ2 − 2ðκþ − qþÞk− þ k2⊥
× eiκþx−þiκ−xþ−ik⊥x⊥h0j…ϕðxþÞ…jBðpÞi: ð3:5Þ

The x− and x⊥ integrals here may be taken and lead to
δðκ⊥ÞδðκþÞ. Integrating these δ-functions, we obtain for the
part of the amplitude related to the x-vertex (we denote
τ ¼ xþ, and recall that q has only the (þ)-component),

Z
dτdκ−

1

μ2 þ 2qþκ−
eiκ−τh0jϕðτÞ…jBðpÞi: ð3:6Þ

2. The x0-vertex

We can perform a similar analysis of the x0-vertex. The
crucial difference is that now q− ∼MB is the only nonzero
component of the vector q0. The propagator has the form
m2 − 2κ0−ðκ0− − q−Þ þ κ02⊥ ∼ ΛQCDMB. Obviously, we can
perform Taylor expansion of ϕ0ðx0Þ near x0þ ¼ 0 and x0⊥ ¼
0 but have to keep its full dependence on the variable x−.
Taking into account this property and denoting τ0 ¼ x0−, the
dominant contribution of the x0-vertex reads (q− ∼MB is
the only nonzero component of the vector q0)
Z

dτ0dκ0þ
1

m2 þ 2q0−κ0þ
eiκ

0
þτ

0 h0j…ϕ0ðτ0Þ…jBðpÞi: ð3:7Þ

3. The amplitude of the FCNC B-decay

Making use of the leading contributions of the x- and
x0-vertices we obtain the leading contribution to the
B-decay amplitude in the form (see also [28]),

Aðpjq; q0Þ ¼
Z

dτdκ−
1

μ2 þ 2qþκ−
eiκ−τ

×
Z

dτ0dκ0þ
1

m2 þ 2q0−κ0þ
× eiκ

0
þτ

0 h0jϕðτÞϕbð0Þϕ0ðτ0ÞjBðpÞi: ð3:8Þ

This relation is the factorization theorem that represents
the dominant contribution to the FCNC amplitude as the
convolution of the hard kernel composed from the

propagators of the light degrees of freedom and the 3BS
in the kinematical configuration which may be called
“double collinear”; the upper and the lower parts of the
diagram are aligned along the different light cone directions.

4. On the collinear light cone 3DA in FCNC B-decay

We would like to emphasize that the 3BS in a collinear
light cone configuration

h0jϕðxÞϕbð0Þϕ0ðλxÞjBðpÞi; x2¼ 0; 0< λ< 1; ð3:9Þ

is not related to the dominant contribution to the amplitude
of FCNC B-decay. So, we do not find justification of the
statement of [19] that the dominant contribution to the
FCNC amplitude may be calculated via the collinear light
cone 3DA of the B-meson (3.9).

5. Multiparticle BS contributions to amplitudes
of B-decays

Our analysis may be generalized to other contributions
to B-decay amplitudes of the type shown in Fig. 2.
The corresponding diagram involves a multiparticle BS
of the B-meson,

h0jϕðxÞϕ1ðx1Þ…ϕnðxnÞϕbð0Þϕ0
n0 ðx0n0 Þ…

× ϕ0
1ðx01Þϕ0ðτ0ÞjBðpÞi; ð3:10Þ

where all fields except for ϕb are light. Combining
the analysis presented above and the discussion of
Sec. 3 of [27], one can easily prove by induction that
the dominant contribution to the B-decay amplitude
comes from the double-collinear light cone configuration
[aμ ¼ ðaþ; a−; a⊥Þ],

)( x q

x q

...

...

�n n

�
1 1

�

x
B(p)

�n n

x1
x
x=0
n

x
x1
n

�b

x
(0)
( )

�1(x1)
�( )x

( )

x( )
x

FIG. 2. An example of a multiparticle BS contribution to the
B-decay amplitude. The field ϕb is heavy, while all other fields,
ϕ;ϕ0;…, are light. The dominant contribution comes from the
double collinear LC configuration: x1 ¼ u1x;…; xn ¼ unx; 0 <
un < … < u1 < 1; x2 ¼ 0; x01 ¼ u01x

0;…; x0n0 ¼ un0x0; 0 < u0n0 <
… < u01 < 1; x02 ¼ 0, whereas xx0 ≠ 0, i.e., the set of collinear
field coordinates in the upper part of the diagram is not aligned
with the set of collinear field coordinates in the lower part of the
diagram.
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x ¼ ðτ; 0; 0Þ; x1 ¼ ðτu1; 0; 0Þ; …;

xn ¼ ðτun; 0; 0Þ; 0 < un < … < u1 < 1;

x0 ¼ ð0; τ0; 0Þ; x01 ¼ ð0; τ0u01; 0Þ; …;

x0n0 ¼ ð0; τ0u0n0 ; 0Þ; 0 < u0n0 < … < u01 < 1: ð3:11Þ

The coordinates x; x1;…; xn are ordered and lie on the
(þ)-axis of the LC, and the coordinates x0; x01;…; x0n0 are
ordered and lie on the (−)-axis of the LC. That is why we
refer to this configuration as to the double collinear light
cone configuration.

6. Collinear vs double-collinear 3DAs

Here we would like to emphasize the differences
between the collinear and the double-collinear 3DAs.
Let us get back to Eq. (2.7). Again introduce LC variables
in the B-meson rest frame and consider two vectors nμ ¼
ð ffiffiffi

2
p

; 0; 0Þ and n0μ ¼ ð0; ffiffiffi
2

p
; 0Þ such that n2 ¼ 0, n02 ¼ 0,

nn0 ¼ 2, vμ ¼ 1
2
ðnμ þ n0μÞ, nv ¼ n0v ¼ 1:

(i) In a collinear LC configuration, x2 ¼ 0, x02 ¼ 0,
x0μ ¼ uxμ, we can choose xμ and x0μ along nμ:
xμ ¼ τnμ, x0μ ¼ τ0n0μ. Then two Lorentz structures
in (2.7) reduce to one Lorentz structure [we use
relation v ¼ ðnþ n0Þ=2],

h0jGμνðnτÞϕbð0Þϕðnτ0ÞjBðpÞi

¼
Z

Dðω;ω0Þe−iMBðωτþω0τ0Þ

×
1

2
ðnμn0ν − nνn0μÞ

�
Xð1Þ
A þ Xð2Þ

A

�
; ð3:12Þ

where XA ≡ Xð1Þ
A þ Xð2Þ

A is the collinear LC 3DA.
(ii) We now turn to the double-collinear LC configura-

tion. Since the 3BS (2.7) is antisymmetric in μ ↔ ν,
both Lorentz structures in (2.7) are again reduced to

the same Lorentz structure as in (3.12) with however
a different 3DA,

h0jGμνðnτÞϕbð0Þϕðn0τ0ÞjBðpÞi

¼
Z

Dðω;ω0Þe−iMBðωτþω0τ0

×
1

2
ðnμn0ν − nνn0μÞ

�
Xð1Þ
A − Xð2Þ

A

�
: ð3:13Þ

So, we conclude; although the 3BS of Eq. (2.7) both
in the collinear and the double-collinear configura-
tions contain one and the same Lorentz structure, the
corresponding 3DAs in the collinear and the double-
collinear configurations are different and in general
are independent of each other, see also [28].

B. Gauge field as one of the light fields: Double-collinear
approximation

Let us now turn to the situation with more Lorentz
structures. We have to take into account that the kinematics
is double-collinear and the new Lorentz structures and new
DAs emerge compared to collinear kinematics considered
in [21]. Still, some features established for the collinear
3DA survive also in this more complicated case. For
instance, let us consider the Lorentz structures containing
xp and x0p in the denominator

xμpν − xνpμ

xp
and

x0μpν − x0νpμ

x0p
: ð3:14Þ

If we keep the “large” components [i.e., xμ along the
(þ)-axis and x0μ along the (−)-axis], then powers of τ and τ0
in the numerator and the denominator cancel. In the end,
the τ- and τ0-integrations may be easily performed.
To be more specific, we consider the case when the light

field ϕðxÞ is replaced by the vector gauge field GμνðxÞ and
discuss one structure in the B-meson 3BS

h0jGμνðxÞϕbð0Þϕðx0ÞjBðpÞi ¼
Z

Dðω;ω0Þe−iωxp−iω0x0p
�
xμpν − xνpμ

xp

�
XAðω;ω0Þ: ð3:15Þ

The B-decay amplitude induced by this 3BS is antisymmetric in two indices μ and ν and thus contains one form
factor,

Aμνðpjq; q0Þ ¼ ðqμq0ν − qνq0μÞFðq2; q02Þ

¼
Z

dxdx0dκdκ0

ðμ2 − ðκ − qÞ2Þðm2 − ðκ0 − q0Þ2Þ e
iκxþiκ0x0 h0jGμνðxÞϕbð0Þϕ0ðx0ÞjBðpÞi: ð3:16Þ

Taking into account the derivation of the previous subsection, the leading contribution may be written as

Aμνðpjq; q0Þ ¼
Z

dτdκ−
1

μ2 þ 2qþκ−
eiκ−τ

Z
dτ0dκ0þ

1

m2 þ 2q0−κ0þ
eiκ

0
þτ

0 xμpν − xνpμ

xp

×
Z

Dðω;ω0ÞXAðω;ω0Þe−iωp−τ−iω0pþτ0 : ð3:17Þ
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Obviously, the main contribution to the amplitude comes
from the following regions:

(i) In the upper part of the diagram, xμ has nonzero
(þ)-component, qμ has nonzero (þ)-component, κμ
has nonzero (−)-component, and xp ¼ τpþ.

(ii) In the lower part of the diagram, the situation
is opposite: x0μ has nonzero (−)-component, q0μ
has nonzero (−)-component, κ0μ has nonzero
(þ)-component, and x0p ¼ τ0p−.

Essentially, we have two independent one-dimensional
configurations. These configurations talk to each other
via the ω and ω0 dependence of the 3DA XAðω;ω0Þ.
In the double-collinear configuration, the 4-vector x has

only one nonzero component, xþ, and the combination
xμpν − xνpμ is linear in xþ. Therefore, the combination

xμpν − xνpμ

xp
ð3:18Þ

is nonsingular for xþ → 0. [The same property holds e.g.,
for the structure ðxμγν − xνγμÞ=xp for spinor fields.]
Taking into account the nonzero components, for cal-

culating the form factor Fðq2; q02Þ we may set μ ¼ ðþÞ
and ν ¼ ð−Þ, or μ ¼ ð−Þ and ν ¼ ðþÞ. In the double-
collinear configuration, we find

xμpν − xνpμ

xp
→ 1 for μ ¼ ðþÞ; ν ¼ ð−Þ; and

xμpν − xνpμ

xp
→ −1 for μ ¼ ð−Þ; ν ¼ ðþÞ: ð3:19Þ

In the end, we obtain the same result as for the scalar form
factor of the previous section,

q0qFðq2; q02Þ ¼
Z

dτdκ−
1

μ2 þ 2qþκ−
eiκ−τ

×
Z

dτ0dκ0þ
1

m2 þ 2q0−κ0þ
eiκ

0
þτ

0

×
Z

Dðω;ω0Þe−iωp−τ−iω0pþτ0XAðω;ω0Þ:

ð3:20Þ

C. Gauge field as one of the light fields:
The α-representation

Another possibility to handle the 1=xp factor without
making approximations and without performing parts
integration is to make use of the α-representation

1

ixp
¼

Z
∞

0

e−iapx−ϵada: ð3:21Þ

This representation leads to a shift of the expressions
containing ω in the denominator of the quark propagator
and enables us to take explicitly the α-integration in the
amplitude (3.16). So, we do not need to make the parts
integration in ω. In this way we could avoid making
approximations and considering the collinear kinematics.
Taking into account that the quadratic form in the

denominator is the quark propagator, we reconstruct the
imaginary part as follows:

Z
∞

0

da
ða − aþÞða − a−Þ − i0

¼ 1

aþ − a−
log

�
−
a−
aþ

�
þ iπ

1

aþ − a−
;

a− < 0; aþ > 0 for 0 < ω < 1: ð3:22Þ

Let us discuss the contribution to the form factor from the
“upper part of the diagram” including the propagator of the
quark with mass μ; the “lower” part of the diagram is
treated precisely the same way. Important is that we do not
need to make any approximations and the calculation is
fully covariant. By virtue of the α-representation, the
contribution of the 3DA structure (3.15) to the form factor
(3.8) takes the form [we explicitly write only the upper part
of the diagram containing the vertex x that emits the
momentum q, the quark propagator 1=ðμ2 − k2 − i0Þ and
the relevant part of the B-meson 3BS],

Aμνðpjq; q0Þ ¼
Z

dxdkeiqxþikx−iωpx xμpν − xνpμ

ixp

×
1

μ2 − k2 − i0
dωXAðω;ω0Þf…g: ð3:23Þ

We substitute 1=px as the α-integral and represent the xβ as
the qβ-derivative of expðiqxÞ. This qβ derivative may be
taken out of the integral bringing us to the following
expression:

Aμνðpjq; q0Þ ¼
�
pν

∂

∂qμ
− pμ

∂

∂qν

�Z∞

0

da dx dk eiqxþikx−iωpx−iapx−ϵa 1

μ2 − k2 − i0
dωXAðω;ω0f…g: ð3:24Þ

Taking x- and k-integrations yields
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Aμνðpjq; q0Þ ¼
�
pν

∂

∂qμ
− pμ

∂

∂qν

�Z∞

0

dae−ϵa
1

μ2 − ðq − pðaþ ωÞÞ2 − i0
dωXAðω;ω0Þf…g: ð3:25Þ

The q-derivative may be written as

∂

∂qβ

�
1

μ2 − ðq − pðaþ ωÞÞ2 − i0

�
¼ −2

∂

∂μ2

�
1

μ2 − ðq − pðaþ ωÞÞ2 − i0 � � �
�
ðqβ − pβðaþ ωÞÞ

→ −2qβ
∂

∂μ2

�
1

μ2 − ðq − pðaþ ωÞÞ2 − i0 � � �
�
; ð3:26Þ

since the term proportional to pβ does not contribute to the
antisymmetric amplitude Aμν.
The next steps in our handling of Eq. (3.25) are as

follows:
The a-integral converges so we may take the limit ϵ → 0

and set expð−ϵaÞ → 1.
Isolating the factorM2

B in the denominator, the a-integral
in Eq. (3.25) is equal to (3.22) with

aþ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ̄2

p
þ 2ω

2
> 0;

a− ¼ −1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ̄2

p
þ 2ω

2
< 0; for 0< ω< 1; ð3:27Þ

where μ̄2 ≡ μ2=M2
B and aþ − a− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ̄2

p
. For further

use we denote the real part of (3.22) as Kðω; μ̄2Þ,

Kðω; μ̄2Þ ¼ 1

aþ − a−
log

�
−
a−
aþ

�
; ð3:28Þ

with a� given by (3.27). Notice a useful relation

∂ωKðω; μ̄2Þ ¼ 1

μ̄2 þ ωð1 − ωÞ : ð3:29Þ

Adding the contribution of the “lower” part of the diagram
yields

Aμνðpjq; q0Þ ∼ ðq0νqν − qνq0μÞ
∂

∂μ̄2
Fsðμ̄2; m̄2Þ; ð3:30Þ

with (recall that we consider q2 ¼ q02 ¼ 0)

Fsðμ̄2; m̄2Þ ¼
Z

Dðω;ω0ÞXAðω;ω0ÞKðω; μ̄2Þ

×
1

m̄2 þ ω0ð1þ ω0Þ þ iπ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4μ̄2
p

×
Z

Dðω;ω0ÞXAðω;ω0Þ 1

m̄2 þ ω0ð1þ ω0Þ :

ð3:31Þ

Here m̄2 ≡m2=M2
B.

To compare the amplitude in the double-collinear
approximation, Eq. (3.20), and the exact amplitude,
Eq. (3.30), in the HQ limit (MB → ∞, m and μ fixed,
ω ∼ ΛQCD=MB), we make use of the following expansions:

−∂μ̄2Kðω; μ̄2Þ ¼
1

ω
− ð1þ 2 logðωÞ − 2iπÞ − 3ωþOðω2Þ;

ð3:32Þ

1

μ̄2 þ ωð1 − ωÞ ¼
1

ω
þ 1þ ωþOðω2Þ: ð3:33Þ

Taking into account that any 3DA is peaked in region
(ω;ω0Þ ∼ ΛQCD=mb, we observe the following important
features of the amplitude in the HQ limit:
(a) The amplitude in the “double-collinear” approxima-

tion, Eqs. (3.20) and (3.33) and the exact amplitude,
Eqs. (3.30) and (3.32), have one and the same leading
behavior in the HQ limit.

(b) The imaginary part of the exact amplitude, see
Eqs. (3.30) and (3.31), is parametrically suppressed
compared to its real part. The amplitude in the
“double-collinear” approximation (3.20) does not
have any imaginary part.

(c) The “strong” imaginary part of the exact B → γγ
amplitude, Eq. (3.31), gained due to soft gluon
interactions, is unphysical as there are no appropriate
hadron intermediate states which might lead to the
appearance of such imaginary part at q2 ¼ 0 and
q02 ¼ 0. Note that the imaginary part vanishes iden-
tically if XA satisfies the constraint (2.8); the constraint
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on XA given by Eq. (2.6) is not sufficient to guarantee
the absence of the unphysical imaginary part.

IV. CONCLUSIONS

We studied a generic B-decay amplitude of the FCNC-
type—i.e., an amplitude given by diagrams in which the
heavy field hits the middle point of the line along which
light degrees of freedom propagate—and obtained the
following results:

(i) As already demonstrated in the literature [25–27],
the leading contribution to the amplitude of a
B-decay of FCNC-type, B → jðqÞj0ðq0Þ, is given
by the convolution formula of the hard kernel
composed of propagators of the light degrees of
freedom and the 3BS of the B-meson

h0jϕðxÞϕbð0Þϕ0ðx0ÞjBðpÞi ð4:1Þ
in the following configuration:

x2 ¼ 0; x02 ¼ 0; xx0 ≠ 0: ð4:2Þ

We have now formulated this result as a factorization
theorem by a direct analysis of Feynman diagrams.
Considering the FCNC-type B-decay into two real
photons (q2 ¼ q02 ¼ 0) in the rest frame of the
B-meson and choosing the momenta q and q0 along
the (þ) and (−) axes of the light cone, respectively,
we have shown that the dominant contribution to the
amplitude in the heavy-quark limit comes from the
“double-collinear” configuration

h0jϕðxþÞϕbð0Þϕ0ðx0−ÞjBðpÞi: ð4:3Þ

Equation (3.8) represents the factorization formula
for the amplitudes of FCNC-type; corrections to the
contribution given by Eq. (3.8) are suppressed by
powers of the heavy-quark mass.

(ii) The B-meson 3BS in a collinear LC configuration

h0jϕðxÞϕbð0Þϕ0ðλxÞjBðpÞi; x2 ¼ 0; 0< λ< 1;

ð4:4Þ

does not appear in the convolution formula (3.8) for
the leading 3BS contribution to the FCNC B-decay
amplitude. This means that the calculation of the
FCNC B-decay amplitude as the convolution of the
hard kernel and the collinear 3BS as is done e.g.,
in [19] does not provide a well-defined starting
point; corrections to this approximation are not
suppressed by any large parameter.

This makes an essential difference between
the 3DA contributions to charming loops in FCNC
B-decays and to SL B-decays; the 3DA contribution
to the SL form factor factorizes into the convolution
of a hard kernel and the collinear LC 3BS [24],
corrections to this configuration being suppressed
by 1=mb.

(iii) The generic 3BS involves more Lorentz structures
and 3DAs than the collinear 3BS. In particular, it
involves structures of the type

h0jGμνðxÞϕbð0Þϕ0ðx0ÞjBðpÞi ¼
Z

Dðω;ω0Þe−ipxω−ipx0ω0
��

pμxν−pνxμ
xp

�
Xð1Þ
A ðω;ω0Þþ

�
pμx0ν −pνx0μ

x0p

�
Xð2Þ
A ðω;ω0Þ

�
ð4:5Þ

with Dðω;ω0Þ ¼ dωdω0θðωÞθðωÞθð1 − ω − ω0Þ. These Lorentz structures contain kinematical singularities in 1=xp or
1=x0p. Such singularities are unphysical. Requiring that the 3DA is a continuous and finite function of its variables at
x2 ¼ 0, x02 ¼ 0, xp ¼ 0 and x0p ¼ 0, we conclude that the kinematical singularities should vanish due to the properties of

the 3DAs Xð1Þ
A and Xð2Þ

A , leading to the following constraints:

Z
1−ω

0

dωXð1Þ
A ðω;ω0Þ ¼ 0 ∀ω0;

Z
1−ω0

0

dω0Xð2Þ
A ðω;ω0Þ ¼ 0 ∀ω: ð4:6Þ

In other words, the primitives X̄ð1Þ
A ðω;ω0Þ and X̄ð2Þ

A ðω;ω0Þ [Eqs. (2.10) and (2.11)] should vanish on the boundaries of the
XA-suppport area,

X̄ð1Þ
A ðω ¼ 0;ω0Þ ¼ X̄ð1Þ

A ð1 − ω0;ω0Þ ¼ 0 ∀ω0;

X̄ð2Þ
A ðω;ω0 ¼ 0Þ ¼ X̄ð2Þ

A ðω; 1 − ωÞ ¼ 0 ∀ω: ð4:7Þ

Constraints of this type emerge for all 3DAs which parametrize the Lorents structures xμ=xp, x0μ=x0p, xμxν=ðxpÞ2,
xμx0ν=ðxpÞðx0pÞ, etc., in the 3BS of the B-meson. These constraints should be taken into account when building models for
the 3DAs.

THREE-PARTICLE DISTRIBUTION IN THE B MESON AND … PHYS. REV. D 108, 034007 (2023)

034007-9



(iv) The B-meson 3BS of the XA-type of Eq. (4.5) in the
collinear LC configuration xμ ¼ τnμ, x0μ ¼ τ0nμ,
n2 ¼ 0, Eq. (3.12), and in the double-collinear LC
configuration, xμ ¼ τnμ, x0μ ¼ τ0n0μ, n2 ¼ n02 ¼ 0,
n0n ¼ 2, Eq. (3.13), may be parametrized via
one and the same Lorentz structure nμn0ν − nνn0μ.

However, the corresponding 3DAs are different and
in general independent of each other; the collinear

LC 3DA is equal to Xð1Þ
A þ Xð2Þ

A , whereas the double-

collinear LC 3DA is equal to Xð1Þ
A − Xð2Þ

A .
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APPENDIX: NONFACTORIZABLE CHARMING
LOOP IN FCNC B-DECAY AMPLITUDE

Nonfactorizable charm-loop contribution to the ampli-
tude of FCNC decay is given by the diagram of Fig. 3. The
corresponding analytic expression reads [27]

AFCNCðpjq; q0Þ ¼
GFffiffiffi
2

p
Z

dκ0dx0eiκ0x0
1

m2 − ðκ0 − q0Þ2 − i0
dκdxeiκxΓccðκ; qÞh0jϕðxÞϕbð0Þϕ0ðx0ÞjBðpÞi; ðA1Þ

where the expression for the charm-quark loop in the case of scalar “quarks” has the form

Γccðκ; qÞ ¼
1

8π2

Z1

0

du
Z1−u

0

dv
1

m2
c − 2uvκq − κ2uð1 − uÞ − q2vð1 − vÞ − i0

: ðA2Þ

The amplitude (A1) corresponds to the generic amplitude describing 3BS correction to the form factor (3.1) with the
replacement of the usual quark propagator by an “effective” propagator describing the charm-quark triangle Γccðκ; qÞ

1

μ2 − ðκ − qÞ2 − i0
→ Γccðκ; qÞ: ðA3Þ

It is important that Γccðκ; qÞ, similar to the usual propagator, is a quadratic function of its momentum variables. Therefore
the consideration presented in the text for the amplitude (3.1) can be directly applied to the amplitude (A1).
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