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We calculated next-to-leading-order (NLO) QCD perturbative contributions to a JPC ¼ 0þ−, dud̄ū
tetraquark (diquark-antidiquark) correlator in the chiral limit of massless u and d quarks. At NLO, there are
four quark self-energy diagrams and six gluon-exchange diagrams. Nonlocal divergences were canceled
using diagrammatic renormalization. Dimensionally regularized integrals were numerically computed
using pySecDec. The combination of pySecDec with diagrammatic renormalization establishes a valuable
new methodology for NLO calculations of QCD correlation functions. Compared to leading-order (LO)
perturbation theory, we found that NLO perturbation theory is significant. To quantify the impact of NLO
perturbation theory on physical predictions, we computed NLO perturbative contributions to QCD Laplace,
Gaussian, and finite-energy sum rules. Using QCD sum rules, we determined upper and lower bounds on
the 0þ−, dud̄ū tetraquark ground-state mass,M; at NLO in perturbation theory, we found 2.2 GeV ≲M ≤
4.2 GeV whereas, at LO, we found 2.4 GeV ≲M ≤ 4.6 GeV. This mass range suggests the possibility of
mixing between 0þ−, light-quark (i.e., u and d quarks) hybrid and dud̄ū tetraquark states. Taking into
account uncertainties in QCD parameters, we found no evidence for a 0þ−, dud̄ū tetraquark under 1.9 GeV.
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I. INTRODUCTION

Color confinement allows for hadron families beyond the
well-known two-quark mesons and three-quark baryons [1].
Four-quark states are one such family (see e.g., [2,3]).
Experimental evidence for the existence of four-quark states
is strong (see, for example, the reviews [4–10]). Several states
containing (a minimum of) four quarks have been reported
including the Zcð3900Þþ with quark content cuc̄d̄ [11,12],
the Xð5568Þþ with quark content sub̄d̄ [13,14], and the
Xð6900Þ with quark content ccc̄c̄ [15].
While all known manifestly four-quark states contain at

least one heavy quark, a four-quark framework (with an
inverted mass hierarchy for the scalar mesons) is also
expected in systems without heavy quarks [2,16]. However,
clearly identifying four-quark states that do not contain
heavy quarks is difficult due in part to overlapping hadron
multiplets and, presumably, hadron mixing. Given these
difficulties, a promising search strategy is to look for

bosonic hadrons with exotic quantum numbers, i.e., JPC

combinations such as 0−−, 0þ−, and 1−þ that are forbidden
for two-quark mesons. While not guaranteed to be four-
quark states (e.g., hybrid mesons can have exotic
JPC [5,7,10]), hadrons with exotic quantum numbers are
at least guaranteed to not be two-quark mesons.
One possible picture for the structure of a four-quark

state is that of a diquark-antidiquark bound state, i.e., a
tetraquark [2,3,16]. Tetraquarks with exotic quantum num-
bers that do not contain heavy quarks have been studied
using QCD sum rules [17–22].1 QCD sum rules are
transformed dispersion relations that relate hadron proper-
ties to QCD correlation functions of interpolating cur-
rents [26–31]. Variants include Laplace, Gaussian, and
finite-energy sum rules. In [17], an analysis of light-quark
(i.e., u and d quarks) and hidden-strange, isovector tetra-
quarks with JPC ¼ 1−þ yielded mass predictions of about
1.6 GeV for qqq̄q̄ states and 2.0 GeV for qsq̄s̄ states where
q represents u or d. However, for many of the currents
considered, the QCD spectral functions (i.e., imaginary
parts) of corresponding correlators were negative (i.e.,
unphysical) in the squared-energy scale, t, range
1 GeV2 ≲ t≲ 4 GeV2. For t≳ 4 GeV2, the QCD spectral
functions were positive (and hence physical), but the
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1They have also been studied with the MIT bag model [23] and
a Coloumb gauge QCD Hamiltonian model [24,25].
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hadron masses obtained were greater than 2.5 GeV. As
such, Ref. [17] concluded that these currents did not
provide evidence for the existence of 1−þ tetraquarks under
2 GeV. In [18], an analysis of light-quark and hidden-
strange, isoscalar tetraquarks with JPC ¼ 1−þ yielded a
qsq̄s̄ state mass prediction of 1.8 GeV–2.1 GeV. However,
similar to what was seen in [17], many currents led to
correlators with negative QCD spectral functions for
2 GeV2 ≲ t≲ 4 GeV2. All of the qqq̄q̄ currents showed
this unphysical behavior, and, consequently, in Ref. [18],
no mass predictions were obtained for 1−þ, light-quark,
isoscalar tetraquarks. In [19], light-quark and hidden-
strange, isovector and isoscalar tetraquarks with JPC ¼
0−− were studied using a set of scalar currents, but none of
the sum-rules analyses stabilized. In [21], 0−−, light-quark
tetraquark states were studied using a set of vector
currents which yielded isospin-degenerate mass predictions
of ð1.66� 0.14Þ GeV. In [20], light-quark tetraquarks (as
well as hidden-charm and hidden-bottom tetraquarks) with
JPC ¼ 0þ− were studied using scalar currents (that con-
tained covariant derivative operators). For the qqq̄q̄ states,
no sum-rules analyses were successful. In [22], light-quark
and hidden-strange tetraquarks with JPC ¼ 0þ− were
studied using a set of vector currents. For qqq̄q̄ tetraquarks,
a mass of (1.43� 0.09) GeV was reported, and, for qsq̄s̄
tetraquarks, a mass of ð1.54� 0.12Þ GeV was reported.
Our focus in this paper is 0þ−, dud̄ū tetraquarks, denoted

as T0þ−

dud̄ū
following the classification scheme of Ref. [32].

In [22], correlation functions of eight interpolating currents
were considered at leading order (LO) in perturbation
theory. In the chiral limit, correlation functions of these
eight currents are pairwise degenerate, corresponding to
four independent currents. Of these four, only two were
identified as leading to Laplace sum rules (LSRs) with
converging operator product expansion (OPE) series, and,
of these two, only one led to an LSRs analysis stable

against deviations from vacuum saturation. This current, J3
(or, equivalently, J7) in the notation of [22], was analyzed
using LSRs resulting in a mass prediction of 1.39 GeV at
optimized continuum threshold parameter s0 ¼ 4.50 GeV2

and Borel parameter σ ¼ 0.265 GeV−2 [22]. Because sum
rules for two-point functions relate an integrated QCD-
predicted ρðOPEÞðtÞ to an integrated positive-valued had-
ronic spectral function ρðtÞ [see (46)–(47) below], QCD
sum rules must be positive to be physically consistent
with an integrated hadronic spectral function (see e.g.,
Refs. [33–36] that use the physical positivity constraint to
obtain QCD sum-rule mass bounds on light quarks).
However, as can be seen in Fig. 1, the LSRs of J3 (J7)
from [22] are negative and, therefore, unphysical at the
optimized s0 and σ values; hence, the corresponding mass
prediction is not reliable.
Focusing on the current J7 from [22] (see (1) below), we

extended the QCD sum-rules analysis of T0þ−

dud̄ū
tetraquarks

to include next-to-leading-order (NLO) QCD contributions
to perturbation theory. For several 0þþ, light-quark tetra-
quark currents, it has been shown that NLO contributions to
perturbation theory are surprisingly large [37]. The effects
of NLO perturbation theory on a QCD sum-rules analysis
of a 0þþ, light-quark tetraquark current are explored
in [38]. It is therefore interesting to study whether light-
quark, exotic-JPC tetraquarks have similarly large NLO
effects. Furthermore, as the NLO perturbative contributions
are necessarily positive, they could potentially fix the
negative, unphysical LSRs of Fig. 1.
The NLO diagrams that contribute to the T0þ−

dud̄ū
diagonal

correlator defined in (2)–(3) below are shown in Fig. 2.
Each diagram has four loops and contains nonlocal
divergences. Integrals were regulated using dimensional
regularization, and nonlocal divergences were eliminated
through diagrammatic renormalization [39–42] using the
methodology for sum rules developed in Ref. [43].

FIG. 1. The order-0 and order-1 (subtracted) LSRs of J3 (J7) from [22] at continuum threshold parameter s0 ¼ 4.50 GeV2, the
optimized value of s0 determined in [22]. Both LSRs are negative at Borel parameter σ ¼ 0.265 GeV−2, the optimized value of σ
determined in [22]. Note that, in [22], Laplace sum rules are denoted M and the Borel parameter is denoted τ.
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As discussed in [43], diagrammatic renormalization is
particularly convenient for radiative corrections to tetra-
quark correlation functions as it circumvents the problem of
composite-operator mixing under renormalization. Also, it
provides helpful consistency checks as nonlocal divergen-
ces are eliminated diagram-by-diagram.
Rather than evaluating integrals analytically, we evaluated

them using pySecDec, a program that numerically calculates
dimensionally regularized integrals [44]. pySecDec makes
use of FORM [45–47], GSL [48], and the CUBA
library [49,50]. It has been demonstrated that pySecDec
can be successfully incorporated into the QCD sum-rules
methodology at LO using a 0−þ charmonium hybrid current
as an example [51]. In this paper, we demonstrate that
pySecDec numerical loop-integration methods combined
with diagrammatic renormalization techniques can be suc-
cessfully implemented at NLO, establishing new calcula-
tionalmethods for higher-loop corrections inQCDsum rules.
For the T0þ−

dud̄ū
diagonal correlator (2)–(3) below, we

found that NLO contributions are large relative to LO
perturbation theory. This is similar to what was found for
0þþ, light-quark tetraquarks [37,38]. To assess the impor-
tance of the NLO corrections to physical predictions, we
computed NLO perturbative contributions to Laplace,
Gaussian, and finite-energy sum rules. Using Gaussian
sum rules (GSRs), we motivated a lower bound on the
T0þ−

dud̄ū
tetraquark ground state mass,M, and using LSRs, we

determined an upper bound on M. Omitting NLO pertur-
bation theory, we found that 2.4 GeV≲M ≤ 4.6 GeV
contrary to the predictions of [22]. The discrepancy is
due to our analysis being restricted to positive, physical
sum rules. Including both LO and NLO perturbation theory,
we found that 2.2 GeV≲M ≤ 4.2 GeV. With NLO per-
turbation theory, the resulting mass scale was lowered
somewhat, but we still found no evidence for a T0þ−

dud̄ū
state

lighter than 1.9 GeV, even when taking into account
uncertainties in QCD parameters. Furthermore, it is worth
noting that this mass range is comparable to the QCD sum-
rule mass prediction for 0þ−, light-quark hybrids [52],
suggesting the possibility of hybrid-tetraquark mixing.

II. NEXT-TO-LEADING-ORDER
PERTURBATION THEORY

We investigate T0þ−

dud̄ū
tetraquarks using the current

Jμ ¼ uTaCdbðūaγμCd̄Tb − ūbγμCd̄TaÞ
− uTaCγμdbðūaCd̄Tb − ūbCd̄TaÞ; ð1Þ

denoted J7 in [22], with charge-conjugation operator C,
quark color indices a and b, andmassless u and d quarks. As
discussed in Ref. [22], this current couples to different
isospin multiplets, but because our calculations do not
include isospin-breaking effects, our conclusions concerning
T0þ−

dud̄ū
masses are isospin degenerate. The diagonal correlator

of (1) is

ΠμνðqÞ ¼ i
Z

d4xeiq·xhΩjTjμðxÞj†νð0ÞjΩi

¼ qμqνΠðSÞðq2Þ þ ðqμqν − q2gμνÞΠðVÞðq2Þ; ð2Þ

where ΠðSÞðq2Þ and ΠðVÞðq2Þ probe 0þ− and 1−− states
respectively. We focus on ΠðSÞðq2Þ where

ΠðSÞðq2Þ ¼ qμqν
q4

Πμνðq2Þ: ð3Þ

Weomit the superscript “(S)” fromΠðSÞðq2Þ fromhere on.As
discussed above, at LO, the LSRs based on this current have
good OPE convergence properties and stability under var-
iations in QCD parameter inputs [22]. For the QCD sum-
rules analyses ofSec. III,we actually onlyneed the imaginary
part of Π; thus, for convenience, we define

ρðtÞ ¼ lim
δ→0þ

Πðtþ iδÞ − Πðt − iδÞ
2πi

¼ 1

π
ImΠðtÞ:

We calculate ρðtÞ within the OPE [42,53] in which
perturbation theory, ρðpertÞðtÞ, is supplemented by non-
perturbative condensate terms, ρðcondÞðtÞ,

FIG. 2. The NLO perturbative diagrams of Πðq2Þ. The⊗ denotes the Feynman rule for the current (1). Thin lines are u quarks. Thick
lines are d quarks.
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ρðtÞ → ρðOPEÞðtÞ ¼ ρðpertÞðtÞ þ ρðcondÞðtÞ: ð4Þ

In the chiral limit of massless u and d quarks, we
consider LO, ρðLOÞðtÞ, and NLO, ρðNLOÞðtÞ, contributions
to ρðpertÞðtÞ i.e.,

ρðpertÞðtÞ ¼ ρðLOÞðtÞ þ ρðNLOÞðtÞ; ð5Þ

where [22]

ρðLOÞðtÞ ¼ t3

61440π6
: ð6Þ

Taking into account condensates up to and including a mass
dimension of six (i.e., 6d), we have [22]

ρðcondÞðtÞ ¼ t
1536π5

hαG2i − κ

12π2
hq̄qi2; ð7Þ

where the 4d gluon condensate value used is [54]

hαG2i ¼ ð0.075� 0.02Þ GeV4 ð8Þ

and the 3d quark condensate value used is [26,55]

hūui ¼ hd̄di≡ hq̄qi ¼ −ð0.23� 0.03Þ3 GeV3: ð9Þ

As discussed in [22], the chiral limit of massless quarks
and SUð2Þ flavor-symmetric QCD condensate corrections
imply that the T0þ−

dud̄ū
predictions emerging from Πðq2Þ will

be isopsin-degenerate. The parameter κ in (7) quantifies
deviations from the vacuum saturation hypothesis, with
κ ¼ 1 corresponding to vacuum saturation [26,27].
However, there is considerable evidence that vacuum
saturation underestimates the 6d condensates, and so,
consistent with Refs. [30,56,57], we use κ ¼ 2 as our
central value with κ ¼ 3 as an upper bound. (See Ref. [31]
for a recent review of QCD condensate determinations.)
The diagrams that contribute to Πðq2Þ at NLO are shown

in Fig. 2, and ρðNLOÞðtÞ is then extracted from these diagrams.
The self-energy diagram (SE) shown in Fig. 2(a) has a
multiplicity of four as the gluon line can be attached to any of
the (massless) quark lines. In the gluon-exchange diagram

shown in Fig. 2(b), the gluon line connects two quark lines
oriented in the same direction. We call this an exchange
diagram of Type 1 (EX1) and note that it has a multiplicity of
two. In the gluon-exchange diagram shown in Fig. 2(c), the
gluon line connects two quark lines oriented in opposite
directions.We call this an exchange diagramofType 2 (EX2)
and note that it has a multiplicity of four.
All diagrams of Fig. 2 contain nonlocal divergences that

must be eliminated. Regularization is handled using dimen-
sional regularization in D ¼ 4þ 2ϵ dimensions at minimal
subtraction (MS) renormalization scale μ. We renormalize
each diagram using diagrammatic renormalization as dis-
cussed in Ref. [43]. At NLO, diagrammatic renormalization
(see e.g., Refs. [39–42]) first requires isolation of the
subdivergences arising from the one-loop subdiagram(s)
of an individual bare NLO diagram. Counterterm diagrams
generated from the subdivergences are then calculated and
added to the bare diagram to obtain the renormalized
diagram. The process is repeated for all bare diagrams,
and the final result is the renormalized correlation function
with the coupling identified asαsðνÞ at renormalization scale
ν in the chosen scheme. Advantages of the diagrammatic
approach include an increase in computational efficiency,
particularly when conventional renormalization would
result in a large operator-mixing basis (such as tetraquark
systems with a basis of approximately ten operators [58]).
Reference [43] also shows how the diagrammatic method
can be conceptually understood in terms of conventional
operator renormalization. In summary, the diagrammatic
renormalization process [43] requires that, for each diagram,
subdiagrams that lead to nonlocal divergences are identified,
and their MS divergences are isolated. For each subdiver-
gence isolated, a counterterm vertex having the opposite
value is defined. New counterterm diagrams that include
counterterm vertices are added to the original diagram
yielding a result free of nonlocal divergences. A novel aspect
of this paper is the implementation of diagrammatic re-
normalization methodology via numerical loop-integration
methods using pySecDec [44] as outlined below.
The diagram of Fig. 2(a) contains a subdivergence from

the quark self-energy. The counterterm corresponding to
the one-loop quark self-energy is well-known (see [59] for
example). For massless quarks,

ð10Þ

We represent a counterterm vertex as a ▪ labeled by
an integer indicating which subdivergence it corre-
sponds to. In (10)–(14), the indices fa;…; dg re-
present quark color whereas fi;…; kg are Dirac

indices. The diagram of Fig. 2(b) contains two divergent
subdiagrams each comprising the gluon line, a current
insertion, and the two quark lines that connect them.
We find
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ð11Þ

where

ΓðEX1Þ
μ ¼ g2s

24π2ϵ
ðδadδbc − δacδbdÞ

× ð4CijðCγμÞlk − ðγμCÞijClkÞ: ð12Þ
The diagram of Fig. 2(c) contains two divergent subdia-
grams, again, each comprising the gluon line, a current
insertion, and the two quark lines that connect them.
We find

ð13Þ

where

ΓðEX2Þ
μ ¼ g2s

384π2ϵ
ð5δadδbc þ δacδbdÞððγργσCÞijðCγμγργσÞlk

− ðγμγργσCÞijðCγργσÞlkÞÞ: ð14Þ

The counterterm diagrams needed to eliminate nonlocal
divergences from the diagrams of Fig. 2 are shown in Fig. 3.
The self-energy counterterm diagram (SEC) of Fig. 3(a) has
a multiplicity of four. The Type 1 gluon-exchange counter-
term diagram (EXC1) of Fig. 3(b) has a multiplicity of four,
themultiplicity of the diagram of Fig. 2(b)multiplied by two
as the counterterm vertex can replace either current inser-
tion. The Type 2 gluon-exchange counterterm diagram
(EXC2) of Fig. 3(c) has a multiplicity of eight, the
multiplicity of the diagram of Fig. 2(c) multiplied by two.
We denote a particular NLO diagram from Fig. 2 or

Fig. 3 with a superscript (A) where A ∈ fSE;EX1;EX2;
SEC;EXC1;EXC2g. Then, including multiplicities,

ρðNLOÞðtÞ ¼ 4ρðSEÞðtÞþ 4ρðSECÞðtÞþ 2ρðEX1ÞðtÞ
þ 4ρðEXC1ÞðtÞþ 4ρðEX2ÞðtÞþ 8ρðEXC2ÞðtÞ: ð15Þ

As the u and d quarks are massless, each ρðAÞðtÞ takes the
form

ρðAÞðtÞ ¼ g2st3
�
aðAÞ

ϵ
þ bðAÞ þ cðAÞL

�
; ð16Þ

where aðAÞ, bðAÞ, and cðAÞ are constants and where

L ¼ log

�
t
μ2

�
: ð17Þ

Using pySecDec, we numerically evaluated the imaginary
parts of all six NLO diagrams (excluding the g2s factors)
over a range of values of t at μ ¼ 1 GeV. The values of aðAÞ

were easily identified as the coefficients of ϵ−1 in the
resulting data. We extracted values of bðAÞ and cðAÞ by
fitting the finite parts of (16), i.e., the terms free of ϵ, to the
coefficients of ϵ0 in the data. As a benchmark of our
methodology, we first successfully reproduced (6) using
this pySecDec method before calculating NLO corrections.
In Fig. 4, for each NLO diagram, we plot the fitted finite
part of (16) along with the coefficient of ϵ0 in the

FIG. 3. The counterterm diagrams needed to eliminate nonlocal divergences from the diagrams of Fig. 2. The⊗ denotes the Feynman
rule for the current (1). The ▪ denotes a counterterm vertex. Thin lines are u quarks. Thick lines are d quarks.
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pySecDec-generated data. In all cases, there is excellent
agreement between the data and the fitted function, and the
theoretical uncertainty in the coefficients arising from the
fitting procedure is negligible.
The sum of a diagram and its counterterm diagrams must

be free of nonlocal divergences implying, here, that the
various divergent parts, i.e., the ϵ−1 terms, of (16) must
cancel in pairs. Therefore,

aðSEÞ ¼ −aðSECÞ; ð18Þ

aðEX1Þ ¼ −2aðEXC1Þ; ð19Þ

aðEX2Þ ¼ −2aðEXC2Þ: ð20Þ
The factors of two in (19) and (20) are due to the two
possible locations of the counterterm vertex in Fig. 3(b) and
Fig. 3(c) respectively. In Fig. 5, we plot aðSEÞ=aðSECÞ,

aðEX1Þ=ð2aðEXC1ÞÞ, and aðEX2Þ=ð2aðEXC2ÞÞ using values of
aðAÞ obtained from fitting. Within numerical uncertainty,
each ratio is consistent with a constant value of -1 in
excellent agreement with (18)–(20). There are, however, a
handful of outliers that violate (18)–(20) by a few percent.
As the u and d quarks are massless, there is no special
physical significance of any value of t, and so the outliers
seem to be minor numerical anomalies. We speculate that
the origin of these numerical anomalies is associated with
our choice μ ¼ 1 GeV corresponding to a modified min-
imal subtraction (MS) scale [see (21) below] of μ̄2 ¼
7.05 GeV2 in close proximity to the values of t at the
anomalies. It seems plausible that pySecDec could encoun-
ter numerical challenges at this scale because of the natural
combination 1=ϵþ logðt=μ2Þ − logð4πÞ þ γE occurring in
dimensional regularization. From Fig. 4, it is clear that the
finite parts do not contain any such numerical anomalies.

FIG. 4. Fits (solid lines) of the finite parts of (16) to pySecDec-generated data (dots). The error bars due to pySecDec numerical
uncertainties are much smaller than the dots.
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For our final expression for ρðNLOÞðtÞ, we transform from
an MS to an MS result in order to make use of MS QCD
quantities provided in Ref. [60], for example. With

μ2 ¼ eγE

4π
μ̄2; ð21Þ

we have

L ¼ L̄ − γE þ logð4πÞ; ð22Þ
where

L̄ ¼ log

�
q2

μ̄2

�
ð23Þ

in terms of MS renormalization scale μ̄. Then, ignoring the
divergent parts of (16) as the sum of all such contributions
has been shown to cancel in pairs, we find

ρðSEÞðtÞ ¼ g2st3ð−2.23 × 10−9 þ 5.76 × 10−10L̄Þ; ð24Þ

ρðEX1ÞðtÞ ¼ g2st3ð5.80 × 10−9 − 1.49 × 10−9L̄Þ; ð25Þ

ρðEX2ÞðtÞ ¼ g2st3ð1.33 × 10−9 − 2.87 × 10−10L̄Þ; ð26Þ

ρðSECÞðtÞ ¼ g2st3ð1.63 × 10−9 − 4.29 × 10−10L̄Þ; ð27Þ

ρðEXC1ÞðtÞ ¼ g2st3ð−2.04 × 10−9 þ 5.36 × 10−10L̄Þ; ð28Þ

ρðEXC2ÞðtÞ ¼ g2st3ð−3.89 × 10−10 þ 1.07 × 10−10L̄Þ: ð29Þ

Substituting (24)–(29) into (15) gives

ρðNLOÞðtÞ ¼ g2st3ð3.30 × 10−9 − 5.40 × 10−10L̄Þ: ð30Þ

Then, substituting (6) and (30) into (5) gives

ρðpertÞðtÞ¼ ð1.69×10−8Þt3ð1þαsð2.45−0.401L̄ÞÞ; ð31Þ

where

αs ¼
g2s
4π

ð32Þ

is the running strong coupling at the renormalization scale
μ̄. For four active flavors (i.e., nf ¼ 4) at one-loop order,

αsðμ̄Þ ¼
αsðMτÞ

1þ 25
12π αsðMτÞ logð μ̄

2

M2
τ
Þ
; ð33Þ

where Mτ, the τ mass, is 1.77 GeV and where αsðMτÞ ¼
0.330 [60].
The perturbative results are consolidated by, once again,

expressing ρðpertÞðtÞ as [recall (5)]

ρðpertÞðtÞ ¼ ρðLOÞðtÞ þ ρðNLOÞðtÞ; ð34Þ

where

FIG. 5. Ratios of the divergent parts of diagrams and their corresponding counterterm diagrams. Error bars correspond to numerical
uncertainties estimated by pySecDec.
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ρðLOÞðtÞ ¼ d1t3; ρðNLOÞðtÞ ¼ d1t3
αs
π
ðd2 þ d3L̄Þ ð35Þ

implies

ρðpertÞðt; αs; μ̄Þ ¼ d1t3
�
1þ αs

π
ðd2 þ d3L̄Þ

�
ð36Þ

with, from (31),

d1¼ 1.69×10−8; d2¼ 7.70; d3¼−1.26: ð37Þ

The NLO perturbative terms in (36) imply that ρðtÞ satisfies
a renormalization-group (RG) equation that contains an
anomalous-dimension γρðαsÞ contribution�

μ̄
∂

∂μ̄
þ βðαsÞαs

∂

∂αs
− 2γρðαsÞ

�
ρðtÞ ¼ 0; ð38Þ

where

βðαsÞ ¼ β1
αs
π
þO

�
αs
π

�
2

with β1 ¼ −
11

2
þ nf

3
ð39Þ

and

γρðαsÞ ¼ γ1
αs
π
þO

�
αs
π

�
2

with γ1 ¼ −d3: ð40Þ

However, up to NLO, the quantity

ρ̃ðtÞ ¼ α2γ1=β1s ρðtÞ ð41Þ

satisfies an RG equation that does not contain an anomalous-
dimension contribution, enabling standardRGapproaches to
QCD sum rules as discussed below.
The relative size of the LO and NLO terms in (35) can be

examined through the ratio

ρðNLOÞðtÞ
ρðLOÞðtÞ ¼ αs

π
ðd2 þ d3L̄Þ: ð42Þ

Hence, with d2 ∼ 10 from (37), it is expected that NLO
effects could be important. Recalling from (5) and (34) that
ρðpertÞðtÞ ¼ ρðLOÞðtÞ þ ρðNLOÞðtÞ, we plot in Fig. 6 the ratio
(42) for a characteristic renormalization scale μ̄ ¼ Mτ.
Over the range of values of t considered in the figure,
ρðNLOÞðtÞ is, on average, roughly 75% the size of ρðLOÞðtÞ.
In Fig. 7, we plot ρðOPEÞðtÞ [see (4), (7), and (31)] with and
without ρðNLOÞðtÞ at μ̄¼Mτ. For t≲ 4 GeV2, ρðOPEÞðtÞ < 0
due to the large-magnitude, negative contribution from the
6d quark condensate term. However, the NLO contribu-
tions do mitigate the effect of the 6d condensates by
extending the ρðOPEÞ > 0 region to lower values of t
compared to LO. (Note that the zeroes of ρðOPEÞðtÞ and

ρ̃ðOPEÞðtÞ are the same.) This behavior of ρðOPEÞ is similar to
that seen for 1−þ, light-quark tetraquarks in [17,18] and
disfavours the existence of T0þ−

dud̄ū
states lighter than

≈2 GeV. But, of course, hadronic predictions cannot be
extracted directly from the QCD-calculated ρðOPEÞðtÞ, and
so, for a more rigorous analysis, we relate ρðOPEÞðtÞ to
the channel’s hadronic spectral function through QCD
sum rules.

III. TETRAQUARK GROUND STATE MASS
BOUNDS FROM QCD SUM RULES

At Q2 ¼ −q2 > 0, the correlator Π defined in (2)–(3)
satisfies the dispersion relation

ΠðQ2Þ ¼ −Q6

Z
∞

t0

ρðtÞ
t3ðtþQ2Þ dtþ…; ð43Þ

where ρðtÞ is the hadronic spectral function, t0 ≈ 0 is a
threshold parameter corresponding to the squared energy
needed to create real constituents, and � � � represents a

FIG. 6. The ratio of ρðNLOÞðtÞ to ρðLOÞðtÞ (see Eq. (42) for
μ̄ ¼ Mτ.

FIG. 7. ρðOPEÞðtÞ with NLO perturbation theory (the solid line)
and without (the dashed line) at μ̄ ¼ Mτ.
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polynomial in Q2 (subtraction constants). When ΠðQ2Þ is
computed through the OPE, the dispersion relation (43)
connects QCD to hadronic physics, i.e., quark-hadron
duality.
To reduce the contribution to the right-hand side of (43)

from the high-energy behavior of ρðtÞ (such as from excited
states) as well as to eliminate subtraction constants and
local field-theory divergences, a transform is typically
applied, leading to QCD sum rules. Two examples of
QCD sum rules are Laplace sum rules [26–28,30] and
Gaussian sum rules [29,30,61,62].2 The (order-0) LSR,
RðσÞ, is defined as

RðσÞ ¼ 1

σ
lim

N;Q2→∞

ð−Q2ÞN
ΓðNÞ

�
d

dQ2

�
N
ΠðQ2Þ; ð44Þ

where σ ¼ N
Q2, the Borel parameter, is in GeV−2. The

(order-0) GSR, Gðŝ; τÞ, is defined as

Gðŝ; τÞ ¼
ffiffiffi
τ

π

r
lim

N;Δ2→∞

ð−Δ2ÞN
ΓðNÞ

�
d

dΔ2

�
N

×

�
Πð−ŝ − iΔÞ − Πðŝþ iΔÞ

iΔ

�
; ð45Þ

where τ ¼ Δ2

N is in GeV4. Combining (43) with Π → ΠðOPEÞ

and (44) gives (see [26,29] for details)

RðσÞ ¼
Z

∞

0

e−σtρðOPEÞðtÞdt ¼
Z

∞

0

e−σtρðtÞdt: ð46Þ

Similarly, combining (43) with Π → ΠðOPEÞ and (45) gives
(see [29,61,62] for details)

Gðŝ; τÞ ¼ 1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

0

e−
ðt−ŝÞ2
4τ ρðOPEÞðtÞdt

¼ 1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

0

e−
ðt−ŝÞ2
4τ ρðtÞdt: ð47Þ

For massless quarks, we set μ̄ ¼ 1=
ffiffiffi
σ

p
in the LSR [34] and

μ̄ ¼ ffiffiffi
τ4

p
in the GSR [29,61]. These RG-improvement

results are based on an RG equation free of anomalous-
dimension contributions; hence, the anomalous-dimension
factor α2γ1=β1s from (41) should be included as an additional
positive multiplicative factor. However, the phenomeno-
logical analysis presented below is based on the sign of the
GSR and an LSR ratio; in both cases, the anomalous-
dimension factor has no effect and so can be ignored (see a
similar argument in Ref [38]). In Fig. 8, we plotRðσÞ, and,
in Fig. 9, we plot Gðŝ; τÞ at τ ¼ 1 GeV4. In both figures, the
solid curve includes both LO and NLO perturbation theory

whereas the dashed curve includes LO perturbation theory
only. It can be seen that NLO perturbation theory makes
significant contributions to both the LSR and GSR. Note
that, for σ ≳ 0.4 GeV−2, RðσÞ becomes negative and,
therefore, is unphysical for this region of Borel parameter.
We split the hadronic spectral function into hadronic and

QCD continuum contributions

ρðtÞ ¼ ρðhadÞðtÞ þ ρðOPEÞðtÞθðt − s0Þ; ð48Þ

where ρðhadÞðtÞ contains the resonance(s) content of ρðtÞ, s0
is the continuum threshold parameter, and θðt − s0Þ is a
Heaviside step function. Plugging (48) into (47) gives

Gðŝ; τ; s0Þ ¼
1ffiffiffiffiffiffiffiffi
4πτ

p
Z

s0

0

e−
ðt−ŝÞ2
4τ ρðOPEÞðtÞdt

¼ 1ffiffiffiffiffiffiffiffi
4πτ

p
Z

∞

0

e−
ðt−ŝÞ2
4τ ρðhadÞðtÞdt; ð49Þ

where Gðŝ; τ; s0Þ is a (continuum-)subtracted GSR.

FIG. 8. The LSRRðσÞ with NLO perturbation theory (the solid
line) and without (the dashed line).

FIG. 9. The GSR Gðŝ; τÞ with NLO perturbation theory (the
solid line) and without (the dashed line) at τ ¼ 1 GeV4.

2Regarding arguments to sum rules, we follow the notation
of [29].
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Using (49), we extract a lower bound on s0. Integrating
(49) over −∞ < ŝ < ∞ gives

F ðs0Þ ¼
Z

s0

0

ρðOPEÞðtÞdt ¼
Z

∞

0

ρðhadÞðtÞdt; ð50Þ

a finite-energy sum rule (FESR). In the FESR, we set
μ̄ ¼ ffiffiffiffiffi

s0
p

[29]. As ρðhadÞðtÞ ≥ 0, it follows that F ðs0Þ ≥ 0,
and, as discussed above, omitting the anomalous-
dimension factor has no effect on the sign of the FESR.
In Fig. 10, we plot F ðs0Þ with and without NLO pertur-
bation theory. Only values of s0 that lead to positive F ðs0Þ
are physically allowed. Therefore, with NLO perturbation
theory, we find that

s0 > 6.47 GeV2; ð51Þ

and, without NLO perturbation theory, we find that

s0 > 7.64 GeV2: ð52Þ

To reiterate, the bounds (51) and (52) are constraints on s0
that follow directly from the physical requirement that the
FESR be positive. The optimized value s0 ¼ 4.50 GeV2

used in [22] does not satisfy (52).
Using the GSR, we motivate a lower bound on the T0þ−

dud̄ū
tetraquark ground-state mass M. We employ a single
narrow resonance model in (48),

ρðhadÞðtÞ ¼ f2δðt −M2Þ; ð53Þ

where M is the mass of the lightest T0þ−

dud̄ū
tetraquark that

couples to (1) and f is its corresponding coupling strength.
In using (53), it is assumed that excited states are
sufficiently suppressed relative to the ground state by the
Gaussian kernel of (45) that they can be ignored. Plugging
(53) into (49) gives

Gðŝ; τ; s0Þ ¼
1ffiffiffiffiffiffiffiffi
4πτ

p
Z

s0

0

e−
ðt−ŝÞ2
4τ ρðOPEÞðtÞdt

¼ f2ffiffiffiffiffiffiffiffi
4πτ

p e−
ðŝ−M2Þ2

4τ : ð54Þ

In general, in (54), τ should be restricted to some interval
τmin ≤ τ ≤ τmax. For instance, τmin should be chosen such
that the running coupling αsð

ffiffiffi
τ4

p Þ [see (33)] is not too large.
As in [61], we choose τmin ¼ 1 GeV4. Regarding τmax, the
width of the Gaussian kernel on the rhs of (49) is

ffiffiffiffiffi
2τ

p
, and,

as τ increases, so too does the sensitivity of the GSR to
excited states, eventually violating (53). Fortunately, for
our purposes, we do not actually need a specific value for
τmax. (For a more rigourous discussion of τmin and τmax
based on Hölder inequalities, see [52].) Since the rhs of (54)
is positive, it follows that Gðŝ; τ; s0Þ must also be positive;
however, since ρðOPEÞðtÞ < 0 for t≲ 4 GeV2, we find that
there are regions of ðŝ; τ; s0Þ parameter space where
Gðŝ; τ; s0Þ < 0. This is shown in Fig. 11 for τ ¼ 1 GeV4

and s0 ¼ 10 GeV2. Such regions of parameter space are
unphysical. We denote the zero of Gðŝ; τ; s0Þwith respect to
ŝ as ŝcritðτ; s0Þ. We note that the single narrow resonance
contribution to the rhs of (54) has width

ffiffiffiffiffi
2τ

p
. If, for

self-consistency, we require that the full width of the
resonance contribution be contained in the region where
Gðŝ; τ; s0Þ > 0, then

M2 ≳ ffiffiffiffiffi
2τ

p
þ ŝcritðτ; s0Þ ð55Þ

for all allowed τ at physical s0. Numerically, we find that
the rhs of (55) is a decreasing function of s0. Thus,

M2 ≳ ffiffiffiffiffi
2τ

p
þ ŝcritðτ;∞Þ: ð56Þ

In Fig. 12, we plot the square root of the rhs of (56) versus τ
and find that M ≳ 2.2 GeV. An analogous analysis that
omits NLO perturbation theory finds that M ≳ 2.4 GeV.

FIG. 10. The FESR F ðs0Þ with NLO perturbation theory (the
solid line) and without (the dashed line).

FIG. 11. The subtracted GSR Gðŝ; τ; s0Þ at τ ¼ 1 GeV4 and
s0 ¼ 10 GeV2 with NLO perturbation theory (the solid line) and
without (the dashed line).
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Using the LSR, we determine an upper bound on the
T0þ−

dud̄ū
tetraquark ground-state mass M. As shown in [63],

M ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− d

dσRðσÞ
RðσÞ

s
: ð57Þ

Inequality (57) follows from positivity of the hadronic
spectral function and applies to an extensive class of
resonance models [63]. In Fig. 13, we plot the right-
hand side of (57) with and without NLO perturbation
theory. Without NLO perturbation theory, we find that
M ≤ 4.6 GeV. With NLO perturbation theory, we find that
M ≤ 4.2 GeV. We note that, at the minimum value of the
solid curve in Fig. 13, the LSR RðσÞ is positive and its
perturbative contributions are greater than three times the
(magnitude of the) condensate contributions, i.e., the
extracted upper bound comes from a region of OPE
convergence.
Uncertainty in our results is dominated by the value

of κ used in (7). For the central value κ ¼ 2 used in the
above analysis, our NLO mass bounds are 2.2 GeV≲M ≤
4.2 GeV. Both upper and lower mass bounds increase with
increasing κ. For κ ¼ 3 (the upper range of Refs. [30,56,57]),

we find 2.4 GeV≲M ≤ 4.6 GeV. Because the prevailing
evidence for violation of vacuum saturation indicates
κ > 1 [30,56,57], our κ ¼ 1 result of 1.9 GeV≲M ≤
4.0 GeV provides a conservative lower-mass bound of
M > 1.9 GeV.

IV. DISCUSSION

Motivated by the unphysical violation of positivity in the
LO LSRs of [22] and the large NLO perturbative effects for
0þþ light tetraquarks [37], we calculated NLO contribu-
tions to perturbation theory for a T0þ−

dud̄ū
tetraquark corre-

lation function (2)–(3) in the limit of massless u and d
quarks. Our results represent the first complete NLO
perturbative calculation of light-quark, exotic-JPC tetra-
quark sum rules. Instead of renormalizing the interpolating
current (1), we eliminated nonlocal divergences using
diagrammatic renormalization methods as outlined in
Ref. [43]. Instead of evaluating dimensionally regularized
integrals analytically, we evaluated them numerically using
pySecDec [44]. We then fit the pySecDec-generated data
to the known functional form of the imaginary part of
the correlation function. The successful combination of
pySecDec with diagrammatic renormalization establishes a
valuable and efficient new methodology for computing
radiative corrections to correlation functions of operators
composed of light quarks. Furthermore, diagrammatic
renormalization and pySecDec can, in principle, be applied
to systems containing heavy quarks although, in our
experience, computational runtimes and RAM require-
ments increase significantly when heavy quarks are
introduced.
Relative to LO perturbation theory, the NLO corrections

make significant contributions to ρðOPEÞðtÞ (see Figs. 6–7)
and to QCD sum rules (see Figs. 8–11). Although the NLO
corrections mitigate the violation of positivity in the sum
rules, there are still unphysical regions of s0 and Borel-
scale parameter space. Using positivity to constrain physi-
cal regions within a GSR, we motivated a lower bound on
the T0þ−

dud̄ū
tetraquark ground-state mass M, and, using an

LSR, we determined an upper bound. Taking into account
both LO and NLO perturbation theory, we found that, for
our central vacuum-saturation parameter κ ¼ 2,

2.2 GeV≲M ≤ 4.2 GeV ð58Þ

which should be compared with a range determined by
omitting NLO perturbation theory,

2.4 GeV≲M ≤ 4.6 GeV: ð59Þ

Increasing the vacuum saturation parameter to κ ¼ 3
increases both the upper and lower bounds in (58). For
the current (1), we found no evidence for the existence of a
T0þ−

dud̄ū
tetraquark under 1.9 GeV, and note that 1.9 GeV was

FIG. 12. The square-root of the rhs of (56) versus τ.

FIG. 13.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− dRðσÞ

dσ =RðσÞ
q

with NLO perturbation theory (the
solid line) and without (the dashed line).
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obtained by decreasing the vacuum saturation parameter to
κ ¼ 1, thereby underestimating known violations of vac-
uum saturation [30,56,57]. This lower bound on the T0þ−

dud̄ū
mass is contrary to the results of [22]. The source of the
discrepancy between Ref. [22] and our conservative mass
bound M > 1.9 GeV can be traced to the value of s0 used
in [22] which violates the physical positivity constraint
(52). Finally, we note that the T0þ−

dud̄ū
mass bounds (58)

encompass the QCD Gaussian sum-rules mass predictions

for 0þ−, light-quark hybrids [52], suggesting the interesting
possibility of hybrid-tetraquark mixing in light-quark
systems.
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