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Using data corresponding to an integrated luminosity of 651 pb~
energies from 2.00 to 3.08 GeV by the BESIII experiment, the process ete™ — ¢nta~

I accumulated at 22 center-of-mass
is studied. The

cross sections for ete™ — ¢nta~ are consistent with previous results, but with improved precision. To
measure the mass and width of the structure observed in the cross section line shape, a combine fit is
performed after enhancing the contribution from ¢f,(980). The fit reveals a structure with the mass of

M = 2178 420 4+ 5 MeV/c? and the width of T" =

statistical and the second ones are systematic.

DOI: 10.1103/PhysRevD.108.032011

I. INTRODUCTION

The study of the hadron spectrum is important to
understand the nonperturbative behavior of quantum
chromodynamics (QCD). For the low-energy region, the
vector mesons p, @, ¢ and their low-lying excited states are
copiously produced in ete™ collision experiments. The
experimental results for these states have been tabulated by
the Particle Data Group (PDG) [1], but the higher lying
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140 + 36 4+ 16 MeV, where the first uncertainties are

excitations are not fully identified yet, especially in the
region around 2.0 GeV. Further measurements are needed
to resolve the situation involving resonances such as the
p(2150), and ¢(2170) states.

The ¢(2170) resonance was first observed by the
BABAR Collaboration via the initial state radiation (ISR)
process eTe” = yisr@f0(980) [2,3], and later confirmed
by the Belle, BESII, and BESIII experiments [4—8]. This
observation stimulated speculation that the ¢(2170) reso-
nance might be a strangeonium counterpart of the char-
monium resonance y(4260) due to similarities in their
production and decay pattern [9]. Considerable efforts have
been made theoretically to understand the nature of the
¢(2170) resonance and abundant interpretations have been
proposed, including a traditional s¥§ state [10—15], an s5g
hybrid [9,16], an ss5§ tetraquark state [17-24], a AA
bound state [25-29] and an ordinary ¢KK or ¢f,(980)
resonance produced by interactions between the final state
particles [30,31]. The model predictions differ in both mass
and width of the resonance. Further experimental studies
are therefore crucial to clarify its nature.

Though many experiments have been carried out to study
the ¢(2170) resonance [2-8,32], the results of the measure-
ments vary substantially. For example, the mass and width of
the ¢(2170) resonance obtained from the process e*e™ —
yisr@r T~ [5] shows smaller values than other experimental
measurements. Recently, more studies related to the ¢(2170)
resonance have been carried out by the BESIII experiment. A
partial wave analysis of the e e~ — KK~ %2 process [33]
found that the partial widths of the ¢(2170) resonance
are sizable for the K(1460)"K~, K,(1400)TK~, and
K,(1270)" K~ decay channels, but much smaller for
K*(892)*K*(892)~ and K*(1410)"K~. Several theoretical
expectations are challenged by the results according to
Ref. [10]. Attempts have also been made to study channels
with simpler topologies, including the processes
ete” - KTK~, where a resonance with a mass of
(2239.2+7.1 £ 11.3) MeV/c? and a width of (139.8 +
12.3 £20.6) MeV is seen [34]; eTe” - ¢pKTK~ [35],

032011-4
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where a sharp enhancement is observed in the Born cross
section line shape at a center-of-mass (c.m.) energy of
/s = 2.2324 GeV; eTe™ — ¢ [36], where a resonance
with a mass of (2177.5 5.1 & 18.6) MeV/c? and a width
of (149.0 £ 15.6 £8.9) MeV is seen; e e™ — wn [37], a
resonance with a mass of (2179 21 + 3) MeV/c? and a
width of (89 + 28 4+ 5) MeV is observed with a significance
of 6.1c; eTe™ — ¢pn [38], a resonant structure is observed
with parameters determined to be M = (2163.5 £ 6.2 £
3.0) MeV/c? and T'= (31.1771 £ 1.1) MeV; and ee™ —
KgK % [39], a resonant structure around 2.2 GeV is observed,
with a mass and width of 2273.7 £ 5.7 £ 19.3 MeV/c? and
86 + 44 £ 51 MeV respectively. The Breit-Wigner param-
eters of ¢(2170) are not consistent between the different
studies, especially concerning the width.

In addition, a resonancelike structure which we called R
(2400) might exist around 2.4 GeV in the ¢pztn~ cross
section line shape. The R(2400) was first studied by the
Belle [5] experiment. Later, Shen and Yuan [40] per-
formed a fit to the R(2400) structure using the combined
data of the Belle and BABAR experiments. The mass and
the width are determined to be (2436 & 26) MeV/c? and
(121 £ 35) MeV, respectively. However, its statistical
significance is less than 3. An interpretation is proposed
for R(2400) as a partner state of the ¢(2170) resonance
[41]. Therefore, a precise measurement of eTe™ — ¢rtza~
is desirable to establish the mass and width of the ¢(2170)
resonance and to search for the possible structure
near 2.4 GeV.

In this paper, the measurement of cross sections for the
process e e~ — ¢t n at 22 center-of-mass energies (1/s)
is reported from 2.00 to 3.08 GeV.

II. DETECTOR AND DATA SAMPLES

The BESIII detector [42] records symmetric et e™ colli-
sions provided by the BEPCII storage ring [43], which
operates with a peak luminosity of 1 x 10*3 cm™2 s™! in the
c.m. energy range between 2.0000 and 4.9000 GeV. BESIII
has collected large data samples in this energy region [44].
The cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer
drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting solenoi-
dal magnet providing a 1.0 T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive
plate counter muon identification modules interleaved
with steel. The charged-particle momentum resolution at
1 GeV/c is 0.5%, and the dE/dx resolution is 6% for
electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at 1 GeV
in the barrel (end-cap) region. The time resolution in the TOF
barrel region is 68 ps, while that in the end-cap region is
110 ps. The end-cap TOF system was upgraded in 2015 using

multigap resistive plate chamber technology, providing a
time resolution of 60 ps [45-47].

Simulated Monte Carlo (MC) samples of signal and
background processes are produced to optimize the event
selection criteria, determine the detection efficiency and
estimate the background contamination. The response of
the detector is reproduced using a Geant4-based [48] MC
simulation software package, which includes the geometric
and material description of the BESIII detector, the detector
response and digitization models.

Background samples of QED processes are produced
with the BABAYAGA [49] generator and inclusive hadronic
processes are generated with the LUARLW [50] generator.

The signal MC samples of the process e e™ — ¢ntn~
are generated from a uniform distribution in phase space
(PHSP) reweighted by an amplitude analysis. We simulate
one million events at each energy point. The signal MC
samples are used to determine the reconstruction effi-
ciency, and the correction factors for ISR and vacuum
polarization).

III. EVENT SELECTION AND
BACKGROUND ANALYSIS

Signal events of the ete™ — ¢nt ™ process are recon-
structed via the ¢ —» KK~ decay. Charged track candi-
dates are reconstructed from hits in the MDC and need to
satisfy |cos@| < 0.93, where @ is the polar angle with
respect to the symmetry axis of the MDC. The closest
approach to the interaction point is required to be less than
10 cm along the symmetry axis and less than 1 cm in the
perpendicular plane. Combined TOF and dE/dx informa-
tion is used to perform the particle identification (PID),
obtaining probabilities for the z, K, and p hypotheses. The
particle type with the largest probability is assigned to each
track. Since the tracking efficiency decreases sharply in the
low momentum region below 0.5 GeV/c, and most kaon
candidates are expected to have a low momentum, one kaon
is allowed to be missing in this study to increase the
selection efficiency. Including events with one missing
kaon increases number of signal events by factor of 3 at
2.00 GeV and 30% at 3.08 GeV. A candidate event is,
therefore, expected to have two pions and at least one kaon
reconstructed.

A vertex fit to the 777~ K* combination is then applied
and required to have converged for an event to be kept for
further analysis. For events with four charged tracks, both
atz~ K" and zt 7z~ K~ combinations are tested. Under the
hypothesis that one kaon is missing, a one-constraint (1C)
kinematic fit is performed to the combinations that are kept
after the vertex fit. For each event, the 7zt 7z~ K* combina-
tion with the smallest > of the 1C kinematic fit

2(7T 77 KK )] 18 retained. Finally, events with y3. >
10 are rejected. After applying the selection criteria, we use
the momenta of the particles obtained from the kinematic fit
in the further analysis.
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FIG. 1. Distribution of M+, versus Mg+ - for the data at

Vs = 2.1250 GeV.

Events passing the selection criteria described above are
shown in Fig. 1 for the data at /s =2.1250 GeV. The
invariant mass of the KK~ pairs shows a clear signal band
around the ¢ mass. The enhancement around 0.98 GeV/c?
in the #"z~ invariant mass indicates a correlation
between f((980) and ¢ production due to the process
ete™ = ¢fy(980).

The distribution of the K™ K~ invariant mass is shown in
Fig. 2. The range of |Mg: g —my| <0.01 GeV/c? is
regarded as the signal region in the following study, where
my = 1019.461 MeV/ ¢? is the world average ¢ mass from
the PDG [1]. The sideband regions, defined as [0.995,
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FIG. 2. Fit to the Mg+g- distribution for the data at
/s = 2.1250 GeV: the signal is described by a P-wave Breit-
Wigner (BW) function convolved with a Gaussian function, and
the background is described by a reversed ARGUS function. The
range between the two red vertical solid lines is regarded as signal
region, and the ranges between the two blue vertical dashed lines
on each side of the signal peak are regarded as the sideband
regions.

1.005] and [1.035, 1.045] GeV/c?, are used to study non-¢
background contributions.

An accumulation of events exists around the mass of the
p meson in Fig. 1. This indicates a non-negligible back-
ground contribution from the eTe™ — pK+*K~ process.
Based on a study of the ¢ sideband and an analysis of the
inclusive MC sample, the ete™ — K*(892)K*z* process
is found to be the dominant background source. Peaking
background in the ¢ signal region is negligible.

IV. SIGNAL YIELDS

The e"e™ — ¢ntn~ signal yields are obtained from
unbinned maximum likelihood fits to the K™K~ invariant
mass in the region [2 - mg-, 1.08] GeV/c?. In the fit, the ¢
peak is modeled as a P-wave BW function convolved with a
Gaussian function to account for a difference in detector
resolution and an offset in calibration between data and the
MC simulation [35]. The P-wave BW function is defined in
the form

f(m) = |A(m)? - p**1, (1)
B 1 B(p)
Alm) =7~ m3 + imI'(m) B(p')’ >
) — E 20+1 @ B(p)
ro=(2)" Gl @
B(p) = —— (4)

V1+ (Rp)?

where p is the momentum of the kaon in the rest frame of the
Kt K~ system, p’ is the momentum of the kaon at the ¢ peak
mass, and Iy, is the width of the ¢ resonance [1]. The angular
momentum (/) is equal to one, B(p) is the Blatt-Weisskopf
form factor, and R = 3 GeV~! is the radius of the centrifugal
barrier [51].

Since no peaking background is expected in the signal
area, the background is parametrized with a reversed
ARGUS function [52]. The parameters of the Gaussian
function and the reversed ARGUS function are determined
in a fit to the data. The fit result at /s = 2.1250 GeV is
shown in Fig. 2. We obtain a similar fit quality for all
center-of-mass energies.

V. CROSS SECTION CALCULATION

The dressed cross section of the process e™e™ — ¢ntn~
is calculated by

Nobs
T (+d) e B ®)

where N°% is the signal yield; £ is the integrated lumi-
nosity; (14 6") is the ISR correction factor; € is the
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FIG. 3. The invariant mass distribution of the 7"z~ candidates

for the data at /s = 2.1250 GeV. The black dots with uncer-
tainties are experimental data, the blue dashed line is the
reweighted signal MC distribution, the green dash-dotted line
is the non-¢ background estimated from the ¢ sideband region
and the red solid line is the sum of the former two distributions.

detection efficiency, and B is the branching fraction of the
decay ¢ —» KTK~. The ISR correction factor is handled
by generator CONEXC [53], depending on the input cross
sections.

TABLE 1.

To adequately describe the data in our MC simulation,
the signal MC is generated from a uniform distribution in
PHSP reweighted by an amplitude analysis. The quasi-
two-body decay amplitudes in the sequential decays are
constructed using covariant tensor amplitudes [54]. The
ete™ — ¢nt ™ process is found to be well described by
four subprocesses: e"e™ — ¢f,(980), ¢o, ¢f(1370) and
¢f,(1270). The intermediate states are parametrized with
relativistic BW functions, except for the ¢ and f((980),
which are described with using the model described in [55]
and by a Flatté formula [56], respectively. The resonance
parameters of the f,(980) and the wide resonance ¢ in the
fit are fixed to those in Refs. [55,56], respectively, and those
of other intermediate states are fixed to the PDG values.
The relative magnitudes and phases of the individual
intermediate processes are determined by performing an
unbinned maximum likelihood fit using miNnuIT [57]. To
describe the background below the ¢ peak, sideband events
are added to the likelihood with negative weights. For a few
low-statistic points, the fitted parameters obtained at the
most adjacent high-statistic energies are applied.

The reweighted signal MC simulation has reasonable
agreement with the experimental data at all center-of-mass
energies. The comparison of the MC simulation and
experimental data in the signal region for the M(z"7n~)
distribution at /s = 2.1250 GeV is shown in Fig. 3.

Cross sections of the process eTe™ — ¢n"z~ at different center-of-mass energies. The L is the

integrated luminosity; N°* is the yield of signal events; 1 + & is the ISR correction factor; € is the detection
efficiency; o is the dressed cross section. The uncertainties are statistical and uncorrelated systematic uncertainties,

respectively.

V5 (GeV) £ (pb!) Nobs A+5) e o (pb)
2.0000 10.1 +£0.1 577 £ 46 0.98 0.34 354.7 £28.8 £20.1
2.0500 3.34 +£0.03 191 +£24 0.96 0.38 321.2+413+155
2.1000 122 £0.1 1100 £ 51 0.95 0.40 4883 £22.7+£12.2
2.1250 108 =1 9372 £ 144 0.95 0.42 444.6 £ 6.8 +13.2
2.1500 2.84 +£0.02 220 £20 0.96 0.37 436.7 £39.7 £26.6
2.1750 10.6 £0.1 760 + 39 1.00 0.37 387.24+£199+179
2.2000 13.7+£0.1 706 £ 38 1.08 0.37 267.2 £ 145+ 16.5
2.2324 11.9+0.1 435 +£29 1.19 0.33 188.0 £12.7+12.9
2.3094 21.1+0.1 587 £+ 37 1.19 0.36 132.7+85+34
2.3864 225+0.2 697 £ 37 1.13 0.39 1433 +£7.6+5.7
2.3960 66.9 +0.5 1977 £+ 65 1.13 0.39 136.5+45+53
2.5000 1.10 £0.01 18 £5 1.21 0.38 75.7+21.1+£3.7
2.6444 33.7+£0.2 501 £33 1.31 0.34 68.5+4.5+39
2.6464 340+03 423 +£29 1.31 0.34 574+40+33
2.7000 1.03 £+ 0.01 22+6 1.64 0.33 80.4£223+44
2.8000 1.01 £0.01 11+4 1.45 0.31 51.6 £182+2.0
2.9000 105 £1 687 + 37 1.45 0.30 303+£1.7+1.3
2.9500 159+0.1 114 + 14 1.47 0.30 33.6+43+2.1
2.9810 16.1+£0.1 72 £ 15 1.48 0.30 209+44+12
3.0000 159+0.1 74 £13 1.49 0.29 223+40+1.6
3.0200 173 £0.1 78 £12 1.49 0.29 214+33+13
3.0800 126 £1 576 + 34 1.59 0.27 21.5+13+09
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FIG. 4. The measured dressed cross section of the process
ete™ - ¢rtr~. Red dots with error bars represent the meas-
urement from BESIII. Yellow downside triangles and blue upside
triangles represent the measurements from BABAR and Belle,
respectively. The uncertainties incorporate statistical and uncor-
related systematic uncertainties.

The efficiency € and the ISR correction factor (1 + 67)
depend on the input cross section line shape and need to be
determined using an iterative procedure. The BABAR result
[6] is used as the initial input cross section and the updated
cross section is obtained through the resulting MC simu-
lation. This procedure is repeated until the measured cross
section converges. Dressed cross sections for eTe™ —
¢ntr~ at each energy point are listed in Table 1. The
measured dressed cross sections are shown in Fig. 4.

VI. SYSTEMATIC UNCERTAINTY

Systematic uncertainties in the cross section measurement
come from the luminosity measurement, tracking efficiency,
PID efficiency, kinematic fit, signal and background shape,
fitting range, radiative correction, MC sample size and the
branching fraction of the decay ¢p — KTK™.

(1) The integrated luminosity is measured using large

angle Bhabha events, with an uncertainty of
1.0% [58].

(2) The tracking efficiency uncertainty is estimated to be
1.0% for each track [35]. Thus, 3.0% is taken as the
systematic uncertainty for the two pion and one kaon
tracks.

(3) The PID efficiency uncertainty is estimated to be
1.0% per z* and 1.0% per K* [35]. So 3.0% is taken
as the systematic uncertainty on the PID efficiency.

(4) The uncertainty in B(¢p > K*K™) is taken from the
PDG [1].

(5) The uncertainty from the kinematic fit comes from
the inconsistency between the data and MC simu-
lation of the helix parameters. Following the pro-
cedure described in Ref. [59], the helix parameters
for the charged tracks of MC samples are corrected

to eliminate the inconsistency during uncertainty
study. The agreement of y? distributions between
data and the MC simulation is significantly im-
proved. Half of the difference between the selection
efficiencies with and without the helix parameter
correction is taken as the systematic uncertainty.

(6) Uncertainties due to the choice of signal shape,
background shape and fitting range are estimated
by introducing the changes below. The ¢ signal is
described by a P-wave BW function convolved with a
Gaussian function. To estimate the signal shape
uncertainty, the signal shape is changed to the shape
from the signal MC simulation convolved with a
Gaussian function and the resulting difference is taken
as the uncertainty from the signal model. To estimate
the background model uncertainty the background
function is modified from a reversed ARGUS function
to the function of f(M) = (M —M,)* (M, — M),
where M, and M, are the lower and upper edges of the
mass distribution while ¢ and d are the parameters
which were determined in the fit. The fit range
is extended from [0.98,1.08] GeV/c* to [0.98,
1.10] GeV/c? to estimate the fit-range uncertainty.
The differences between the number of signal events
before and after the changes are taken as the system-
atic uncertainties.

(7) The uncertainty due to ¢ shape is examined by using
an alternative fit involving the interferences of ¢
with @, p and their excited states. The change of the
fitted signal yield, 0.3%, is assigned as a systematic
uncertainty.

(8) Uncertainties in the possible distortions of the cross
section line shape introduce systematic uncertainties
in the radiative correction factor and the efficiency.
These are estimated by using the cross section line-
shape function 6 = o(+/s; py, p,, ...) obtained from
the iteration described in Sec. V, where p,(i =
1,2,...) are the parameters which are determined
in the fit. All parameters are randomly varied within
their uncertainties and the resulting parametrization
of the line shape is used to recalculate (1 + 0), € and
the corresponding cross sections. This procedure is
repeated 1000 times and the standard deviation of
the resulting cross sections is taken as a systematic
uncertainty.

(9) The uncertainty from the MC sample size is esti-
mated by the number of generated events.

The first four sources of uncertainty are correlated
between different energies, which give a total 4.4% con-
tribution to each energies. Other systematic uncertainties
are uncorrelated.

VII. LINE-SHAPE FITTING

In the cross section line shape of the eTe™ — ¢ntn~
process, clear structure can be seen around 2.1 GeV, which
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FIG. 5.

The fit results of the cross sections of the process ete™ — ¢ntn™

with events in (a) full M,+,- range,

(b) M,-,- €[0.85,1.1] GeV/c?, and (c) M +,- & [0.85,1.1] GeV/c?> GeV/c?. The red dots with error bars represent the obtained
cross sections and the uncertainties incorporate statistical and uncorrelated systematic uncertainties. In (a) and (b), the purple solid line
represents the fit function and the green dotted line represents the contribution from ¢(2170). The fits in (a) and (b) show the

constructive interference results within two parallel solutions.

is identified as the ¢(2170) resonance. To parametrize its
mass and width, the cross sections are fitted by a Breit-
Wigner function representing ¢(2170) and a continuum
contribution:

o =|f (Vs)¢e + fc(Vs)

oy Mo VLB, [o(/5)
TV = o i, () || @,

fe(V/s)=(po+pi-Vs+pr-s)-

2

’

(Vs).  (6)

where o represents the cross sections; f, and f,. represent
the contributions from resonance and continuum shapes;
M, and I', are the mass and width of the resonant structure;
I',,Br is the electric partial width times the branching
fraction of the resonance decaying to corresponding inter-
mediate states; @ is the phase space factor of the process
ete™ — ¢ntx~ calculated by using the method in Ref. [6];
[(ys) =T, (®(/s)/P(M,)) is energy-dependent width;
¢p 1s the phase angle between two components and py, p;,
and p, represent free parameters for the continuum shape.

In the fit of cross section line shapes, the minimized y?
constructed by incorporating both statistical and system-
atical uncertainties, as described in Ref. [60], after con-
sidering the correlated and uncorrelated terms as formula

7* = AXTM7AX, (7)

where AX is the difference between the measured cross
section and the expected value calculated by function at
each c.m. energy. The M is the covariance matrix of
elements

Ml] =

Sysy2 §ta2i:'
(477 a0 5

(Ui : gs) : (aj : gs)’ i 56]’

where the index i(j) represents the i(j)th data set; the A"
is the asymmetrically statistical uncertainty for ith data set;

the A" is the total systematic uncertainty and the &; is the
relative correlated systematic uncertainty.

The fit results are shown in Fig. 5 and Table IL

To further explore the properties of ¢(2170), we exam-
ine the cross section line shape with events within
M, €[0.85,1.1] GeV/c?, with the contribution of the
ete” = ¢fy(980) subprocess enhanced. The adjusted
cross sections (c*) are fitted with the same method, where
the phase space factors are replaced by those of the process
ete” = ¢fy(980) [6]. The results of the fit to this cross
section line shape are shown in Fig. 5(b) and Table II.

In both fitting procedures, two multisolutions are found
with equal fit quality (y?>/ndf). The figures above only
show one of them. The statistical significance of ¢(2170) is
greater than 100 for each solution. The uncertainties
associated with the fit procedure include effects from the
choice of continuum shape. Since the ¢f((980) enhanced
cross sections are closer to the nature of ¢(2170), the fit
result with M.~ €[0.85,1.1] GeV/c? is taken as the
nominal result. To estimate the systematic uncertainty, an
alternative fit is carried out by using an exponential
function to describe continuum shape. The difference
between the nominal and alternative fit results is considered
as the systematic uncertainty. The systematic uncertainties

TABLE II. Results of the fits to the cross sections of ete™ —
¢rtx~ within full M ., range and within M, ,- € [0.85,
1.1] GeV/c?, where mass is reported in MeV / ¢?; width is reported
in MeV; ¢ and ¢S are phase angles in radian between
two components with destructive and constructive interference,
respectively.

Parameter o "

M, ((2170)) 2171 £ 12 2178 +20

I'.(¢(2170)) 115+28 140 + 36
1 1.01 £0.14 1.13 £0.06
g —-1.87+£0.16 -1.71 £0.12

% /ndf 28/15 23/15
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of the ¢(2170) resonance mass and width are obtained to
be 5 MeV/c? and 16 MeV.

For these two fits, we have also tried to fit the cross
section line shapes by adding R(2400) in the fit. However,
the statistical significance of R(2400) is no more than 2c.

In addition, we examined the cross section line
shape of eTe™ — ¢pztn~ with events in M,-,- ¢ [0.85,
1.1] GeV/c?, as shown in Fig. 5. A similar fit is also
performed on this line shape, but no resonance structure
with statistical significance greater than 3¢ is found.

VIII. CONCLUSION

In summary, the cross sections of the eTe™ — ¢ntn~
process are measured using data samples collected with the
BESIII detector at 22 center-of-mass energies from 2.00 to
3.08 GeV. The measured cross section is consistent with
previous results from the BABAR [6], Belle [5], and BESIII
[61] experiments, but with improved precision.

In the cross section line shapes of eTe™ — ¢zt~ in full
M,:,- range and in M, €[0.85,1.1] GeV/c?, the
¢(2170) resonance is clearly observed. For the last case,
its mass and width are determined tobe M = 2178 +20 +
5MeV/c? and T = 140+ 36+ 16 MeV, respectively,
where the first uncertainties are statistical and the second
ones are systematic. The central value of the ¢(2170) width
obtained in this work is consistent with existing results [4—8].
However, no significant ¢(2170) is observed in the cross
section line shape of eTe™ — ¢ztz~ with M- ¢ [0.85,
1.1] GeV/c?.

In addition, no clear structure around 2.4 GeV has been
found in this analysis. Since this structure at the same
energy has been seen in the K™K~ f((980) mode with
£0(980) = 72z~ and z°2° [2,3], a future study of this
channel with an amplitude analysis will be helpful to
improve knowledge of the R(2400) state.
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