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We consider the target space theory of bosonic and heterotic string theory to first order in o' compactified
to three dimensions, using a formulation that is manifestly 7' duality invariant under O(d, d, R) with d = 23
and d = 7, respectively. While the two-derivative supergravity exhibits a symmetry enhancement to the U
duality group O(d + 1,d + 1), the continuous group is known to be broken to O(d, d, R) by the first o’
correction. We revisit this observation by computing the full effective actions in three dimensions to first
order in o by dualizing the vector gauge fields. We give a formally O(d + 1, d + 1) invariant formulation
by invoking a vector compensator, and we observe a chiral pattern that allows one to reconstruct the
bosonic action from the heterotic action. Furthermore, we obtain a particular massive deformation by
integrating out the external B field. This induces a novel Chern-Simons term based on composite
connections that, remarkably, is O(d + 1,d + 1) invariant to leading order in the deformation parameter.

DOI: 10.1103/PhysRevD.108.026015

I. INTRODUCTION

Our goal in this paper is to explore some features
arising in the interplay of higher-derivative o corrections
of the effective actions of string and M theory and the
duality properties that these theories are expected to exhibit
for certain backgrounds. Arguably the simplest duality
property of string theory is 7 duality, which states that
theories compactified on toroidal backgrounds T¢ related
by O(d,d,Z) transformations are physically equivalent,
even though these backgrounds may be radically different
as ordinary geometries. This means that conventional
Einstein-Hilbert gravity looks quite different on these
backgrounds, yet “stringy gravity” supposedly cannot tell
the difference. Even larger duality groups arise for par-
ticular theories and backgrounds. In this paper, we consider
compactifications to three spacetime dimensions, which are
particularly interesting since in the supergravity limit the
corresponding 7 duality group O(7, 7) is enhanced to larger
groups, and discrete subgroups of these so-called U duality
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groups are conjectured to be dualities of the full string/M
theory [1,2]. Concretely, O(7,7) is generally enhanced to
O(8, 8), which for type II string theory or M theory is then
further enhanced to Eg g (a noncompact form of the largest
finite-dimensional exceptional Lie group). The effect of
corrections on the Egg enhancement is difficult to study,
since in type II string theory, the corrections start at o> with
eight derivatives, but luckily in three dimensions, there is
the smaller U duality group O(8, 8) that can be discussed in
bosonic and heterotic string theory whose &' corrections
start with four derivatives. [For heterotic string theory, the
U duality group is really O(8,24) but we truncate the
vector fields, which reduces the group to O(8,8).]

At the level of the low-energy effective target space
actions, the 7 duality property manifests itself in dimen-
sional reduction (Kaluza-Klein compactification on T¢ and
subsequent truncation to massless modes), by exhibiting a
global symmetry under the continuous group O(d, d, R).'
The effective target space theories also receive an infinite

'"The enhancement to the continuous group can be understood
as follows: The T duality group O(d, d, Z) is discrete for purely
geometrical reasons because the symmetry transformations of
fields need to be compatible with the periodicity conditions of the
torus, but in dimensional reduction, all memory of the torus has
disappeared, explaining the enhancement to the continuous
group. In contrast, the discrete 7 duality group O(d,d,Z) is
not visible in the low-energy effective actions compactified on
tori without truncation. This requires a genuine double field
theory [3.4].
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number of higher-derivative corrections governed by the
inverse string tension «, and it is known that the o
corrections preserve the continuous O(d, d, R) [5,6] (see
Ref. [7] for a review). Generalizing previous work on
cosmological reductions to one dimension (cosmic time)
[8-10], we have recently determined the O(d, d, R) invari-
ant effective actions to first order in o« for general
reductions along d dimensions [11,12]. We apply this
effective action to compactifications to three dimensions,
with the goal to explore the fate of the duality enhancement
to O(d + 1,d + 1). (Here, d = 7 for heterotic string theory
and d = 23 for bosonic string theory, but for our discus-
sion, d is really a free parameter, and so we sometimes only
speak of O(8,8) for the sake of vividness.)

In contrast to T duality, which is a feature of classical
string theory and preserved by all « corrections, the U
dualities capture features of the quantum theory. Therefore,
one should perhaps not expect supergravity to exhibit U
duality symmetries beyond zeroth order in « without also
including quantum corrections. A simple argument based
on a scaling symmetry of the two-derivative theory in fact
shows that the continuous U duality group is not preserved
to higher order in o' [13,14]. Indeed, the Einstein-Hilbert
term in string frame,

IEHz/de ge ?R, (1.1)

has a global R ~ O(1, 1) scaling symmetry with constant
parameter 4, which acts as g,, — e*g,, and ¢ — ¢ + 25721,
This O(1, 1) becomes part of the U duality group, but a
typical higher-derivative coupling of the form

a’/de ge "R, R, (1.2)

is not invariant, but rather scales with ¢, hence breaking
the symmetry. Intriguingly, however, the complete order o
action, including all matter couplings, scales homo-
geneously. There is hence a formal scaling invariance if
one declares o' to scale with e™*. Below we will employ a
similar scheme to establish a formal O(8, 8) invariance.
The above scaling argument avoids the need to actually
compute the effective action in, say, three dimensions, but
by itself, it is not sufficient to show that the discrete
subgroup is not realized in supergravity because for the
discrete group, the scaling symmetry in fact trivializes, as
we will discuss. We therefore revisit the problem and
compute the complete order o effective action in three
dimensions, starting from the results of Refs. [11,12] and
using, perturbatively in «/, on shell transformations to
dualize the vector gauge fields into scalar fields. In the two-
derivative theory, this transformation shows the enhance-
ment from O(7,7) to O(8,8) (or Egg) because the new
scalars organize into a larger coset matrix M s, With

0(8,8) indices M, N € [1,16]]. As expected, to first
order in o/, one finds that the continuous O(8,8) is no
longer present. The manifest symmetry is ISO(7,7, R), i.e.,
O(7,7,R) times 14-dimensional translations that act as
shifts on the scalars originating from dualization.

While O(8, 8) is not a symmetry of the four-derivative
action, we find it advantageous to employ a formulation
that, as alluded to above, exhibits a formal invariance under
this group upon introducing a nondynamical compensator.
Specifically, for this, we can choose a constant vector u™
in the fundamental representation, in terms of which the
effective action takes an O(8, 8) invariant form. The true
theory then arises for a fixed vector UM pointing in a
particular direction. Even though it is in principle always
possible to restore a broken symmetry in a formal manner
by introducing an unphysical tensor compensator whose
fictitious transformations absorb the failure of the actual
theory to be invariant, this approach turns out to be
technically useful. In particular, it allows us to observe
an intriguing “chiral pattern” of the four-derivative action,
namely that only one chiral projection of u™ is needed to
write the action. To explain this, recall that given the
0O(8,8), coset matrix M and invariant metric # one can
define the projection operators

! _ 1
Paav =5 0 = Maw): - Pra =5 (an + Maaw).

(1.3)

onto two subspaces of opposite ‘“chirality.” The four-
derivative action turns out to be fully determined by an
O(8, 8) invariant function F of a two-tensor and a vector
argument, respectively, as follows

I = % / dey=ge {aF (M. Pu] + b(FIM. Pu))* ).
(1.4)

Here * denotes a Z, action, which is implemented on the
coset matrix as M — Z'M Z, where Z obeys Z*> = 1 but
is not an O(8, 8) matrix. Under this Z,, the projectors (1.3)
are interchanged:

P— Z'PZ, P— Z'PZ. (1.5)
The parameters a, b determine the theory: The heterotic
action is obtained for (a,b) = (—d/,0) and the bosonic
action for (a,b) = (—d/,—ad'). The Z, action, which
exchanges a and b, has a higher-dimensional analog,
sending the B field B — —B, which is a symmetry of
the bosonic action but not of the heterotic action. Since it is
the same function F that determines the “Z, dual” terms
in the action, it follows that the bosonic action can be
reconstructed from the heterotic action.
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The above parametrization in terms of (a, b), together
with the Z, action, mimic the structure of double field
theory at order o [15,16]. The crucial “experimental”
observation provided by our computation is that the
compensator UM in Eq. (1.4) appears only in a “chiral”
or projected form or, alternatively, that there is the formal
“gauge invariance” under U — U+ nPA. (Note that this
comes very close to an actual symmetry enhancement, with
an O(8) acting only on indices with a “barred” projection,
but this viewpoint is not quite consistent as the projectors
are field dependent and hence not compatible with global
symmetries.) We do not have an explanation for this chiral
pattern, but it would be interesting to explore whether it
persists, at least for subsectors, to higher orders in «'. This
would provide indirect constraints on the allowed higher-
derivative couplings.

As the second main result of our paper, we consider a
particular massive deformation, as a window into more
general gauged supergravities in presence of @ corrections.
The latter would be important in order to study, for
instance, the fate of Kaluza-Klein truncations on spheres
in presence of higher derivatives. The massive deformation
we consider is obtained by integrating out the external B
field. In three dimensions, its field strength is on shell a
constant that is usually set to zero in dimensional reduction.
Keeping instead this constant m while integrating out the B
field leads to a massive deformation, which for the two-
derivative theory, includes a potential term for the dilaton
and a Chern-Simons term for the Kaluza-Klein vectors A,
[17]. Including then the order & corrections, one obtains
additional couplings, which include a Chern-Simons term
based on composite connections, with the latter originating
from the scalar-dependent Green-Schwarz deformation
uncovered in Refs. [11,12] (and given a worldsheet
interpretation in Ref. [18]). Specifically, introducing an
0O(8,8) frame field V), the compact part of its Maurer-
Cartan form V~!'dV = P + Q defines composite O(8) x
O(8) connections Q. The topological or Chern-Simons
terms of the massive deformation at order ' and order m
then read

I(1yop = (0+b)m/tf<Q/\dQ+§Q/\ QA Q>

a—>b 2
- m | tr a)/\da)—l—ga)/\a)/\a)

+ O(m?),

(1.6)

where @ denotes the Levi-Civita spin connection (so that
for a — b # 0, this action includes topologically massive
gravity as a subsector [19]). Unexpectedly, the Chern-
Simons terms are hence O(8, 8) invariant to leading order
in m, although the full theory is not. This is remarkable, for
there are now two parameters expected to break U duality,
a and m, yet for the leading Chern-Simons terms, O(8, 8)

is restored. Again, we do not know what the physical
significance of this observation is, and it remains to explore
more general gaugings.

The remainder of this paper is organized as follows. In
Sec. II, we give a short review of the duality enhancement
in three dimensions for the two-derivative theory, with a
particular focus on the scaling symmetries before and after
dimensional reduction since these feature prominently in
the subsequent discussion of ' corrections. In Sec. III, we
compute the effective action in three dimensions to first
order in o by perturbatively dualizing the vector gauge
fields into scalars, and we exhibit the chiral pattern
explained above. We then turn in Sec. IV to a massive
deformation, which is obtained by integrating out the
external B field, with a focus on the resulting Chern-
Simons terms for composite connections that exhibit an
enhancement to the full U duality group to first order in the
mass parameter. We conclude with a short outlook in
Sec. V, while various identities and intermediate results
are collected in appendices.

II. DUALITY ENHANCEMENT
IN THREE DIMENSIONS

In this section, we discuss some general aspects of the
bosonic and heterotic string effective actions dimensionally
reduced to three spacetime dimensions. We review the
scaling symmetries in higher dimensions (prior to any
dimensional reduction) and in three dimensions, as a
preparation for the discussion of duality enhancement from
O(d,d) to O(d + 1,d + 1) that is expected to be a feature
of string theory in three dimensions. We close the section
with a discussion of field redefinitions, which are needed
once higher-derivative corrections are included.

A. Scaling symmetries

The bosonic parts of the bosonic and heterotic string
effective actions coincide at the two-derivative order upon
truncating the Yang-Mills gauge fields of the heterotic
theory. They describe the dynamics of a metric g, a two-

form Bﬁ » and a dilaton 43 in D =26 and D = 10 dimen-

sions, respectively. In the string frame, the two-derivative
action is given by

with the Ricci scalar R and the field-strength A Gop =
3%3,; 5)- It features several global scaling symmetries, with
group R™ ~ O(1, 1) and constant parameter 4, that we list

in the following.
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TABLE I. Scaling behavior of the fields (2.4) under the transformations (2.2), (2.3) and (2.5). We display the
charges g of each field ¢, representing the transformation ¢ — e%*¢. For convenience, we have indicated the shifted

dilaton ® and Einstein frame metric gg,, = e‘z‘l’gﬂy rather than the dilaton (,{3 and the string frame metric g, .

e([) gEyb B/w Gmn an Al(ll>m A/(ﬁr)l
(Dilaton?) 1/(D-2) 0 2/(D-2) 2/(D-2) 2/(D-2) 0 2/(D-2)
(Trombone?) 3-D 2D -4 2 2 2 0 2
(VolumeP-3) 3-D 2D -6 0 2 2 -1 1
(i) Constant dilaton shift: which leaves invariant the equations of motion but
rescales uniformly the action.
N N ling of the internal volume: as we are interested
i D). G 22/(D-2) 5. (iti) Sca. g ol . : .
(Dilaton®): ¢ — ¢ + 2, o = € Ypos in dimensional reductions down to three dimensions,
Bﬁﬁ — 24/ (D-2) éﬁﬁ (2.2) we consider a splitting of the D-dimensional coor-

dinates X# into {x*,y™}, with u € [1,3] and m €

(i) On shell “trombone” symmetry: [[1, D — 3] and decompose the fields as in Ref. [20]:

~ PN

(Trombone”): ¢ — ¢, Gas = € Gass .
(2.3)
|

1 1 1
<gﬂy 4 A/(t )PquAl(/ )q A;(t )pGpn

, (24
G A(] )P G ) ( a)
mp4iv mn

5 o Adm
—A{) + B, AL By

e = \/det(G,,,)e®. (2.4c)

With this decomposition, and keeping the dependence on all coordinates, the action (2.1) features the additional scaling
symmetry

B;w _ A(1>mA(2>
a0 = < (2.4b)

+ Al(ll)manAl(/”n A}(42n> - BnpAl(ll)p )

y" - e—ﬂym7 Gy — eZAGmnv
_ [OJEE () + (3 — D)ﬂ, an - EZ&an!
(VO]UmeD 3): (Hm _i.(Dm (25)
Y = Guv- A/d - e Au s
By, = By, A;% - eﬂA,ﬁz),,

|
corresponding to the GL(1) subgroup of the GL(D —3)  We furthermore move to the Einstein frame by resca-
action on the internal coordinates. ling the metric, g,, = gp, = € >®g,,, which yields the
These three scaling symmetries are summarized, in the  action [20]
three-dimensional variables of Eq. (2.4), in Table I. These
scaling symmetries are at the origin of three-dimensional

symmetries essential to the duality enhancement. —40

e
Iy = / d*x\/=gr (RE - 0,P0'® — THM,H””P

B. Scaling symmetries in three dimensions 1 1 - B
We now consider the three-dimensional theory, which + ZTr((),,G()”G )+ ZTr(G 9,BG0B)
follows from toroidal compactification of the action (2.1) e iim " 2%
on TP~ and a subsequent truncation to the zero modes. T Fuw ™ G FH" — 4 H,,, G""H" Un)’
Using the parametrization (2.4), this amounts to neglec-

ting the dependence on the internal coordinates y™.

(2.6)
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TABLE 1II. Scaling behavior of the fields (2.4) under the
transformations (2.8)—(2.10). We display the charges ¢ of each
field ¢, representing the transformation @ — e%¢.

¢® gnu  Bu  Gun Bu A" AR
(Dilaton?) 1 0 2 0 0 1 1
(Trombone®) 0 2 2 0 0 1 1
(T duality) 0 0 0 2 2 -1 1
with
_ (1)m (2) (m 4(2)
H,uy/) - 3aLuBU/)] - (3/2)(’4[}4 Fup]m + FU”, Ap]m)’
Hym = Fiom = By Fl)" (2.7)
|
(i) On shell “trombone” symmetry:
O - P,
(Trombone?): { g — € g,
B,, = ¢*B,,.
(iii) Internal rescaling:
D - P,
(T duality): § Jeuw = JEuws
Bm, - BW,

where F

strength for A,()
invariant under the following scaling symmetries:
(1) Constant dilaton shift:

(1)m

W =0, —9,A0"" is the abelian field

)m (2)

, and similarly for Ay,. This action is

(I) (b l Gmn - Gmﬂ’
- D+ 4,
) 3 an - an’
(Dilaton®): ¢ 9Euw = JEuws AN g (m
B, — ¢*B ! o
172 H? (2) ia2)
Ay = €A
(2.8)
Gun = G,
an - Bm”’
A,il)m N 6/114;(41)”1, (29)
A;<42rr)1 — e’lA/(,%).
Gmn - eMGmVl’
B,,, = €*B,,,.
(2.10)

A/(ll)m = e_gALl)m’

AD - AR

which corresponds to the O(1, 1) subgroup of the 7 duality group O(D —3,D —3).
Table II summarizes these symmetries. They do not directly arise from the reduction of the higher-dimensional scaling
symmetries of Sec. Il A. Rather, the scaling symmetries in three dimensions originate from the mixing of the higher-

dimensional ones:

D
(Dilaton®) = (Dilaton”) + —— (Trombone?) — (Volume?~?),

D -2

(Trombone?) = (Trombone”) — (Volume”~3),

D-3
(T duality) = (D — 3)(Dilaton?) — ) (Trombone?”) + (Volume?=3).

(2.11)

C. O(d+1,d +1) enhancement

T duality and O(d, d) As already mentioned, the scaling
symmetry (2.10) is part of the bigger T duality symmetry
group O(D —3,D —3) =0(d,d) (withd =23 andd =7
in the bosonic and heterotic cases, respectively). The
invariance under O(d, d) is best displayed upon packaging
the d? scalar fields G,,, and B,,, into the O(d, d) matrix

026015-5
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(1)m

A

AM = ( ”(2) ) (2.13)
Aym

The action (2.6) then takes the form [20]

1
I() = /d3X\/—gE <RE - 6,,@6”613 + gTr(ade“H_l)

1 1
_ E e—4thlpr;wp _ Z €_2®F”VMHMNFWN> ,

(2.14)

with the field strengths F," =20,A," and H,, =
30,B,, — (3/2).ALM F,,u. We choose the metric signa-
ture to be (—1,1,1). The O(d, d) indices are raised and
lowered using the O(d, d) -invariant metric

(8T
5,7 0
In particular, HMN = yMPH,,n9V is the inverse of the
generalised metric H .

The action (2.14) is invariant under the O(d, d) trans-
formation

(2.15)

o - O, Hun = Lat"Ly?Hpo,

(2.16)
|

gE/u/ e gE;wv

AM — LMy AN, B,, — B,

5 1 1
Tp = / $x/ =08 <RE ~ 9, @D + S Tr(9,HOH ") - Eewa,,gMHMNaﬂa:N) .

with LMN S O(d, d), ie. LMPLNQT’]pQ = HNMN- In three
dimensions, the three-form field strength H,,, is on shell
determined by a constant, which we set to zero for now. In
Sec. IV, we will explore the massive deformations arising
for a non-vanishing three-form.

From O(d,d) to O(d+1,d+ 1) The action (2.14)
hides a symmetry enhancement from O(d,d) to
O(d+1,d+1), thanks to the duality between vector
and scalar fields in three dimensions [1]. Contrary to T
duality, this enhanced symmetry does not leave the dilaton
invariant: It combines in particular the O(1,1) scaling
symmetry (2.8) to the O(d,d) symmetry (2.16) as
O(d,d) xO(1,1) cO(d+ 1,d+1). The enhancement
is made manifest by dualizing the two-form field strengths
F WM into gradients 9,&y, of scalar fields through the

introduction of a Lagrange multiplier term in the action”:

~ 1
IO :Io+/d3X§8”DPfMDMap§M. (217)
The equations of motion of &,; give the Bianchi identity for
F WM . There is therefore no need for the vector fields A,,M ,
and we can consider F WM as independent fields. Their
equations of motion, given by

FuM = e*®e,, 0 EyHNM, (2.18)

are algebraic: We can eliminate the two-forms F,, from
the action in favor of the scalars &;,. The action then reads

(2.19)

The O(1, 1) and O(d, d) transformations (2.8) and (2.16) of A,,M imply, by use of Eq. (2.18), the following transformations

of &y
O(L,1): &y = ey,

O(d.d): &y — Ly"Véy. (2.20)

The action I, depends on the metric and on 1 + d? + 2d = (d + 1)? scalar fields. The scalar fields can be organized into

the O(d + 1,d + 1) matrix

Huw + e*PEnéy

My = ez‘Dé‘N

62‘1)51\4

—HMP§P - %emefPfP

—1e2®gpeP (2.21)

—HypE = PENERED  —Le2PEpEr 2 4 EpHPLE, + L2 (EpED)?

Here, the O(d+ 1,d+ 1) indices are split as M =
{M,+,—} with respect to O(d,d) x O(1,1), while the
O(d + 1,d + 1)-invariant metric takes the form

muv 0 0
N = 0 0 1 (2.22)
0 1 0

[
Then, the action (2.19) becomes

Io— [ @xymge(Re+ gTrmem) ). @223

*Here and in the following, €, denotes the Levi-Civita
symbol, and €

wp 18 the associated tensor.
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It is manifestly invariant under the O(d + 1,d + 1) trans-
formation

95w — YEuw» M/\/l/\/ - LMPLNQMpQ, (224)
with LN € O(d +1,d +1).
O(d+ 1,d + 1) transformations Let us have a closer

look at the O(d + 1,d+ 1) symmetry. The generators

TMN of O(d+1,d+1) can be decomposed into
O(d, d) components as

TMN = [TMN M+ TM= T+-1, (2.25)

The TMN generate the O(d, d) transformation

- O, Hun = Ly Ly%Hpg,

(2.26)

gE;w - gE;w ’

& = L™y,
while 77~ generates the O(1, 1) scaling symmetry

9Euw > 9Euw> D - D+, HMN g HMNv

Ey — ey (2.27)

The charged generators 7™+ generate the constant shifts

and the components 7™~ lead to complicated non-linear
transformations.

Frame formalism For later convenience, let us define the
frame fields

EMA ECDSM O
Vul = 0 e® 0 |. (229)
—EPEp? —%e‘bfpfp e®

so that My = VA6 45V P, with the (2d42) x (2d +2)
identity matrix & 43. Ey” is the frame field associated to
the O(d, d) generalized metric, i.e., Hyy = Ep*agEn®,
and we denote the inverse by E4M. As for the “curved”
O(d+1,d+ 1) indices M, we split the flat indices as
A = {A,+,=}. These flat indices are raised and lowered
using the flat version of the invariant tensor (2.22):

NAB
N 0

0

0 0
nas = Vi MnunVs 0 1|, (230
1 0

with V 4™ the inverse frame field and 17,5 = ExMnynEg".
The frame fields can be used to define the Maurer-Cartan

Su = Em+cu (2.28)  form (V10,V) B = PP + Q.45 where
|

Pa" 5ePEMo &y —5€®0,EMEy Sca

PﬂAB = %EQaﬂgMECM5CB 0”‘1) 0 ’ (231)
—1¢®0,EME)," 0 —0,®

0ua” 3¢PEM0,8y 5€®0,EMEy Sea

Q”AB = —%eq)aﬂéMEcM(sCB O O ) (232)
—3e®0,ME," 0 0

such that (P,o) A and (Q,6) 4 are symmetric and anti-
symmetric, respectively. Sometimes it is also convenient to
use the basis in which 7 45 is diagonal and has the form

o <_5ab 0 )
NaB = 0 5.5 )

with the index split A — {a,a},a,a € [0,d]. In this
basis, the Maurer-Cartan components P”AB can be ex-
pressed in terms of an O(d + 1) bivector P,“%:

ab
poo= (0 P
! PLb 0

(2.33)

(2.34)

D. Field redefinitions

The presence of higher-derivative corrections makes it
possible to perform field redefinitions that are perturbative
in o, and previous works showed that they are necessary to
exhibit duality symmetries [8]. We denote by I, the part of
the action of order o (after dualization of the vector fields),
so that 7 = I, + I, + O(a’?) is the total action. In the same
manner as in Refs. [9,10], we consider field redefinitions of
the form

®» = ¢ +ddp, (2.35)

where ¢ denotes a generic field. Under such redefinitions,
the variation of 7, is
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TABLE III. Replacement rules for the terms carrying the leading two-derivative contribution from the field
equations descending from the two-derivative action (2.19) and associated field redefinitions. The explicit
replacement rules are given in Eq. (2.38).

Term in the action Field redefinitions Replacement
X000 6P =-1x dXQq
(I,X”DREW, 5%‘3” = _X(/“*) + g’é”Xpﬂ a,X”Dngu
adTr(XOH) SHMN = 4xMN dTr(X0xy)
A XMEy, 88y = —e 2P H v XN aXMQey
STy = o / &x/ g5 [5<I>E¢ 4 SGYE,, + Tr(6H Ey) + EéM(ng} : (2.36)
where’
Ep = 20® — 2®9,& HMN oy, (2.37a)

1 1
Egm/ = RE;w - aﬂ®6y¢ -+ gTr(ﬁﬂdeH_l) - 5 ezq’&ﬂfM'HMN@ny

i | 1
—_ EgEﬂv <RE —_ apd)cy’(l) + gTr(a/)HaoH_l) - 5 e2®5p§MHMNap§N> . (237b)
1
EHMN = —Z |:DHMN + (HaﬂH_laﬂH)MN + ezq)aﬂfM@”fN - €2¢HMP6#§P6M§QHQN:| s (237C)
EM = o2 (D:NHNM +20,DHEyHVM + a,,gNaﬂHNM), (2.37d)

and [0 = V,V¥. As we will not consider orders in o higher than one, there is no need to compute how the redefinition
affects corrections I, to I, of order O(a’): This variation will generate O(a’?) terms. The expressions of the shifts ¢ can
then be chosen to cancel given terms in /. In the following, we will use these redefinitions to cancel terms that contain as

factors the leading two-derivative contributions from the field equations, as was done in Ref. [12]. These factors can be
replaced as follows:

1
LD — Qg = EemaﬂfMHMNa”fN,

1 1
Rg, — Qg = 0,0,0 — gTr(a,mtayH-') + 3 e*®0,EHMN O, &y,

OHyy — Ouun = —(HO,H 0 H),, — €2C0,E00"Ey + 2P Hyp0, P 0 E9H .

Dy — Qem = —20,00Ey; — 0,5 (" HTH)N . (2.38)
These replacements and the associated field redefinitions III. FOUR-DERIVATIVE ACTION
are summed up in Table III. IN THREE DIMENSIONS

We now revisit the symmetry enhancement of Sec. II in

the presence of first order &’ corrections. To this end, we

3Note that, as HnH — 5, H is a constrained field and that start from the manifestly O(d, d) invariant four-derivative
the derivation of Ej by variation of the action must be done  action of Ref. [12] and perform the dualization of the vector
carefully [10]. fields as in Eq. (2.18) above. We then express the resulting

026015-8



U DUALITY AND « CORRECTIONS IN THREE ...

PHYS. REV. D 108, 026015 (2023)

action in terms of O(d + 1,d + 1) quantities upon intro-
duction of a nondynamical compensator, which reveals an
interesting structure of the action. Higher-order corrections
obstruct the O(d + 1, d + 1) symmetry enhancement of the
two-derivative action as is most straightforwardly seen by
tracking the fate of the scaling symmetries discussed in
Sec. II. Typical four-derivative corrections to the action
(2.1) are of the form [21]

AAAAAA

HPP P HPS 5 + > . (3.)
Under the transformations (2.2), (2.3), and (2.5), the action

I, transform homogeneously with the charges

| (Dilaton”)  (Trombone”) (Volume”~?)

I | -2/(D-2) ) 0

(3.2)

Both the dilaton shift and the trombone symmetries are
broken by « corrections. With the translation (2.11), the
|

charges of I; under the three-dimensional symmetries
(2.8)—(2.10) are

| (Dilaton®) (Trombone®) (7 duality)
Lol =2 -2 0

(3.3)

In particular, the 7 duality scaling O(1,1) Cc O(d,d) is
preserved in presence of first order & corrections, in agree-
ment with the arguments of Ref. [5]. The presence of O(d, d)
was explicitly verified in Refs. [11,12] at first orderin . The
symmetry under the dilaton shift (2.8), however, is broken,
and so is the symmetry enhancement from O(d,d) to
O(d+1,d+1). In the following, we formulate the o
corrections to the three-dimensional action (2.23) in terms
of the O(d+ 1,d+ 1) objects defined in the previous
section, by introduction of a nondynamical compensator.

A. Dualization of the vector fields

We will treat the cases of the bosonic and heterotic string
effective actions at the same time, using the notations of
Ref. [16]. Our starting point is the manifestly O(d, d)
invariant action of Ref. [12]

1 1
I= / P/ ~ge® [R + 0,90 + L Tr(9,HIH ") = 2 F M Hyy

a+b
8

1 1
(RWMR"”P" + 1—6Tr(6ﬂHayH‘16”Ha”H‘1) - 3—2Tr(6ﬂHayH‘1)Tr(6”H6”H_l)

1 1
g Fu Hun F o FO Mg FL0 = 2 F M My AN o g F

POM

1 1
+ g f/wM f f‘ﬂ/)N f‘lm’N _ 5 RMD/JO' f‘/,wM HMN f‘/)o’N

1 1
~5 FuM(Ho,HT 0" H),  FHN + 1 FreMHyn FY NTr(0, Ho, H™! ))

4 \ 16

-b 1 1
n a ( Tr(a#Hd”H‘lapHa”H‘lHn) _ RfMDMfPUM}_WPHPQFpGQ

1 1
g R F WMy + g FuM 0, NFy

1
+ ZF”DM(&‘HGPH‘l)MN]’”/’N) + O(aﬂ)} :

having eliminated the two-form B, by virtue of its three-
dimensional field equations as in (2.19) above. The bosonic

*In Eq. (3.2) and (3.3), we give the charges of /; under the

trombone symmetries using as convention that the charges of If)D)
and I, under these transformations are 0; i.e., we drop the global
factor under which the lowest order equations of motion are
rescaled.

(3.4)

[
and heterotic actions correspond to (a, b) = (—a/, —a’) and
(a,b) = (—a',0), respectively [16].

In order to express this action in terms of O(d + 1,d + 1)
covariant objects, we first switch to the Einstein frame

(3.5)

_ ,20
gm/ - gE;w =e€ g/un

and use the fact that in three dimensions, the Riemann
tensor can be expressed as
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R/wpzf = OupYve =+ Svo‘gﬂp - S/mgvp - Sypgﬂw (36)
in terms of the Schouten tensor S, = R, — %Rgﬂ,,.

Next, we dualize the vectorial degrees of freedom to scalar
ones. To this end, we proceed as we did for the two-derivative
action, and introduce a Lagrange multiplier term to the
action:

~ 1

=1+ §/d3x P F M0, Ey. (3.7)
The equations of motion of &, still gives the Bianchi iden-
tities for F,,™. But, considering ¥, as an independent
field, its equations of motion 6I/6F =0 now contain
corrections of order o'. These equations are algebraic in F
and can be solved perturbatively in . The solution takes
the form

M

FuM=FM a7, (3.8)

8 16

where ]-'f,?,)M is a solution of &I,/8F =0, as given in

Eq. (2.18). The exact expression of F ﬁ,L)M is not necessary
for our purpose, as we now show. Equation (3.8) is algebraic
and can be introduced in the action (3.7), which, schemati-
cally, takes the following form:

I(FO + o FO) = To(FO) + 1,(FO)
sly

(1)
+dFS2

(FOY 4+ 0(?), (3.9)

where [, is the four-derivative action. The dependence on
FU) is thus proportional to the equation of motion of F at
order @°, evaluated at its solution F(?). Then, at first order in
o, the corrections to the duality relation (2.18) cancel out in
the action, and the lowest order relation can be used to dualize
the vectors.

Applying this procedure, after some computation, the
four-derivative part of the action (3.4) turns into

1, = / Bxy/~gpe2® [— ath (iTr(aMHaUH-laﬂHavH-l) - %Tr(aﬂHayH‘])Tr(d”Hd”H")

1
+ 40,00" P9, P O + i e*®0,EM0, 0 EN P Ey

+

—_— N = A=

1
¢*®0,EHMN 0, En 0 EpHPCE ) — 5e4®ay§MHMNa“§Nap§PHPQay'§Q
1
ezq)aﬂéM(H_]0DH(3”H_1)MN(3”§N - Eezq)any(H_la”HaUH_l)MN0”§N

1
-2 e*®Tr(0,Ho*H")0,E HMN o Ey + 1 e*®Tr(0,Ho,H ") 0" &y HMN 0 €y

—2¢%%0,00,00"E, HMN 0" &y + 4Rg,, R" — RE + 40000 + 8000, Do P
+ 4V, V,0VFV'® - 8V, V, 00D — 8Rg,, V V' D + 8Ry,, 0" D d
— 4Rp0, @0 D — 2¢*® Ry, 0 Eyy HMN 0 &y + €*PRi0, &y HMN 04Ey,

— 2620009, &) HMV &y + 2e2¢vﬂqu>aﬂ5MHMNav5N>

4 16

—b/ 1 1
+4 <— 1¢ Tr(0,HO“ M1, HO M\ Hn) = 7 ¢*00,8,10,6"9"Ep M0 &g

1
-3 VR0, Ey HEM + PRy, 04 £y 0V EV — 2PV, V, D04 €y 0 EM

1
+ eM’D(I)a”ZjMa”fM + ewaﬂq)ayq)aﬂgMang ~ ez®0M§M(ayH“ 6”H)MN6”§N>] .

(3.10)

We now convert all second order derivatives in Eq. (3.10) into products of first order derivatives to allow comparison with
the basis of O(d + 1, d + 1)-invariant four-derivative terms of Ref. [12]. To do so, we first use integrations by parts so that
all the second order derivatives appear in the leading two-derivative contribution of the equations of motion (2.37). Using
furthermore the field redefinitions of Sec. II D, we obtain the action
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I, = /d3x —gpe2® [_a_—é—b (—a,,qwﬂq)abcpa”cb + 1—16Tr(0ﬂH0,,H"5”Ha”H“)
4 31—2Tr(aﬂHayH‘1)Tr(6”Ha”H‘l) - %Tr(aﬂHa"H‘l)Tr(abHa”H‘l)
F00,E0, 8, 0N P&y — e, E HINO,EPEHTPE
+ % e*®0,EHMN 04 £y 0, EpHPCOE ) + %ez‘baﬂgM(H—l O, Ho*H " )YMNorg,

- % ezq)a”fM('H_l a”HaUH_l )MNany - 2e2‘baﬂd>ayd>a”§MHMNa”§N

1 1
+5 0,00,®Tr(*HH™") — 1 0,00'®Tr(0,H"H™") + €*0,D0, & 0" HMN avgN>

—b 1 1
+4 i <—RTr(aﬂHaﬂH‘la,,Ha”H“Hl1) +5€"00,u0, 81 EHCHE

1 1 1
- ZeZ(DaMfM(aDH_la”H)MNd”fN — Eezq)aﬂq)d“(bavfMa‘fM - gTr(aﬂHayH_l)a“fMd‘fM

1
+ 1 Tr(OHIH )0, 60 & + eZd’@M(Da”fM(ayH_lH)MNa”fN)] : (3.11)

Explicitly, we have used the following order o field redefinitions:

b
Sy = — ag—;’ <—4e‘2¢’R’é” +2¢2?g Ry + 8¢ 2P0 D D — 2e‘2®jé”0pcbd"cb
1 1 -b
+ Ee‘zq’Tr(a“Hd”H‘l) - Ze‘z‘pg’é”Tr(dl,Hd/’H‘l) - 39%”6P§MHMN6”§N> - —a4a, HEy 0 EM
a+b _ _ 3 a—-bl )
o =~ <2e 2R — 4e~200d — EaﬂfMHMNa"ézv) ~ o 2O e,
b -b
52, — — a +/ e_chaﬂq)aﬂgM _ a4a/ e‘Z(DHMNaﬂq)@”fN, (3.12)

in the notations of Eq. (2.35).

B. O(d +1,d +1)-covariant formulation

We now aim to express the action (3.11) in terms of O(d + 1, d + 1)-covariant objects. We define the O(d + 1,d + 1)
currents 7, = 9, MM~ for the matrix M from Eq. (2.21). Explicitly, this current takes the form

T Tum™ —-e*0,6pHP Yy
T = | 20,6HY 20,0 — 226, HPC0,E, 0 : (3.13)
TN 0 -20,® + ¢**EH0,8,

with

ijN = auHMPHPN + €2¢(§May§PHPN - HMPa#é:PfN)’
1
Tt = 0,6y — 0, HypH e g 4 20,DEy — > EpHPL0,E0Ey + Eem‘EP‘SPOMCEQHQM’

1
TN ==0,EN — EP0, HpoHON — 20, DN + *®EpHPLo,£0EN — 5 e*®EpEr0,EgHON. (3.14)
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In terms of this object and using the O(d, d) decomposition of Appendix A, the four-derivative action (3.11) can be cast into

the rather compact form

- 1 1
I, = /d3x —gEe_2¢{+Z [—?QTr(j,,JUJ"J”) —ETY(J,,J”ijVMﬂ)

1 1
= o THTTITHT'T) + 535 THT W T T, T)

128

1 1 1
e (—5 (UPRT T THTPU) + 3 (WPT (T4 T, T PU) = 5 (UPRT , T, T*T*Pu)

1

2

1
- T T WPITAT PU) 4 {THT ) UPIT, T P0))

+ e~ *®(=2(uPnJ ,J,Pu)(UPnJ* J"Pu) + (uPnjﬂj"Pu)(uPnjyj”Pu))}

4

—aTr
1 - -
+e 2@ <§ (uPnJ,J,J*TJ"Pu)

128

2
1
4

+ e~ **(=2(uPn.J ,J,Pu)(UPnJ" J"Pu) + (uPnjﬂj”Pu)(uPnjyj”Pu))} }

Here, we have defined the projectors5

1
Py = > (Mpn = Mpgy)  and

- 1
P =5 (aaw + Maaw), (3.16)
and the O(d + 1,d + 1) compensator vector
uM = {0, 1,0}, (3.17)

which parametrizes the breaking of the symmetry group
O(d+1,d+ 1) at the four-derivative order. The action
(3.15) enjoys a formal O(d + 1, d + 1) invariance, which is
broken by the explicit choice (3.17) for the vector u. This
is manifest in the above form for all terms except the
explicit dilaton prefactor, but it even holds for these factor
thanks to the relations (3.22) below.

It is interesting to note that the above action (3.15) has
the chiral structure

’If we had not truncated the vector fields from the 10-
dimensional heterotic action, Py and P\ would correspond
to projection on O(24) and O(8), respectively.

b 1 1
+2 [— S THTWT W THT) + 1 Te(T W1 T M)
1
(T T )T THTY) + 5 Te( T, T Te(T L, T*)
1 - - 1 - _
(WP, " T, T PU) + 3 (UPn T . J* T Pu)

- - 1 - -
T UPITATPU) = T, T¥) WP1T, T Pu)

(3.15)

- % / Fxy/=gs{aF M, Pu] + b(FIM, Pu])*},

(3.18)
with a fixed function F that depends only on M and a

projection of u. The * in the second term indicates the Z,
action, under which M transforms as

0) <1 0 )
9 Z: 9
03 0 -1

V4
M- ZMZ, Zz(o

(3.19)
where
ZnZ = —n. (3.20)
Consequently, the projectors transform as
P— Z'PZ, P— Z'PZ, (3.21)
while furthermore,
e?® =uM My pu = =20 Py uV =201 Py e, (3.22)

In particular, the last equation shows that the dilaton @ is
invariant under the Z, action. The chiral form (3.18) of the
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action implies that the four-derivative action of the heterotic
string (b = 0) encodes the function F, and thereby the
entire action. In particular, the result for the bosonic string
(a = b) follows or can be reconstructed from the heterotic
result. Moreover, in the heterotic case, we note the formal
“gauge invariance”

U — U+ nPA, (3.23)
under which the action (3.15) (for » = 0) is invariant.

We may also express the result in terms of the O(d + 1,
d+ 1) coset currents (2.31). In the basis (2.34), the four-
derivative action (3.15) takes the form

I == / & ge—m{ 4{ r(P,P¥P,P¥) — Tr(P,P*P.P*) — Tr(P,P.P*P%) — Tr(P,P})Tr(P*P¥)

+ 2Tr(P P)Tr(P,P%) + 4(P,PLP+P®)%0 —
+4Tr (P, PL)(PHPw)® — 2Tr(P,PW) (P, Pw)00

+ 4(Pﬂptﬂ)00(PyPtv)00:|

4(P,P"P,P¥)%0 + 4(P, P, Prpu)0
— 8(PﬂP£)00(P/‘P“’)OO

b
+7 [—Tr(Pﬂ PP, P¥) + Tr(PLP*PYPY) — Tr(P,PLP#PY) — Tr(P,P ) Tr(P*P®)

+ %Tr<P,4P‘”)Tr(F’UP‘”) +4(PLP,PwPY)00 _

+4Te(P,PY) (P#P*)00 — 2Tr(P, P ) (P, P¥)00

+ 4(PLPH)O0 (PP } }

Here, the © and ° components are defined by contracting
out O(d + 1) x O(d + 1) vectors as

0 _ paap_,~®
Pl = PiUze

0a _ ,—Or aa
P = e 0Py, o

u

(3.25)

with 0, = uMV,,,, U; = uMV,,. Spelling out Eq. (3.25)
brings the action into manifestly H gauge invariant form.
In these notations, P and P' are interchanged under the Z,
action.

More compactly, and wusing the notations of
Refs. [22,23], the result (3.24) can be rewritten in the form

/
L= [ e [jFahcd<<P,,Pw>“b<Pwa>cd

b

= 2(P,Py)*" (P*P¥)) + 7 Fajea((PPH)7 (PPY)

—2(PyP,)ab(P¥Pr)? } (3.26)
with

3
Fabcd = Eé(abécd) - 650(a5b06d)0 + 450a5()b50050d7 (327)

and F .7 defined in the same way, exchanging unbared
indices for bared ones. In the case of the heterotic
supergravity, (a,b) = (—d,0), Eq. (3.26) consistently

4(PLPHPLPY)00 4 4(PL P, PwPH)00
— 8(P,P,)"(P¥P¥)00

(3.24)

|
reproduces the weak coupling limit of the U duality
invariant modular integrals conjectured to describe the
exact four-derivative couplings; cf. Refs. [22-24]. (See
in particular Egs. (4.16) and (4.34) of Ref. [23].6)

We close this subsection with some general remarks on
the symmetry group after inclusion of the first &’ correction.
First, note that the scaling symmetry denoted (Dilaton®)
above, which acts as ® — ® + 4, 1 € R, actually trivializes
for the discrete subgroup. To see this, we use that these
transformations are embedded into O(8, 8) as

L 0 0
ALp=10 ¢ 0 [€O0(88R), (328)
0 0 e

but the requirement that this transformation actually
belongs to O(8,8,Z); i.e., that all its matrix entries are
integers, then implies that e* = e™* = 1 or 1 = 0, reducing
(Dilaton?) to the trivial group. Thus, by itself, the fact that
the continuous scaling symmetry is broken by the explicit
e~2® prefactors at order o is not in conflict with an
0O(8, 8, Z) symmetry.

We now turn to to the computation of the sym-
metry group, confirming our above conclusion that the

®We thank Guillaume Bossard for helpful explanations on this
relation.
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continuous O(8, 8) duality group is broken to its geometric
subgroup ISO(7,7). In order to determine the symmetry
group, we note that since the above formulation is
manifestly O(8,8) invariant provided the compensator
uM transforms as a vector, the actual symmetry group is
given by the invariance group of uM = (0, 1,0). Recalling
the index split M = (M, 4+, —), an O(8, 8) matrix reads

Ly Lyt Ly~

LyV=|L"N L.t L.~ |€0(838), (329
LN L_* L_~
and is subject to
L niceLa® = - (3.30)

The condition that u™ is invariant; i.e., that u™ =0,
u’. =0 and U_ = 1, is quickly seen to imply

Ly~=0, L,~=0, L~=1. (3.31)

Using this in Eq. (3.30) yields furthermore

Ly €0(7,7), LM=0, (L7HyMLN=-yMNL\*,

1
L++ = 1, L_+ = _EL—M;/]MNL—N (332)

Thus, a general O(8, 8) matrix that leaves U invariant is
parametrized in terms of a general O(7, 7) matrix L," and
a vector cy,:

LMN LMKCK O
LywW=] 0 1 0 (3.33)
—cN —%CKCK 1

One may verify that the ¢, for Ly,"N = §,,", acts as

and thus precisely parametrize the constant shifts of the
scalars dual to vectors. As expected, we recovered precisely
the geometric subgroup ISO(7,7) of O(8, 8).

IV. A MASSIVE DEFORMATION

So far, the three form field strength H,,, has been set to
zero. We now integrate out the B field explicitly and explore
the deformations induced by a nonvanishing three-form flux.
At the two-derivative level, this results in a topological mass
for the vectors and a potential for the dilaton [17]. We review
this massive deformation and show how it fits in the more
general framework of gauged supergravity. We then extend
the analysis to the four-derivative corrections. In particular,

we show that the resulting massive deformation induces

Chern-Simons terms for composite connections featuring an
enhancement to the full O(d + 1, d + 1) to first order in the
mass parameter.

A. Two-derivative action

We first consider the two-derivative action (2.14), which
we rewrite in the string frame as

IO—/d3x —ge™®

1
x <£<°> (G @ H, AM) HW,H””/’>, (4.1)

12
with H,,, = 30,B,, +Qup and Q) = —(3/2) x
ALMM Fpm the abelian Chern-Simons deformation of the
three-form field-strength [20]. In three dimensions, we can
rewrite the field-strength as’

Hy)p == gheﬂvp’

(4.2)

and /) becomes

1
Ioz/de —ge_d)(ﬁ(o)(gﬂ,,,(p,H,A”M)+72h2>.

(4.3)

In the following, we do not specify explicitly the fields on
which £ depends. To dualize the degrees of freedom
related to B,,, we introduce an auxiliary field f and
consider the action

I = / dPxy/=ge? <£<0> - % f2 - é fh). (4.4)

Taking its variation with respect to f, we get the algebraic
equation of motion

— 4.5
- (45)
which can be used in Eq. (4.4) to get back Eq. (4.3), hence
the equivalence between I, and 1. We now consider I,
which gives the following equation of motion after varying
with respect to B,,:

V,(e®f) =0= f =me®, meR. (4.6)
Unlike Eq. (4.5), this equation is not algebraic and, in
general, could not simply be inserted back into the action.

"The global factor is chosen so that h = ¢’ H

wp» With g, of
signature (—1,1,1).
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One needs to work at the level of the equations of motion.
It can however be checked that, in the particular case we are
considering here, it is consistent to use Eq. (4.6) directly in
the action (4.4) to get

1
= / dx [\/—_g (e—%@) -5 mze®> “¢ me”””Q%S)} :
(4.7)

where we ignored a total derivative. Ijj is equivalent to /,
with the degrees of freedom of the two-form B, dualized
into m. For m = 0, we recover the action we started with in
Sec. IIC.

Let us move to the Einstein frame to discuss further the
properties of the action:

1
1 = / d’x [\/:g (RE - 0,00'PD + gTr(dﬂ’H_lﬁﬂ'H)
1 —2d M UvN 1 2,40
—Ze fﬂy HMNf —Eme

1
+ ngﬂl/pAﬂMfpr} . (48)

For m # 0, the O(d + 1,d + 1) symmetry of the action
(2.23) is broken down to O(d, d) and constant shifts in &,
[the scaling symmetry (2.8) is broken]. The term quadratic
in m acts as a potential, and the vectors .A,,M acquire a
topological mass proportional to m, leading to a topologi-
cally massive Yang-Mills theory [19,25] for U(1)%¢, with
equations of motion

V(e 2* FrNHyp — me*? A,py) = 0. (4.9)
The Chern-Simons coupling prevents us from dualizing
the vectors as done in Sec. I C. We can however rewrite
the Yang-Mills gauging of Eq. (4.8) as a pure Chern-
Simons type gauging with gauge group U(1)% X T,y
using the on shell equivalence of Ref. [26], where T, is
a 2d-dimensional translation group. Consider the action

78 = /d3x |:‘/_gE <RE + éTr(aﬂM_lﬁﬂM)

1
-5 m?e*® A MHyn AN — me*® A,MH 0" EN

1 1
- Emze‘@) - Zme"””.A,,MfW,M} (4.10)

The induced equations of motion for the vectors are

Fu M = e®€,,(°E" + mANYHM,  (4.11)

which imply Eq. (4.9). It can be checked similarly that
all the equations of motion of I|j are identical on shell to
those of I, upon systematically eliminating d,&, using
Eq. (4.11). Thus, I and T} are equivalent.

The action (4.10) can be nicely rewritten using the
embedding tensor formalism [27,28] of three-dimensional
half-maximal gauged supergravity [29,30] (see also
Ref. [31] for a review and the notations used here). The
bosonic part of the action describes the dynamics of the
metric gg,,, scalars M s € O(d + 1,d + 1) and vectors

A, IMNT via the action

1
/d3x [\/—gE (RE + gTr(D”M_ID”M) - V) + ECS] .

(4.12)
The covariant derivative on M s is
D, My = 0,Mpn +44,79Opg " My, (4.13)
with the gauging given by the embedding tensor
Ornipo = %(”M[PHQ]N — iy plom). (4.14)

where 6, is symmetric. In full generality, the embedding
tensor contains more representations that we will not need
here. The vectors are described by a Chern-Simons term of
the form

'CCS = ﬂbp@MN\PQAﬂMN <avApPQ

1
+3 OrsuvS PQ'RSXJiAuWApxy> ) (4.15)

with MNP = 45, MpNPs, 9l the structure con-
stants of 80(d + 1, d + 1). Finally, the potential is given by

1
V= ggM/\/QPQ(ZMMPMNQ — 2pMPyN e

- MMN MPQ), (4.16)

The action (4.10) then results from the restriction to an
embedding tensor with only nonvanishing component 6__.
More precisely, a formally O(d + 1, d + 1)-covariant form
of Ijj is given by
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Iy = / dx [—8’“’/’0 vvApNo,A,PM
1
+ vV —UJg <RE + gTI'(DﬂM_lDMM)

1
_gaMNHPQ(ZMMPMNQ _2,7/\479,7J\/Q

- MMNMPQ)>] , (4.17)
with the specific parametrization
1
AM = EA,,M, 0__ =2m. (4.18)
The covariant derivative is then given by D =0,y +

mA,y, D,®=0,®, and D, Hyy = 0, Hyy. The sym-
metry breaking induced by m # 0 is now translated into the
choice of embedding tensor with #__ as the only non-
vanishing component, which breaks O(d +1,d +1) to
O(d, d) and shifts in &;.

B. Four-derivative action

The two-form degrees of freedom can be integrated out
in the four-derivative action using the same procedure as
the one used in Sec. IV A. With Eq. (4.2), the action (7.16)
of Ref. [12] is given by

I=1+ /d3x —ge™®
1 1 1 1
h? ——ah+—bh>+—ch* )|, 4.19
[72 +a< O +36 —|—64c )] (4.19)
where [ is the action (3.4) and®

ol at+b (2 @cs) 1 - -
a = e [_W <§Qﬂl/p _Efﬂ(FM(HaUH I)MNf/) N

a—>b w o
+ W <Ql(ll//)1 +- fﬂaMa HMN‘FIJpN>:| s

a-+b 1 3
b= —W <R - ZTI‘(aﬂHaﬂH_l) + 4fleHMN.7:”VN)
a—>bl
7 g P
_a+b5
= 4.20
8d 4 ( )

fof,’; is the gravitational Chern-Simons form of heterotic

supergravity, and Q,w,) %) is the three-form needed in the Green—
Schwarz type mechanism of Ref. [11], which satisfies’

8Remember that a and b are of order .
‘Normalized as in Eq. (14) of Ref. [11];

+ QY

1.e., HW, =

Hy,

3
49,093 = o Tr(0,710, 110, Ho M~ H).

o (4.21)

As previously, we can equivalently write 7 as
T :I+/d3x —ge™®
1,1 / 2 4
X _Ef —gfh—l—a(af—l—f)f +efY)|, (4.22)

with an auxiliary field f. The equations of motion for f are

1
f:—6h+a’(a+25f+4cf3), (4.23)
and can be solved perturbatively in «':
fO =—4h,
f=fO4+af1),  with { :
fW =a-1bh—Lch?
(4.24)

As in the two-derivative case, Eq. (4.22) with Eq. (4.24)
gives I. The equations of motion for B, are unchanged and
given by Eq. (4.6) and, again, it is consistent to use them
directly in the action, leading to

—I+/d3x\/ [ e””/’Q( S) %mze‘1>

+d (am + bm?e® + cm4e3‘1’)} . (4.25)
As a byproduct, observe that we can safely consider the
case m = (0 and recover the actions considered in Secs. II
and III.

Writing this action in terms of O(d + 1,d + 1) fields
and an embedding tensor breaking the symmetry to
O(d,d) x O(1,1), as we did for the two-derivative action
in Sec. IVA, requires one to reproduce the analysis of
Sec. III with modified rules for the field redefinitions
(given the modified two-derivative equations of motion)
and with the additional terms in Eq. (4.25), as detailed in
Appendix B. All computations done, we get

~ . b
=1+ / d3x{\/—gEa i (4m?e?®0, 0" @ + m*e®®)

a+b GS
8 (3 S

+ metP [

1
-5 e*®*D, &y (R0, )"\ D,EN ) +

a=>b <mﬁ>] }
4 my s

(4.26)

where [, is given by the action (3.15) with all cur-
rents covariantized: J u= D”M./\/l‘l. Observe that the
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Green-Schwarz type mechanism of Ref. [11] generates,
once restricted to three dimensions, a Chern-Simons
term based on composite gauge fields. The properties of
this term are best displayed using the frame formalism of

Sec. I C. In Ref. [11], the Green-Schwarz three-from Q{c5’
has been written as a Chern-Simons form for O(d) x O(d)
composite gauge fields:

3 3 2
Q/(S? = ECSMW(Q) = ETr <Q[}40vQﬂ]6’7 +§Q[MQDQ/’]677) ’

(4.27)

with QﬂAB defined in Eq. (2.32) and 6,5 the identity
matrix."’ Generalizin g this definition to the covariantization
Q,,A of the O(d+ 1) x O(d + 1) connection Q, 4% of
Eq. (2.32) (i.e., defining Qﬂ AB from the covariantized
Maurer-Cartan form V='D,V), we get

A Gs) 1 _
Wp(g) /wp) - EEZCDDW{,:M(H lauH)MNDp]fN
_3€2®D[/4§M-7:yp] (428)
of exterior derivative''
a[ﬂcsvf)ﬂ](g)
1

= ETr(DwMDDM_lDPMDG]M_an)

=20 vy poF N (D, M Dy MMH)PC

+ 160\ 1po®rcrir” F ™V F pE MR (4.29)

Putting this term in the action and eliminating the field-
strength using the dualization relation (4.11) gives

/d3xm€ﬂy/)csyyp(g)
vp 256s) 1 -
:/d3xm |:€” & <3Q/(wﬂ)_262®Du§M(H 1au"'[)A/IND/)gN>

+ —gEmze“‘I’DﬂfM'HMND”éN] . (4.30)

Thus, we can write the action (4.26) in terms of the three-
form (4.28):

The on in Eq. (4.27) is needed to reproduce the right
relatlve sign in Eq. (34) of Ref. [11].
"Here, we used that [D,.D | My =4F,, QGPQ‘

and F,,"MV = 20,4, MV 1+ 44,700 pq xMA,NF

ICMN

. b
=1+ / d%{,/—*—gE“;j (m? (4229, 00D

4 et D, &y HMVDrEY) + m*e5®)
+ metr (—%Csﬂyp@) + “T_bsz,&‘;’;’>] .
(4.31)
We can furthermore express the first line in terms of the

O(d+1,d + 1) currents, as done in Sec. Il B, and the
embedding tensor (4.18):

o b
I’{zll+/d3xm[\/—91~:a—g ( O (T, TH MYMN
g O M)

b A -b 2]
T gl <— %CSM(Q) 4 “Tssz,%))] . (432)

Thus, the massive deformation following from integrating
out the B field induces a gauging of the action (3.15) and
additional couplings. Remarkably, these couplings break
the O(d+ 1,d + 1) symmetry only due to the gauging
(4.18) of the shift symmetry; no vector compensator is
needed, in contrast to the term [ 1- The first line in Eq. (4.32)
features a deformation of the two-derivative action and a
potential. The second line of Eq. (4.32) is given by Chern-
Simons terms based on composite and spin connections.
Most interestingly, to leading order in m, these Chern-
Simons terms are given by
-b
o)

/ d3x metvr (— ;wp(Q) 4
+ b - b ),
= / d3x me? (— = CS,,,(Q) + aTwaE)>

+ O(m?),

a+b

(4.33)

which is invariant under O(d + 1, d + 1). Although the full
theory exhibits a breaking of the O(d + 1,d + 1) U duality
both by the higher-derivative parameter o and the mass
deformation m, for the leading Chern-Simons terms, the
full O(d + 1,d + 1) is restored. The physical meaning of
this observation has to be investigated, as well as its
extension to more general gaugings.

V. CONCLUSIONS

In this paper, we have computed the effective action of
bosonic and heterotic string theory in three dimensions to
first order in & starting from the known four-derivative
result in manifestly O(d, d)-invariant form and perturba-
tively dualizing the vector gauge fields into scalars. We
have cast the result into a formally O(d+ 1,d + 1)-
invariant form upon introduction of a non-dynamical
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compensator UM. The resulting action reveals the in-
triguing chiral pattern (3.18), showing that in particular,
the action of the bosonic string can be reconstructed from
the heterotic action. One may expect that an extension of
this structure to higher orders in o will constrain the
potential higher order corrections in a similar way.

Another interesting application of the formally
O(d + 1,d + 1)-invariant formulation will be the study
of O(4,4) triality rotations on the resulting action. This
would, for instance, allow one to relate the inequivalent
higher order corrections obtained from T2 compactification
of chiral " = (2,0) and nonchiral V' = (1, 1) supergrav-
ity in six dimensions, respectively. With the latter corre-
sponding to the standard heterotic corrections (see [32] for
a recent discussion), this may be turned into a prediction of
the o corrections of the chiral theory in six dimensions.
As this theory arises from 10-dimensional type IIB super-
gravity compactified on the complex surface K3, this
computation would give profitable insights into the
higher-derivative corrections in ten dimensions.

The other main result of this paper is the massive
deformation identified in Sec. IV upon integrating out the B
field in three dimensions, keeping a constant three-form flux.
As exhibited in Eq. (4.32) above, this gives rise to a
deformation of the target space metric and the scalar potential,
as well as to new Chern-Simons terms for composite con-
nections which remarkably exhibit an enhancement to the
full O(d +1,d+ 1) to first order in the mass parameter.

|

Tr(J,J,) = =Tr(0,Ho,H™") + 4¢*®9, & HMN 9, &y + 80,D0,D.
(T T M), = e*®0,EHMN0,Ey + 4¢2P0,D0,D.

(j/ljy’/l>++ =

—e4®6ﬂ§M0y§M.

Within the general framework of gauged supergravities, such
massive deformations take the form of a particular and
somewhat degenerate example of a general gauging. In this
respect, our results may be viewed as a glimpse into the
structure of the o corrections of more general gauged super-
gravities in three dimensions. Of particular interest for holo-
graphic applications would be the study of these deformations
around the AdS; x S3 background. We hope to come back to
these issues in the future.
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APPENDIX A: O(d.d) DECOMPOSITIONS
OF O(d+1.d+1)

We list in the following the O(d,d) decomposition
of the O(d+ 1,d + 1) terms used in Sec. Il B and of
the basis of O(d + 1, d + 1)-invariant terms carrying four
derivatives [11].

(A1)
(A2)

(A3)

Tr(J, T, J*T") = Tr(9,Ho,H ' #HFH ") — 8e>P9, &y (H™' 9, HI H)MNor&y
— 166220, ®0, &, HMN &y + 320,00/ DI, DF D + 4600, £,,0,M 0" £y €Y

+46*0,E HMN0,En 0 EpHPL EC + 326700, D0, D0 £y HMN 7€

(A4)

Tro(J,T*T,J¥) = Tr(0,H*H 9, HH ") — 4¢®0, &y (H 0, HPH )MV &y
—4e*®0,Ey (H " 0" Ho,H- )N &y — 16€*0, D0 &y 0, HMN o £y
+320,00'D0, D ® + 2640, £, M, End EN + 2e40,£,0,EM 0 Ey o EN
+ 260, & HMN 04 £y 0, Ep HP Q¥ E2 4 264%0,8) HMN 0, &0 Ep HP 0¥ E2

+ 166220, 0 D0, &, HMN 0 &y + 166220, 00, DHE HMN 0#& .

To(T, T* T, T*Mn) = Tr(0,HO"H"9,HFH""Hp) — 46220, £,,(9, H™ P H)M oV
+ 46290, 8, (FHT O, H)M 0 &Y — 166220, D4y (H10,H)M o eV
+ 4e*0, & HMN O, En o Epd EP — 470, &\ HMN €y 0, Epdr EF

— 16620, D D0, £, " EV + 166220, D0, D&y 0" Y.

(A6)
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(T T TFT M), = =e*®0,E(H O, HH )Ny — 4e4%0, D0,y 0" HMN 0, &
+ 16¢2®0, 00" D0, PP @ + €50, HMN o, En 0 EpHPLO €
+ €5%0,8),0,EM 0 Ey ¥ EN + 126400, D0, D04 ) HMN V€. (A7)

(Tu T T T0) = e*®0,Em (0, HT P H)M 0 &N = 2¢5%9,£),0, 8" FEpHICEp — 46770, @0, D' Ey 0" Y. (AS)

(T T T TM), = —€*®0,E(HT " HOIH )Mo &y — 46400, D0"E),0, HMN &y,
+ 16€’®0, D" D0, D @ + %0, &), HMN £y 0,Ep HPC P E
+ €990,E 0 EM0,En P EN + 46400, D0, Do £ HMN o £y
+ 8¢*®9, 0" D9, &\ HMN €. (A9)

(T T T T, = 420,60 HT 0, H)M yo*EN + 46400, 0Ey (0, H " H)M o &Y
—2¢5%0,£40"EM0,EpHPC Ey + 4420, D0, D £ " EM — 849, D DI, &y 0" EM. (A10)
(T T T TM) . = —e*®0,E(H 0, HOH ) MN oy — 4690, D0"E),0, HYN 0¥ &y
+ 166*0,D0" D9, DD + %0, &), HMN 0, &0 EpyHPC
+ €%0,£1,0,EM 0" Ey 0 EN + 80,0, 0" &y HMN 0y + 46400, D0 D0, & HMN o Ey. (AL

(TuT T T4, = €*®0,E0 (0, H O H)M yEY — 46*®0, D&y (0, H H)M yor eV
— 26590, £,,0,EM HEPHPCP £y — 8eP0, D0, DHEY 0 EN + 46400, DI DI, £ EN.  (Al2)

APPENDIX B: FOUR-DERIVATIVE ACTION WITH MASS DEFORMATION

We detail here the computation of the action (4.26). We first give the rules for field redefinitions as modified by the mass
deformation of the two-derivative action. We then move to Einstein frame, use field redefinitions to convert all second order
derivatives into product of first order derivatives, and finally dualize the vector fields.

1. Field redefinitions

The two-derivative action in Einstein frame with B field integrated out is given in Eq. (4.8). Its equations of motion are

oIy = o / d3x —gg|0DPEg + 5gf]f:”EW,, + Tr(5H‘1EH) + éAﬂMEA”M], (B1)
where
1
Eq =200 + 3 e F MHynFHN — 2m?et®, (B2a)
1 1
E,, = Rg,, — 0,90,® + gTr(a,mfamt—l) -5 e F  MHynF N
1 1 1 1
5 9w <RE - 0,00°D + gTr(apHaﬂ’H—l) -2 e F  MHyy FroN — 3 m2e4¢> , (B2b)
E _ ! OH Ho, H ' o*H ! 20F L FH ! 20 PHpy FHOH B2
HMN = g mn + (Ho, )MN+§e N =5 € w Hpy ON | (B2c)
EA”M = e_Zd)vbe”NHNM - 26_2(DV”(DFD”NHNM + e—2®fprquNM + %e}wpfpr‘ (B2d)
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The resulting field redefinitions are as follows:

1
d — Qd) - —Ze_zq)fﬂbMHMNFﬂbN + m264®,

1 1
Re,, — Qg = 0,90,® — gTr(a,,HauH") +3 e F MHyunF N
1 1
- ZgEyp€_2®f/)6MHMNf/)ﬂN + 59Eyym264®7

1 1
UHuy — Onmn = _(HOMH_I‘)”H)MN 2 e F wmF N+ 26_2 uuPHPMJ’:””QHQN,

V, FM s QM =29, ®F M — Fo (9, HH )M — Eezq’eﬂ"p}',,pNHNM. (B3)

2. Einstein frame

We write the action (4.25) in Einstein frame (g, = gg,, = e_2q>gw):

b
a—+ 020

I = / &xy/=g5 {—

+4V,V,0VFVY + 40000 — 8V, V,0d G0 ® + 8LI0J, DD + 49, D DI, D D

<4REWREW — R% — 8Ry,, V¥V ® + 8Rg,, 0" DF D — 4R0, DI D

+ 116Tr(0 Ho,H'0*H*H™") —3—12Tr(a,,HayH—1)Tr(aﬂHa”H—1)

1 1
8 —4d> :,r M flmM fﬂpN f’yo’ +— g e—4d> fﬂDM HMN .7:)6N .’FWPHP jc‘mQ

1 1
- E 6_4(1).7: MHMNf”pNFDUPHPQf 0 + = e‘zq’(RE + 20 (Daﬂq))fngHMNFPGN
—2¢7*(Rg,, — V,V,® + aﬂcpaycb)fﬂﬂMHMNP,,N

1 1
- 5 6_2q)f”yM (Hd,,H_la”H)MNf””N + Z 6_ZQFM/)MHMny/,NTr(aﬂHal,H_l)

2 1
+ me*®etvr <§ Q,(S,f) 3 e F M (HC)DH_I)MN}—/JGN> - §m468®

1 3
+ m?e*® (RE — 400 — 20, D@ — ZTr(aﬂHa"H‘l) +3 e-2‘1’fﬂDMHMNﬂ"N> >

-b 1 1
+ e (— T TrOMOHT 0, HOH ) = 1o O F WM pouy F Hpg Fro0

—2(1) RE f M Jj‘ﬂy +e -20 RE fﬂ/)M Jf:'u 2®v;¢qu) fﬂ/)M poM

e72P0,0F DF, MF )y + 720,00, D F M FY

oo|>—dl\)|’—‘-l>\’—

1
T M(OHIHT) NFHy 4 2 e OF M (0 HI, M), Ny

wp) 1 2
s meomn (9 4 L E MM E,N ) + o O E ) (B4)
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3. Integrations by part and field redefinitions

We now convert all second order derivatives in Eq. (B4) into products of first order derivatives: We first use integrations
by part so that all the second order derivatives appear in the leading two-derivative contribution of the equations of motion
(B2), and obtain'?

b 1
I = / d*x\/~gp {— = ‘g e2® <4aﬂq>a“cbaycbavq> +—Tr(d,Ho,H ' *Ho*H™")

16
1 1

= 35 Tr(OHO M) Te(0 HO M) + 0 e O F M Hyy o FH P Hp 270
1 1

+§e_4q>‘7:ﬂuM'FpoM}-WmeN _56_4(1)‘7:#1/MHMNFWNFWPHPQF/MQ

— %0, D' OF ,,MHyy FoN + 67220, D0, OF M Hyyn F¥ N

1 1
-3 e F M(Ho,H 0 )y FHN + 1 e 2 FreMH yn FY N Tr(9, Ho, H™)

1
— 26_2®0D(I’FMPMaﬂHMNFUPN + §€_2®0p¢’f”DMapHMNFMDN

2 1 5
+ me*®etr (§ QS — 3 e F, M(Ho,H™! )MNFP"N> ~2 m*ed®
1 3
+ m2e4© (—ZO#CD()”(I) - ZTr(aﬂ'Ha“H—l) + Z e_ZQFFUMHMNF”DN)
+4Rg,, Re" — R — 12Rg,,, '@ ® + 4Ry0, 0D — 4R (1D + 8CIDLID
1
+ 5 €_2¢RE.FMHMHMN.7:W”N — Ze_zq)REﬂ,,fﬂpMHMnypN + m2€4d><RE — 4|:|(I)>

1
- 26_2®()D(Dvﬂfﬂl)MHMny/)N + E e—2<1>|:|¢)f'MDMHMNf‘ﬂUN>

-b 1 1
+ a ) e™2® (—ETr(dﬂHaﬂH_laDHﬁyH_lHn) T e‘4‘1’.7:WMFp6M}"””PHPQf””Q

1
= 3¢7200,00,0F M F pyy + 5 700,00 OF M F g

1
E_Z(DFﬂDM(apHapH_])MNf”VN + Ze_zcbfle(a”HapH_] )MNFW)N

oo —

+
j 1 2
+ mez‘bef“’p (Q,(wg> + Ze_2¢fyaMaaHMNprN) + %eZQFﬂDMFﬂUM
1 1
-7 e 2R F M Fr g + €72 Ry, FHOMFY Ly — i e POOF, MFry, + e‘zq’Vﬂfﬂf’aDCD]-"”pMﬂ . (B5)

Using the field redefinitions (B3), we get

= / Pxy/Ge [- X0 (% Tr(0,HO,H™ 0O H) 4 55 Tr(0, Ho, ™ Tr(0 Ho M)

1 1

- 6—4Tr(aﬂHa”H‘1 VTr(d, Ho*H™") + g e T MHynF N FHPHpo Fo0
1

+3 e CF MF

PoM

1
FﬂpN ]:'uaN _ E e—4<I> ]:'le HMN fﬂpN ]:wPHPQ ]:'paQ

3
+1g e T MHynFHNF P Hpo FroC — 0,004 P9, Do ®

“Note that here, contrary to what we did in Sec. III, we use partial integrations and field redefinitions before dualizing the
vector fields.
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1 1
+3 0,00, dTr(*HH™") — 1 0, P ®Tr(d,Ho*H™")
+ 7220, DHOF ,,MH yyFroN — 27220, D0, DF M H yy F¥ N

1 1
=5 ¢ O F WM (HOHT O H) TN + 2 7200, B F M Hyy 1N

2 1

+ me2@ener <3 QLS’;) -3 e—zcbj_-MM(HayH—l)MN}-ﬂaN + e—Z@aﬂq)fﬂnyaf)M) _ 4m2e4q’0ﬂ<ba”d> _ m468<13>
—-b 1 1

+ —a 4 €_2q) <—1—6Tr(5”H6"H_16,,H0”'H_1H17) - E3_4¢fﬂbepaMF”DPHPQFpGQ

1
e—4©f”UMfﬂnyp6PHPQF/)0Q + 5 e—4¢fﬂpry/)MfyﬂPHPnyo_Q

_|_
A= O] — i = 00| —

1

R0, OFDF M FHy + 35 TR0, HOH)F N Fy
1

€O TH(O,HO I FIMF g+ e PO F M (9, HO ), NPy

+ e 2O F, M0 HO,H) N F Yy — €200, 0F, M (P HH ) N Fry

» 1
+ me*®etvr <Q,(WE> + 1 e F M0 Hyn + 26"@7‘[MN)]:W,N> )} . (B6)

4. Dualization of the vector fields

We now dualize the vector fields into scalars by using the two-derivative dualization Eq. (4.11) in the form
-7:/41/M = EZ(DG;W/)DpéNHNMv (B7)

with D, &y = 0,&y + mA,y. We get

. 1
Il = / dPxy/=gpe® [— . ;;L b (—aﬂqmﬂcbayq)avcb + 1 Tr(0, Mo, M HoH)

+ 3izTr(a,,Haﬂfl)Tr(aﬂﬁfavﬁrl) - 6—14Tr(a”Ha”H‘1 )Tr(d,Ho*H)

1 1

+ 1 e**D,EMD,EyDHENDYEy — I e**D &y HMND EyDHEYHPODYE
1 1

+7 "D, EyHMNDIEYD EpHPODYE ) + > e*®D,Ey(H™ 0, Ho*H™)YMN DrEy,
1

-3 e**D, &y (H 0" Ho,H )MV D &y — 2¢*®0,00,DDFE HMN DY Ey,

1 1
+5 0,00,®Tr(*HH™") — 1 0,00 PTr(0,H"H™") + €*®0,®D &), 0* HMV D ¢,

2 1
+ me2®er <3 QY 5D, (M GDH)MND/,?:N) — 4m2e*9, DD — m4e8¢)

a—>b
4

1 1
(— ETr(a,,Haﬂﬁt—laﬂw{a”H—lHn) +3 ¢**D &y D, EMDFEPHPODYE,
1 1 1
-2 e*®D,Ey (0, H " H)M yDVEN — 5 ¢*®0,00'®D, &y DV EM — gTr(aﬂH()yH‘l YDHEy DY EM

1 o
+ ]—6Tr(0ﬂHdﬂH‘1)DU§MD”§M + €29,®D" &y (0, H"H)M DN + memeﬂv/’sz,ﬁy,%)ﬂ , (B8)
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which is equivalent to Eq. (4.26). Note that the terms 2 e** F,,™ (0°Hyy + 20°®Hyy) F,," give, upon dualization,

_%ewwvﬂDﬂgM(ayHMN +20,0HMN)D &y = 0.

Idem for me*?e™®0,DF ,,M F ;.

(B9)
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