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We investigate the global properties of hybrid stars and quark-matter cores by using a quasiparticle
model that rules out the possibility of the existence of absolutely stable strange quark matter within the
hybrid stars. Results from our study indicate that the coupling constant g can stiffen the equation of state of
hybrid star matter and thus increase the hybrid star maximum mass and its tidal deformability, whereas it
also decreases the mass and radius of the pure quark. By breaking the absolutely stable condition, we
provide the maximum mass, minimum radius R1.4, and minimum tidal deformation Λ1.4 of the hybrid stars
as well as the maximum mass and radius of the quark-matter core with different g values within the
allowable regions (the energy per nucleon of both u-d quark matter and strange quark matter must exceed
930 MeV) on the g-B1=4 plane. In addition, we find that a step change of the sound velocity occurs in the
hadron-quark mixed phase, and the approximate rule that the polytropic index γ ≤ 1.75 can also be used as
a criterion for separating hadronic from quark matter in our work. Our results also confirm that the sizable
quark-matter cores (RQC > 6.5 km) containing the mixed phase can appear in 2M⊙ massive stars.
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I. INTRODUCTION

Understanding the nature of the strongly interacting
matter, especially the possible existence of phase transition,
is a major thrust of current research in both nuclear physics
and astrophysics. It is generally believed that a first-order
phase transition from the hadronic to quark matter at high
baryon densities may occur in the interior of massive
neutron stars [1–3]. Some recent studies, for instance, have
also shown that quark-matter cores can appear in massive
neutron stars [4], and the presence of a first-order phase
transition from hadronic to quark matter can imprint
signatures in binary merger observations [5,6], as well as
that the sudden decrease in the gravitational-wave fre-
quency in the binary-neutron-star merger simulations is
closely related to the hadron-quark phase transition [7]. The
appearance of quark matter in massive stars is considered a
hot topic in compact object studies, and the neutron stars
with a hadron mantle and a quark core are usually referred
to as hybrid stars. Hence, observations of massive neutron
stars can provide us with a valuable window into an
otherwise inaccessible realm of quark matter.
Some inspiring progress over the last several years has

been made in neutron star observations, and thus in our
understanding of the equation of state (EOS) of neutron star
matter. The measurements of PSR J1614-2230 and PSR

J0348þ 0432 have led to a precise determination of
1.908� 0.016M⊙ [8–10] and 2.01� 0.04M⊙ [11] for their
respective masses. More recently, the first simultaneous
measurements of the mass and radius of a neutron star using
the Neutron Star Interior Composition Explorer (NICER)
datawere those of themillisecond pulsar PSRJ0030þ 0451.
The two independent analyses predict (68% credible
interval) M ¼ 1.34þ0.15

−0.16M⊙, R ¼ 12.71þ1.14
−1.19 km [12] and

M ¼ 1.44þ0.15
−0.14M⊙, R ¼ 13.02þ1.24

−1.06 km [13]. PSR J0740þ
6620 has a gravitational mass of 2.08� 0.07M⊙, which is
considered the highest reliably determined neutron star
mass [14–16]. Its radius was determined using the NICER
and xray multimirror data with the results for the radius
12.39þ1.30

−0.98 [15] and 13.71þ2.61
−1.50 km [16] (68% credible

interval). And the radius range that spans the �1σ credible
intervals of all the radius estimates in the different
frameworks is 12.45� 0.65 km for a canonical mass M ¼
1.4M⊙ neutron star [16]. The gravitational-wave events
GW170817 [17] and GW190814 [18] have provided more
additional constraints on the EOS of neutron star matter. In
Ref. [17], the LIGO-Virgo Collaboration investigated the
properties of the tidal deformability of compact stars and set
an upper limit of Λ1.4 < 800 for the low-spin priors of 1.4
solar mass pulsars. The improved analysis of GW170817
by the LIGO-VirgoCollaboration has foundwith a 90% con-
fidence the tidal deformability of the merging neutron
stars constrained to be the range 70 < Λ1.4 < 580 [19].
Additionally, the newly discovered neutron binary merger
GW190814 which has a secondary component of mass
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ð2.50 ∼ 2.67ÞM⊙ at a 90% credible level has also aroused
lots of debates on whether the candidate for the secondary
component is a neutron star or a light black hole [18]. These
observation events/objects comprise the multimessenger
dataset for our following analyses on the properties of
neutron star matter.
The existence of such high-mass neutron stars indicates

that the EOS of neutron star matter is relatively stiff,
whereas the tidal deformation in gravitational-wave obser-
vations of GW170817 implies a soft EOS at the inter-
mediate density range [16]. The radius of a 1.4M⊙ star is
known to be most sensitive to the variation of pressure
around 1 ∼ 2ρ0 [20,21]. Recent measurements of the
massive compact stars PSR J0030þ 0451 and PSR
J0740þ 6620 have significantly tightened the EOS at
densities between 1.5ρ0 and 5.0ρ0 [13,16]. In addition,
the EOS of strongly interacting matter at densities 2ρ0 <
ρ < 5ρ0 has also been constrained by the measurements of
collective flows [22] and subthreshold kaon production [23]
in relativistic heavy-ion collisions. When taken together,
these observations and the experimental information have
already narrowed significantly the EOS range of allowed
theoretical models. Recent work on the EOS by effective
models has generally concluded that the EOS of neutron
star matter must be moderately soft at intermediate
densities and stiff enough at high densities, which is
highly relevant to a possible phase transition to quark
matter [24–29].
In the present study, the neutron stars could be converted

to hybrid stars with the hadron-quark phase transition. We
describe strange quark matter (SQM) in hybrid stars based
on the quark quasiparticle model, and nuclear matter using
an improved isospin- and momentum-dependent interac-
tion (ImMDI) model. The ImMDI model is constructed
from fitting cold nuclear matter properties at saturation
density and the empirical nucleon optical potential [30,31],
and it has been extensively used in intermediate energy
heavy-ion reactions to study the properties of nuclear
matter. The Gibbs construction [32] is adopted for the
description of hadron-quark mixed phase, where the
coexisting hadronic and quark phases need to satisfy
the β-equilibrium and charge-neutral conditions. On the
other hand, the Witten hypothesis suggests that the abso-
lutely stable SQM is the true ground state of nuclear matter,
which implies that a hybrid star containing a sufficient
amount of SQM in its core will rapidly convert into a
strange quark star [33–35]. Some previous studies on the
EOS of hybrid star matter using various models with the
Gibbs construction and modified bag constants [36–38]
simply do not consider the absolute stability condition as a
prerequisite for quark matter in hybrid stars, rather than
ruling out the possibility of the existence of absolutely
stable SQM. In this work, we will examine the global
properties of hybrid stars and quark-matter cores by
excluding absolutely stable SQM inside hybrid stars.

This paper is organized as follows. In Sec. II, we describe
the quasiparticle model with different parameter sets for the
quark matter at zero temperature. We present in Sec. III the
global properties of hybrid stars and quark-matter cores by
excluding absolutely stable SQM, such as the EOS, the
sound velocity c2s, and the polytropic index γ; the mass-
radius relation and the dimensionless tidal deformability of
hybrid stars, as well as the mass-radius relation of quark-
matter cores. Our conclusions are given in Sec. IV.

II. THE THEORETICAL MODEL

The hybrid EOS consists of a hadronic phase connected
to a quark phase through a hadron-quark mixed phase. The
possible appearance of hyperons is neglected, which is due
to the fact that there are still large uncertainties on the
hyperon-nucleon (YN) and hyperon-hyperon (YY) inter-
actions in the nuclear medium [39,40]. Besides, following
the results from Ref. [37], the fraction of hyperons
disappears quickly in hadron-quark mixed phase, which
means that the effect of hyperons at high densities,
especially in the hadron-quark mixed phase, is expected
to be small. Thus, we mainly focus on the properties of
hybrid star matter without hyperons in this work.
Here we want to apply an ideal gas of quasiparticles with

effective masses to the case of strange quark matter. The
effective quark masses are derived from the zero momen-
tum limit of the dispersion relations following from an
effective quark propagator obtained from resumming one-
loop self energy diagrams in the hard dense loop approxi-
mation at finite chemical potential [41]. And the effective
quark mass for each flavor of quarks in quasiparticle model
at zero temperature can be expressed as [42–44]

mq ¼
mq0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q0

4
þ g2μ2q

6π2

s
; ð1Þ

wheremq0 is the current mass for three flavor quarks, which
is set as mu0 ¼ 5.5 MeV, md0 ¼ 5.5 MeV, and ms0 ¼
95 MeV respectively in this work [44,45]. μq means the
chemical potential for the different flavor of quarks, and g
represents the coupling constant of the strong interaction.
In principle the value of g should be determined as a
μ-dependent running coupling constant from the renormal-
ization group equation at finite density. However, so far there
are no clear results at finite temperature or density [46], and
thus g is taken as a free parameter ranging from 1 to 5.
The quasiparticle contribution to the thermodynamic

potential density for SQM can be written as

Ω ¼
X

q¼u;d;s

½Ωq þ BqðμqÞ� þ B; ð2Þ

where Ωq in the sum shows the contribution to the
thermodynamic potential density for all flavors of quarks
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(u, d, and s), BqðμqÞ is the additional terms for quarks,
which is defined as a necessary energy counterterm in order
to maintain thermodynamic self-consistency [47], and B
denotes the phenomenological bag constant which corre-
sponds to the negative vacuum pressure term for non-
perturbative confinement [48]. The expression of Ωq at
temperature T ¼ 0 and chemical potential μq for the
quasiparticle of mass mq can be written as

Ωq ¼ −
dq
24π2

�
μqkFq

�
μ2q −

5

2
m2

q

�
þ 3

2
m4

q ln

�
kFq þ μq

mq

��
;

ð3Þ

where dq denotes the degree of degeneracy (e.g., dq ¼ 6 for
quarks), and the Fermi momentum is kFq ¼ ðμ2q −m2

qÞ1=2.
The term BqðμqÞ is determined as

BqðμqÞ ¼ −
Z

∂Ωq

∂mq

∂mq

∂μq
dμq: ð4Þ

The pressure PQ and energy density εQ of SQM are,
respectively, given by

PQ ¼ −
X

q¼u;d;s

½Ωq þ BqðμqÞ� − B; ð5Þ

εQ ¼
X

q¼u;d;s

μqρq − PQ; ð6Þ

where ρq stands for the net quark number density. In the
quark phase, the system is composed of a mixture of quarks
(u, d, and s) and leptons (e and μ) under the charge
neutrality condition

2

3
ρu −

1

3
ðρd þ ρsÞ − ρe − ρμ ¼ 0; ð7Þ

and the β-equilibrium condition

μs ¼ μd ¼ μu þ μe; ð8Þ

μμ ¼ μe: ð9Þ
In terms of the electron mass me ¼ 0.511 MeV and the
muon massmμ ¼ 106 MeV, the lepton contributions to the
energy density and the pressure are

εL ¼
X
i¼e;μ

1

π2

Z
kFi

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
p2dp; ð10Þ

PL ¼
X
i¼e;μ

μiρi − εL; ð11Þ

where kFi ¼ ð3π2ρiÞ13 is the lepton Fermi momentum.
The total energy density and pressure including the

contributions from both quarks and leptons in quark phase
are given by

εQ ¼ εQ þ εL; ð12Þ

PQ ¼ PQ þ PL: ð13Þ

In the hadronic phase, an ImMDI model is used to
describe the β-equilibrium and charge-neutral nuclear
matter. In our previous study [29], the ImMDI model is
fitted to the properties of cold symmetric nuclear matter
(SNM), which is approximately reproduced by the self-
consistent Greens function approach [49,50] or chiral
effective many-body pertubation theory [51,52]. The poten-
tial energy density from the ImMDI model is then given
by [29,30]

VImMDI ¼
Auρnρp

ρ0
þ Al

2ρ0
ðρ2n þ ρ2pÞ

þ B
σ þ 1

ρσþ1

ρσ0
× ð1 − xδ2Þ þ 1

ρ0

X
τ;τ0

Cτ;τ0

×
ZZ

d3p⃗d3p⃗0 fτðr⃗; p⃗Þfτ0 ðr⃗0; p⃗0Þ
1þ ðp⃗ − p⃗0Þ2=Λ2

; ð14Þ

where ρn and ρp are the neutron and proton number
densities, respectively; ρ0 ¼ 0.16 fm−3 is the saturation
density of nuclear matter; δ ¼ ðρn − ρpÞ=ρ is the isospin
asymmetry of nuclear matter with ρ ¼ ρn þ ρp; and
fτðr⃗; p⃗Þ is the nucleon phase-space distribution function
from the Wigner transformation of its density matrix with
τ ¼ 1ð−1Þ for neutrons (protons) being the isospin index.
The parameter set (Al, Au, B, Cl ¼ Cτ;τ, Cu ¼ Cτ;−τ, Λ, σ)
can be fitted by seven empirical constraints, i.e., five
isoscalar constraints of the saturation density ρ0, the bind-
ing energy E0, the incompressibility K0, the isoscalar
effective mass m⋆

s , and the single-particle potential U0;∞
at infinitely large nucleon momentum in symmetric nuclear
matter, as well as two isovector constraints of the symmetry
energy Esymðρ0Þ and the symmetry potential Usym;∞ at
infinitely large nucleon momentum. In Refs. [29,30], an
optimized parameter set (A0, B, Cl0, Cu0, Λ, σ, x, y, z) was
introduced by using the following relations:

Alðx;yÞ ¼ A0þ yþ x
2B
σþ 1

;

Auðx;yÞ ¼ A0− y− x
2B
σþ 1

;

Cτ;τðyÞ ¼Cl0− 2ðy− 2zÞ p2
f0

Λ2 ln½ð4p2
f0þΛ2Þ=Λ2� ;

Cτ;−τðyÞ ¼Cu0þ 2ðy− 2zÞ p2
f0

Λ2 ln½ð4p2
f0þΛ2Þ=Λ2� ; ð15Þ
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where pf0 is the nucleon Fermi momentum in SNM at
saturation density. In the above relations, the parameters x,
y, and z are introduced to adjust the slope LðρÞ of
symmetry energy, the momentum dependence of the
symmetry potential, and the symmetry energy Esymðρ0Þ
at saturation density, respectively.
Recently, the discovery of GW170817 has triggeredmany

analyses of neutron star observables to constrain nuclear
symmetry energy. The average value of the slope parameter
of the symmetry energy L from the 24 new analyses of
neutron star observables since GW170817 was about L ¼
57.7� 19 MeV at a 68% confidence level [53], which is
consistent with the latest report of the slope parameter L
between 42 and 117 MeV from studying the pion spectrum
ratio in heavy-ion collision in an experiment performed at
RIKEN [54]. However, the lead radius experiment (PREX-
II) reported very recently new constraints on the neutron
radius of 208Pb, which implies a neutron skin thickness of

R
208Pb
skin ¼ 0.283� 0.071 fm [55] and constrains the slope

parameter toL ¼ 106� 37 MeV [56], which is much larger
than many previous constraints from microscopic calcula-
tions or experimental measurements [53,57,58]. In order to
better focus on the properties of quarkmatter, we thus choose
for the hadronic phase a fixed parameter set, x ¼ −0.3,
y ¼ 32 MeV, and z ¼ 0, that would allow 2.08M⊙ neutron
stars and still satisfy well nuclear matter constraints at
saturation density, i.e., the binding energy E0ðρ0Þ ¼
−15.9 MeV, the incompressibility K0 ¼ 240 MeV, the
symmetry energy Esymðρ0Þ ¼ 32.5 MeV, the slope param-
eterL ¼ 106 MeV, the isoscalar effectivemassm⋆

s ¼ 0.7m,
and the single-particle potential U0;∞ ¼ 75 MeV at infi-
nitely large nucleon momentum.
In the mean-field approximation, Eq. (14) leads to the

following single-particle potential [29,30]:

Uτðρ; δ; p⃗Þ ¼ Au
ρ−τ
ρ0

þ Al
ρτ
ρ0

þ B
ρσ

ρ0
ð1 − xδ2Þ − 4xτ

B
σ þ 1

ρσ−1

ρσ0
δρ−τ

þ 2Cl

ρ0

Z
d3p⃗0 fτðr⃗; p⃗Þ

1þ ðp⃗ − p⃗0Þ2=Λ2

þ 2Cu

ρ0

Z
d3p⃗0 f−τðr⃗; p⃗Þ

1þ ðp⃗ − p⃗0Þ2=Λ2
: ð16Þ

The chemical potential of neutrons and protons can be
calculated from

μτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ pτ2

f

q
þUτðpτ

fÞ; ð17Þ

with the nucleon mass m and the Fermi momentum
pτ
f ¼ ð3π2ρτÞ1=3. The total energy density and pressure

of the hadron phase can be written as

εH ¼ εH þ εL; ð18Þ

PH ¼ PH þ PL; ð19Þ

where εH and PH, respectively, are the energy density and
pressure of baryons. The detailed form can be written as

εH ¼ VHP þ VHK þ VHM;

PH ¼
X
τ

μτρτ − εH; ð20Þ

where VHP is the potential energy density of baryons
calculated from VImMDI, and VHK and VHM are, respec-
tively, the kinetic energy and mass contributions given by

VHK ¼
X
τ

pτ5
f

10π2mτ
;

VHM ¼
X
τ

ρτmτ: ð21Þ

The hadron-quark mixed phase is predicted to exist in the
region between hadronic matter and quark matter based on
various theoretical approaches. In theMaxwell construction,
the coexisting hadronic and quark phases have equal
pressure and baryon chemical potential but different electron
chemical potential. The Gibbs construction is more gen-
erally adopted for the description of the hadron-quarkmixed
phase, where the coexisting hadronic and quark phases are
allowed to be charged separately. Besides, the mixed phase
in the Gibbs construction persists within a limited pressure
range, so it is convenient to form a massive neutron star
containing the mixed phase. Both of the Maxwell and
Gibbs constructions involve only bulk contributions, but
the finite-size effects like surface and Coulomb contribu-
tions are neglected. The possible geometrical structure of
the mixed phase has been extensively discussed in
Refs. [59–63]. However, the large uncertainties in the
structure and density range of the mixed phase are still
present. In the present work, the hadron-quark mixed phase
is described by imposing the Gibbs construction [1,32]:
TH ¼ TQ,PH ¼ PQ, μHB ¼ μQB , and μ

H
c ¼ μQc , where μB and

μc are the baryon and charge chemical potential, as well as
the labels H and Q representing the hadronic and quark
phases, respectively. Adding baryon number conservation
and charge neutrality conditions, the dense matter enters the
mixed phase, inwhich the hadronic and quarkmatter need to
satisfy following equilibrium conditions:

μi ¼ μBbi − μcqi; PH ¼ PQ;

ρB ¼ ð1 − YÞðρn þ ρpÞ þ
Y
3
ðρu þ ρd þ ρsÞ;

0 ¼ ð1 − YÞρp þ
Y
3
ð2ρu − ρd − ρsÞ − ρe − ρμ; ð22Þ
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where Y is the baryon number fraction of the quark phase.
The crust of hybrid stars, in our calculations, is considered
to be divided into two parts: the inner and the outer crust as
in the previous treatment [64,65]. The polytropic form
P ¼ aþ bε4=3 has been found to be a good approximation
to the inner crust EOS [66], and the outer crust usually
consists of heavy nuclei and electron gas, where we use the
EOS in Ref. [67].
Using the whole EOS from hadronic to quark phase, the

mass-radius relation of hybrid stars can be obtained by
solving the Tolman-Oppenheimer-Volkoff (TOV) equation,
which can be written as

dPðrÞ
dr

¼ −
MðrÞ½εðrÞ þ PðrÞ�

r2

�
1þ 4πPðrÞr3

MðrÞ
�

×
�
1 −

2MðrÞ
r

�
−1
; ð23Þ

where εðrÞ is the energy density and PðrÞ is the pressure
obtained from the equation of state. MðrÞ is the gravita-
tional mass inside the radius r of the hybrid star given by

dMðrÞ
dr

¼ 4πr2εðrÞ: ð24Þ

The gravitational waves emitted from the merger of two
neutron stars are considered as another probe to the EOS of
dense matter [68,69]. The tidal deformability Λ of neutron
stars during their merger is related to the Love number k2
through the relation k2 ¼ 3=2Λβ5 [68,70], which can be
given by

k2¼
8

5
β5ð1−2βÞ2½2−yRþ2βðyR−1Þ�

×f2β½6−3yRþ3βð5yR−8Þ�
þ4β2½13−11yRþβð3yR−2Þþ2β2ð1þyRÞ�
þ3ð1−2βÞ2½2−yRþ2βðyR−1Þ� lnð1−2βÞg−1; ð25Þ

where β≡M=R is the compactness of the star, and
yR ≡ yðRÞ is the solution at the neutron star surface to
the first-order differential equation

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð26Þ

with

FðrÞ ¼ r − 4πr3½εðrÞ − PðrÞ�
r − 2MðrÞ ;

QðrÞ ¼
4πr

h
5εðrÞ þ 9PðrÞ þ εðrÞþPðrÞ

∂PðrÞ=∂εðrÞ −
6

4πr2

i
r − 2MðrÞ

− 4

�
MðrÞ þ 4πr3PðrÞ
r2ð1 − 2MðrÞ=rÞ

�
2

: ð27Þ

For a given central density ρc and using the boundary
conditions in terms of yð0Þ ¼ 2, Pð0Þ ¼ Pc, Mð0Þ ¼ 0,
and εð0Þ ¼ 0, the mass M, radius R, and the tidal deform-
ability Λ can be obtained once an EOS is supplied.

III. RESULTS AND DISCUSSIONS

The absolutely stable condition of SQM has been
proposed in Ref. [71], which can put very strict constraints
on the parameter space for most of the phenomenological
quark-matter models. The ordinary nuclei are made of
nucleons and not of a two-flavor quark phase, the energy
per nucleon (E=A) of u − d quark matter (udQM) therefore
must exceed the lowest energy per nucleon found in nuclei,
which is about 930 MeV for iron ðMð56Fe=56ÞÞ. For the
strange quark matter, Ref. [71] points out SQM in aggre-
gates large enough that surface effects can be ignored and
that electrons (or positrons) bound to it by Coulomb forces
are inside the chunk and numerous enough to be treated as a
degenerate Fermi gas. This requires E=A of SQM to be less
than that of the nucleon (MN ¼ 939 MeV). Actually for
E=A between 930 and 939 MeV SQM could decay by
emission of nuclei accompanied by weak interactions to
maintain flavor equilibrium, which means that the mini-
mum value of E=A of the absolutely stable SQM at zero
temperature should be less than 930 MeV. However, the
hypothesis of absolutely stable SQM (or “Witten hypoth-
esis”) suggests that the energy required to create a single
strange quark could be offset by the energy released when
two up or down quarks combine with a strange quark to
form a lower-energy state, which would imply that the
absolutely stable SQM is the ground state of matter, and
that all forms of matter would eventually decay into
SQM [33–35]. In this case, a hybrid star containing a
sufficient amount of SQM in its core will rapidly convert
into a strange quark star. Thus, the SQM in hybrid stars
should break the absolutely stable condition, and the energy
per nucleon (E=A) of both udQM and SQM must exceed
the lowest energy per nucleon 930 MeV.
We first present in Fig. 1 the energy per nucleon and

corresponding pressure of SQM and udQM as functions of
baryon number density in the quasiparticle model with five
different parameter sets: g ¼ 1; B1=4 ¼ 157.0 MeV; g ¼ 2;
B1=4 ¼ 153.0 MeV; g ¼ 3, B1=4 ¼ 146.0 MeV; g ¼ 4,
B1=4 ¼ 135.5 MeV; and g ¼ 5, B1=4 ¼ 120.0 MeV.
These parameter sets include various values for the cou-
pling constant g and bag constant B1=4. However, it should
be noted that all the minimum values of energy per nucleon
of SQM and udQM are larger than 930 MeV in all of the
five parameter settings, which is due to the break in
absolute stability for quark matter. We have ensured that
the minimum value of energy per nucleon of SQM is only
slightly larger than 930 MeV in our parameter settings,
but the minimum value of energy per nucleon actually
increases with increasing bag constant B while fixing the
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coupling constant g. Therefore, the value of B in our present
parameter sets is the minimum value. It is important to
consider that the ranges of B and g can significantly impact
the properties of SQM and hybrid stars, which will be
further discussed later in this work. Furthermore, it can be
seen from Fig. 1 that the baryon density of the minimum
energy per nucleon for SQM and udQM in all cases
corresponds exactly to the zero pressure points, satisfying
the thermodynamic self-consistency of quark matter.
Although the baryon density of the zero pressure point
decreases with the coupling constant g, the equation of state
containing SQM=udQM becomes stiffer, which can sup-
port more massive hybrid stars.
We show in Fig. 2 the EOS of hybrid star matter with the

hadron-quark phase transition in different parameter sets.
The ImMDI interaction with a fixed parameter set,
x ¼ −0.3, y ¼ 32 MeV, and z ¼ 0, is used for nuclear
matter, and the two cycles with the same color in Fig. 2
represent the range of the hadron-quark mixed phase. It can
be seen that the phase transition leads to a softening of EOS
of hybrid star matter, compared with their purely hadronic
counterpart. Moreover, the EOS of hybrid star matter is
sensitive to the strength of the coupling constant g. With
increasing the coupling constant g for SQM the EOS of
hybrid star matter becomes stiffer, which is consistent with
the results of strange quark star matter in Ref. [45], and the
onset of the phase transition is moving to higher densities
since the transition pressure is also increasing under the
Gibbs construction. It should be noted that the phase
transition in most cases occurs at density ρ0 ∼ 5ρ0, where
the EOS of SQM are considered to be an important factor
affecting the properties of hybrid stars [21,29]. On the other
hand, the stiffened EOS can increase the baryon density
of the hadron-quark phase transition, which leads to the

gradual weakening of the role of quark matter for hybrid
stars.
Compared with the hadronic matter (HM), SQM is

known to exhibit markedly different properties. For exam-
ple, SQM at very high densities (ρB ≥ 40ρ0) is approx-
imately scale invariant or conformal, whereas in HM the
degree of freedom is smaller and the scale invariance is also
violated by the breaking of chiral symmetry. These quali-
tative differences between HM and SQM can be reflected in
the different physical quantities. The sound velocity cs,
which can be calculated from c2s ¼ ∂P=∂ε, takes the
constant c2s ¼ 1=3 in the exactly conformal matter corre-
sponding to SQM at high densities. However, c2s in HM
varies considerably: below saturation density, most had-
ronic models, such as chiral effective field theory, indicate
c2s ≪ 1=3, while at higher densities the maximum of c2s is
predicted to be greater than 0.5 [72,73]. Another physical
quantity is the polytropic index γ ¼ dðlnPÞ=dðln εÞ, which
is considered to be a good approximate criterion for the
evidence of SQM in neutron stars. The polytropic index has
the value γ ¼ 1 in conformal matter, while the hadronic
models generically predict γ ≈ 2.5 around the saturation
density [74].
In Fig. 3(a), we show the squared speed of sound c2s as a

function of the baryon density for hybrid star matter with
the hadron-quark phase transition by varying the coupling
constants g from the quasiparticle model. With the increase
of g in the hadron-quark mixed phase, the curve increases
rapidly and reaches a larger peak. Meanwhile, we can see
that c2s in the quark phase is insensitive to g, and slowly
approaches the value c2s ¼ 1=3 of conformal matter in the
high density. It should be noted that a step change of the
sound velocity occurs in the hadron-quark phase transition.
The speed of sound suddenly decreases at the onset of the

FIG. 1. The energy per nucleon (E/A) and the corresponding
pressure as functions of the baryon density for SQM (left panels)
and udQM (right panels) at zero temperature from the quasipar-
ticle model with different parameter sets. The horizontal dashed
line E=A ¼ 930 MeV is also shown for comparison.

FIG. 2. EOS, pressure as a function of the baryon density, of
hybrid star matter based on the ImMDI interaction for nuclear
matter with a fixed parameter set (x ¼ −0.3, y ¼ 32 MeV, and
z ¼ 0) and the quasiparticle model for SQM with different
parameter sets. The two cycles with same color represent the
range of the hadron-quark mixed phase, and the result from pure
hadronic matter (PHM) is also shown for comparison.
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phase transition where the quarks appear and thus soften
the EOS as a result of more degrees of freedom, and it is
restored with the decrease of nucleon and lepton degrees of
freedom in the high density quark phase. Further, the step
change of the sound velocity in hadron-quark phase
transition is relevant to the frequency of the main peak
of the postmerger gravitational wave (GW) spectrum (f2),
which is expected to be confirmed by future kilohertz GW
observations with third-generation GW detectors [7]. In
Fig. 3(b), we show the relation between the polytropic
index γ and the squared speed of sound c2s in hybrid star
matter. It can be seen that at saturation density c2s and γ are
respectively 0.08 and 2.55 from the ImMDI model with a
fixed parameter set, x ¼ −0.3, y ¼ 32 MeV, and z ¼ 0,
which are consistent with those in most hadronic models.
Both c2s and γ in the high density quark phase approach the
conformal matter limit. Our results also agree with the
approximate rule following Ref. [4] that the polytropic
index γ ≤ 1.75 can be used as a criterion for separating
hadronic from quark matter.
Themass-radius relation of hybrid stars is shown in Fig. 4,

based on the quasiparticle model for SQMwith the different
coupling constants g. The constraints from the Bayesian
analyses of the observational data from the pulsars PSR
J0030þ 0451 [12,13] and PSR J0740þ 6620 [15,16], and
from the analyses of the gravitational-wave signal from the
neutron star merger GW170817 [17] are shown for com-
parison. The results shown in Fig. 4 indicate that both the
observedmaximummass and corresponding radius of hybrid
stars increase considerably with the coupling constant g,
which is due to the maximum mass of hybrid stars con-
straining mostly the EOS of hybrid star matter at densities
2ρ0 ∼ 5ρ0 [29]. As shown in Fig. 3, the hadron-quark mixed
phase inmost cases occurs at this density region, and thus the
properties of SQMaffect themaximummass. As a result, the
maximum mass of hybrid stars increases from 1.51 to

2.06M⊙ with the increasing g. Additionally, we also note
that the maximum mass of hybrid stars with parameter sets,
g ¼ 5, B1=4 ¼ 120.0 MeV and g ¼ 4, B1=4 ¼ 135.5 MeV,
are very close to the detection result of PSR J0740þ 6620,
and the results of hybrid stars in all parameter sets are
mostly consistent with the constraints from the pulsars PSR
J0030þ 0451 and the neutron star merger GW170817.
After the GW170817 event, much effort has been

devoted to constraining the EOS by comparing various
calculations with the range of tidal deformability. Reams
of studies have examined the effects on the nuclear
matter [75–77], and some of them have extracted con-
straints on the slope parameter Lðρ0Þ, i.e., Lðρ0Þ ¼
57.7� 19 MeV [53]. The measurements of the tidal
deformability of neutron stars constrain not only the
EOS of dense nuclear matter but also the fundamental
strong interactions of quark matter. Shown in Fig. 5 is the
dimensionless tidal deformability as functions of mass and
radius calculated using the different coupling constants
from the quasiparticle model. We see that Λ decreases/
increases rapidly as the mass/radius of the neutron star
increases, which is due to the fact that given the smaller
range of allowed radii for massive stars, the spread in the
tidal deformability is also naturally much tighter. As
expected, increasing g can stiffen the EOS of hybrid star
matter and thus increase the value of the tidal deformability.
Both the error bars at M ¼ 1.4M⊙ in the left panel and the
squared regions in the right panel are derived from the
constraints Λ1.4 ≤ 800 and 10.5 ≤ R1.4 ≤ 13.3 km based
on the analyses of GW170817 [17,19] and the predictions
of 292 ≤ Λ1.4 ≤ 680 and 11.5 ≤ R1.4 ≤ 13.6 km from
heavy-ion collisions [78]. The constraint 70 ≤ Λ1.4 ≤
580 is derived from the improved analyses of Ref. [19]
under several assumptions, in particular the same EOS for
both stars, which is probably not the case if one of them is
hybrid stars. Therefore, this constraint is not robust for
hybrid stars. In this work, we only consider the range of

FIG. 3. The squared speed of sound c2s as a function of the
baryon density (a), and the relation between the polytropic index
γ and the squared speed of sound c2s (b) for hybrid star matter by
varying the coupling constants g from the quasiparticle model.
The dashed lines c2s ¼ 1=3 and γ ¼ 1.75, as well as the violet star
indicating the high-density conformal matter limit are also shown
for comparison.

FIG. 4. Mass-radius relation of hybrid stars based on the
quasiparticle model for SQM with the different coupling con-
stants g. Constraints from multimessenger astronomy observa-
tions [12,13,15–17] are shown by shaded regions; see text for
details.
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tidal deformabilities Λ < 800 as a comparison for hybrid
stars. Except for the case g ¼ 1, B1=4 ¼ 157.0 MeV, it can
be seen that for the canonical mass Λ1.4 and R1.4 with
various parameters meet the constraints listed above. In
particular, the results of the case, g ¼ 4, B1=4¼135.5MeV,
are approaching the overlapping part of the two constraints.
The hybrid star matter EOS consists of charge-neutral

matter in β-equilibrium that has a hadron-quark phase
transition from hadronic to quark matter. To better under-
stand the effects of SQM on the hybrid stars, the relation
between the quark-matter core massMQC and radius RQC is
shown in Fig. 6. Owing to the existence of quark matter in
the hadron-quark mixed phase, the discussion of the quark-
matter core can be divided into two scenarios: the pure
quark core (PQC) and the mixed quark core (MQC), where
MQC includes the quark phase and mixed phase. The quark
matter cores can be determined using the TOVequations by
integrating them from the central baryon density to three
distinct points: (1) the pressure of onset of pure quark phase
where r ¼ RPQC and MðrÞ ¼ MPQC, (2) the pressure of
onset of mixed phase where r ¼ RMQC andMðrÞ ¼ MMQC,
and (3) zero pressure where r ¼ R and MðrÞ ¼ M. It is
clearly seen in Fig. 6(a) that the coupling constant g has a
competitive effect: while the constant g increases the hybrid
star mass up to 2M⊙, it also decreases the PQC massMPQC

and radius RPQC. This can be understandable since the onset
of the phase transition and the pure quark phase appear at
higher densities with increasing g under the Gibbs con-
struction. Particularly, if g is large enough, the onset density
of quark matter will be larger than the central density of the
massive stars, and thus no PQC can appear in the hybrid
stars. With different coupling constants, the maximum

mass and radius of PQCs, in current work, are about
0.88M⊙ and 5.5 km, respectively. However, the mass-
radius relation of MQCs in Fig. 6(b) shows a more complex
dependence: the maximummass and radius of MQCs begin
to increase gradually and decrease rapidly after reaching the
maximum values with the increase of the constants g. The
reason for the special dependency is that the mass and
radius of MQC with small value g are in close proximity to
those of the whole star, which limits the increase of the
mass and radius of MQC. For the above 2M⊙ hybrid stars,
the maximum radius of PQCs may only be about
RPQC ≈ 2.0 km, while the maximum radius of MQCs
(the core where quark matter may appear) can be up to
7.2 km, which is over the quark core radius RQC ¼ 6.5 km
observed in Ref. [4].
The discussion above has established that changes in B

and g can significantly impact the properties of SQM and
hybrid stars. Figure 7(a) displays the energy per nucleon
(E=A) of SQM and udQM on the g − B1=4 plane. The red
dash-dotted line represents an E=A of 930 MeV for SQM,
while the black dashed line corresponds to an E=A of
930 MeV for udQM. The slash shaded area between the
two E=A ¼ 930 MeV lines represents the region where
absolutely stable SQM exists, which decreases as g
increases and eventually narrows down to a “point” with
g ¼ 5.62. Hybrid stars containing SQM should break the
absolutely stable condition, and the E=A of both udQM and
SQM must exceed the lowest E=A value of 930 MeV. As a
result, the slash and grid shaded regions represent areas
excluded for hybrid stars. Consequently, the color-marked
points on the red dash-dotted line with g < 5.62, and those
on the black dashed line with g > 5.62 signify the mini-
mum values of the bag constants B with different g. Our
calculations also reveal that the maximum mass of hybrid
stars decreases with increasing B by fixing the constant g
since the bag constant B can soften the EOS of SQM
through the pressure expression in Eq. (5), while the results
of the radius R1.4 and tidal deformability Λ1.4 demonstrate
oppositely. Therefore, we can provide the maximum mass,

FIG. 5. Relations between the dimensionless tidal deformabil-
ity and the mass as well as between the dimensionless tidal
deformability and the radius in hybrid stars with the different
coupling constants g for SQM. Both the error bars atM ¼ 1.4M⊙
(a) and the squared regions (b) are derived from the constraints
Λ < 800 and 10.5 ≤ R1.4 ≤ 13.3 km based on the improved
analysis of GW170817 [17,19] and the predictions of 292 ≤
Λ1.4 ≤ 680 and 11.5 ≤ R1.4 ≤ 13.6 km from heavy-ion collisions
[78]. The small red squares indicate the results for hybrid stars
with 1.4M⊙.

FIG. 6. Mass-radius relations the PQC and the MQC inside
hybrid stars based on the quasiparticle model for SQM with
different coupling constants g. The solid and void stars represent
PQC and MQC of a 2M⊙ hybrid star, respectively.
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minimum radius R1.4 and minimum tidal deformation
Λ1.4 of the hybrid stars with different g, as shown in
Figs. 7(b)–7(d). We can also see from the figures that the
maximummass, radius (R1.4), and tidal deformability (Λ1.4)
increase with an increase in g. However, it should be noted
that different bag constants B when g > 5 had no impact on
the radii and tidal deformabilities of 1.4M⊙ hybrid stars
since there is no quark matter present inside the stars.
For comparison, we depict some constraints in panel
(b) from the mass measurements of PSR J1614-2230
(1.908� 0.016M⊙) [8,10], PSR J0348þ 0432 (2.01�
0.04M⊙) [11], and PSR J0740þ6620 (2.08�
0.07M⊙) [14,16], and the horizontal bars in panels (c)
and (d) derived from the improved analyses of
GW170817 [19] and the predictions from heavy-ion
collisions [78]. It is clearly seen that the cases of g ¼ 4
with various B largely satisfy all the constraints listed.
Finally, we show in Fig. 8 the maximum mass and radius

of quark-matter cores inside hybrid stars as functions of the
coupling constant g with the minimum B in the quasipar-
ticle model. We can see in the figures that the maximum
mass and radius of PQCs decreases with the increment of g,
whereas those of MQCs begin to increase gradually and
decrease rapidly after reaching the maximum values
with the increase of the constants g. Different from the
complete stars, both the maximum mass and radius of
PQCs and MQCs have a negative dependence on the bag
constant B by fixing the constant g, and thus the mass and
radius of PQCs and MQCs in Fig. 8 correspond to the
maximum values with different g. For the 2M⊙ stars with

the hadron-quark phase transition, the radii of quark-matter
cores observed in Ref. [4] can reach about 6.5 km as shown
by the dashed line in Fig. 8. It is clearly seen in Fig. 8 that
the PQCs of the massive stars gradually scale down or
even nearly disappear. Especially for the extreme value
g ¼ 5.62, the star mass can be up to 2.08M⊙, whereas
the PQC mass almost approaches zero, and its radius is
also less than 1 km. By contrast, considering the mixed
phase, the sizable quark-matter cores (RMQC > 6.5 km) can
appear in 2M⊙ massive stars.

IV. SUMMARY AND OUTLOOK

In this work, we have investigated the global properties
of hybrid stars with the hadron-quark phase transition
based on the quasiparticle model. In conclusion, we find
that the hybrid star matter EOS is sensitive to the strength
of the constants g. With increasing the coupling constant g
the EOS of hybrid star matter becomes stiffer. Meanwhile,
we also note that a step change of the sound velocity
occurs in the hadron-quark phase transition. The speed of
sound suddenly decreases at the onset of the phase
transition, and it is restored with the decrease of nucleon
and lepton degrees of freedom in the high density quark
phase. Our results agree with the approximate rule
following Ref. [4] that the polytropic index γ ≤ 1.75
can be used as a criterion for separating hadronic from
quark matter. Using the hybrid star matter EOS, we predict
the mass-radius relation and tidal deformabilities of
hybrid stars as well as the radius and mass information

FIG. 7. Bag constant B (a), maximum mass of hybrid stars (b),
as well as radius R1.4 (c) and tidal deformability Λ1.4 (d) for
1.4M⊙ hybrid stars as functions of the coupling constant g in the
quasiparticle model. The horizontal bars in (b) indicate the
observational constraints of PSR J1614-2230 [8,10], PSR
J0348þ 0432 [11], and PSR J0740þ 6620 [14,16], and the
horizontal bars in (c) and (d) are derived from the improved
analyses of GW170817 [19] and the predictions from heavy-ion
collisions [78].

FIG. 8. Maximum mass and radius of quark-matter cores inside
hybrid stars as functions of the coupling constant g in the
quasiparticle model. The solid and void geometries represent
the pure quark cores and mixed quark cores of the hybrid stars
respectively, and the dashed line represents a 6.5 km quark core
observed in Ref. [4].
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of quark-matter cores. Although the constant g increases
the hybrid star maximum mass up to 2.08M⊙, it also
decreases the mass and radii of quark-matter cores.
However, considering the quark matter in the mixed
phase, we confirm that the sizable quark-matter core
RQC ¼ 7.2 km can appear in 2M⊙ massive stars.
The hypothesis of absolutely stable SQM suggests that the

SQM in hybrid stars should break the absolutely stable
condition, and the energy per nucleon (E=A) of both udQM
and SQM must exceed the lowest energy per nucleon
930 MeV. In the work, we present the energy per nucleon
(E=A) of SQM and udQM and regions excluded for hybrid
stars on the g − B1=4 plane. We find that the maximummass
of hybrid stars decreases with increasing B since the bag
constant B can soften the EOS of SQM, while the results of
the radius R1.4 and tidal deformability Λ1.4 for a 1.4M⊙ star
demonstrate oppositely. Different from the complete stars,
bothmaximummass and radius of quark-matter cores have a
negative dependence on the bag constant B. As a result, we
provide the maximum mass, minimum radius R1.4, and tidal
deformationΛ1.4 of the hybrid stars as well as the maximum
mass and radius of the quark matter core with different g
values within the allowable regions (E=A > 930 MeV) on
the g − B1=4 plane. For comparison, we also display some
constraints from astrophysical observations and heavy-ion

experiments, which comprise themultimessenger data set for
our analyses on the properties of hybrid star matter. In
addition, some of the new discoveries and observations
provide more rigorous constraints on SQM, or may also
contain some new physics, for example, the newly discov-
ered compact binary merger GW190814 with a secondary
component of mass 2.50 ∼ 2.67M⊙, which can be repro-
duced by a superfast pulsar [79] or quark star [44,45]. Those
observations of massive stars can also be used to understand
the properties of theQCDphase transition. To further explore
theQCDphase structure and search for the signal of theQCD
critical point, experimental programs such as the beam-
energy scan at RHIC were proposed. The promising results
are available to provide more constraints on the EOSs of
SQM, and are helpful in the understanding of theQCDphase
structure.
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