
Azimuthal asymmetries in D-meson and jet production at the EIC

Khatiza Banu ,1,2,* Asmita Mukherjee,1,† Amol Pawar ,1,‡ and Sangem Rajesh 3,§

1Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076, India
2Center for Frontiers in Nuclear Science, Stony Brook University,

Stony Brook, New York 11794-3800, USA
3Department of Physics, School of Advanced Sciences, Vellore Institute of Technology,

Vellore, Tamil Nadu 632014, India

(Received 4 July 2023; accepted 21 July 2023; published 4 August 2023)

We study the azimuthal asymmetries in back-to-back leptoproduction of the D meson and jet to probe
the gluon TMDs in an unpolarized and transversely polarized electron-proton collision at the kinematics
of electron-ion collider (EIC). We give predictions for unpolarized cross sections within the TMD
factorization framework. InD-meson and jet formation, the only leading order contribution comes from the
photon gluon fusion process. We give numerical estimates of the upper bound on the azimuthal
asymmetries with the saturation of positivity bounds; also, we present the asymmetries using a Gaussian
parametrization of TMDs. We obtain sizable asymmetries in the kinematics that will be accessible at EIC.
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I. INTRODUCTION

Transverse momentum dependent parton distribution
functions (TMDs) have become the primary focus of
research in hadron physics, as they encode the three-
dimensional structure of a hadron. TMDs depend on the
parton’s longitudinal momentum fraction (x) and its intrin-
sic transverse momentum (k⊥). In contrast to the collinear
parton distribution functions (PDFs), which can only
provide one-dimensional tomography of the hadron since
they are dependent only on the parton’s longitudinal
momentum fraction, the TMDs give a three-dimensional
momentum space description of the hadron in terms of
its constituents. TMDs are typically nonperturbative in
nature [1], and they can be studied in processes like
the semi-inclusive deep inelastic scattering process
(SIDIS) [2,3] and Drell-Yan (DY) [4,5]. In these processes,
one observes a final hadron with transverse momentum or a
lepton pair that contains the footprint of the transverse
momentum of the partons inside the proton. TMDs are not
universal, since their operator definition contains a gauge
link (Wilson line), making them process dependent [6].

Unlike quark TMDs, which only need one gauge link to be
defined in a gauge-invariant way, the gluon TMD operators
require two gauge links, which depend on the process
being considered. These gauge links could either be future-
pointing gauge links (final state interactions) or past-
pointing gauge links (initial state interactions) or a mixture
of both. In small-x physics, these two types of TMDs
(known as unintegrated gluon distributions) are known as
the Weizsäcker-Williams (WW) gluon distribution [7,8]
and the dipole gluon distribution [9]. Both of these
distributions have been commonly used in the literature
and can be studied in different processes depending on the
process-dependent gauge link structure.
At the leading twist, there are eight gluon TMDs. Among

these, the Boer-Mulders function, h⊥g
1 , and the Sivers

function, f⊥g
1T , have gained a lot of attention in recent

years. Similar to this, we have quark TMDs, and the quark
Sivers function is fairly well-known thanks to relentless
experimental and theoretical efforts [10–12]. However,
little is known about the gluon TMDs. The linearly
polarized gluon distribution was first discussed in [13]
and calculated in a model in [14]. The Boer-Mulders TMD
represents the density of linearly polarized gluons inside
an unpolarized proton. The h⊥g

1 is a T (time-reversal) and
chiral-even function; hence, it is nonzero even in the
absence of initial-state interactions (ISI) or final-state
interactions (FSI) [13]. More information about the linearly
polarized gluon TMDs can be obtained by calculating the
cos 2ϕT type of azimuthal asymmetry, which is a ratio of
linearly polarized gluon TMD to unpolarized gluon TMD.
The gluon Sivers function describes the distribution of
unpolarized gluons inside a transversely polarized hadron.
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The correlation between the intrinsic transverse momentum
of a parton and polarization of a proton leads to the
asymmetric distribution of final-state particles, which is
the so-called Sivers asymmetry [15,16]. Sivers asymmetry
helps in understanding the spin crisis [17]. The first
transverse moment of the Sivers function is related to
the twist-three Qiu-Sterman function [18,19]. The f⊥g

1T ,
T-odd, changes sign in the SIDIS process compared to that
in the DY process [20]. The ISI and FSI play an important
role in the Sivers asymmetry; in general, the gluon Sivers
function (GSF) can be expressed in terms of two indepen-
dent GSFs that are called f-type and d-type GSF, respec-
tively [20–24]. The f-type GSF contains (þþ or −−)
gauge link and in the literature of small-x physics is called
as Weizsacker-Williams (WW) gluon distribution. The
d-type GSF contains a (þ−) gauge link and is called
dipole-type gluon distribution. The nonzero quark Sivers
function has been extracted from the HERMES [25,26] and
COMPASS [27,28] experiments, but the gluon Sivers
function remains unknown, although initial attempts have
been made [29,30] to extract the GSF from RHIC data [31]
in the midrapidity region.
Theoretical investigations indicate that the gluon TMDs

could be probed in the production of heavy-quark pair or
dijet [32–34], J=ψ-photon [35], and J=ψ-jet [36–38] at the
electron-ion collider (EIC), where the transverse momen-
tum imbalance of the pair is measured. Azimuthal asym-
metries have been studied in various processes, including
the production of J=ψ [39–43], photon pair [44], and Higgs
boson-jet [45] production at LHC that have been proposed
to probe the gluon TMDs. In these processes, the transverse
momentum of the pair (qT) is smaller than the individual
transverse momentum (K⊥), which allows us to use the
TMD factorization. Transverse single-spin asymmetry
(SSA) has been studied for inclusive D-meson production
both in electron-proton [46] and proton-proton [47–49]
collision processes within the generalized parton model
framework. The SSA in the electroproduction of the D
meson has been studied within the twist-three approach
using the collinear factorization framework [50].
In the present article, we present a calculation of

azimuthal asymmetries in back-to-back electroproduction
of a D meson and jet in the process eþ p → eþDþ
jetþ X within a TMD factorization framework. We con-
sider the cases where the proton is unpolarized as well as
transversely polarized. Our main focus is on calculating the
azimuthal asymmetries such as cos 2ϕT , cos 2ðϕT − ϕ⊥Þ,
and sinðϕS − ϕTÞ. These asymmetries allow us to probe
linearly polarized gluon TMD and Sivers TMD. In
D-meson and jet production, at leading order (LO) in
strong coupling constant (αs), only the partonic channel of
virtual photon-gluon fusion, γ� þ g → cþ c̄, contributes,
while the quark channel contributes at next-to-leading order
(NLO). At LO, the produced charm quark fragments to
form theDmeson. and the anticharm quark evolves into the

jet. The D meson in the final state is the lightest meson
containing a single charm quark (or antiquark). We con-
sider the kinematics where the produced charm and
anticharm quarks in the hard process have an almost equal
magnitude of transverse momenta, but they are in opposite
directions as shown in Fig. 2. The produced D meson
(which we assume to be collinear to the fragmenting quark)
and jet are almost back to back in the transverse plane. In
this kinematical region, the total transverse momentum (qT)
of the system is much smaller than the individual transverse
momentum (K⊥) of the outgoing particle; i.e., jqT j ≪ jK⊥j.
Only in this region, the intrinsic transverse momentum can
have significant effects, and we can assume that the TMD
factorization is valid for the given process.
This paper is organized as follows: In Sec. II, we

introduce the relevant kinematics of D-meson and jet
production in the SIDIS process to calculate the azimuthal
asymmetries. In Sec. III, we give the derivation to calculate
the unpolarized scattering cross section using TMD fac-
torization. The azimuthal asymmetries that give direct
access to gluon TMDs are given in Sec. IV as well as
the parametrization of the TMDs. In Sec. V, the numerical
results and discussion are given. Finally, we conclude, and
an appendix is given at the end.

II. FORMALISM

We start this section by specifying our notation and
kinematics of SIDIS. We consider the production of a
D-meson and a jet in (un)polarized ep scattering process,

eðlÞ þ p↑ðPÞ → eðl0Þ þDðPhÞ þ jetþ X: ð1Þ

The four-momenta of each particle is given in the round
brackets, and the transverse polarization of the proton is
represented with an arrow in the superscript. For the
collision energy that we are interested in for this work,
the process involves one-photon exchange. We define the
virtual photon momentum, q ¼ l − l0, and its invariant
mass as Q2 ¼ −q2. We have considered the photon-proton
center-of-mass (cm) frame, in which the photon and proton
move along the z axis. We define the following kinematical
variables,

s ¼ ðlþ PÞ2; xB ¼
Q2

2P · q
; y ¼ P · q

P · l
; ð2Þ

where s is the square of the energy of the electron-proton
system in the cm frame, Q2 is the virtuality of the photon,
xB is known as the Bjorken variable, and y is called the
inelasticity variable, which is physically interpreted as the
fraction of the electron energy transferred to the photon.
These variables are related to each other through the
relation Q2 ≈ xBys.
We introduce two lightlike vectors nþ and n−, which

obey the relations n2þ ¼ n2− ¼ 0 and nþ · n− ¼ 1. The
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four-momenta of the target system proton P and virtual
photon q can be written as

Pμ ¼ nμ− þM2
p

2
nμþ ≈ nμ−;

qμ ¼ −xBnμ− þ Q2

2xB

nμþ ≈ −xBPμ þ ðP · qÞnμþ; ð3Þ

with P2 ¼ 0. The invariant mass of virtual photon-proton
system is defined as W2

γp ¼ ðqþ PÞ2 and can also be

expressed as W2
γp ¼ Q2ð1−xBÞ

xB
¼ ys−Q2, and the mass of the

proton is denoted by Mp. We can express all the momenta
in terms of nμ− ¼ Pμ and nμþ ¼ ðqμ þ xBPμÞ=P · q. The
four-momentum of the incoming lepton reads as

lμ ¼ 1 − y
y

xBnμ− þ 1

y
Q2

2xB

nμþ þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

Ql̂μ⊥; ð4Þ

with l2 ¼ 0 and l̂μ⊥ is the unit transverse vector.
The LO partonic subprocess γ�ðqÞ þ gðkÞ → cðp1Þ þ

c̄ðp2Þ contributes to the process considered above.
In terms of lightlike vectors, the four-momentum of the

initial gluon is given as

kμ ⋍ xPμ þ kμ⊥g; ð5Þ

where, x and k⊥g are, respectively, the light-cone momen-
tum fraction and the intrinsic transverse momentum of the
incoming gluon with respect to the parent proton direction.
The four momenta of the produced heavy quarks in terms
of lightlike vectors are given as

pμ
1 ¼ z1ðP · qÞnμþ þm2

c þ p21⊥
2z1P · q

Pμ þ pμ
1⊥

pμ
2 ¼ z2ðP · qÞnμþ þm2

c þ p22⊥
2z2P · q

Pμ þ pμ
2⊥; ð6Þ

where z1 ¼ P·p1

P·q and z2 ¼ P·p2

P·q are the momentum fractions
of the charm and anticharm quarks, and mc is the mass of
the produced charm and anticharm quark. The p1⊥ and p2⊥
are the transverse momenta of charm and anticharm quarks,
respectively. The four-momentum of the D meson in terms
of lightlike vectors can be written as

Pμ
h ¼ zhðP · qÞnμþ þm2

h þ P2
hT

2zhP · q
Pμ þ Pμ

hT: ð7Þ

The inelastic variable zh ¼ P·Ph
P·q is the energy fraction of

the virtual photon taken by the observedDmeson in proton
rest frame, and mh is the mass of the D meson. The four-
momentum of the charm quark, pμ

1, given in Eq. (6), can be
parametrized using the momentum fraction as

pμ
1 ¼

1

z
Pμ
h þ

1

2P · Ph

�
m2

cz −
m2

h

z

�
Pμ; ð8Þ

where z ¼ P·Ph
P·p1

¼ zh
z1
is the momentum fraction of D meson

in the charm quark frame. Using Eqs. (6) and (8), the
transverse momentum of the charm quark and the frag-
mentedDmeson are related by the following equation [51],

pμ
1⊥ ¼ 1

z
Pμ
hT: ð9Þ

The Mandelstam variables are defined as

ŝ ¼ ðqþ kÞ2 ¼ −Q2 þ 2q:k;

û ¼ ðk − p1Þ2 ¼ m2
c − 2k:p1;

t̂ ¼ ðq − p1Þ2 ¼ m2
c −Q2 − 2q:p1: ð10Þ

III. SCATTERING CROSS SECTION

In the ep scattering process, we consider the kinematical
region in which the charm and anticharm quarks are
produced in a back-to-back configuration. In this kinemat-
ics, we use TMD factorization to write the cross section.
Here, the total transverse momentum of the system qT with
respect to the lepton plane is small compared to the
virtuality of the photon Q and to the mass of D meson
mh. For the total differential scattering cross section for
the eþ p → eþ cðp1Þ þ c̄ðp2Þ þ X, the process can be
written as

dσep→eþcc̄þX ¼ 1

2s
d3l0

ð2πÞ32El0

d3p1
ð2πÞ32E1

d3p2
ð2πÞ32E2

×
Z

dx d2k⊥gdzð2πÞ4δ4ðqþ k − p1 − p2Þ

×
1

Q4
Lμνðl; qÞΦρσ

g ðx; k⊥gÞHγ�g→cc̄
μρ

×H�;γ�g→cc̄
νσ DðzÞ: ð11Þ

Here, Ei is the energy of the corresponding particle. In the
ep scattering process, the D meson is produced from the
fragmentation of produced charm quark. In our kinematics
where the D meson and jet are in almost back-to-back
configuration, we have neglected the intrinsic transverse
momentum of theDmeson with respect to the charm quark
in the hard part [this can be seen from Eq. (9)], which is
small compared to the large transverse momentum PhT .
In other words, we can consider the D meson to be
collinear to the fragmenting heavy quark. This gives
the collinear fragmentation function DðzÞ, instead of the
TMD fragmentation function in our expression. The differ-
ential scattering cross section for the process eþ p →
eþDðPhÞ þ c̄ðp2Þ þ X can be written as [33]

AZIMUTHAL ASYMMETRIES IN D-MESON AND JET … PHYS. REV. D 108, 034005 (2023)

034005-3



dσep→eþDþc̄þX ¼ 1

2s
d3l0

ð2πÞ32El0

d3Ph

ð2πÞ32Eh

d3p2
ð2πÞ32E2

×
Z

dxd2k⊥gdzð2πÞ4δ4ðqþ k−p1 −p2Þ

×
1

Q4
Lμνðl; qÞΦρσ

g ðx;k⊥gÞHγ�g→cc̄
μρ

×H�;γ�g→cc̄
νσ DðzÞJðzÞ; ð12Þ

where DðzÞ is the collinear fragmentation function describ-
ing the fragmentation of the D meson from the charm
quark, and it gives the number density of finding a

D-meson inside the charm quark with light-cone momen-
tum fraction z in the charm quark frame.
The invariant phase space of the charm quark is related to

the phase space of the final D meson through the Jacobian
factor J as

d3p1
E1

¼ JðzÞ d
3Ph

Eh
with J ¼ 1

z3
Eh

E1

: ð13Þ

The momentum conservation delta function, given in
Eq. (11), can be decomposed as follows:

δ4ðqþ k − p1 − p2Þ ¼
2

ys
δð1 − z1 − z2Þδ

�
x −

z2ðm2
c þ p21⊥Þ þ z1ðm2

c þ p22⊥Þ þ z1z2Q2

z1z2ys

�
δ2ðk⊥g − p1⊥ − p2⊥Þ: ð14Þ

After substituting Eq. (9) in Eq. (14), we get

δ4ðqþ k− p1 − p2Þ ¼
2

ys
δð1− z1 − z2Þδ

�
x−

z2ðm2
c þ P2

hT=z
2Þ þ z1ðm2

c þ p22⊥Þ þ z1z2Q2

z1z2ys

�
δ2
�
k⊥g −

PhT

z
− p2⊥

�
: ð15Þ

The phase space of the outgoing particles is given by

d3l0

ð2πÞ32El0
¼ 1

16π2
dQ2dy;

d3Ph

ð2πÞ32Eh
¼ d2PhTdzh

ð2πÞ32zh
;

d3p2
ð2πÞ32E2

¼ d2p2⊥dz2
ð2πÞ32z2

: ð16Þ

We shift to the coordinate system, which is more suitable
for back-to-back scattering, for which we define the sum
(qT) and difference of the transverse momenta (K⊥) of the
outgoing quark and antiquark as

qT ¼ PhT

z
þ p2⊥; K⊥ ¼

PhT
z − p2⊥

2
: ð17Þ

Now the magnitude of the transverse momenta of the
outgoing charm and anticharm quark are almost equal. In
the back-to-back D-meson and jet production, the total
transverse momentum, qT , of the system is much smaller
than the individual transverse momentum of the outgoing
particles K⊥; i.e., jqT j ≪ jK⊥j. Using Eq. (17), we get

d2PhTd2p2⊥ ¼ zd2qTd2K⊥: ð18Þ

In Eq. (12), the leptonic tensor Lμν has the standard form

Lμν ¼ e2Q2

�
−gμν þ 2

Q2
ðlμl0ν þ lνl0μÞ

�

¼ e2Q2

�
−gμν þ 2

Q2
ð2lμlν − lμqν − lνqμÞ

�
; ð19Þ

where e is the electronic charge, and we average over the
spins of the initial lepton. The four-momentum of the final

scattered lepton is l0 ¼ l − q. By using Eq. (3), the leptonic
tensor can be recast in the following form:

Lμν ¼ e2
Q2

y2

�
−ð1þ ð1 − yÞ2ÞgμνT þ 4ð1 − yÞϵμLϵνL

þ 4ð1 − yÞ
�
l̂μ⊥ l̂

ν⊥ þ 1

2
gμνT

�

þ 2ð2 − yÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
ðϵμLl̂ν⊥ þ ϵνLl̂

μ
⊥Þ
�
; ð20Þ

where the transverse metric tensor is defined as gμνT ¼
gμν − nμþnν− − nνþnμ−, and the lightlike vectors can be written
as below using Eq. (3)

nμ− ¼ Pμ; nμþ ¼ 1

P · q
ðqμ þ xBPμÞ: ð21Þ

The longitudinal polarization vector of the virtual photon is
given as

ϵμLðqÞ ¼
1

Q

�
qμ þ Q2

P · q
Pμ

�
; ð22Þ

with ϵ2LðqÞ ¼ 1 and ϵμLðqÞqμ ¼ 0. The factor H in Eq. (12)
contains the scattering amplitude of γ�ðqÞ þ gðkÞ → cþ c̄
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partonic process; the corresponding Feynman diagrams are
shown in Fig. 1.
In Eq. (12), the gluon correlatorΦμν

g , is a nonperturbative
quantity that contains the dynamics of gluons inside a
proton. At leading twist, for an unpolarized proton,

the gluon correlator parametrized in terms of two gluon
TMDs as [13]

Φμν
U ðx; k⊥gÞ ¼

1

2x

�
−gμνT fg1ðx;k2⊥gÞ þ

�
kμ⊥gk

ν⊥g

M2
p

þ gμνT
k2⊥g

2M2
p

�

× h⊥g
1 ðx;k2⊥gÞ

�
; ð23Þ

where fg1 and h⊥g
1 , T-even TMDs encode the distribution of

unpolarized and linearly polarized gluons for a given
collinear momentum fraction x and the transverse momen-
tum k⊥g, respectively. These TMDs can be nonzero even if
initial and final state interactions are absent in the process.
Similarly, for the transversely polarized proton [13], we have

Φμν
T ðx; k⊥gÞ ¼

1

2x

�
−gμνT

ϵρσT k⊥gρSTσ
Mp

f⊥g
1T ðx; k2⊥gÞ þ iϵμνT

k⊥g · ST
Mp

gg1Tðx; k2⊥gÞ þ
k⊥gρϵ

ρfμ
T kνg⊥g

2M2
p

k⊥g · ST
Mp

h⊥g
1T ðx; k2⊥gÞ

−
k⊥gρϵ

ρfμ
T SνgT þ STρϵ

ρfμ
T kνg⊥g

4Mp
hg1Tðx; k2⊥gÞ

�
; ð24Þ

where the notations are the antisymmetric tensor ϵμνT ¼
ϵμνρσPρnþσ with ϵ12T ¼ þ1, and the symmetrization tensor

pTρϵ
ρfμ
T pνg

T ¼ pTρðϵρμT pν
T þ ϵρνT pμ

TÞ. In Eq. (24), we have

three T-odd TMDs: The Sivers function, f⊥g
1T , describes the

density of unpolarized gluons, while h⊥g
1T and hg1T are

linearly polarized gluon densities of a transversely polar-
ized proton. The T-even TMD, gg1T , is the distribution of
circularly polarized gluons in a transversely polarized
proton, which does not contribute here since it is in the
antisymmetric part of the correlator.
After performing the integration over z2, x, and k⊥g in

Eq. (12), we get

dσep→eþDþc̄þX

dQ2dydzhd2qTd2K⊥
¼ 1

ys2
1

16ð2πÞ4
Z

dzDðzÞ

×
1

Q4
Lμνðl; qÞΦρσ

g ðx; qTÞHγ�g→cc̄
μρ

×H�;γ�g→cc̄
νσ

zJðzÞ
zhð1 − z1Þ

: ð25Þ

IV. AZIMUTHAL ASYMMETRIES

In the kinematics wherein the D meson and the jet are
back-to-back in the transverse plane (as discussed above),
we can write the cross section as the sum of unpolarized
and transversely polarized cross sections as [33],

dσ
dQ2dydzhd2qTd2K⊥

≡ dσðϕS;ϕTÞ

¼ dσUðϕT;ϕ⊥Þ þ dσTðϕS;ϕTÞ: ð26Þ

The cross section for the unpolarized proton is written as
the linear sum of cosϕT and cosϕ⊥ harmonics convoluted
with the fragmentation function,

dσU ¼ N
Z

dz

�
ðA0 þA1 cosϕ⊥ þA2 cos 2ϕ⊥Þfg1ðx; q2TÞ

þ ðB0 cos 2ϕT þ B1 cosð2ϕT − ϕ⊥Þ
þ B2 cos 2ðϕT − ϕ⊥Þ þ B3 cosð2ϕT − 3ϕ⊥Þ

þ B4 cosð2ϕT − 4ϕ⊥ÞÞ
q2T
M2

p
h⊥g
1 ðx; q2TÞ

�
DðzÞ; ð27Þ

where N is the normalization factor given as

N ¼ α2αse2c
πy3s2x

: ð28Þ

The coefficients mentioned in the above equation are the
result of the contribution from different helicities of the
virtual photon and the linearly polarized gluon. For
instance, if the azimuthal angle of the final scattered lepton
is not measured, then only one modulation term in Eq. (27)
is defined, and the cross section is expressed as

FIG. 1. Feynman diagrams for partonic subprocess γ�ðqÞ þ
gðkÞ → cðp1Þ þ c̄ðp2Þ at LO.
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dσU ¼ N
Z

dz

�
A0f

g
1ðx; q2TÞ þ B2 cos 2ðϕT − ϕ⊥Þ

q2T
M2

p
h⊥g
1 ðx; q2TÞ

�
DðzÞ; ð29Þ

while in the case of a transversely polarized proton,

dσT ¼ N jSTj
Z

dz

�
sinðϕS − ϕTÞðA0 þA1 cosϕ⊥ þA2 cos 2ϕ⊥Þ

jqTj
Mp

f⊥g
1T ðx; q2TÞ þ cosðϕS − ϕTÞ

× ðB0 sin 2ϕT þ B1 sinð2ϕT − ϕ⊥Þ þ B2 sin 2ðϕT − ϕ⊥Þ þ B3 sinð2ϕT − 3ϕ⊥Þ þ B4 sinð2ϕT − 4ϕ⊥ÞÞ

×
jqT j3
M3

p
h⊥g
1T ðx; q2TÞ þ ðB0 sinðϕS þ ϕTÞ þ B1 sinðϕS þ ϕT − ϕ⊥Þ þ B2 sinðϕS þ ϕT − 2ϕ⊥Þ

þ B3 sinðϕS þ ϕT − 3ϕ⊥Þ þ B4 sinðϕS þ ϕT − 4ϕ⊥ÞÞ
jqTj
Mp

hg1Tðx; q2TÞ
�
DðzÞ; ð30Þ

where ϕS, ϕT , and ϕ⊥ are the azimuthal angles of the three-
vectors ST , qT , and K⊥, respectively, measured with respect
to the lepton plane (ϕl ¼ ϕl0 ¼ 0) as shown in Fig. 2. The
coefficients of the different angular modulations Ai with
i ¼ 0, 1, 2 and Bj with j ¼ 0, 1, 2, 3, 4 are given in the
Appendix.
The weighted azimuthal asymmetry gives the ratio of

the specific gluon TMD over unpolarized fg1 and is defined
as [36]

AWðϕS;ϕTÞ ≡ 2

R
dϕSdϕTdϕ⊥WðϕS;ϕTÞdσðϕS;ϕT;ϕ⊥ÞR

dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ
;

ð31Þ

where the denominator is given by

Z
dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ

¼
Z

dϕSdϕTdϕ⊥dσUðϕT;ϕ⊥Þ

¼ ð2πÞ3N
Z

dzA0f
g
1ðx; q2TÞDðzÞ: ð32Þ

By integrating over the azimuthal angle ϕ⊥, the trans-
versely polarized cross section, Eq. (30), can be simplified
further as

Z
dϕ⊥dσT ¼ 2πjST j

jqT j
Mp

Z
dz

�
A0 sinðϕS − ϕTÞf⊥g

1T ðx; q2TÞ

−
1

2
B0 sinðϕS − 3ϕTÞ

jqT j2
M2

p
h⊥g
1T ðx; q2TÞ

þ B0 sinðϕS þ ϕTÞhg1ðx; q2TÞ
�
DðzÞ; ð33Þ

where we have used the relation

hg1 ≡ hg1T þ p2T
2M2

p
h⊥g
1T ; ð34Þ

where hg1 (T-odd) is the helicity flip gluon distribution,
which is chiral-even and vanishes upon integration of
transverse momentum [52]. In contrast, the quark distri-
bution is chiral-odd (T-even) and survives even after the
transverse momentum integration. The h⊥g

1 gluon TMD
could be extracted by studying the following two azimuthal
asymmetries,

Acos 2ϕT ¼ q2T
M2

p

R
dzB0DðzÞh⊥g

1 ðx; q2TÞR
dzA0DðzÞfg1ðx; q2TÞ

; ð35Þ

and

Acos 2ðϕT−ϕ⊥Þ ¼ q2T
M2

p

R
dzB2DðzÞh⊥g

1 ðx; q2TÞR
dzA0DðzÞfg1ðx; q2TÞ

: ð36Þ

Using Eq. (33) with jSTj ¼ 1, one could utilize the
following asymmetries to extract the f⊥g

1T , hg1, and h⊥g
1T

TMDs,
FIG. 2. Representation of the azimuthal angles in the produc-
tion of D meson and jet in SIDIS process.
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AsinðϕS−ϕTÞ ¼ jqTj
Mp

R
dzA0DðzÞf⊥g

1T ðx; q2TÞR
dzA0DðzÞfg1ðx; q2TÞ

; ð37Þ

AsinðϕSþϕTÞ ¼ jqTj
Mp

R
dzB0DðzÞhg1ðx; q2TÞR
dzA0DðzÞfg1ðx; q2TÞ

; ð38Þ

and

AsinðϕS−3ϕTÞ ¼ −
jqT j3
2M3

p

R
dzB0DðzÞh⊥g

1T ðx; q2TÞR
dzA0DðzÞfg1ðx; q2TÞ

: ð39Þ

A. Positivity bounds

The upper limit of the azimuthal asymmetries as defined
above can be reached when the polarized gluon TMDs
saturate the positivity bounds that are independent of any
specific model [13,53].

jqTj
Mp

jf⊥g
1T ðx; q2TÞj ≤ fg1ðx; q2TÞ;

q2T
2M2

p
jh⊥g

1 ðx; q2TÞj ≤ fg1ðx; q2TÞ;

jqT j
Mp

jhg1ðx; q2TÞj ≤ fg1ðx; q2TÞ;

jqT j3
2M3

p
jh⊥g

1T ðx; q2TÞj ≤ fg1ðx; q2TÞ: ð40Þ

Using the positivity bounds on the gluon TMDs given in
Eqs. (35)–(39) and for the fixed kinematical variables, we
obtain the following upper bounds on the absolute value of
the Acos 2ϕT and Acos 2ðϕT−ϕ⊥Þ asymmetries,

jAcos 2ϕT j ≤ 2
jB0j
A0

; jAcos 2ðϕT−ϕ⊥Þj ≤ 2
jB2j
A0

; ð41Þ

and the upper bound for the Sivers asymmetry, AsinðϕS−ϕTÞ,
becomes equal to one, while the upper bounds for the other
asymmetries can be determined using their relations with
other asymmetries, such as

jAsinðϕSþϕTÞj ¼ 1

2
jAcos 2ϕT j;

jAsinðϕS−3ϕTÞj ¼ 1

2
jAcos 2ðϕT−ϕ⊥Þj: ð42Þ

B. Gaussian parametrization of TMDs

The numerical estimate of the asymmetries depends on
the parametrization used for the TMDs. In this work, we
estimate the asymmetries using Gaussian parametrization.
For the unpolarized gluon TMD, we adopt a parametriza-
tion given by

fg1ðx; q2TÞ ¼ fg1ðx; μÞ
e−q

2
T=hq2Ti

πhq2Ti
; ð43Þ

where fg1ðx; μÞ is the collinear gluon PDF at the probing
scale μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
h þQ2

p
[54]. We use MSTW2008 set [55]

for the collinear PDF. The Gaussian parametrization
of TMDs with a Gaussian width hq2Ti ¼ 1 GeV2 for
gluons [49]. We adopt the following Gaussian parametri-
zation for the linearly polarized gluon TMD h⊥g

1 as given in
Refs. [56,57],

h⊥g
1 ðx; q2TÞ ¼

M2
pf

g
1ðx; μÞ

πhq2Ti2
2ð1 − rÞ

r
e
1−

q2
T

rhq2
T
i; ð44Þ

where Mp is the proton mass, r (with 0 < r < 1), and the
average intrinsic transverse momentum width of the incom-
ing gluon, hq2Ti, are parameters of this model. In our
numerical estimation, we take r ¼ 1=3 and hq2Ti ¼ 1 GeV2.
Similarly, for the gluon Sivers function (GSF) f⊥g

1T , we
have used the parametrization given in Refs. [30,58,59],

ΔNfg=p↑ðx;qTÞ ¼
�
−
2jqTj
MP

�
f⊥g
1T ðx;qTÞ

¼ 2

ffiffiffiffiffi
2e

p

π
N gðxÞfg=pðxÞ

ffiffiffiffiffiffiffiffiffiffi
1− ρ

ρ

s
qT

e−q
2
T=ρhq2Ti

hq2Ti3=2
;

ð45Þ

with 0 < ρ < 1. The x dependence of the gluon Sivers
function is encoded in the N gðxÞ, and it is generally
written as

N gðxÞ ¼ Ngxαð1 − xÞβ ðαþ βÞðαþβÞ

ααββ
: ð46Þ

The parametersNg, α, and β are determined from global fits
to experimental data on SSAs in inclusive hadron produc-
tion processes [30], while the extracted best-fit parameters
at hq2Ti ¼ 1 GeV2 are

Ng ¼ 0.25; α ¼ 0.6; β ¼ 0.6; ρ ¼ 0.1: ð47Þ

C. Fragmentation function of the D meson

At leading order (LO), the charm quark produced in the
virtual photon-gluon fusion process fragments to form
the D meson in the final state. In our kinematics, we
can consider theDmeson to be collinear to the fragmenting
heavy quark. This means that the transverse momentum of
the D meson is related to the charm quark’s transverse
momentum through Eq. (9). The LO fragmentation func-
tion for the c → D0 process is parametrized as
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Dðz; μ0Þ ¼
Nzð1 − zÞ2

½ð1 − zÞ2 þ ϵz�2 ð48Þ

which is given by [54]. The parameters are N ¼ 0.694,
ϵ ¼ 0.101, and are fitted using OPAL Collaboration data at
CERN LEP-I at the μ0 ¼ mc ¼ 1.5 GeV. The scale evo-
lution of the collinear fragmentation function is given by
the DGLAP equation. Here, we ignore the scale evolution
of the fragmentation function. A similar approach is
followed in [46–49].

V. RESULTS AND DISCUSSIONS

A. Unpolarized cross section

In this section, we present numerical results for the
unpolarized cross section of D-meson and jet production
in the SIDIS process. The LO contribution comes only
from the gluon-initiated partonic subprocess, i.e., γ� þ g →
cþ c̄ → Dþ c̄, whereas the contribution from the quark-
initiated process occurs at NLO. After integrating over
the azimuthal angles, only the A0 term contributes to the
unpolarized cross section given in Eq. (27), and its
expression is given in Appendix. We used the Gaussian
parametrization, given in Eq. (43) for the unpolarized
transverse momentum dependent (TMD) gluon distribution
function fg1ðx; q2TÞ. We consider the situation, in which the
produced D meson and jet are almost back to back, with
q2T ≪ Q2 and jqT j ≪ jK⊥j, which allows us to assume the
TMD factorization for the cross section. We estimate the
cross section at the cm energy of the EIC with

ffiffiffi
s

p ¼ 140
and 45 GeV, and we choose the following kinematical
constraints. The range of integration of the virtuality of the

photon ðQ2Þ is 3 < Q2 < 100 GeV2, the momentum frac-
tion z carried by the D meson from the charm quark, is in
the range 0 < z < 1. The inelasticity variable y is fixed
from the definition of the invariant mass of photon-proton
system, denoted as Wγp, and it is in the range 20 < Wγp <
80 GeV for

ffiffiffi
s

p ¼ 140 GeV, and 10 < Wγp < 40 GeV forffiffiffi
s

p ¼ 45 GeV. In this kinematics, qT is the sum of the
transverse momenta of the outgoing charm and anticharm
quarks, which is equal to the transverse momentum of the
initial gluon, qT varies in the range 0 < qT < 1 GeV. The
transverse momentum of the outgoing particles, i.e., the D
meson, and the jet, denoted as K⊥, is considered to be
greater than 2 GeV. This condition, jqT j ≪ jK⊥j, implies
that the D meson and jet are produced almost back to back
in the process. We have set the upper and lower bounds
on the momentum fraction of the hadron as 0.1 < zh < 0.9.
To avoid the unphysical contribution from the endpoints of
the zh, we imposed the aforementioned kinematic restric-
tion on the zh.
In Fig. 3, the unpolarized differential cross section is

shown as a function of the transverse momentum, K⊥, of
the D meson and zh, the momentum fraction carried by the
D meson from the virtual photon. The blue dashed line
represents the cross section for

ffiffiffi
s

p ¼ 140 GeV, while the
red dash-dotted line represents the cross section forffiffiffi
s

p ¼ 45 GeV. The cross section is larger for higher cm
energy due to the low momentum fraction x region being
probed at higher cm energy compared to lower cm energy,
and the density of gluons is higher in low x region. In the
left panel of Fig. 3, the cross section falls rapidly with
increasing K⊥ for lower cm energy, which is expected, as
the production of high transverse momentum particles

(a) (b)

FIG. 3. Unpolarized differential scattering cross section of eþ p → eþDþ jetþ X process as a function of K⊥ (left) and zh (right).
For K⊥ and zh variations, the z, Q2, and qT are integrated over the regions 0 < z < 1, 3 < Q2 < 100 GeV2 and 0.0 < qT < 1.0 GeV.
For

ffiffiffi
s

p ¼ 140 GeV, the range of Wγp is 20 < Wγp < 80 GeV, while for
ffiffiffi
s

p ¼ 45 GeV, the range is 10 < Wγp < 40 GeV. For K⊥
variation, we have taken 0.1 < zh < 0.9, and for zh variation, 2.0 < K⊥ < 10.0 GeV. The bands are obtained by varying the
factorization scale in the range 1

2
μ < μ < 2μ.
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becomes less probable at lower energies. In the right panel
of Fig. 3, the scattering cross section is plotted as a function
of zh, which is obtained by integrating K⊥ over the range
2 < K⊥ < 10 GeV. It is observed that the cross section
decreases as zh increases. In Fig. 3, the band represents
the theoretical uncertainty, which is obtained by varying the
factorization scale μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þm2
h

p
from 0.5μ to 2μ. The

width of the uncertainty band in Fig. 3 for K⊥ variation
becomes wider at high K⊥, while it is narrow at small K⊥.
The scale uncertainty is expected to decrease at higher
order in QCD.

B. Upper bounds

In this section, we present the numerical estimates of the
upper bounds for cos 2ϕT and cos 2ðϕT − ϕ⊥Þ asymmetries
by saturating the positivity relations of the TMDs. In
Figs. 4–6, we have plotted the upper bounds for the
azimuthal asymmetries cos 2ϕT (left panel) and cos 2ðϕT −
ϕ⊥Þ (right panel) in the process eþ p → eþDþ jetþ X.
The upper bound of the asymmetries depends on

ffiffiffi
s

p
; with

other kinematical variables fixed, we observed that the
upper bound is about 3–4% higher for

ffiffiffi
s

p ¼ 45 GeV
compared to

ffiffiffi
s

p ¼ 140 GeV. In the plot, we show the
upper bound for

ffiffiffi
s

p ¼ 45 GeV. We plotted the upper
bound as a function of the transverse momentum, K⊥,
momentum fraction, zh and rapidity, y at two different
virtualities of the photonQ2 ¼ 10, 20 GeV2. We integrated
the variables z and qT variables within the range 0 to 1. The
variation of K⊥ is shown in Fig. 4 for fixed values of zh and
y, the variation of zh is shown in Fig. 5 for the fixed values
of K⊥ and y, and the y variation is shown in Fig. 6 for the
fixed values of K⊥ and zh.

From Figs. 4–6, it can be observed that the upper bound
of cos 2ϕT azimuthal asymmetry increases with increasing
virtuality of the photon ðQ2Þ. In Fig. 4, one can see that for
a given Q2 the magnitude of the upper bound of cos 2ϕT
azimuthal asymmetry decreases with increasing K⊥. This
can be attributed to the increase in the longitudinal
momentum fraction of the initial gluon x as K⊥ increases,
which leads to the vanishing of the gluon PDF as x
approaches 1. The behavior of K⊥ variation of the upper
bound of cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry for two
different resolutions of the photon exhibits a somewhat
different behavior; in the small K⊥ region, the high
virtuality asymmetry dominates, while at high K⊥, the
low virtuality curve dominates. With increasing K⊥, the
cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry initially increases,
reaches a peak at around 2.5 GeV for Q2 ¼ 10 GeV2

and 3 GeV for Q2 ¼ 20 GeV2, and then decreases.
Qualitatively, cos 2ϕT azimuthal asymmetry decreases as
K⊥ increases.
Figure 5 shows the zh variation for two different

virtualities of the photon of the upper bound of the
cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right panel)
azimuthal asymmetries. The upper bounds increase as
the virtuality of the photon increases, and both azimuthal
asymmetries show a maximum at zh ≈ 0.3. The upper
bound of cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry becomes
zero and then changes sign at higher values of zh. This is
due to a change in the sign of the coefficient B1 in the
numerator. In Fig. 6, the upper bounds for cos 2ϕT (left
panel) and cos 2ðϕT − ϕ⊥Þ (right panel) are plotted as a
function of y. As y increases, the magnitude of cos 2ϕT
azimuthal asymmetry decreases and reaches its minimum at
y ¼ 1 due to the vanishing of the coefficient B0 at y ¼ 1.

(a) (b)

FIG. 4. Upper bound for the Acos 2ϕT (left panel) and Acos 2ðϕT−ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ jetþ X
process as a function of K⊥ at EIC

ffiffiffi
s

p ¼ 45 GeV for fixed values of y ¼ 0.1, zh ¼ 0.3, and Q2 ¼ 10, 20 GeV2. The kinematical
variables z and qT are integrated from [0,1].
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For cos 2ðϕT − ϕ⊥Þ, the coefficient B2 contributes, which
involves both longitudinal and transverse polarization of
the photon. At y ¼ 1, only the contribution from transverse
photons leads to a larger asymmetry. The magnitude of
cos 2ϕT azimuthal asymmetry increases as the virtuality of
the photon increases from Q2¼10GeV2 to Q2¼20GeV2.
In contrast, the magnitude of the upper bound of
cos 2ðϕT − ϕ⊥Þ is larger for Q2 ¼ 10 GeV2 compared to
Q2 ¼ 20 GeV2 for low values of y. The upper bound of
cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry becomes zero and
then changes sign because the numerator switches the sign
from positive to negative. The value of y where this
happens depends on the photon virtuality.

C. Gaussian parametrization

In this section, we present the numerical results obtained
by parameterizing the gluon TMDs using the Gaussian
parametrization provided in Eqs. (43) and (44). In
Figs. 7–10, cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right
panel) azimuthal asymmetries are shown as functions of
K⊥, zh, y, and qT , respectively, at

ffiffiffi
s

p ¼ 45 GeV. In these
plots, the kinematical variables are chosen to maximize the
asymmetry. In Fig. 7, we compare the asymmetries for two
different virtualities of the photon,Q2. From Fig. 7, one can
see that cos 2ϕT asymmetry is higher for higher Q2 value,
but in the low K⊥ region, cos 2ðϕT − ϕ⊥Þ asymmetry is
larger for lower value of Q2. Moreover, the asymmetries

(a) (b)

FIG. 5. Upper bound for the Acos 2ϕT (left panel) and Acos 2ðϕT−ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ jetþ X
process as a function of zh at EIC

ffiffiffi
s

p ¼ 45 GeV for fixed values of y ¼ 0.1, K⊥ ¼ 2 GeV, and Q2 ¼ 10, 20 GeV2. The kinematical
variables z and qT are integrated from [0,1].

(a) (b)

FIG. 6. Upper bound for the Acos 2ϕT (left panel) and Acos 2ðϕT−ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ jetþ X
process as a function of y at EIC

ffiffiffi
s

p ¼ 45 GeV for fixed values of zh ¼ 0.3, K⊥ ¼ 2 GeV, and Q2 ¼ 10, 20 GeV2. The kinematical
variables z and qT are integrated from [0,1].
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decrease asK⊥ increases. However, the cos 2ϕT asymmetry
decreases much faster compared to cos 2ðϕT − ϕ⊥Þ. The
variation of both the azimuthal asymmetries as a function of
zh is shown in Fig. 8. For both Q2 values, the azimuthal
asymmetries are at a maximum at zh ¼ 0.3. As shown in
cos 2ϕT plot, the asymmetry initially increases with zh,
reaches a maximum value, and then decreases. In the
cos 2ðϕT − ϕ⊥Þ plot, the asymmetry increases first and
reaches its maximum value. After that, it decreases to zero
and then becomes negative with increasing zh. This
qualitative behavior depends on the relative dominance
of the term with transverse polarization of photons
[first term of Eq. (20)] and the term with longitudinal

polarization [second term of Eq. (20)]. The magnitude of
cos 2ðϕT − ϕ⊥Þ vanishes at zh ¼ 0.6 for Q2 ¼ 20 GeV2

and at zh ¼ 0.7 for Q2 ¼ 10 GeV2. Unlike the cos 2ϕT
asymmetry, the cos 2ðϕT − ϕ⊥Þ asymmetry is larger for a
lower value of Q2. The y variation of cos 2ϕT and
cos 2ðϕT − ϕ⊥Þ azimuthal asymmetries is shown in
Fig. 9. The cos 2ϕT azimuthal asymmetry decreases
monotonically as y increases. On the other hand, the
cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry shows different
behavior in the low and high y regions. In the low y
region, the cos 2ðϕT − ϕ⊥Þ azimuthal asymmetry shows a
similar behavior to the cos 2ϕT azimuthal asymmetry. As y
increases, the asymmetry becomes zero (y ≈ 0.7 for

(a) (b)

FIG. 7. Absolute values of cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ
jetþ X process as a function of K⊥ for

ffiffiffi
s

p ¼ 45 GeV at fixed values of y ¼ 0.1, zh ¼ 0.3 for two values of Q2 ¼ 10, 20 GeV2. The z
and qT are integrated over 0 < z < 1, 0 < qT < 1 GeV.

(a) (b)

FIG. 8. Absolute values of cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ
jetþ X process as a function of zh for

ffiffiffi
s

p ¼ 45 GeV at fixed values of y ¼ 0.1, K⊥ ¼ 2 GeV for two values ofQ2 ¼ 10, 20 GeV2. The
z and qT are integrated over 0 < z < 1, 0 < qT < 1 GeV.
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Q2 ¼ 20 GeV2 and at y ≈ 0.85 for Q2 ¼ 10 GeV2) and
then becomes negative. As discussed above, this behavior
is due to a relative dominance of the contributions from the
transversely and longitudinally polarized photon. In the
limit y → 1, the cos 2ϕT azimuthal asymmetry vanishes
since the coefficient B0 as given in Eq. (A4) vanishes in this
limit. This happens because the contribution from the
longitudinally polarized photon vanishes. For cos 2ϕT, only
the longitudinally polarized photon contributes, whereas
for cos 2ðϕT − ϕ⊥Þ, both the longitudinally and trans-
versely polarized photon contribute. As y → 1, the ratio
of B2=A0 which probes the cos 2ðϕT − ϕ⊥Þ asymmetry
comes only from transversely polarized photons. As seen in

the zh dependent plots, cos 2ðϕT − ϕ⊥Þ asymmetry is larger
for lower value ofQ2, whereas cos 2ϕT asymmetry is larger
for higher value of Q2.
In Fig. 10, the qT variation is shown and is Gaussian in

nature due to the parametrization of TMDs. Both the
asymmetries show a maximum at qT ≈ 0.7 GeV. The
position of the maximum is independent of Q2, however,
the magnitude depends on Q2. The magnitude of cos 2ϕT
increases as the virtuality of the photon increases, whereas
the magnitude of cos 2ðϕT − ϕ⊥Þ decreases as Q2

increases. Overall, from these plots one can see that the
asymmetries are quite sizable in the kinematics of EIC,
reaching about 20–25% in certain regions.

(a) (b)

FIG. 9. Absolute values of cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ
jetþ X process as a function of y for

ffiffiffi
s

p ¼ 45 GeV at fixed values of zh ¼ 0.3, K⊥ ¼ 2 GeV for two values ofQ2 ¼ 10, 20 GeV2. The
z and qT are integrated over 0 < z < 1, 0 < qT < 1 GeV.

(a) (b)

FIG. 10. Absolute values of cos 2ϕT (left panel) and cos 2ðϕT − ϕ⊥Þ (right panel) azimuthal asymmetries in the eþ p → eþDþ
jetþ X process as a function of qT for

ffiffiffi
s

p ¼ 45 GeV at fixed values of K⊥ ¼ 2 GeV, y ¼ 0.1& zh ¼ 0.3 for two values ofQ2. The z is
integrated over 0 < z < 1.
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In Fig. 11, the Sivers asymmetry is shown at two
different cm energies,

ffiffiffi
s

p ¼ 45 GeV and
ffiffiffi
s

p ¼ 140 GeV,
respectively, for two different virtualities of the photon, and
a Gaussian parametrization for the gluon Sivers function. It
is seen from the plot that the Sivers asymmetry is negative.
The asymmetry is quite sizable in our kinematics; for

ffiffiffi
s

p ¼
45 GeV the peak is about 23% whereas, for the higher
energy, the peak is about 10%. The position of the peak
is independent of the cm energy and is at qT ≈ 0.2 GeV
for both energies. From Fig. 11, one can see that the
Sivers asymmetry is high for a low cm energy, i.e., forffiffiffi
s

p ¼ 45 GeV. This is due to the N gðxÞ term of the Sivers
function given in the Gaussian parametrization model. The
N gðxÞ term inversely depends on the cm energy through

the x defined in Eq. (15). As cm energy increases, the x and
N gðxÞ decreases, which results in the decrease of the Sivers
asymmetry. Additionally, one can see that the asymmetry
does not depend that much on Q2.
Figures 12 and 13 show the variation of Sivers asym-

metry as a function of the inelasticity y and momentum
fraction zh for two different values of photon virtuality ðQ2Þ
at two different cm energies (

ffiffiffi
s

p ¼ 45 and 140 GeV). Here,
the plots show the negative asymmetry. In Fig. 12, the
magnitude of Sivers asymmetry decreases as the value of y
increases. For y variation, the contribution from trans-
versely polarized photons is significantly larger, approx-
imately one order of magnitude higher, when compared to
the contribution from longitudinally polarized photons.

(a) (b)

FIG. 11. Sivers asymmetry in the eþ p↑ → eþDþ jetþ X process as a function of qT at fixed values of y ¼ 0.1, zh ¼ 0.8, and
K⊥ ¼ 2 GeV for

ffiffiffi
s

p ¼ 45 GeV (left panel) and
ffiffiffi
s

p ¼ 140 GeV (right panel) for two values of Q2. The z is integrated over 0 < z < 1.

(a) (b)

FIG. 12. Sivers asymmetry in the eþ p↑ → eþDþ jetþ X process as a function of y at fixed values ofK⊥ ¼ 2.0 GeV, zh ¼ 0.8 forffiffiffi
s

p ¼ 45 GeV (left panel) and
ffiffiffi
s

p ¼ 140 GeV (right panel) for two values of Q2. The z and qT are integrated over 0 < z < 1,
0 < qT < 1 GeV.
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This is observed throughout the range of y values; the
transversely polarized photon contribution decreases as y
increases. Notably, at y ¼ 1, the contribution mainly comes
from the transversely polarized photon, resulting in a
nonvanishing asymmetry. The asymmetry does not depend
significantly on the photon virtuality. In Fig. 13, both
transversely polarized and longitudinally polarized photons
contribute, with the transversely polarized photon making
the dominant contribution. The magnitude of the Sivers
asymmetry is maximum at zh ¼ 0.8, and it decreases for
lower values of zh. Furthermore, it is observed that the
asymmetry is large for lower values of Q2.

VI. CONCLUSION

In this article, we have investigated the azimuthal
asymmetries in D-meson and jet production in the process
of electron-proton collision in the kinematics of the future
electron-ion collider. We have considered the kinematical
condition where the final particles D meson and jet are
almost back to back in the plane perpendicular to the
direction of the incoming proton and the photon exchanged
in the process, and we used the TMD factorization
formalism. The D meson is produced from the fragmented
charm quark in the photon-gluon fusion subprocess. We
presented numerical estimates of the azimuthal asymme-
tries for this process; we calculated the model-independent
upper bounds, as well as estimated the asymmetries using a
widely used Gaussian parametrization of the TMDs. The
cos 2ϕT and cos 2ðϕT − ϕ⊥Þ azimuthal modulations in the
unpolarized cross section allow us to probe the linearly
polarized gluon TMD. Our numerical estimates of the

asymmetries in the kinematics of EIC show that they are
sizable and can be as large as 20% in certain kinematical
regions. The cos 2ðϕT − ϕ⊥Þ shows a sign change due to
competing contributions from transverse and longitudinally
polarized virtual photons. When the proton is transversely
polarized, we estimated the Sivers azimuthal modulation,
sinðϕS − ϕTÞ, which could probe the gluon Sivers TMD.
We obtained a sizable Sivers asymmetry in the kinematics
considered, which will be accessible at the EIC. Our
calculations show that D-meson and jet production at
the EIC could be a useful process to probe the gluon TMDs.
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APPENDIX: AMPLITUDE MODULATIONS

We redefine the partonic Mandelstam variables as the
following:

s ¼ Q2

�
x − xB

xB

�
;

u ¼ m2
c − z1x

Q2

xB

;

t ¼ m2
c

�
z1 − 1

z1

�
þQ2ðz1 − 1Þ − K2⊥

z1
:

(a) (b)

FIG. 13. Sivers asymmetry in the eþ p↑ → eþDþ jetþ X process as a function of zh at fixed values of K⊥ ¼ 2.0 GeV, y ¼ 0.1 forffiffiffi
s

p ¼ 45 GeV (left panel) and
ffiffiffi
s

p ¼ 140 GeV (right panel) for two values of Q2. The z and qT are integrated over 0 < z < 1,
0 < qT < 1 GeV.
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The amplitude modulations are listed here:

A0 ¼ −
1

Q2ðQ2 þ sÞ2ðm2
c − uÞ2ðm2

c − tÞ2 fð1þ ð1 − yÞ2Þ½3Q12 þ 4Q10ð5sþ 3ðtþ uÞÞ

þQ8ð53s2 þ 60sðtþ uÞ þ 4ðt2 þ 6tuþ u2ÞÞ þ 4Q6ð18s3 þ 30s2ðtþ uÞ þ 2sð3tþ uÞðtþ 3uÞ
− ðt − uÞ2ðtþ uÞÞ þQ4ð53s4 þ 120s3ðtþ uÞ þ 48s2ðtþ uÞ2 − 4sðt − uÞ2ðtþ uÞ þ ðt − uÞ4Þ
þ 4Q2s2ð5s3 þ 15s2ðtþ uÞ þ 2sð5t2 þ 6tuþ 5u2Þ þ ðt − uÞ2ðtþ uÞÞ þ s2ð3s4 þ 12s3ðtþ uÞ
þ 4s2ð3t2 þ 2tuþ 3u2Þ þ 4sðt − uÞ2ðtþ uÞ þ ðt − uÞ4Þ� þ 8ð1 − yÞQ2ðm2

c − uÞðm2
c − tÞ

× ½2Q6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ þ sðs2 þ 2sðtþ uÞ þ ðt − uÞ2Þ�g; ðA1Þ

A1 ¼
8

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p ðy − 2ÞPhT

zQðQ2 þ sÞðm2
c − uÞ2ðm2

c − tÞ2 ðt − uÞ½5Q6 þQ4ð13sþ 4ðtþ uÞÞ þQ2ð11s2 þ 8sðtþ uÞ

− ðt − uÞ2Þ þ sð3s2 þ 4sðtþ uÞ þ ðt − uÞ2Þ�; ðA2Þ

A2 ¼
4ðy − 1Þ

Q2ðQ2 þ sÞ2ðm2
c − uÞ2ðm2

c − tÞ2 ½ð2Q
6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ þ sðs2 þ 2sðtþ uÞ þ ðt − uÞ2ÞÞ

× ð3Q6 þ 2Q4ð4sþ tþ uÞ þQ2ð7s2 þ 4sðtþ uÞ − ðt − uÞ2Þ þ 2s2ðsþ tþ uÞÞ�; ðA3Þ

B0 ¼
y − 1

Q2ðQ2 þ sÞ2ðm2
c − uÞ2ðm2

c − tÞ2 ð3Q
6 þ 2Q4ð4sþ tþ uÞ þQ2ð7s2 þ 4sðtþ uÞ − ðt − uÞ2Þ þ 2s2ðsþ tþ uÞÞ2;

ðA4Þ

B1 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p ðy − 2Þðt − uÞPhT

zQðQ2 þ sÞðm2
c − uÞ2ðm2

c − tÞ2 ðð3Q
6 þ 2Q4ð4sþ tþ uÞ þQ2ð7s2 þ 4sðtþ uÞ − ðt − uÞ2Þ þ 2s2ðsþ tþ uÞÞÞ;

ðA5Þ

B2 ¼ −
1

Q2ðQ2 þ sÞ2ðm2
c − uÞ2ðm2

c − tÞ2 fð1þ ð1− yÞ2Þð2Q6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ

þ sðs2 þ 2sðtþ uÞ þ ðt− uÞ2ÞÞðQ6 þ 2Q4ð2sþ tþ uÞ þQ2ð5s2 þ 4sðtþ uÞ− ðt− uÞ2Þ þ 2s2ðsþ tþ uÞÞ
þ 4ð1− yÞðm2

c − uÞðm2
c − tÞð2Q6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ þ sðs2 þ 2sðtþ uÞ þ ðt− uÞ2ÞÞg; ðA6Þ

B3 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p ðy − 2Þðt − uÞPhT

zQðQ2 þ sÞðm2
c − uÞ2ðm2

c − tÞ2 ðð2Q
6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ þ sð2uðs − tÞ þ ðsþ tÞ2 þ u2ÞÞÞ;

ðA7Þ

B4 ¼
y − 1

Q2ðQ2 þ sÞ2ðm2
c − uÞ2ðm2

c − tÞ2 ð2Q
6 þQ4ð5sþ 2ðtþ uÞÞ þ 4Q2sðsþ tþ uÞ þ sð2uðs − tÞ þ ðsþ tÞ2 þ u2ÞÞ2:
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