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When axionic strings carry a global charge, domain walls bounded by such strings may not be allowed to
decay completely. This happens in particular in some models where a composite axionlike particle is the
pseudo-Nambu-Goldstone boson of chiral symmetry breaking of an extra quark flavor. In this case, the
global symmetry is the extra flavor baryonic symmetry. The corresponding axionic domain walls can carry
a baryonic charge: they represent the low energy description of the baryons made by the extra quark flavor.
Basic properties of these particles, such as spin, mass scale, and size are discussed. The corresponding
charged axionic strings are explicitly constructed in a specific calculable model.
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I. INTRODUCTION

If the Peccei-Quinn (PQ) symmetry is broken after
inflation, the abundance of axions depends on the decay
pattern of axionic strings and domain walls (DWs) [1–3].
Axionic strings form at the Peccei-Quinn scale fa, while
domain walls, bounded by strings, are supposed to form
around the confinement scale Λ. In the standard picture,
when the anomaly coefficient Nw is equal to one, the DWs
ending on strings decay completely, mostly into axions and
gravitational waves.
We consider a scenariowhere an axionlike particle (ALP)

is the pseudo-Goldstone boson of the breaking of an axial
Uð1ÞA acting on just one extra massless quark flavor. In this
case the condition Nw ¼ 1 is automatically realized as it
happens in Kim-Shifman-Vainshtein-Zakharov-like axionic
models. The extra flavor condenses at a scale fa ≫ Λ. This
could be due, e.g., to quartic Nambu-Jona-Lasinio (NJL)-
like interactions or some other mechanism preserving
Nw ¼ 1. The basic feature of this scenario is the presence
of the residual vectorial symmetry. We call itUð1Þb because
it is the extra flavor baryonic symmetry.
One of the main points of this paper is that in such a

scenario, some DWs could not decay completely, due to
baryonic charge localized on their boundaries, i.e., on the

axionic strings. This is similar to what happens to charged
strings (vortons) [4]. In fact, in such models, sufficiently
small charged DWs can form from charged string loops
before the confining transition. The charged DWs, which
have a pancake shape and host a Chern-Simons theory on
their world volume [5], describe at low energies the
baryons composed by the extra quark flavor, so they are
named “axionic baryons” or “abaryons” for short. These
particles could constitute some fraction of dark matter,
although we postpone the study of their phenomenology to
the future.
The idea of stable remnant domain walls is not bound to

their baryonic nature: it just depends on the existence of a
conserved global charge under which the domain wall can
be the lightest charged object. On the other hand, the
scenario we actually investigate here is the one where the
charge is actually associated to a baryonic symmetry.
In the first part of this paper, we introduce the charged

DW description of these baryons and exhibit their main
properties (mass scales, dimensions, etc.). An example of
similar DWs, but still without the baryonic charge, has been
recently explored in [6]. In the second part of the paper, as a
first step toward the quantitative characterization of these
baryons in a concrete model, we provide an explicit
construction of the related axionic strings (see, e.g., [7]
for related configurations). We calculate their tension and
thickness above the confinement scale and provide their
effective action.

II. INTRODUCING ABARYONS

We consider models of composite QCD axions or
axionlike particles. The axion is the Goldstone boson of
the breaking of the axial Uð1ÞA of an extra massless quark
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flavor condensing at a scale fa ≫ Λ, where Λ is the
dynamical scale of the SUðNÞ Yang-Mills (YM) sector
responsible for confinement. In the ALP case, the SUðNÞ
YM plus extra flavor system is a completely hidden sector,
interacting only gravitationally with the Standard Model. In
the QCD axion case, the SUðNÞ YM is the standard color
SUð3Þc. In both cases, the condensation of the extra flavor
is due to some higher dimensional operator such as an
NJL-type interaction term (see Ref. [8] for a concrete
realization). For many respects, the axion in these theories
behaves as the η0 in single-flavored QCD. In the low energy
limit, the chiral Lagrangian of the latter particle has been
argued to have a “Hall droplet baryon” solution describing
a single-flavor baryon [5].1 This is a pancake-shaped
configuration formed by a gluonic core and an η0 profile
interpolating from 0 to 2π as one crosses its world volume,
which comes with a nontrivial baryonic charge along its
boundary. This is the same as a quantum Hall droplet: the
charge is encoded in a chiral edge mode. In fact, the baryon
hosts on its world volume a Uð1ÞN Chern-Simons (CS)
theory. The baryon is stable, as it is the lightest object
carrying one unit of baryonic charge.
The basic point is that a similar object exists for the

composite axion models considered above.2 In fact, since
the axion comes from an extra quark flavor, there exists the
Uð1Þb baryonic symmetry under which the ordinary
axionic domain wall boundary (the string) can be charged.
So, the baryon (“abaryon”) composed by the extra quark
has a quantum Hall droplet description.
Already at the qualitative field theory level, one can

argue that the spin of this baryon is N=2, where N is the
number of colors, precisely as in the fractional quantum
Hall effect (FQHE) [5] (that is, the spin of the abaryon is
3=2 in the QCD axion case). The scaling behavior of a
number of properties of the Hall droplet baryon was derived
in [5]. In order to make progress one has to study the
problem in an explicit model. In [6] we have derived some
properties of this system in a calculable example based on
the so-called Witten-Sakai-Sugimoto (WSS) model. Its
planar, strong coupling regime can be explored by means
of the holographic correspondence which provides a dual
classical gravitational description. The WSS model is the
most fruitful top-down holographic model of QCD [10,11].
It shares the same vacuum structure with (planar) QCD.
Many observables of QCD can be calculated with
Oð10%–20%Þ accuracy. In this model, the scale of con-
densation fa is set by the strongly coupled version of a
nonlocal quartic NJL interaction [12].
In the dual gravitational description of the confined

regime of the WSS model, the background is the

one generated by N D4-branes wrapped on a circle
with anti-periodic boundary conditions for fermions. The
corresponding ten-dimensional geometry includes four
Minkowski directions, a four-sphere and a so-called
cigar, i.e., a two-dimensional manifold formed by a radial
direction u and a circle with coordinate x4 which smoothly
shrinks to zero size at the tip of the cigar, located at a certain
position u0. This parameter sets the dynamical scale Λ.
Type IIA strings on this background provide the gluonic
sector of the theory.
The extra flavor degrees of freedom are introduced by

means of a probe D8-brane embedded in the background.
The codimension-one D8-brane describes a curve on the
cigar, see Fig. 1 (left plot). The position uJ of the tip of the
curve is related to the scale fa. The D8-brane has a gauge
field on its world-volume, whose modes are dual to extra
flavor mesonic fields. The lowest such mode, which is the
(pseudo-)Goldstone of chiral symmetry breaking, is the
axion [8].3

Let us first consider the ALP case. In this setup, the
abaryon has a “gluonic core” formed by a D6-brane,
wrapped on the four-sphere, with a boundary on the
D8-brane [6] (see also [14]). With “gluonic core” we
denote a description of the abaryon in terms of the explicit
D6 brane: the flavor part (the D8-brane) is not essential for
this description, making it evident that the degrees of
freedom composing this object are purely gluonic, exactly
as for the baryon vertex in the baryon. Since the thickness
of the D6 is small, as we are going to show, this
configuration gives the “core” of the abaryon.
Analogously, its tension will be shown to be large, hence
we are going to call it also “hard core.”
In the deconfined geometry (see Fig. 1, right panel) the

D6-brane attached to the D8-brane can terminate at
the horizon placed at uT . From the perspective of the
Minkowski spacetime this embedding describes an axionic
string (see Fig. 2). However, in the confined geometry

FIG. 1. The embeddings of the D8-brane and D6-brane on the
cigar (left) and on the cylinder (right), in the ALP case.

1While the considerations in [5,6] are performed in the planar
limit, finite N effects can modify the picture only quantitatively,
not qualitatively.

2While this paper was in preparation, [9] appeared with a
comment on such a configuration.

3Gravitational wave emission in such a scenario has been
studied in [13].
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(see Fig. 1, left part), the part of the D6-brane not attached
to the D8 has no place to terminate. Thus, either the DW
has to be infinitely extended, or it can be extended between
two strings (that is, the D6 has a second boundary on the D8
at a different position in Minkowski directions), or it must
be completely bounded by a string—that is, the D6 has a
single boundary on the D8 with the topology of a circle.
This latter configuration, if charged, corresponds to the
abaryon.
If the size of the abaryon is large, the D6-brane is

expected to have a potlike shape, with an almost “vertical”
part (representing the stringy boundary of the abaryon)
extending from the D8-brane at uJ to (almost) the tip of the
cigar at u0, where the D6-brane is basically “horizontal” at
constant u0. In [6] we have analyzed the case where the tip
of the D8-brane at uJ corresponds to the tip of the cigar at
u0. The properties of the DW, in this case, are a good
approximation of the ones of the abaryon in the limit where
the latter has a large extension. With this caution remark in
mind, we can take a number of information on the abaryon
from [6]. The gluonic core has tension Tcore ¼ λ2NΛ3=36π3

and thickness δcore ∼ ðλ1=2ΛÞ−1, where λ is the ’t Hooft
coupling at the scale Λ. Moreover, its boundary attached to
the D8-brane corresponds to the core of the axionic string.
Its tension and thickness are estimated in the next section,
again in the large-size scenario.
The abaryon has also a “mesonic shell” description

formed by the ALP and the other extra flavor meson
profiles. We denote it as a “shell” because its thickness is
much larger than the core’s one. Since its tension is smaller
than the one of the core, we are going to call it also “soft
shell.” It is more difficult to estimate the properties
of this shell without an explicit solution, but the parametric
scaling is very likely to be the same as in [5,6], that is
Tshell ∼ λ2N1=2Λ3 for the tension and δshell ∼ N1=2ðλΛÞ−1
for the thickness.
Let us now comment on the case of the QCD axion.

In the dual gravitational background, there are other
D8-branes supporting the ordinary Standard Model quark

degrees of freedom, with smaller radial position of the tip.
Thus, there are two types of D8-branes: the one associated
to the axion we have discussed so far (and depicted in
Fig. 1), which we may call the “axionic D8-brane,” and the
D8-branes associated to the Standard Model flavors, which
we may call the “ordinary quark D8-branes.” In this
configuration (see Fig. 3) the D6-brane can also extend
from the “axionic D8-brane,” where it has a boundary,
down to the “ordinary quark D8-branes,” where it has a
second boundary. This configuration can have a cylindrical
shape, without the “horizontal” portion of the D6-brane. If
this case is realized instead of the one described above, the
DW does not have a hard core world-volume with a CS
theory, but just a soft mesonic shell (mostly axionic and η0)
[15], and it is basically a vorton with both Uð1Þb and
ordinary baryon number.
In fact, depending on the parameter ratio Tc=Ta, the

dominant configuration at a given temperature could be
the one with the two boundaries just described (surely
dominant at large T) or the abaryon configuration with a
single boundary at uJ as in the ALP case (if T is
sufficiently smaller than Ta). The main difference with
respect to the ALP case is that now there are the ordinary
quark D8-branes localized at u0 which can host an
ordinary baryon. Therefore in the QCD axion case, the
abaryon could decay to ordinary baryons, so it would be
metastable.
An interesting observable is the amount of energy that is

stored in these particles at equilibrium. In order to give a
precise value of the dimension and mass of the abaryon,
one has to construct the explicit solution. We defer this
endeavor to a future study. In the next section we construct
the axionic string in the deconfined phase, which deter-
mines the local physics of the boundary of the abaryon

FIG. 2. The D6-brane has a seven-dimensional world volume, it
is wrapped on a four-cycle and extended along u and two
Minkowski directions. Therefore, it has the shape of a string
from the perspective of the Minkowski spacetime.

FIG. 3. Branes’ embeddings in the QCD axion case. The gauge
sector is in the confined phase. The D6-brane can extend from the
axionic D8-brane (red) to the D8-brane associated to the ordinary
quarks (green).

AXIONIC STRINGS, DOMAIN WALLS, AND BARYONS PHYS. REV. D 108, 026019 (2023)

026019-3



(where axions are mostly emitted), and of course, is of
interest on its own. The model at hand has a rich zoology of
strings and walls, which will be presented elsewhere.

III. AXIONIC STRING

When the temperature T is larger than the critical
temperature for deconfinement, which in the WSS model
is Tc ¼ Λ=ð2πÞ, the theory is in the state described holo-
graphically by the ten-dimensional background [16]

ds2 ¼
�
u
R

�
3=2

½−fTðuÞdt2 þ dxidxi þ fTðuÞdx24�

þ
�
R
u

�
3=2

�
du2

fTðuÞ
þ u2dΩ2

4

�
; ð1Þ

eΦ ¼ gs

�
u
R

�
3=4

; F4 ¼
3R3

gs
ω4; ð2Þ

with fTðuÞ ¼ 1 − u3T=u
3; R3 ¼ πgsNl3s , where Φ; F4 are

the dilaton and Ramond-Ramond four-form field strength,
uT is the radial position of the horizon (related to the
temperature through 9uT ¼ 16π2R3T2), the ðx4; uÞ sub-
space forms a cylinder (replacing the cigar of the confined
phase), ω4 is the volume form of the four-sphere Ω4 and gs,
ls are the string coupling and length. The D8-brane has a
profile on the cylinder, which is represented in Fig. 1 (right
plot), whose embedding is described by the equations that
can be found, e.g., in [8,16].
The axionic string has a hard core holographically

described as a D6-brane. The latter is wrapped on the
four-sphere, extended in two Minkowski directions which
we will call t; x1 and extended in the holographic radial
direction from the tip of the D8-brane at uJ to the horizon
at uT , as depicted in Figs. 1 and 2. In the regime
Tc < T < Ta, where Ta is the temperature of the PQ
transition,4 this is true both in the ALP and QCD axion
cases, since the ordinary quark D8-branes are in a chiral
symmetry restored configuration, so the D6-brane does not
intersect them. The tension Thard of this hard core is readily
calculated from the action of the D6-brane (with tension
T6 ¼ ð2πÞ−6l−7s )

S ¼ −T6

Z
d7xe−Φ

ffiffiffiffiffiffiffiffi
−g7

p ≡ Thard

Z
dtdx1; ð3Þ

where g7 is the determinant of the induced metric on the
D6-brane. In the uJ ≫ uT limit, the result (using formulas
in appendix B of [8]) is

Thard ≃
1

35π
λ2NT2

c

�
34

28
T̃4
a

c4a
− T̃4

�
; ð4Þ

where ca ∼ ð0.1538=0.7Þ is a coefficient of the model and
T̃a ¼ Ta=Tc; T̃ ¼ T=Tc. The tension grows as the tempera-
ture drops toward Tc and reaches its maximum in the
supercooling regime T̃ → 0. The expression of Thard is the
same for a circular string of radius L, whose total core
energy is thus 2πLThard.

5 The thickness δhard of this core is
provided by the brane thickness, which is roughly the local
string length scale and has its largest value at uT , giving

δhard ∼ ð
ffiffiffiffiffiffiffiffi
λT̃3

p
TcÞ−1: ð5Þ

Note that the (inverse) thickness is naturally set by the
temperature scale T, rather than the scale of symmetry
breaking Ta as commonly assumed in the literature for
axionic strings. This is because the transverse size of the
D6-brane, as seen by the theory on the boundary (where it
represents the axionic string), depends on the holographic
direction u. Objects localized at uJ have a smaller size than
objects localized at uT . Since the string is really a brane
stretched from uJ to uT (see Fig. 1, right panel, and Fig. 2),
its maximal transverse size is set at uT , giving formula (5).
Only its portion close to the D8-brane would have size set
by uJ, giving a thickness set by the symmetry breaking
scale as δ ∼ ð

ffiffiffiffiffiffiffiffi
λT̃3

a

p
TcÞ−1.

A completely analogous computation can be performed
in the confined phase, for the QCD axion strings with an
axionic and an η0 profile (D6-brane between the “axionic”
and “regular quark” D8-branes), and for the boundary
of the abaryon in the ALP case if its dimension is large
(D6-brane with potlike shape). In the standard setup where
the “regular quark” D8-branes have their tip in u0, the
tension and thickness of the core of the strings are
calculated as above but for uT → u0, with the results

Thard ∼
1

2235π3
λ2NΛ2

��
daf2a
λNΛ2

�
4=3

− 1

�
; ð6Þ

δhard ∼ ð
ffiffiffi
λ

p
ΛÞ−1; da ∼ ð2ð2.4Þ33πÞ; ð7Þ

where the tension is given in the uJ ≫ u0 limit. Note that in
the WSS model f2a scales as λNΛ2.
Coming back to the deconfined phase, the axionic string

can be also seen as having a “soft mesonic (axionic)
profile,” described holographically by the Abelian gauge
field A on the D8-brane. The D8-brane world-volume also
hosts a scalar mode corresponding to its fluctuations in the
transverse direction. In principle, this mode could be turned
on too (in fact, it is considered in [6]). However, in the
quadratic order low-energy approximation we are going to

4In this model Ta ∼ ð16π3ð0.153Þ2Λf2a=λÞ1=3 [8].

5These formulas are strictly valid for uJ ≳ 10uT, which
corresponds to the phenomenological sensitive regime Ta ≫
Tc (or fa ≫ Tc), but it can be shown, using the formulas in [8],
that for uJ < 10uT the discrepancy with the actual results is
below 5%.
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employ, the scalar mode is decoupled from the gauge field,
so for simplicity, we are going to keep it off. Of course, it
would be interesting to consider its contribution to the
energy, which is expected to be similar to the gauge field
one, and crucial to describe the full non-linear BIon
configuration along the lines of [17].
Upon reduction on the four-sphere, the theory of A at low

energy is simply Maxwell-Chern-Simons in five curved
dimensions. In order to analyze the latter theory, it is
convenient to parametrize the radial coordinate as
uðzÞ ¼ uJk1=3ðzÞ; kðzÞ ¼ 1þ z2, such that the tip of the
D8-brane uJ is located at z ¼ 0. The axion is the z-integral
of the component Az of the gauge field [8]. Considering the
symmetries of the configuration, it is sufficient to employ
the ansatz with only three field strength components turned
on, Fx2z; Fx3z; Fx2x3 . The action for these components of the
field strength can be derived by expanding the D8-brane
action to quadratic order, obtaining

S ¼ −
λN

3226π4
T̃a

ca

Z
d4xdz

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2fTðzÞ

k5=3ðzÞγTðzÞ

s
F2
x2x3

þ 9T2
a

4c2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3ðzÞfTðzÞγTðzÞ

z2

s
ðF2

x2z þ F2
x3zÞ

#
; ð8Þ

where γTðzÞ ¼ ðu8ðzÞfTðzÞ − u8JfTð0ÞÞ=u8ðzÞ. The equa-
tions of motion can be solved in terms of an unknown
function HTðx2; x3; zÞ as

Fx3z ¼
jzj

k3=2ðzÞ
∂x2HTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðzÞγTðzÞ

p ; ð9Þ

Fx2z ¼ −
jzj

k3=2ðzÞ
∂x3HTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðzÞγTðzÞ

p ; ð10Þ

Fx2x3 ¼
9T2

a

4c2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5=3ðzÞγTðzÞ
z2fTðzÞ

s
∂zHT: ð11Þ

The part of the D6-brane attached to the D8-brane
sources the gauge field. It represents a linear distribution
of magnetic charge extended along x1. Thus, it gives a
source term in the Bianchi identity

dF ¼ −2π
ffiffiffi
2

p
δðx2Þδðx3ÞδðzÞdx2 ∧ dx3 ∧ dz: ð12Þ

This corresponds to an equation for HT

9T2
a

4c2a
∂z

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5=3ðzÞγTðzÞ
z2fTðzÞ

s
∂zHT

#
þ jzjð∂2x2 þ ∂

2
x3ÞHTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k3ðzÞfTðzÞγTðzÞ
p

¼ −2π
ffiffiffi
2

p
δðx2Þδðx3ÞδðzÞ: ð13Þ

We look for a series expanded solution of the kind

HT ¼
X∞
n¼0

ζT;nð0ÞζT;nðzÞYT;nðrÞ; r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23

q
; ð14Þ

where we have set to zero the collective coordinates of the
axionic string (see Ref. [6]). The modes YT;n correspond to
four-dimensional mesons at finite temperature. The Bianchi
identities are solved by the two relations

−∂z

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k5=3ðzÞγTðzÞ
z2fTðzÞ

s
∂zζT;nðzÞ

#
¼ jzj

k3=2ðzÞ
λT;nζT;nðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðzÞγTðzÞ

p ;

ð15Þ
�
∂
2
x2 þ ∂

2
x3 −

9T̃2
aT2

c

4c2a
λT;n

�
YT;nðrÞ ¼ −2π

ffiffiffi
2

p
δðx2Þδðx3Þ;

ð16Þ

which lead to the completeness relation for the eigen-
functions ζT;nðzÞ

X∞
n¼0

jzj
k3=2ðzÞ

ζT;nð0ÞζT;nðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðzÞγTðzÞ

p ¼ δðzÞ: ð17Þ

One can integrate numerically equation (15) in order to
extract the eigenvalues λT;n, by requiring that the
derivatives of the functions ζT;nðzÞ vanish at z → �∞.
Then, equation (16) is solved in terms of the modified
Bessel function of order zero of the second kind
YT;nðrÞ ¼

ffiffiffi
2

p
K0ð3Ta

2ca

ffiffiffiffiffiffiffiffi
λT;n

p
rÞ, apart from the zero mode

corresponding to zero eigenvalue, which is a simple
logarithm YT;0ðrÞ ¼ −

ffiffiffi
2

p
log ðTarÞ; the latter corresponds

to the Goldstone boson of the spontaneous chiral symmetry
breaking, i.e., the ALP of the theory. If b̃≡ uT=uJ ≪ 1, the
eigenvalues can be well approximated by their values for
b̃ ¼ 0. The ones corresponding to the first even eigen-
functions (odd modes do not enter in HT) are λT;n ¼
0; 2.12; 6.23; 12.35; 20.51;… Imposing the orthonormality
condition

Z
dz

jzj
k3=2ðzÞ

ζT;nðzÞζT;mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðzÞγTðzÞ

p ¼ δn;m ð18Þ

for the functions ζT;n and plugging the ansatz for the field
strength into the action (8), we get for the axionic string
modes

ỸT;nðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NλT̃3

a

27π4c3a

s
TcζT;nð0ÞYT;nðrÞ; ð19Þ

the four-dimensional effective action
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S¼−
1

2

X∞
n¼0

Z
d4x

�
ð∂rỸT;nðrÞÞ2þ

9T2
aλT;n
4c2a

Ỹ2
T;nðrÞ

�
: ð20Þ

Note that this global string effective action is rigorously
derived from the fundamental theory—it is not postulated.
It can be seen as the global string analog of the chiral
Lagrangian coupled to an infinite tower of massive
mesonic modes.
We can extract the tension of the soft part of the

axionic string from the action evaluated on-shell on the
solution

Tsoft ¼
1

26π3c3a
λNT2

cT̃3
a

Z
∞

0

dr

�
ζ2T;0ð0Þ

1

r

þ r
9T2

a

4c2a

X∞
n¼1

ζ2T;nð0ÞλT;n½K2
0 þ K2

1�
�
; ð21Þ

where K1 is the modified Bessel function of order one and
the argument ð3Ta

2ca

ffiffiffiffiffiffiffiffi
λT;n

p
rÞ of K0 and K1 is understood.

The divergence of the tension at the location of the string
(r ¼ 0) should be cut off by the hard core scale δhard in (5).
In fact, the quadratic effective theory on the world-
volume of the D8-brane is not suitable to describe the
string core. For example, the field strength diverges in that
region, so that the employed approximation breaks down.
But the brane construction gives a precise description of
the string core: it is the boundary of the D6-brane.
It has a gluonic nature and has a thickness given in (5),
which is thus the natural cutoff in the effective “soft”
description.6

The large distance divergence in (21) is the usual one of
cosmic global strings, so that

Tsoft ∼ λNT2
c log ðRc=δhardÞ; ð22Þ

Rc being the large distance cut-off which is, assuming that
there is one cosmic string per Hubble patch, the inverse
Hubble scale.

IV. CHARGED MODE SOLUTION

The axionic string can have a Uð1Þb charged mode,
described again by the D8-brane gauge field. In this
section, we derive an approximate solution for the gauge
field components At (associated with the baryon number)
and Ax1 , that does not change the monopolelike solution
found in the previous section, following the same kind of
approximation employed for the baryons in [18]. First, we

find a solution very close to the source, where we can
neglect the curvature of spacetime. In this region, we are
able to solve the full equations of motion derived from the
five-dimensional Maxwell-Chern-Simons action. As we
will show, the solution is very localized around the string
position in the large λ limit. As we move away from the
string, we can neglect the Chern-Simons term since it is
sub-leading in the 1=λ expansion. The solution in this
intermediate (again flat) region matches with the expansion
of the full flat-space solution far from the source. Finally,
we connect this solution to the large-z region of
five-dimensional curved space-time, where we solve the
linearized equations of motion.
In the flat space limit, where kðzÞ ¼ 1, we employ the

ansatz AtðρÞ; Ax1ðρÞ, where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23 þ w2

p
, the coor-

dinate w being related to z through the rescaling

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
3ð8−5b̃3Þ

q
ca
Ta
z. The equations of motion, again

derived from the expansion of the D8-brane action, read

∂ρðρ2∂ρAtÞ − μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b̃3

p
∂ρAx1 ¼ 0; ð23Þ

∂ρðρ2∂ρAx1Þ −
μffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b̃3
p ∂ρAt ¼ 0; ð24Þ

where μ ¼ ð3 ffiffiffi
2

p
π2c2aTcÞ=ðλT2

aÞ. They can be integrated
analytically, neglecting the divergent solution in ρ ¼ 0 and
a constant term, to get

AtðρÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b̃3

p
e−μ=ρ; ð25Þ

Ax1ðρÞ ¼ ce−μ=ρ; ð26Þ

with an arbitrary constant c. Since μ ∼ 1=λ ≪ 1, the
maximum of the corresponding field strength is much
greater than one, and it occurs very close to ρ ¼ 0.
We can employ a 1=λ expansion and look for a solution

in this limit, called the scaling limit. Since, as we have just
seen, the solution is very localized around ρ ¼ 0, in the
(still flat) intermediate region 1=λ ≪ ρ ≪ 1 the Chern-
Simons term [the one multiplied by μ in (23), (24)] is
subleading and does not enter the equations motion for
At;x1 , which have solutions in terms of the flat three-
dimensional Green function

At;x1ðρÞ ∼
1

ρ
; ð27Þ

with different proportionality constants for the two modes.
These solutions are indeed the exponential ones (25), (26)
for ρ ≫ μ, up to a constant.
Now we look at large distances, in order to find the

solution in the curved background. In this region the ansatz
is slightly modified to Atðr; zÞ, Ax1ðr; zÞ, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23

p
. As

it is clear from formula (27) in the flat space limit, the

6In a BIon-like description along the lines of [17], where the
D6 would be seen as a “spiky” portion of the D8 protruding in the
u direction, the divergence at r ∼ 0 would be due to the infinite
length of the spike. But in the present case the spike would not be
infinite: it would end at uT , precisely corresponding to a size
r ∼ δhard (remember that δhard is the thickness evaluated at uT).
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solutions become smaller as one moves away from the
source. Thus, it makes sense to linearize the equations of
motion at large distances (considering also the suppression
with λ of the CS term). A posteriori, one can check that
indeed the solutions at large distances are actually small.
The linearized equations read

jzj
k5=6

1ffiffiffiffiffiffiffiffiffiffi
fTγT

p 1

r
∂rðr∂rAtÞ þ

9T2
a

4c2a
∂z

�
k3=2

jzj
ffiffiffiffiffiffi
γT
fT

r
∂zAt

�
¼ 0;

jzj
k5=6

ffiffiffiffiffiffi
fT
γT

s
1

r
∂rðr∂rAx1Þ þ

9T2
a

4c2a
∂z

�
k3=2

jzj
ffiffiffiffiffiffiffiffiffiffi
fTγT

p
∂zAx1

�
¼ 0:

The solutions can be written in terms of a series expansion

Atðr; zÞ ¼
X∞
n¼1

αnð0ÞαnðzÞYnðrÞ; ð28Þ

Ax1ðr; zÞ ¼
X∞
n¼1

βnð0ÞβnðzÞYnðrÞ; ð29Þ

where αn and βn are two sets of eigenfunctions defined by

∂z

�
k3=2

jzj
ffiffiffiffiffiffi
γT
fT

r
∂zαnðzÞ

�
þ an

jzj
k5=6

αnðzÞffiffiffiffiffiffiffiffiffiffi
fTγT

p ¼ 0;

∂z

�
k3=2

jzj
ffiffiffiffiffiffiffiffiffiffi
γTfT

p
∂zβnðzÞ

�
þ bn

jzj
k5=6

ffiffiffiffiffiffi
fT
γT

s
βnðzÞ ¼ 0:

They are the meson eigenfunctions at finite temperature
and are normalized as

Z
dz

jzj
k5=6

αnðzÞαmðzÞffiffiffiffiffiffiffiffiffiffi
fTγT

p ¼ δnm;

Z
dz

jzj
k5=6

ffiffiffiffiffiffi
fT
γT

s
βnðzÞβmðzÞ ¼ δnm:

The functions Yn are again the Bessel functions K0 with
masses an for At, and bn for Ax1. They are exponentially
small at large r. The equations of motion are homogeneous
so the solutions are defined up to an overall constant. Thus,
the charge and current densities in the dual theory at the
boundary are arbitrary parameters in the straight string
configuration.

V. CONCLUSIONS

In this paper we have considered string and domain
wall configurations in a (single-flavor) QCD-like theory
where chiral symmetry breaking occurs in the deconfined
phase. This generates an axionlike particle—the pseudo-
Nambu-Goldstone boson of the spontaneous axial
symmetry breaking—and associated axionic strings.

The strings can carry a global charge, which is the baryonic
charge of the condensing flavor.
We have explicitly constructed the straight (possibly

charged) string solution in a strongly coupled holographic
model, calculating its tension, thickness, and effective
action. It is basically a global string model, exhibiting for
example the usual logarithmic divergence in the
tension (22). Its advantage, as compared to purely effective
string models, is that we have access to the microscopic
theory. This allows us, for example, to understand the origin
of the near-string divergence: it is due to the presence of a
hard core which is not taken into account by the effective
(soft) mesonic modes, and which is precisely described in
the holographic model by a D6-brane boundary, i.e., a
gluonic field configuration. This hard core is the exact global
string analog of the baryon vertex in the ordinary baryon.
Moreover, the stringmodes in the effective action (20) have a
clear microscopic origin: they correspond to mesonic
modes. Finally, the results of the computations give very
precise values and behaviors in terms of the theory para-
meters, which provide novel useful information [e.g., see the
comments around formulas (4), (5)].
In the confined phase, the axionic strings must bound

domain walls. A crucial observation is that both string
loops (in the deconfined phase) and disk-shaped domain
walls bounded by string loops (in the confined phase)
can be stable if they carry some units of charge. Being
the latter the baryon number, such charged domain
walls in the confined phase are nothing else than single-
flavor baryons—a novel observation as far as we are
aware. We have described some features of these baryons
in the strongly coupled holographic example mentioned
above.
Apart from the purely theoretical interest of the ana-

lyzed configurations, one could consider such QCD-like
theories as dark sector candidates. In fact, the scenario we
have considered provides an axionlike particle (or even a
composite QCD axion if the extra flavor is charged under
our visible SUð3Þc color symmetry) and (dark) baryons, as
described above. The corresponding cosmological sce-
nario would entail a QCD-like dark sector which, cooling
down in the expansion of the Universe, goes through two
separate phase transitions. The first one is the chiral
transition mentioned above, producing ALPs and (pos-
sibly charged) strings in the deconfined phase. The second
transition is the confining one, producing uncharged
DWs, baryons (i.e., charged domain walls), and glueballs.
These particles could compose (at least a fraction of) dark
matter.
In order to assess the phenomenological relevance of this

scenario, explicit string loop and disk-shaped configura-
tions must be constructed to extract their equilibrium
properties, most importantly their mass. Besides these
remnants, the string-wall network would eventually decay
into axions producing a cosmologically relevant relic
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density. Moreover, the decay of topological defects can
generate a stochastic background of gravitational waves
that can potentially be observed in current and future
experiments. We plan to report on such computations in
the future.
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