
2D black holes, Bianchi I cosmologies, and α0

Tomas Codina ,1,* Olaf Hohm,1,† and Barton Zwiebach2,‡
1Institute for Physics, Humboldt University Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

(Received 2 May 2023; accepted 30 June 2023; published 21 July 2023)

We report two surprising results on α0 corrections in string theory restricted to massless fields. First, for
critical dimension Bianchi type I cosmologies with q scale factors only q − 1 of them have nontrivial α0

corrections. In particular, for Friedmann-Robertson-Walker backgrounds all α0 corrections are trivial.
Second, in noncritical dimensions, all terms in the spacetime action other than the cosmological term are
field redefinition equivalent to terms with arbitrarily many derivatives, with the latter generally of the same
order. Assuming an α0 expansion with coefficients that fall off sufficiently fast, we consider field
redefinitions consistent with this falloff and classify the higher-derivative terms for two-dimensional string
theory with one timelike isometry. This most general duality-invariant theory permits black-hole solutions,
and we provide perturbative and nonperturbative tools to explore them.
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I. INTRODUCTION

String theory features a fundamental length scale, which
is the square root of the inverse string tension α0 and
expected to be roughly

ffiffiffiffi
α0

p
∼ 10−32 cm. Some of the

mysteries of string theory revolve around the precise
ramifications of this possibly minimal length scale (see,
for example, [1]). In this paper we report on two surprising
results (at least surprising to the authors) regarding the
higher-derivative corrections of Einstein gravity that come
from string theory and that are governed by α0. One pertains
to cosmologies in critical string theory [2–4] and one to
black holes in two-dimensional string theory [5–7].
In order to determine the higher-derivative corrections,

the first step is to find, up to a given order in α0, a basis of
higher-derivative invariants, i.e., to classify the independent
higher-derivative terms up to field redefinitions. Apart
from assumptions of locality and invertibility, the field
redefinitions to be investigated are those that respect the
symmetries one assumes the higher-derivative terms to
have. The effective field theory of strings can be written
consistent with manifest diffeomorphism invariance, and so
one considers field redefinitions that preserve the tensor

character of fields. For instance, the Riemann-squared term
of bosonic or heterotic string theory in critical dimensions
cannot be changed by field redefinitions, and hence its
coefficient has an invariant meaning.1

In this paper we consider string theories in critical and
noncritical dimensions. For simplicity, we focus on
classical bosonic strings and we will examine cosmological
backgrounds in the critical dimension as well as the familiar
D ¼ 2 (two spacetime dimensional) black hole.2 Our work
will consider low-energy limits of these string back-
grounds. We will discuss situations where the total number
of spacetime dimensions D is written as D ¼ dþ 1, with d
Abelian isometries and with fields depending only on the
one remaining coordinate, which may be timelike or
spacelike. In this situation, the effective field theory of
classical strings possesses a global Oðd; d;RÞ duality
invariance [13–15]. Therefore, it should be possible to
write the higher-derivative terms in a manifestly Oðd; d;RÞ
invariant form, and the field redefinitions should respect
this structure. Interestingly, as implied by the seminal work
of Meissner [16], manifest Oðd; d;RÞ invariance is in
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1It should be emphasized, however, that field redefinitions that
do not preserve the tensor character are perfectly legal and may,
in fact, be necessary when additional symmetry principles are
imposed, as for instance in double field theory with α0 corrections
[8–12].

2In string theory usage, the black hole background is generally
considered a critical string theory, as one is working directly with
a theory of matter central charge 26. The name noncritical strings
is reserved for nonconformal field theories coupled to two-
dimensional gravity, in which case the Liouville mode of the
metric helps restore conformal invariance.

PHYSICAL REVIEW D 108, 026014 (2023)

2470-0010=2023=108(2)=026014(26) 026014-1 Published by the American Physical Society

https://orcid.org/0000-0003-3464-734X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.026014&domain=pdf&date_stamp=2023-07-21
https://doi.org/10.1103/PhysRevD.108.026014
https://doi.org/10.1103/PhysRevD.108.026014
https://doi.org/10.1103/PhysRevD.108.026014
https://doi.org/10.1103/PhysRevD.108.026014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


conflict with manifest diffeomorphism invariance in D
dimensions, a fact that reveals itself forcefully in the
general setting of double field theory [11,12]. Perhaps
somewhat surprisingly, in the context of dimensional
reduction to one dimension a complete classification of
all duality invariant higher-derivative terms can be obtained
and only first-order derivatives are needed [17,18], see
also [19,20].
Any classification of higher-derivative terms depends on

the space of backgrounds or fields to be included. The
above mentioned “cosmological” classification with fields
depending only on time includes the g00 component of
the metric, the purely spatial components of the metric and
B-field, and the dilaton. Restricting this space of back-
grounds further, there will generally be a more refined
classification. For instance, we may assume the consistent
truncation where the B-field vanishes and the spatial metric
is diagonal, with d “scale factors” on the diagonal that may
or may not be equal. For this smaller space of backgrounds
there are fewer higher-derivative terms that one can write,
but also fewer field redefinitions, so that the classification
problem has to be reconsidered. More restrictive back-
grounds provide computational advantages given the
smaller configuration space, but also provide less options
to consider deformations of solutions and to explore their
stability. As one of the two main technical results of this
paper we show that for one of the scale factors (that can be
picked arbitrarily) all higher-derivative terms can be
removed by field redefinitions. In particular, specializing
further to the case that all scale factors are equal, corre-
sponding to Friedmann-Robertson-Walker (FRW) back-
grounds, it follows that all higher-derivative terms are
removable by field redefinitions. The nonperturbative
cosmological FRW backgrounds with a single scale factor
explored in [17,18] were obtained in the context of α0
corrections that cannot be removed for general time-
dependent backgrounds. In that context, general time-
dependent perturbations of the solution can be consistently
analyzed. Moreover, it should also be emphasized that the
removal of higher-derivative terms is strictly perturbative,
so that there may be nonperturbative solutions that are
not accessible for classifications of very restrictive back-
grounds. More generally, perturbations or fluctuations
away from a background may not preserve any conditions,
as in cosmological perturbation theory, where the fluctua-
tions depend on all coordinates. In order to use dualities one
then requires a genuine double field theory [21].
As the second main result of this paper we revisit the

subject of higher-derivative modifications of string theory
in noncritical dimension, with a particular focus on the
black hole solution in two dimensions [5–7]. In fact, one of
the continuing appeals of this black hole solution is that it is
based on an exact CFT, hence giving rise to an exact string
background. Since the access to this exact background is
quite limited, α0 corrections of the two-derivative solution

were considered in [22], and analyzed in some detail by
Tseytlin in [23,24] who asserted that a well-defined α0
expansion in noncritical dimensions does not exist.
Moreover, while string loop corrections can be made
arbitrarily small, the α0 corrections cannot [25], hence
making it particularly urgent to get a handle on these
corrections.
We point out some surprising problems with the inter-

pretation of higher-derivative terms as perturbative correc-
tions to the leading order action or solution. To explain this
let us recall the spacetime action for the metric and dilaton
of string theory in D dimensions:

I½g;ϕ� ¼ 1

2κ20

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
−
2ðD − 26Þ

3α0
þ R

þ 4gμν∂μϕ∂νϕþ
X∞
n¼1

ðα0ÞnFðnÞðg;ϕÞ
�
; ð1:1Þ

where the FðnÞ denote possible terms of order 2nþ 2 in
derivatives, and we will sometimes refer to the term
proportional to 1

α0 as the cosmological term. We will show
that for D ≠ 26 any term in the action other than the
cosmological term can be traded, by means of field
redefinitions involving derivatives, for a term with higher
derivatives. This includes the two-derivative Einstein-
Hilbert term that could be traded for a term with four
derivatives. Iterating the redefinitions, the Einstein-Hilbert
term could be traded for terms with, say, 42 derivatives.
Alternatively, field redefinitions allow us to rewrite the
theory with the original cosmological term and interactions,
as a theory with the cosmological term and interactions
having 2n or more derivatives, for any n ≥ 2. In contrast to
string theory in the critical dimension, there are no invariant
terms apart from the cosmological term.
This result is puzzling, because adopting the usual

perturbative mindset one would view terms with large
numbers of derivatives as subleading compared to a term
with two derivatives, and hence one would feel free to drop
them. This is indeed the standard procedure of bringing
higher-derivative terms to a minimal form, but using this
procedure literally for string theory away from the critical
dimension, one would conclude that only the cosmological
term is nontrivial. What is really happening is that in such
string backgrounds generic higher-derivative term are not
actually subleading relative to terms with lesser number
of derivatives. Thus, while the field redefinitions to be
discussed are perfectly legal, it is the second step of
dropping induced terms with more derivatives that is
generally illegal.
To elaborate this point let us recall that while informally

one refers to the higher-derivative corrections of string
theory as “α0 corrections,” α0 itself, being dimensionful, is
not a small expansion parameter. In terms of the funda-
mental length scale

ffiffiffiffi
α0

p
of string theory, α0 is just one.

TOMAS CODINA, OLAF HOHM, and BARTON ZWIEBACH PHYS. REV. D 108, 026014 (2023)

026014-2



In fact, α0 can be eliminated from the action (1.1) by
defining the dimensionless derivative operator

∂μ ≔
ffiffiffiffi
α0

p ∂

∂xμ
; ð1:2Þ

and rescaling the action by α0:

Ī ≔ α0I ¼ 1

2κ20

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
−
2ðD − 26Þ

3
þ R̄

þ 4gμν∂μϕ∂νϕþ
X∞
n¼1

F̄ðnÞðg;ϕÞ
�
; ð1:3Þ

where the bar over R or F indicates that all derivatives ∂μ
have been replaced by ∂μ. In this formulation there is no α0

left, and there is no expansion in α0. Rather, one should
think of the higher-derivative corrections as an expansion in
terms of small derivatives of the fields. While this can make
sense in critical-dimension string theory, in noncritical
dimension string theory generic solutions feature fields
whose dimensionless derivatives are of order ∂ ∼Oð1Þ, so
that all higher-derivative terms can have significant effects.
Indeed, the 2D black-hole solution is obtained by

balancing the effects of the order 1=α0 cosmological term
and the two derivative terms, the result being a configu-
ration where dimensionless derivatives are of order one.
This sheds doubt on attempts to find a more accurate black
hole solution by means of higher-derivative corrections.
Nevertheless, we show that if the higher-derivative terms
are suppressed in a particular way, some simplifications of
the effective action are valid. To see this, suppose an oracle
gives us an action of the form (1.1) with infinitely many
higher-derivative terms. A priori, general higher-derivative
terms are all of the same order. Let us suppose, however,
that the higher-derivative terms come with numerical
coefficients that fall off in such a way that terms with
four or more derivatives are sub-leading compared to terms
with less derivatives. Since two-derivative terms come with
order one coefficients, this could happen if the terms of
order ðα0Þn, with n ≥ 1, come with coefficients of order ϵn

with ϵ < 1. In this situation we can ask and answer the
following question: What are the most general field
redefinitions that preserve this pattern, and what are the
most general higher-derivative corrections modulo these
restricted field redefinitions? We will show that these
additional requirements eliminate those field redefinitions
that allow one to remove arbitrary terms, and we will arrive
at a minimal nontrivial set of higher-derivative terms that
resembles the cosmological classification for critical string
theory. Given the current knowledge of derivative correc-
tions, we cannot know if such a classification applies to the
2D black hole. The general action in this setup, where fields
are time independent, is obtained in Sec. II D and takes
the form

I¼
Z

dxne−Φ
�
Q2þðDΦÞ2−M2þ

X
i≥1

ϵi
Q2iM

2iþ2

�
: ð1:4Þ

Here themetric isds2 ¼ −m2ðxÞdt2 þ n2ðxÞdx2, we defined
M ¼ 1

n ∂x lnm, Q2 ¼ 16=α0, and Φ is the duality-invariant
dilaton. The first three terms in brackets define the action up
to two derivatives; the last term, with arbitrary coefficients,
represents the possible inequivalent higher-derivative terms.
General field redefinitions of the “lapse” function nðxÞ are
not allowed for the classification—those are redefinitions
that can remove any higher-derivative term. A linear combi-
nation of the lapse and dilaton can be redefined, and so can
the metric component m. The work in [26] assumed an
expansion analogous to that above and discussed possible
solutions of the resulting equations, aiming to resolve the
black hole singularity (the casewhen themetric depends on a
single spatial coordinate is found in [27]).
This paper is organized as follows. In Sec. II we point out

and discuss the subtleties that arise for field redefinitions of
the string effective action in noncritical dimensions, i.e., in
presence of the cosmological term. We do this both in
general dimensions and in dimensional reduction to one
spatial dimension where, helped by duality symmetry and
the simplicity of the theory, we classify higher-derivative
terms up to the above mentioned class of field redefinitions.
In Sec. III we revisit the two-dimensional black hole
solution and discuss possible perturbative and nonpertur-
bative α0 modifications. We also discuss the proposal of
Dijkgraaf, Verlinde, and Verlinde [22] for a possibly exact
background. In Sec. IV we revisit string cosmologies of
type Bianchi I in critical dimensions and classify all higher-
derivative corrections. We offer some concluding remarks
in Sec. V.

II. STRING THEORY IN D ≠ 26 AND IN D= 2

In this section we begin by showing how in the D ≠ 26
string effective action for massless fields, having a cos-
mological term of order 1=α0, any interaction term can be
removed by a field redefinition of the metric. We then turn
to the important case when the spacetime dimension is two
(D ¼ 2) and examine the theory with the assumption that
fields do not depend on time—they only depend on the
spatial coordinate x. The field variables are the “lapse”
function nðxÞ whose square multiplies dx2 in the metric, a
metric componentmðxÞ, whose square multiplies dt2, and a
duality invariant dilaton Φ. We use a simplified “dilaton-
lapse” model to discuss possible field redefinitions, noting
that they fall into two classes, one in which the cosmo-
logical term varies, and one in which it does not. We find
that solutions, like the black hole or those of the dilaton-
lapse model, do not lend themselves to an α0 expansion.
Instead we discuss a possible suppression of derivative
corrections that could allow for a consistent set of field
redefinitions—those in the second class above. We use this

2D BLACK HOLES, BIANCHI I COSMOLOGIES, AND α0 PHYS. REV. D 108, 026014 (2023)

026014-3



to finally give a classification of higher-derivative inter-
actions for the D ¼ 2 backgrounds that have no time
dependence.

A. Field redefinitions for D ≠ 26

Let us reconsider the effective spacetime action ID
for strings in D dimensions (1.1) including its higher-
derivative corrections:

ID½g;ϕ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕ

�
−Λþ Rþ 4gμν∂μϕ∂νϕ

þ
X∞
n¼1

ðα0ÞnFðnÞðg;ϕÞ
�
; ð2:1Þ

where we have set the B-field to zero, we have introduced
the constant Λ defined to be

Λ ¼ 2ðD − 26Þ
3α0

; ð2:2Þ

and the FðnÞ are arbitrary functions of g and ϕ of order
2nþ 2 in derivatives. Note that the cosmological term is of
order 1=α0, the two-derivative terms are of zeroth order in
α0, and the higher-derivative terms begin at order α0.
Consider now the exact field redefinition of the metric

gμν → gμν þ Δgμν; ð2:3Þ

where we will take Δgμν to be a local function given by a
derivative expansion.3 This implies

gμν → gμν − Δgμν þOððΔgÞ2Þ;
ffiffiffiffiffiffi
−g

p
→

ffiffiffiffiffiffi
−g

p �
1þ 1

2
gμνΔgμν þOððΔgÞ2Þ

�

R → Rþ Δgμν
�
Rμν −

1

2
gμνR

�

þ gμνð∇ρΔΓ
ρ
μν −∇μΔΓ

ρ
ρνÞ þOððΔgÞ2Þ: ð2:4Þ

Indices on Δgμν are raised with the unperturbed gμν. We
take Δgμν to be given by a derivative expansion:

Δgμν ¼ Δð1Þgμν þ Δð2Þgμν þ � � � ; ð2:5Þ

where ΔðnÞgμν is of order 2nþ 2 in derivatives. The first
term in the redefinition above has four derivatives.
The redefined action I0D is given by (2.1) with g replaced

by gþ Δg:

I0D ≔ ID½gþ Δg;ϕ�

¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕð−Λþ Rþ 4gμν∂μϕ∂νϕÞ

þ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ϕgμνΔð1Þgμνð−ΛÞ

þ α0
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕFð1Þðg;ϕÞ þ � � � ; ð2:6Þ

where we used (2.4) and where the ellipsis denote terms
with more than four derivatives. This follows from Δð1Þgμν
being already of fourth order in derivatives, so that in
particular new terms induced from the two-derivative action
are already of order six in derivatives. We can cancel the
four-derivative Fð1Þ term by choosing

Δð1Þgμν ¼
2

D
α0

Λ
gμνFð1Þðg;ϕÞ: ð2:7Þ

Since Λ is of order 1=α0, the above right-hand side is of
order α02. The six-derivative terms encoded in Fð2Þ receive
further contributions from the field redefinition, and we
denote the totality of all such terms by F̃ð2Þ. The redefined
action then reads

I0D ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕ

�
−Λþ Rþ 4gμν∂μϕ∂νϕ

þ ðα0Þ2F̃ð2Þðg;ϕÞ þ � � �
�
; ð2:8Þ

where the ellipsis denotes all terms with more than six
derivatives. Of course, we could have instead cancelled the
Einstein-Hilbert term R by including a two-derivative term
Δð0Þg in the Δg expansion, and setting Δð0Þgμν ¼ 2

D
1
Λ gμνR.

In that case the action would have the cosmological term
followed by terms with four derivatives.
The procedure above can be iterated. Looking at the

action (2.8) we can just repeat the procedure by setting

Δð2Þgμν ¼
2

D
α02

Λ
gμνF̃ð2Þðg;ϕÞ; ð2:9Þ

so as to cancel the terms F̃ð2Þ with six derivatives. Thus, all
higher-derivative corrections can be moved to arbitrary
high order in α0.

B. Dimensional reduction

We want to analyze the duality properties and α0
corrections of the black hole solution in 2D string theory
[5,6]. The two-derivative action for string theory in D
dimensions, taken with vanishing B-field, reads

3As a field redefinition one must view this replacement as
setting gμν ¼ g0μν þ Δgμνðg0Þ so that the action becomes
IðgÞ ¼ Iðg0 þ Δgðg0ÞÞ≡ I0ðg0Þ. One can solve for g0 in terms
of g by inverting the expression for g in terms of g0.
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ID ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕ

�
−
2ðD − 26Þ

3α0
þ Rþ 4gμν∂μϕ∂νϕ

�
:

ð2:10Þ

To focus on the string theory black hole we setD ¼ 2, with
coordinates xμ ¼ ðx0; x1Þ ¼ ðt; xÞ and fields that do not
depend on time t. We thus make the ansatz

gμν ¼
�
−m2ðxÞ 0

0 n2ðxÞ

�
; ϕ ¼ ϕðxÞ: ð2:11Þ

It is worthwhile to compare with the cosmological case,
where all fields depend on time and are independent of d
internal spatial coordinates. In this case one has a global
Oðd; dÞ duality symmetry. Here, spacetime is two dimen-
sional, and the fields do not depend on time. Time is then
the one “internal” coordinate and the duality group is just
Oð1; 1Þ. In the cosmological setting, the component of the
metric in the time-time direction is the lapse function. Here,
the component nðxÞ of the metric in the space-space
direction is the analog of the cosmological lapse function.
The resulting action will be x-reparametrization invariant.
With reparametrizations x → x − λðxÞ we have that scalars
A transform as δλA ¼ λ∂xA. The fieldm2ðxÞ ¼ −g00ðxÞ is a
scalar under x-reparametrizations, and so ismðxÞ. The field
nðxÞ transforms as a density: δλn ¼ ∂xðλnÞ. Since only x
derivatives exist, we do not need partial derivatives, and
ordinary x derivatives will be denoted with primes 0 ≡ d

dx.
When multiplied with n−1, x derivatives then give the
covariant derivative

D≡ 1

n
d
dx

: ð2:12Þ

If A is a scalar, then DA is also a scalar. The group of
dualities here isOð1; 1Þ. In the component connected to the
identity, group elements h are of the form

h ¼
�
eα 0

0 e−α

�
; htηh ¼ η;

with η ¼
�
0 1

1 0

�
¼ ηt ¼ η−1: ð2:13Þ

Here α is any real number, and η is the Oð1; 1Þ metric. In
the component disconnected to the identity, we have

h ¼
�

0 eα

e−α 0

�
∈ Oð1; 1Þ: ð2:14Þ

Note that for α ¼ 0 we have h ¼ η, as a group element.
In this setup, the generalized metric S is a two-by-two

matrix that involves the internal metric components, that is,
the component m2 introduced above, and the internal
B-field, which vanishes in one dimension. We thus get

S ¼
�

0 m2

m−2 0

�
∈ Oð1; 1Þ; ð2:15Þ

where we noted that S is an element of the groupOð1; 1Þ, in
fact, an element belonging in the component disconnected
to the identity, as it is clear from its determinant being equal
to minus one. Under duality one has

S → hSh−1: ð2:16Þ

For the duality transformations connected to the identity,
the field m is scaled by a constant: m → meα. The field
nðxÞ is duality invariant, and we have ϕ → ϕþ α

2
. As a

result, we have the duality-invariant dilaton Φ given as

e−ΦðxÞ ≡mðxÞe−2ϕðxÞ: ð2:17Þ

Since both ϕðxÞ and mðxÞ are scalars under
x-reparametrizations, Φ is also a scalar under such repar-
ametrizations. The above equation makes the duality
invariance of the measure clear:

ffiffiffiffiffiffi
−g

p
e−2ϕ ¼ nme−2ϕ ¼ ne−Φ: ð2:18Þ

For the disconnected dualities we take h ¼ η and then have

S → ηSη ¼
�

0 m−2

m2 0

�
; or m →

1

m
; ð2:19Þ

while invariance of (2.17) yields ϕ → ϕ − ln jmj. This is
the familiar discrete Z2 duality.
The effective action can be written ignoring time, as no

quantity is time dependent. The resulting one-dimensional
action, setting D ¼ 2 in (2.10) and on account of the above
comments, takes the form

I ¼
Z

dxne−ΦðQ2 þ Rþ 4n−2ðϕ0Þ2Þ; ð2:20Þ

where we defined

Q2 ≡ 16

α0
: ð2:21Þ

To get a useful expression in terms of the m and Φ fields,
we need to work out the Ricci scalar for the above metric
ansatz. The nonvanishing Christoffel symbols are given by

Γ1
00¼

1

n2
mm0; Γ0

10¼m−1m0; Γ1
11¼ n−1n0: ð2:22Þ

The Ricci tensor Rνσ ¼ ∂μΓ
μ
νσ − ∂νΓ

μ
μσ þ Γμ

μλΓλ
νσ − Γμ

νλΓλ
μσ

then yields the components
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R00 ¼
1

n2
ðmm00 − n−1n0mm0Þ;

R11 ¼ −m−1m00 þm−1m0n−1n0: ð2:23Þ

The Ricci scalar is therefore

R¼−
2m00

mn2
þ 2

mn3
n0m0 ¼−

2

mn

�
m0

n

�0
¼−

1

mn

�ðm2Þ0
mn

�0
:

ð2:24Þ
Inserting this into the action, using (2.17) to pass from ϕ to
Φ and m, and integrating by parts in order to have only
first-order derivatives gives

I ¼
Z

dx
1

n
e−Φðn2Q2 þ ðΦ0Þ2 − ðm−1m0Þ2Þ: ð2:25Þ

The action can also be written in terms of the generalized
metric S

I ¼
Z

dx
1

n
e−Φ

�
n2Q2 þ ðΦ0Þ2 þ 1

8
trðS0Þ2

�
: ð2:26Þ

Oð1; 1Þ global duality invariance is manifest because n and
Φ are invariant and S transforms as indicated in (2.16).
Finally, defining

M ≡m−1Dm ¼ m0

mn
; ð2:27Þ

we can also write the action as

I ¼
Z

dxne−ΦðQ2 þ ðDΦÞ2 −M2Þ: ð2:28Þ

The equations of motion follow from the general variation

δI ¼
Z

dxne−Φ
�
δn
n
En þ 2

δm
m

Em þ δΦEΦ

�
; ð2:29Þ

for which we find

En ¼ −ðDΦÞ2 þM2 þQ2 ¼ 0;

Em ¼ DM − ðDΦÞM ¼ 0;

EΦ ¼ −2D2Φþ ðDΦÞ2 þM2 −Q2 ¼ 0: ð2:30Þ
As a consequence of coordinate-reparametrization invari-
ance, these equations are not all independent but satisfy the
Bianchi identity

DΦðEn þ EΦÞ þ 2MEm −DEn ¼ 0: ð2:31Þ

We note that the second equation in (2.30) implies

ðe−ΦMÞ0 ¼ e−ΦðM0 −Φ0MÞ ¼ 0; ð2:32Þ

i.e., that e−ΦM is constant and does not depend on x. This is a
manifestation of Noether’s theorem for Oð1; 1Þ invariance.

C. Two classes of field redefinitions

In this section we will explore field redefinitions of a
dilaton-lapse model with a cosmological term. In this
model, obtained by setting M ¼ 0 in the action (2.28),
one can easily find solutions of the equations of motion,
even after including a large class of higher-derivative terms.
This allows us to see explicitly the effect of field redefi-
nitions. Moreover, the results obtained here apply almost
without change to the case of the D ¼ 2 black hole.
We will see clearly in this dilaton-lapse model that

solutions of the lowest order nontrivial equations imply that
a conventional derivative expansion is problematic: there is
no obvious suppression of the higher-derivative terms. All
terms seem equally important and field redefinitions used
to classify interactions do not operate as usual.
Our analysis below will assume theories in which there is

an in-built suppression of the higher-derivative terms, a
suppression due to constants that multiply the interactions
and become smaller as the number of derivatives increase.
While we cannot justify such an assumption in the case

of the 2D black hole, the assumption does seem to hold for
certain field theories arising from string theory, as is the
case of tachyon dynamics, where, as discussed in [28], the
Lagrangian L takes the form

L ¼ 1

2
ϕð∂2 þ 1Þϕþ 1

3
ðeξ2∂2ϕÞ3: ð2:33Þ

This Lagrangian, written in terms of unit-free fields and
derivatives, depends on a constant ξ, a nonlocality param-
eter. Roughly, a term with 2k derivatives comes with a
factor ξ2k. If ξ < 1 there is some suppression, and for ξ ≪ 1
a strong suppression.
Returning to our dilaton-lapse model, even assuming an

in-built suppression, complications arise due to the cos-
mological term. We will argue that there are two classes of
field redefinitions:
(1) Separate field redefinitions of the lapse or dilaton

function, which generate new interactions via the
variation of the cosmological term as well as the
variation of other terms.

(2) Simultaneous field redefinitions of the lapse and
dilaton for which no terms arise from the variation of
the cosmological term.

We will argue that redefinitions of type 1 do not preserve
the structure of in-built suppression: higher-derivative terms
induced by the redefinitions are not suppressed appropriately
and thus cannot be neglected. Redefinitions of type 2,
however, respect the structure of in-built suppression and
thus can be used in the conventional setting of effective field
theory to classify interactions.Wewill consider the issue first
on a simplified model and then we will generalize.
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1. Dilaton-lapse model and redefinitions

Consider, therefore, the two-derivative theory obtained
by setting M ¼ 0 in the action (2.28):

Ið0Þ ¼
Z

dxne−Φ½Q2 þ ðDΦÞ2�: ð2:34Þ

Its equations of motion are given by

Eð0Þ
n ≡Q2 − ðDΦÞ2 ¼ 0;

Eð0Þ
Φ ≡ −Q2 þ ðDΦÞ2 − 2D2Φ ¼ 0: ð2:35Þ

These are solved by the linear dilaton background

nð0Þ ¼ 1; Φð0Þ ¼ Qx: ð2:36Þ

The simplest higher-derivative extension to (2.34) is given
by

Ið1Þ ¼
Z

dxne−Φ½Q2 þ ðDΦÞ2 þ cα0ðDΦÞ4�: ð2:37Þ

Note that for the solution Φð0Þ ¼ Qx, all three terms in the
action are of the same order Q2 (since α0 ∼ 1=Q2). The
lapse equation following from the above action is given by

En ≡Q2 − ðDΦÞ2 − 3cα0ðDΦÞ4 ¼ 0; ð2:38Þ

and the dilaton equation is automatically satisfied when the
lapse equation holds due to the Bianchi identity [see (2.31)
specialized to Em ¼ 0]. The above equation admits a
unique real solution of the form

n¼ 1; Φ¼ωx; ω2≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ12cα0Q2

p
−1

6cα0
: ð2:39Þ

This solution can be considered a small correction to (2.36)
when ω2 has a convergent perturbative expansion in powers
of cα0Q2. This happens when j12cα0Q2j< 1. WithQ2 ¼ 16

α0 ,
the only option is a small coefficient in the action, namely
jcj < 1

192
. More generally, we need

ϵ≡ cα0Q2 ≪ 1: ð2:40Þ

If this condition is satisfied, ω2 can be expanded in powers
of ϵ and so

Φ¼ ωx¼
�
1−

3

2
ϵþOðϵ2Þ

�
Qx¼Φð0Þ −

3

2
ϵQxþOðϵ2Þ;

ð2:41Þ

where the leading term is the two-derivative solution (2.36)
and the rest are truly small corrections to it. If (2.40) does not
hold, the four-derivative term in the action contributes terms

comparable to the two-derivative solution, making a deriva-
tive expansion meaningless. We assume that (2.40) holds.
For simplicity, we rewrite the theory in terms of a unit-

free derivative ∂x ≡ ð1=QÞ∂x, so that D̄ ¼ ð1=QÞD. In
terms of these derivatives, the action (2.37) becomes

Īð1Þ≡ 1

Q2
Ið1Þ ¼

Z
dxne−Φ½1þðD̄ΦÞ2þ ϵðD̄ΦÞ4�: ð2:42Þ

In this notation a variation of the lapse n → nþ δn gives to
leading order

Īð1Þ → Īð1Þ þ
Z

dxne−Φ
δn
n
Ēn þOððδnÞ2Þ;

with Ēn ¼ 1 − ðD̄ΦÞ2 − 3ϵðD̄ΦÞ4: ð2:43Þ

We now perform a lapse redefinition to remove the four-
derivative term. We take

δn
n

¼ −ϵðD̄ΦÞ4: ð2:44Þ

The associated field redefinition is n ¼ n0 þ δnðn0Þ and
Φ ¼ Φ0. The redefined action, called Ī0, and written in
terms of the new (primed) fields is given by

Ī0 ¼
Z

dxn0e−Φ0 ½1þ ðD̄Φ0Þ2 þ ϵðD̄Φ0Þ6 þOðϵ2Þ

þOððδnÞ2Þ�: ð2:45Þ

The field redefinition eliminated the four-derivative term at
the cost of introducing a six-derivative term, also at order ϵ.
Since derivatives D̄ in the unperturbed theory are of order
one, this new term is not parametrically smaller than the
original four-derivative term. This shows that pure lapse
transformations do not allow us to classify interactions in
the sense of effective field theory. They are redefinitions
of type 1, and as claimed do not respect the structure of
in-built suppression. We would have wanted the new six-
derivative interaction to appear at a higher order in ϵ.
We now discuss type 2 transformations; those that

preserve the structure of in-built suppression and thus
can be used to remove higher-derivative terms without
inducing same-order effects. In this case, it will allow us to
eliminate the four-derivative term consistently. The redefi-
nition is of the form

Φ ¼ Φ0 þ δΦðn0;Φ0Þ;
n ¼ n0 þ δnðn0;Φ0Þ;

with δΦ ¼ δn
n
: ð2:46Þ

For such a correlated redefinition of the dilaton and the lapse,
the variation of the action to linearized order is, from (2.29),
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δI ¼
Z

dxne−Φ½ðEn þ EΦÞδΦ�;

En þ EΦ ¼ −2D̄2ΦþOðϵÞ: ð2:47Þ

An important fact is that this linear combination of equations
of motion has no constant term. We will choose, to order ϵ,
the following variation in order to remove the four-derivative
term from (2.42):

δn
n

¼ δΦ ¼ 3

2
ϵðD̄Φ0Þ2: ð2:48Þ

Under this redefinition, (2.42) changes to a new action, with
primed fields

Ī0 ¼
Z

dxn0e−Φ0
�
1þ ðD̄Φ0Þ2 þ ϵðD̄Φ0Þ4

þ ð−2D̄2Φ0Þ
�
3

2
ϵðD̄Φ0Þ2

�
þOðϵ2Þ

�

¼
Z

dxn0e−Φ0 ½1þ ðD̄Φ0Þ2 þ ϵ½ðD̄Φ0Þ4

− 3ðD̄Φ0Þ2D̄2Φ0� þOðϵ2Þ�

¼
Z

dxn0e−Φ0 ½1þ ðD̄Φ0Þ2 þOðϵ2Þ�: ð2:49Þ

In the last equality we used integration by parts to see that
the OðϵÞ term is identically zero. This time we succeed in
eliminating the four-derivative term since the only additional
terms generated are truly higher-order Oðϵ2Þ effects.

2. The general dilaton-lapse model and field redefinitions

The lessons of the above discussion can be refined by
considering the general version of the dilaton model:

I ¼
Z

dxne−Φ
�
Q2 þ ðDΦÞ2 þ

X
i≥1

ciα0iLð2iþ2ÞðD;ΦÞ
�
;

ð2:50Þ

which includes infinitely many α0 corrections depending
only on covariant derivatives of Φ, with Lð2iþ2ÞðD;ΦÞ
containing 2iþ 2 derivatives. The same action can be
rewritten in terms of the dimensionless derivative D̄,
absorbing a factor of Q2:

Ī ¼
Z

dxne−Φ
�
1þ ðD̄ΦÞ2 þ

X
i≥1

ϵiL̄ð2iþ2Þ
�
;

ϵi ≡ ciðα0Q2Þi: ð2:51Þ

Again, this action has no meaningful derivative expansion
unless the coefficients ϵi decay fast enough. This can be
formalized by extending the condition ϵ ≪ 1 considered
before to the condition:

ϵ≡ ϵ1 ≪ 1; ϵi ∼ ðϵÞi; i ≥ 1; ð2:52Þ
where the symbol ∼ denotes proportionality up to factors of
order one. The above condition guarantees that each term in
the derivative expansion is parametrically smaller than the
previous one. In order to explore the effect of perturbative
field redefinitions, we will assume that this condition is
satisfied. Note that the condition above also implies that

ϵpϵk ∼ ϵpþk: ð2:53Þ
A pure lapse transformation or a pure dilaton trans-

formation will break condition (2.52), the correlation
between the number of derivatives and the power of ϵ.
This happens because such redefinitions generate variations
from the zero derivative term in the action and the two-
derivative term in the action, and the powers of ϵ are no
longer correlated with the number of derivatives.
The solution is clear, to leave the correlation between

derivatives and powers of ϵ we must perform (as we did
before) a redefinition of both the lapse and the dilaton:

Φ ¼ Φ0 þ δΦðΦ0; n0Þ; n ¼ n0 þ δnðΦ0; n0Þ; ð2:54Þ
where the variations are related as follows:

δn
n0

¼ eδΦ − 1: ð2:55Þ

This is constructed such that ne−Φ is kept invariant:

ne−Φ ¼ ðn0 þ n0ðeδΦ − 1ÞÞe−Φ0
e−δΦ

¼ n0eδϕe−Φ0
e−δΦ ¼ n0e−Φ0

: ð2:56Þ
As a result, the cosmological term does not generate
variations, and this will allow us to preserve condition
(2.52). In the above we take

δΦ ¼
X
i≥1

ϵiFð2iÞ; ð2:57Þ

with Fð2iÞ generic gauge and duality invariant terms
depending on D̄Φ and containing 2i derivatives, and the
ϵi are the constants introduced earlier. A completely
analogous expression holds for the variation of n, with a
related set of functions Gð2iÞ.
Applying the variations to the action (2.51), we note that

we must only vary the terms inside the brackets. Beginning
with the two-derivative term and using the above δΦ, each
term in the variationwill have an ϵi accompaniedwith 2iþ 2

derivatives, 2i of them from Fð2iÞ, and the other two from the
two-derivative term being varied. This is indeed consistent
with the structure of the suppression. Continuing with
the higher-derivative terms, varying L̄ð2jþ2Þ in the action
with the Fð2kÞ term of the dilaton variation, one gets the
product ϵjϵk ∼ ϵjþk multiplying terms with ð2jþ 2kÞ þ 2

derivatives, which is also consistent with the constraint. Of
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course, identical remarks hold for the variation of n. This
shows how the claimed redefinitions are consistent with the
falloff conditions.
Therefore, we can use (2.55) order by order in ϵ so to

remove terms consistently. This is the procedure developed
in [17] for critical strings, with the role of α0 played here by
the ϵi’s satisfying (2.52). Using that logic we can imple-
ment field redefinitions as simple substitution rules in the
action. We can in fact conclude that the all-order theory
(2.51) is totally equivalent to the lowest order one (2.34).
Indeed, the substitution rule follows from the equation of
motion from part of the theory up to two-derivatives

Ēn þ ĒΦ ¼ −2D̄2Φ ⇒ D̄2Φ ≃ 0þOðϵÞ; ð2:58Þ

and so we can recursively eliminate any term containing
higher-derivatives of the dilaton (using integration by parts
and dropping total derivatives).

D. Classification of higher-derivatives in D= 2

The final conclusion of the previous subsection can be
easily extended to the case when m propagates. To see this,
we consider the analogue to (2.51) in the presence of M

Ī¼
Z
dxne−Φ

�
1þðD̄ΦÞ2−M̄2þ

X
i≥1

ϵiL̄
ð2iþ2Þðn;D̄Φ;M̄Þ

�
;

ð2:59Þ

where L̄ð2iþ2Þ contains 2iþ 2 derivatives, and the in-built
suppression conditions ϵi ∼ ðϵÞi holds. We also extended
the bar notation to M̄ ¼ 1

QM. Then, we notice that by
extending (2.55) to

Φ ¼ Φ0 þ δΦðn0;Φ0; m0Þ; n ¼ n0 þ δnðn0;Φ0; m0Þ;

m ¼ m0 þ δmðn0;Φ0; m0Þ; δn
n

¼ eδΦ − 1;

δΦ ¼
X
i≥1

ϵiF
ð2iÞ
Φ ;

δm
m

¼
X
i≥1

ϵiF
ð2iÞ
m ; ð2:60Þ

the in-built suppression feature is satisfied for the induced
terms since transformations of m do not affect the measure
ne−Φ and so it remains invariant under the redefinitions
(2.60). Finally, in the same way we could use (2.58) to
perform a classification for the dilaton model (2.51), here
we can apply the rules

En þ EΦ ¼ 0 ⇒ D̄2Φ ≃ M̄2 þOðϵÞ; ð2:61aÞ
Em ¼ 0 ⇒ D̄ M̄≃D̄ΦM̄ þOðϵÞ; ð2:61bÞ

where we used the lowest order equations of motion given
in (2.30). The classification of [17] goes through up to the
point where redefinitions of the lapse function are needed,
which in this case are not allowed because of the extra

condition n0e−Φ0 ¼ ne−Φ. Specifically, the same step-by-
step proof of Sec. 2.2 in [17], with the same itemization,
proceeds as follows. We assume that to any order in ϵ any
term in the action is writable as a product of factors D̄kΦ
and D̄lM̄. We can now perform field redefinitions of the
form (2.60), which in practice consist of applying the rules
(2.61) in the action, in order to establish:
(1) A factor in an action including D̄2Φ can be replaced

by a factor with only first derivatives. This follows
directly from (2.61a).

(2) A factor in an action including D̄ M̄ can be replaced
by a factor with only first derivatives. This follows
directly from (2.61b).

(3) Any action can be reduced so that it only has first
derivatives of Φ. The proof proceeds as in [17]: We
write any higher-derivative as D̄pþ2Φ ¼ D̄pðD̄2ΦÞ,
and then integrate by parts the D̄p. Then we
substitute D̄2Φ → M̄2, after which we integrate
the derivatives back one-by-one, eliminating any
second derivative created, using (1) or (2). At the end
we are left with only first-order derivatives of Φ.

(4) Any action can be reduced so that it only contains
M̄, not its derivatives. The proof is identical to the
previous one.

(5) Any higher-derivative term is equivalent to one
without any appearance of D̄Φ. So far we have
shown that a generic higher-derivative term in the
action is

I ¼
Z

dxne−ΦðD̄ΦÞ2pM̄2l; ð2:62Þ

where duality invariance demands even powers of M̄
and thus even powers of D̄Φ, since the total number
of derivatives must be even. This means that p; l ¼
0; 1; 2;… and pþ l > 1, to have at least four
derivatives. Using e−ΦD̄Φ ¼ −D̄e−Φ for one of
the D̄Φ factors, and then integrating by parts we find

I ¼ −
Z

dxnD̄ðe−ΦÞðD̄ΦÞ2p−1M̄2l;

¼
Z

dxne−Φðð2p − 1ÞðD̄ΦÞ2p−2D̄2ΦM̄2l

þ ðD̄ΦÞ2p−12lM̄2l−1D̄ M̄Þ;

≃
Z

dxne−Φðð2p − 1ÞðD̄ΦÞ2p−2M̄2lþ2

þ 2lðD̄ΦÞ2pM̄2lÞ; ð2:63Þ

where we used (2.61) in the last line. The second
term in the last line is a multiple of the original term.
Thus, bringing it to the left-hand side,
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ð1 − 2lÞI ≃ ð2p − 1Þ
Z

dxne−ΦðD̄ΦÞ2p−2M̄2lþ2;

ð2:64Þ

and so, since l ≠ 1
2
,

I ≃
2p − 1

1 − 2l

Z
dxne−ΦðD̄ΦÞ2p−2M̄2lþ2: ð2:65Þ

Thus, we can systematically reduce the powers of
D̄Φ in steps of two until removing all D̄Φ factors.4

The above chain of arguments proved that there is a field
basis in which all higher-derivative terms involve only
powers of M̄2 and so the most general action is given by

I ¼
Z

dxne−Φ
�
1þ ðD̄ΦÞ2 − M̄2 þ

X
i≥1

ϵiM̄2iþ2

�
; ð2:69Þ

where, if truncated at order ϵN−1 we know from (2.52) that
the remaining terms are of orderOðϵND̄2Nþ2Þ and therefore
contribute small corrections to the solutions of the trun-
cated theory.

III. BLACK HOLE SOLUTIONS

This section begins by reviewing the construction of the
black hole solution in the field variables and action with
simple duality properties (Sec. II B). We point out that the
dilaton-lapse theory can be viewed as giving rise to a zeroth
order solution—a linear dilaton profile, such that the black
hole arises as a perturbation of this solution. We then begin
to examine the solutions of the general two-dimensional
theory with spatial dependence only, using the classifica-
tion in (2.69). The general theory is specified by a power
series in M̄, with just even powers, which we call FðM̄Þ.
We demonstrate that the general solution for the fieldsmðxÞ
and ΦðxÞ can be obtained in terms of an integral involving

functions of M̄ easily constructed from FðM̄Þ. The two-
derivative black hole solution, in the gauge n ¼ 1, is then
given by M̄ ¼ cschx̄ and eΦ ¼ cschx̄, and mðxÞ can be
obtained by suitable integration of M̄.
The integral formulation is the basis for a perturbative

solution of the equations of motion. The perturbation is
relative to the two-derivative black hole solution which is
taken to be the zeroth order solution, with the perturbative
parameter ϵ < 1 that controls the falloff of the higher-
derivative terms in the action. We find that at each order of
the perturbation the contributions to M̄ and eΦ are given by
finite polynomials in cschx̄.
We conclude with some analysis of the systematics of

nonperturbative solutions, motivated by the perturbative
results. We use an ansatz where M̄ and eΦ are written as
series expansions in terms of cschx̄ and find that the series
for M̄ appears to fix both the series for eΦ and for FðM̄Þ.
We also discuss the ansatz for an “exact” solution by
Dijkgraaf, Verlinde, and Verlinde [22]. There is no simple
method, however, to analyze this solution in our framework
since in our field basis the T-duality transformation takes
the form m → 1=m, which is not the case in their
formulation, except in the k → ∞ limit (k ¼ 9=4 for the
black hole). More concretely, we see that their ansatz
cannot be fit into our formulation.

A. Black holes in the two-derivative theory

For completeness, we begin by rederiving the black hole
solution in the standard coordinates resembling the
Schwarzschild solution in four dimensions. The equations
of motion are given in (2.30) and Em ¼ 0 implies that
e−ΦM is constant, i.e.,

M ¼ eΦq; q ¼ const: ð3:1Þ

The two remaining equations we put in the equivalent form
En ¼ 0, EΦ þ En ¼ 0, and write out the covariant deriv-
atives:

1

n2
ðΦ0Þ2 −

�
m0

mn

�
2

¼ Q2;

1

n
ðn−1Φ0Þ0 −

�
m0

mn

�
2

¼ 0: ð3:2Þ

We now set

mn ¼ 1: ð3:3Þ

This constraint can be viewed as a gauge condition. Indeed,
mn is a density since the lapse n is a density and m is a
scalar. Instead of gauge fixing to n ¼ 1, which wewill do at
some point, here we gauge fix to have mn ¼ 1. Note that in
this gauge M ¼ m0. We now make the ansatz

4Let us justify (2.64), in which we solve an equivalence relation
between actions as if it was an actual equation. Suppose we
establish an on-shell equivalence of an action term I of the form

I ≃ αI þ K; ð2:66Þ
where α is a numerical coefficient and K another action term. In
order to solve I ≃ 1

1−αK for α ≠ 1 we write

I ¼ ð1 − βÞI þ βI; ð2:67Þ
where β is for now an undetermined parameter. Using (2.66) in the
second term, we have

I ≃ ð1 − βÞI þ βðαI þ KÞ ¼ ð1 − βð1 − αÞÞI þ βK: ð2:68Þ

Since β is arbitrary we can choose β ¼ 1
1−α, so that the terms

proportional to I cancel, and I ≃ 1
1−αK, as anticipated by solving

(2.66) naively.
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e−Φ ¼ m
f
: ð3:4Þ

This relation is just a convenient way to parametrize the
dilaton in terms of a function f to be determined. It implies
by differentiation

Φ0 ¼ −
m0

m
þ f0

f
: ð3:5Þ

The relation (3.1) then implies

e−ΦM ¼ e−Φm0 ¼ m
f
m0 ¼ q ¼ const:; ð3:6Þ

and hence

mm0 ¼ 1

2
ðm2Þ0 ¼ qf ⇒ mm00 þ ðm0Þ2 ¼ qf0: ð3:7Þ

Therefore, given f, m can be determined by integration:

m2 ¼ 2qF; where F0 ¼ f: ð3:8Þ

We next insert the ansatz (3.4) into the second equation
in (3.2) and obtain

0 ¼ mðmΦ0Þ0 − ðm0Þ2 ¼ m

�
−m0 þm

f0

f

�0
− ðm0Þ2

¼ m

�
−m00 þm0 f

0

f
þm

�
f0

f

�0�
− ðm0Þ2 ¼ m2

�
f0

f

�0
;

ð3:9Þ

where we used (3.5) in the first line and both relations in
(3.7) in the second line. Since m2 ≠ 0 this equation implies
that f0

f is constant, hence

fðxÞ ¼ eγxþδ; γ; δ ¼ const: ð3:10Þ

Its integral then determines F and hence m2 via (3.8):

m2 ¼ 2q
γ
eγxþδ þ c; ð3:11Þ

with c a new integration constant. Finally, we turn to the
equation of motion of the lapse function n, the first
equation in (3.2). Inserting the above ansatz one finds

Q2 ¼ m2ðΦ0Þ2 − ðm0Þ2 ¼ m2

�
−
m0

m
þ f0

f

�
2

− ðm0Þ2

¼ −2mm0 f
0

f
þm2γ2 ¼ −2qf0 þ γ2

�
2q
γ
eγxþδ þ c

�

¼ γ2c: ð3:12Þ

Thus, the equation just places a relation between the
constants in the problem.
Imposing the boundary condition that the metric

approaches the Minkowski metric far away from the black
hole, which we will choose to corresponds to x → −∞,
implies that c ¼ 1. Then picking γ ¼ Q for Q positive we
have from (3.11) and (3.4):

m2 ¼ 1þ 2q
Q

eQxþδ; e−Φ ¼ me−Qx−δ: ð3:13Þ

The second relation here makes it clear that m is, at all
points, a real positive number. The above is the well-known
black hole solution of 2D string theory and agrees, for
instance, with the form given in [6] for

a≡ −
2q
Q

; δ ¼ 0: ð3:14Þ

Summarizing, the black hole metric and dilaton read

ds2 ¼ −m2ðxÞdt2 þ 1

m2ðxÞ dx
2;

e−Φ ¼ mðxÞe−Qx; ð3:15Þ

where

m2ðxÞ ¼ 1 − aeQx; a > 0; Q > 0: ð3:16Þ

1. Comments on black hole solution

Let us close with some brief comments on this BH
solution. We first note that only if a > 0 does m2ðxÞ vanish
for some value of x, as we would expect for a genuine black
hole at the event horizon. Sincem2 → 1 as x → −∞ we see
that the latter is indeed the asymptotically flat region. For
the dilaton we have

Φ ¼ Qx −
1

2
lnm2 ¼ Qx −

1

2
ln j1 − aeQxj: ð3:17Þ

Absolute values are needed here for the region beyond the
horizon, where m2 < 0. The need for absolute values also
follows because m must be defined as real and positive, as
we mentioned above. In the region x → −∞ we have

Φ ¼ Qxþ 1

2
aeQx þ 1

4
a2e2Qx þOðe3QxÞ: ð3:18Þ

Here Φ → −∞ in the asymptotically flat region, which
corresponds to weak coupling.
Horizon, singularity, and duality.—The Ricci scalar

(2.24) encodes in 2D the full Riemann curvature. With
mn ¼ 1 it yields for the above metric
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R ¼ −ðm2ðxÞÞ00 ¼ aQ2eQx: ð3:19Þ

The metric is singular at the zero of m2ðxÞ, the location of
the horizon:

horizon∶m2ðx0Þ¼ 0 → aeQx0 ¼ 1 → x0¼−
1

Q
lna;

ð3:20Þ

and in analogy to the Schwarzschild solution in 4D we
expect this to be a coordinate singularity. Indeed, the
curvature (3.19) at this point is regular

curvature at horizon∶ Rðx0Þ ¼ Q2: ð3:21Þ

The black hole singularity is at the point where the
curvature R diverges, namely as x → ∞:

BH singularity∶ x → ∞: ð3:22Þ

According to [7] a duality transformation exchanges the
horizon of the above black hole with the singularity, which
we confirm here. The T-duality transformation keeps n
invariant while sending m → m−1. Therefore, the dual
metric obeys

ds2dual ¼ −
1

m2ðxÞ dt
2 þ 1

m2ðxÞ dx
2 ¼ 1

m2ðxÞ ð−dt
2 þ dx2Þ:

ð3:23Þ

The new curvature is obtained from (2.24) letting m →
1=m and n → 1=m:

Rdual ¼ ðm2Þ00 − ðm2Þ0ðm2Þ0
m2

: ð3:24Þ

This shows that the zero ofm2, the former horizon location,
now corresponds to a curvature singularity:

Rdualðx0Þ ¼ ∞; ð3:25Þ

all other points having finite curvature. The horizon is now
the curvature singularity. According to [7] the original BH
singularity x → ∞ turns into the horizon of the second one.
Evaluating the curvature explicitly,

RdualðxÞ ¼ −aQ2eQx þ aQ2eQx�
1 − 1

aeQx

� ¼ Q2

1 − 1
a e

−Qx : ð3:26Þ

Indeed, for x → ∞, the former position of the curvature
singularity, consistent with (3.21) we find that

lim
x→∞

RdualðxÞ ¼ Q2: ð3:27Þ

Black hole as deformation of the lapse-dilaton model
solution.—Consider the lapse-dilaton model action:

I ¼
Z

dxne−ΦðQ2 þ ðDΦÞ2Þ; ð3:28Þ

Following (2.30), the equations of motion are

En ¼ −ðDΦÞ2 þQ2 ¼ 0;

EΦ ¼ −2D2Φþ ðDΦÞ2 −Q2 ¼ 0: ð3:29Þ

The equations imply DΦ ¼ Q, up to an irrelevant sign, and
D2Φ ¼ 0. We take n ¼ 1 and obtain Φ ¼ Qx:

n ¼ 1; Φ ¼ Qx: ð3:30Þ

This can be viewed as a zeroth-order solution. Once we
restore the M2 term to the action, we have the full black
hole equations of motion. In the asymptotic region
x → −∞ there are small corrections to the above zeroth
order solution that can be written in the form

Φ ¼ Qxþ α1eQx þ α2e2Qx þ � � � ;
n ¼ 1þ β1eQx þ β2e2Qx þ � � � ;
m ¼ 1þ γ1eQx þ γ2e2Qx þ � � � : ð3:31Þ

Working with mn ¼ 1 fixes the expansion of m in terms of
that of n, and to zeroth order one has m ¼ 1. Moreover
M ¼ m0. We have checked that the equations of motion
of the full theory now reproduce the terms of the solution
for the black hole—expanded in the asymptotic region
[see (3.18)].

B. Black holes in the α0-corrected theory

We have already found a canonical presentation for the
action following our classification of possible duality
invariant terms up to field redefinitions. We can therefore
examine how the black hole solution changes when higher-
derivative terms are included. In order to do so we rewrite
the general form (2.69) of the action as

I ¼
Z

dx̄ne−Φð1þ ðD̄ΦÞ2 þ FðM̄ÞÞ; ð3:32Þ

where we are using

x̄≡Qx; ∂≡ ∂x̄ ¼
1

Q
∂x;

D̄≡ 1

n
∂; M̄ ≡ 1

n
∂ lnm ¼ 1

Q
M: ð3:33Þ
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We set the general expansion

FðM̄Þ≡X∞
i¼0

ciϵiM̄2iþ2 ¼−M̄2þ…; c0¼−1; ð3:34Þ

where we rewrote the ϵ dependence in a way that the
structure of in-built suppression (which is always assumed)
is made manifest. In this case ϵi ¼ ciϵi where all coef-
ficients ci are of order one and so condition (2.52) is
satisfied.
The equations arising from variation of m, n, and Φ give

D̄ðe−ΦfðM̄ÞÞ ¼ 0;

1 − ðD̄ΦÞ2 − gðM̄Þ ¼ 0;

−2D̄2Φþ ðD̄ΦÞ2 − 1 − FðM̄Þ ¼ 0: ð3:35Þ

Here,

fðM̄Þ≡F0ðM̄Þ¼
X∞
i¼0

ð2iþ2ÞciϵiM̄2iþ1

¼−2M̄þ4c1ϵM̄3þOðϵ2Þ;

gðM̄Þ≡X∞
i¼0

ð2iþ1ÞciϵiM̄2iþ2¼−M̄2þ3c1ϵM̄4þOðϵ2Þ;

ð3:36Þ

with primes denoting derivative with respect to the argu-
ment. The following relations are easily checked:

g0ðM̄Þ ¼ M̄f0ðM̄Þ; gðM̄Þ þ FðM̄Þ ¼ M̄fðM̄Þ: ð3:37Þ

Adding the second and third equations in (3.35) we get

D̄2Φþ 1

2
M̄fðM̄Þ ¼ 0; ð3:38Þ

which can replace the third equation to find:

D̄ðe−ΦfðM̄ÞÞ ¼ 0;

1 − ðD̄ΦÞ2 − gðM̄Þ ¼ 0;

D̄2Φþ 1

2
M̄fðM̄Þ ¼ 0: ð3:39Þ

We now define

Ω≡ e−Φ: ð3:40Þ

The first two equations above are readily rewritten. The
third gives a more complicated equation that combined
with the second simplifies

D̄ðΩfðM̄ÞÞ ¼ 0;

ðD̄ΩÞ2 þ ðgðM̄Þ − 1ÞΩ2 ¼ 0;

D̄2Ω − ð1þ hðM̄ÞÞΩ ¼ 0; ð3:41Þ

where

hðM̄Þ≡ 1

2
M̄fðM̄Þ − gðM̄Þ: ð3:42Þ

A nonperturbative approach to solutions.—We can focus
on the first two equations in (3.41), then solve for D̄Ω=Ω
in both and equate the result. This is the procedure used
in [17]. We get

f0ðM̄Þ
fðM̄Þ D̄ M̄ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðM̄Þ

q
: ð3:43Þ

Equivalently, we have, with D̄ M̄ ¼ 1
n
dM̄
dx̄ ,

f0ðM̄ÞdM̄
fðM̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðM̄Þ

p ¼ �ndx̄: ð3:44Þ

By integration we have

Z
M̄ f0ðMÞdM
fðMÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − gðMÞp ¼ �
Z

x̄
nðx0Þdx0 þ C: ð3:45Þ

Here C is a constant of integration. This equation fixes a
relation between a function of M̄ (the left-hand side) andR
x̄ nðx0Þdx0. We now adopt the gauge

nðx̄Þ ¼ 1; ð3:46Þ

in which the integral condition becomes the simpler

Z
M̄ f0ðMÞdM
fðMÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − gðMÞp ¼ �ðx̄ − x̄0Þ: ð3:47Þ

Here x̄0 is an integration constant. If we have a function
WðMÞ such that

dW ≡ f0ðMÞ
fðMÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − gðMÞp dM; ð3:48Þ

the general solution to (3.47) is given by

WðM̄Þ ¼ �ðx̄ − x̄0Þ; ð3:49Þ

a relation that can be inverted to determine M̄ðx̄Þ. With
M̄ ¼ ∂ logm, in the n ¼ 1 gauge, this determines mðx̄Þ.
The dilaton is then found from the first equation in (3.41),

ΩfðM̄Þ ¼ q; ð3:50Þ
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with q some constant. By the Bianchi identity, the last
equation in (3.41) holds when the first two hold.
Application to the standard black hole solution.—Let us

now rederive the lowest order black hole solution from the
general formula (3.47). For the two-derivative action we
have [see (3.36)]

fðM̄Þ¼−2M̄; f0ðM̄Þ¼−2; gðM̄Þ¼−M̄2; ð3:51Þ

and so (3.48) takes the form

dW ¼ dM̄

M̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M̄2

p → WðM̄Þ ¼ −arcschM̄: ð3:52Þ

By inserting this result into (3.49) and inverting WðM̄Þ we
end up with

M̄ ¼ cschx̄ ¼ ∂ lnm; ð3:53Þ
where we chose a suitable sign and fixed x̄0 ¼ 0, without
loss of generality. This is easily integrated and we obtain

mðxÞ ¼ tanh
x̄
2
: ð3:54Þ

The positivity ofm requires x̄ ¼ Qx ≥ 0, which determines
the allowed space region (we always assume Q > 0). This
is the exterior region to the black hole, with x → ∞ the
asymptotically flat region. The horizon is at x ¼ 0.
The dilaton solution is obtained from (3.50). Using

fðM̄Þ ¼ −2M̄ and (3.53) we get

eΦðx̄Þ ¼ −
2

q
cschx̄: ð3:55Þ

Since x̄ ≥ 0, the constant q must be negative.
The above is a solution in the n ¼ 1 gauge. In order to

connect with the zeroth order solution (3.16) we need to
perform a coordinate transformation. The metric we con-
sidered here takes the form

ds2¼−m2ðxÞdt2þdx2; withmðxÞ¼ tanh
x̄
2
: ð3:56Þ

We now introduce a coordinate x0ðxÞ via
dx0 ¼ −mðxÞdx; ð3:57Þ

so that the metric would be of the expected form in the
gauge mn ¼ 1:

ds2 ¼ −m2ðxÞdt2 þ dx02

m2ðxÞ ; ð3:58Þ

where in this formm2ðxÞmust be written in terms of x0. The
sign in (3.57) was chosen with hindsight, as the asymptotic
region of the n ¼ 1 solution is at plus infinity, and the one
in the mn ¼ 1 gauge is at minus infinity. Equation (3.57)
can be easily integrated:

x0 ¼−
2

Q
lncosh

Qx
2

þC → cosh2
Qx
2

¼ 1

a
e−Qx0 ; a> 0:

ð3:59Þ

Here a is an integration constant. As a result,

mðxÞ ¼ tanh
Qx
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosh−2

Qx
2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aeQx0

p
;

ð3:60Þ

in exact agreement with (3.16), obtained in the mn ¼ 1
gauge. The dilatons in the two theories also agree, since
they are scalars. Indeed, from (3.15)

e−Φðx0Þ ¼ mðx0Þe−Qx0 ¼ tanh
Qx
2

· acosh2
Qx
2

¼ a
2
sinhQx:

ð3:61Þ

This coincides with e−Φ in (3.55) if we take q ¼ −a. This is
possible since a > 0 and q < 0.

1. A curious case

Let us consider a particular nonperturbative case, where
the action contains the two-derivative term and one single
correction, a four-derivative term with a fixed coefficient
c1ϵ ¼ ϵ1 ¼ − 1

12
:

FðM̄Þ ¼ −M̄2 −
M̄4

12
→ fðM̄Þ ¼ −2M̄ −

1

3
M̄3;

gðM̄Þ ¼ −M̄2 −
1

4
M̄4: ð3:62Þ

In this case

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðM̄Þ

q
¼ 1þ M̄2

2
¼ −

1

2
f0ðM̄Þ; ð3:63Þ

and Eq. (3.47) simplifies notably:

Z
M̄ dM

M
�
1þ M2

6

� ¼ �x̄: ð3:64Þ

Absorbing the constant of integration into a finite shift of x̄
we find the solution

M̄2 ¼ 6e�2x̄

1 − e�2x̄ : ð3:65Þ

In order for the solution to describe the exterior region of a
black hole with the asymptotically flat region is at x → ∞,
we must have M̄ → 0 as x → ∞ and that requires choosing
the bottom sign. We thus have
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M̄2 ¼ 6e−2x̄

1 − e−2x̄
¼ 3ðcoth x̄ − 1Þ ¼ 3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch2x̄

p
− 1Þ:
ð3:66Þ

With M̄ known, using (3.50) we can read the dilaton profile

eΦðx̄Þ ¼ −
ffiffiffi
3

p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth x̄ − 1

p
ðcoth x̄þ 1Þ

¼ −
ffiffiffi
3

p

q
cschx̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ coth x̄

p
: ð3:67Þ

Finally, we can determine m from M̄ ¼ ∂ lnm to find

mðx̄Þ ¼ e
R

x̄ M̄ðxÞdx ¼ e−
ffiffi
6

p
arcsin e−x̄ ; ð3:68Þ

where the constant of integration has been chosen to have
m → 1 as x → ∞. This solution is valid down to x ¼ 0.
While in the two-derivative theory mðxÞ vanishes at
x ¼ 0, a point identified as the horizon, here mðx ¼ 0Þ ¼
expð− ffiffiffi

6
p

π
2
Þ ≃ 0.02. It may be of interest to investigate

more completely this and related solutions.

C. Systematics of perturbative solutions

Ananalytic expression for the nonperturbativeWðM̄Þmay
not exist in general. However, when considering perturbative
solutions in ϵ, Eq. (3.48) becomes a power series in ϵ, where
each term is easier to integrate than the nonperturbative dW.
In this perturbative regime, a systematic approach exists such
that solutions to any order in ϵ can be obtained from lowest
order ones. This algorithm takes (3.48) as the starting point
and expands it around small ϵ to get

dW¼ f0ðM̄ÞdM̄
fðM̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−gðM̄Þ

p ¼ dW0þ ϵdW1þ ϵ2dW2þOðϵ3Þ:

ð3:69Þ

Integrating each of these terms we arrive at the perturbative
version of (3.49),

WðM̄Þ¼W0ðM̄Þþ ϵW1ðM̄Þþ ϵ2W2ðM̄ÞþOðϵ3Þ¼−x̄;

ð3:70Þ

where we pick the minus sign option, and we are working
in the n ¼ 1 gauge. From (3.52) we already know that
W0ðM̄Þ ¼ −arcschM̄, which clearly can be inverted. By
doing so, (3.70) becomes

M̄ ¼ cschðx̄þ ϵW1ðM̄Þ þ ϵ2W2ðM̄ÞÞ þOðϵ3Þ
¼ cschx̄þ ϵcsch0x̄W1ðM̄Þ

þ ϵ2
�
1

2
csch00x̄W2

1ðM̄Þ þ csch0x̄W2ðM̄Þ
�
þOðϵ3Þ;

ð3:71Þ

where 0 means derivativewith respect to the argument. Then,
we expand

M̄ ¼ M̄0 þ ϵM̄1 þ ϵ2M̄2 þOðϵ3Þ; ð3:72Þ

on both sides of the last equality to read the solution order by
order in ϵ

M̄0ðx̄Þ ¼ cschx̄; ð3:73aÞ

M̄1ðx̄Þ ¼ csch0x̄W1ðM̄0ðx̄ÞÞ; ð3:73bÞ

M̄2ðx̄Þ ¼
1

2
csch00x̄W2

1ðM̄0ðx̄ÞÞ þ csch0x̄W2ðM̄0ðx̄ÞÞ
þ csch0x̄W0

1ðM̄0ðx̄ÞÞM̄1ðx̄Þ: ð3:73cÞ

We can see that each order M̄iðx̄Þ is determined from the
lowest order ones. From M̄ ¼ ∂ lnm and (3.50) we can get
the perturbative solutions for mðx̄Þ and Φðx̄Þ. The resulting
solution will be in the n ¼ 1 gauge but it can be mapped to
the standard form by the use of (3.57) with the now-
corrected mðx̄Þ.
Just as a demonstration of how the above algorithm

works in practice, we work out the first ϵ order explicitly.
Up to first order we have [see (3.36)]

fðM̄Þ ¼ −2M̄ þ 4c1ϵM̄3;

f0ðM̄Þ ¼ −2þ 12c1ϵM̄2;

gðM̄Þ ¼ −M̄2 þ 3c1ϵM̄4: ð3:74Þ

Inserting these quantities into (3.69), and expanding up to
first order in ϵ we can read

dW0 ¼
1

M̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M̄2

p dM̄;

dW1 ¼ −
c1
2

M̄ð8þ 5M̄2Þ
ð1þ M̄2Þ32 dM̄: ð3:75Þ

Each order can be integrated independently to obtain

W0ðM̄Þ ¼ −arcschM̄;

W1ðM̄Þ ¼ −
c1
2

2þ 5M̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M̄2

p : ð3:76Þ

Finally, by using (3.73b) we can read M̄1ðx̄Þ:
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M̄1ðx̄Þ ¼ csch0 x̄W1ðM̄0ðx̄ÞÞ

¼ ð− coth x̄ csch x̄Þ
�
−
c1
2

2þ 5csch2 x̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch2 x̄

p
�

¼ c1

�
csch x̄þ 5

2
csch3 x̄

�
: ð3:77Þ

All in all, up to order ϵ, M̄ðx̄Þ is given by

M̄ðx̄Þ¼ csch x̄þ ϵc1

�
csch x̄þ5

2
csch3 x̄

�
þOðϵ2Þ: ð3:78Þ

We easily find mðx̄Þ from

mðx̄Þ ¼ e
R

x̄ M̄ðx0Þdx0

¼ e
R

x̄ M̄0ðx0Þdx0
�
1þ ϵ

Z
x̄
M̄1ðx0Þdx0

�
þOðϵ2Þ

¼ tanh
x̄
2

�
1þ ϵc1

Z
x̄
�
csch x0 þ 5

2
csch3 x0

�
dx0

�

þOðϵ2Þ; ð3:79Þ
and performing the integral,

mðx̄Þ ¼ tanh
x̄
2

�
1 −

1

4
c1ϵ

�
ln tanh

x̄
2
þ 5 coth x̄ csch x̄

��

þOðϵ2Þ: ð3:80Þ

Finally, the dilaton profile comes from combining (3.50),
(3.74), and (3.78) and is given by

Ω−1 ¼ eΦðx̄Þ ¼ 1

q
fðM̄Þ

¼ −
2

q

�
csch x̄þ c1ϵ

�
csch x̄þ 1

2
csch3 x̄

��

þOðϵ2Þ: ð3:81Þ
In view of the pattern emerging at order ϵ in (3.78) and

(3.81), it feels natural to ask whether such structure persists
perturbatively to all orders. Indeed, by following an
inductive procedure, explained briefly in the Appendix,
we confirmed that the following ansatz can be used to solve
(3.41) to all orders in ϵ:

M̄ ¼
X
p≥0

M̄ðpÞϵp;

M̄ðpÞ ¼
Xp
k¼0

aðpÞk csch2kþ1x̄; ð3:82aÞ

Ω−1 ¼
X
p≥0

½Ω−1�ðpÞϵp;

½Ω−1�ðpÞ ¼
Xp
k¼0

bðpÞk csch2kþ1x̄: ð3:82bÞ

Here aðpÞk and bðpÞk are some order-one coefficients
determined completely from the ci coefficients in the

action. For instance, from (3.78) we can read að0Þ0 ¼ 1;

að1Þ0 ¼ c1; a
ð1Þ
1 ¼ 5

2
c1.

Let us point out that there is an apparent incompatibility
between this perturbative all-order formula for M̄ and the
nonperturbative result for the curious case in (3.66).
Expanding the latter in powers of cschx̄ yields M̄ ¼ffiffi

3
2

q
csch x̄þOðcsch3 x̄Þ, which disagrees with the first

term in (3.78). This comparison, however, is not mean-
ingful since in this section we are expanding in small ϵ and
not in small cschx̄, as we do for the curious case. In fact, the
perturbative expansion in ϵ contains an infinite number of
contributions to each power of cschx̄. If we had the full

expansion, the coefficient of cschx̄ would be
P∞

p¼0 a
ðpÞ
0 ϵp

(with c1ϵ ¼ − 1
12

for the curious case), but we only know

að0Þ0 and að1Þ0 from (3.78). Moreover, complicating the
comparison, Eqs. (3.66) and (3.82a) may be expressed
in different coordinate systems. In passing from (3.64) to
(3.65) we could choose a different constant of integration,
and thus replace x by x − x0 in (3.66), for some value of x0
that could also be adjusted and would affect the expansion
of M̄ in powers of cschx̄. We believe both expansions
should match once all coefficients are resummed and the
coordinates are changed appropriately.

D. Systematics of nonperturbative solutions

Recall that for the two-derivative action the black hole
solution took the form

Ω−1 ¼ eΦ ¼ −
2

q
csch x̄; M̄ ¼ csch x̄: ð3:83Þ

Of course, associated to M̄ ¼ ∂ lnm we have m ¼ tanh x̄
2
.

Moreover, in perturbative solutions, we found that both eΦ

and M̄ are written as infinite series in terms of cschx̄,
beginning with a linear term. We therefore consider a
generalization that we write as follows:

eΦ ¼ pΦ ∘ csc h;

M̄ ¼ p−1
M ∘ csc h; ð3:84Þ

where we use ∘ to denote composition of functions, and
both sides of the equalities are functions of x̄. We have
introduced two polynomials, pΦ and pM, with p−1

M the
inverse function to pM, so that pM ∘p−1

M ¼ I, with I the
identity function. We write

pΦðuÞ ¼ a1uþ a2u2 þOðu3Þ;
pMðuÞ ¼ b1uþ b2u2 þOðu3Þ: ð3:85Þ
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From the equation e−ΦfðM̄Þ ¼ q we have fðM̄Þ ¼ qeΦ

and therefore, as functions of x̄

f ∘ M̄ ¼ qpΦ ∘ csch: ð3:86Þ
Composing M̄−1 (the inverse function of M̄) from the right
on both sides of the above equation we have

f ¼ qpΦ ∘ csch ∘ M̄−1 ¼ qpΦ ∘ csch ∘ arcsch ∘ pM;

ð3:87Þ
and therefore we conclude that

f ¼ qpΦ ∘ pM: ð3:88Þ
We conventionally take the normalization of the m field to
be determined in the action by FðM̄Þ ¼ −M̄2 þOðM̄4Þ.
Therefore we have fðM̄Þ ¼ F0ðM̄Þ ¼ −2M̄ þOðM̄3Þ, and
gðM̄Þ ¼ −M̄2 þOðM̄4Þ. We thus require that

f ¼ −2I þOðI3Þ: ð3:89Þ

This requirement, given the expression for f in (3.88) and
the expansions in (3.85), means the constraints are

qa1b1 ¼ −2;

a1b2 þ a2b21 ¼ 0: ð3:90Þ

This means, in particular that a1 ≠ 0 and b1 ≠ 0.
We must now calculate gðM̄Þ. For this we use the middle

equation in (3.39) which fixes g ¼ 1 − ðD̄ΦÞ2. The deriva-
tive of Φ is calculated from (3.84) and we find

eΦD̄Φ ¼ ðp0
Φ ∘ cschÞ · ð− coth · cschÞ: ð3:91Þ

Squaring and dividing by e2Φ gives

ðD̄ΦÞ2 ¼ ðI2 ∘p0
Φ ∘ cschÞ · ðcsch2 þ csch4Þ

I2 ∘pΦ ∘ csch : ð3:92Þ

To view this equation as a function of M̄ we can use the
second equation in (3.84) to write csch ¼ pMðM̄Þ and thus

ðD̄ΦÞ2 ¼ ðI2 ∘p0
Φ ∘pMÞ · ðp2

M þ p4
MÞ

I2 ∘pΦ ∘pM
: ð3:93Þ

We therefore have

gðM̄Þ ¼ 1 −
ðp0

ΦðpMÞÞ2p2
Mð1þ p2

MÞ
ðpΦðpMÞÞ2

: ð3:94Þ

Here the right-hand side is evaluated with pMðM̄Þ. It is now
possible to check what constraint this result gives given that
gðM̄Þ ¼ −M̄2 þOðM̄4Þ. Indeed keeping just linear terms
on the polynomials we have that the above equation gives

g ¼ 1 −
ða1 þ 2a2pMÞ2
ða1 þ a2pMÞ2

þOðM̄2Þ

¼ 1 −
ð1þ 2 a2

a1
b1M̄Þ2

ð1þ a2
a1
b1M̄Þ2 þOðM̄2Þ;

¼ −
2a2b1
a1

M̄ þOðM̄2Þ: ð3:95Þ

Since this linear term must vanish and both b1 and a1 are
nonzero, we conclude that a2 ¼ 0. The second equation in
(3.90) then implies that b2 ¼ 0. The quadratic terms in the
polynomials vanish. Our perturbative results also hinted
in this direction. Therefore, we refine the ansatz in (3.85)
to read

pΦðuÞ ¼ a1uþ a3u3 þ a5u5 þOðu7Þ;
pMðuÞ ¼ b1uþ b3u3 þ b5u5 þOðu7Þ: ð3:96Þ

The solution now proceeds by first finding fðM̄Þ using
(3.88). Then, using g0 ¼ Mf0 one finds the associated
gðM̄Þ. Finally, this result is compared with the result for
gðM̄Þ from (3.94). We have found by solving this system on
a computer that the series pM, defining the metric M̄ðxÞ,
fixes the other polynomial pΦ as well as FðM̄Þ, the action.
We get, for example,

a1¼−
2

b1q
; a3¼

b21−1

2b31q
; a5¼

4b3−8b51þ11b31−3b1
32b61q

:

ð3:97Þ

We also find

fðM̄Þ ¼ −2M̄ þ
�
b21
2
−
1

2
−
2b3
b1

�
M̄3 þ � � � : ð3:98Þ

1. The simplest dilaton profile

Suppose the dilaton profile is now fixed to be the one for
the black hole in the two-derivative approximation:

eΦ ¼ −
2

q
cschx̄: ð3:99Þ

In the language of (3.84) this corresponds to the choice
pΦ ¼ − 2

q I. In this situation, we find that f ¼ −2pMðM̄Þ as
it follows from (3.88). Finally, from (3.94) one finds
gðM̄Þ ¼ −p2

MðM̄Þ. This means that

gðM̄Þ ¼ −
1

4
ðfðM̄ÞÞ2: ð3:100Þ

Taking the derivative with respect to M̄, we have
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g0ðM̄Þ ¼ −
1

2
fðM̄Þf0ðM̄Þ: ð3:101Þ

Recall now that by the common origin of f and g from F,
we have g0 ¼ M̄f0, and so comparing with the above we
conclude that fðM̄Þ ¼ −2M̄, as expected. This is the two-
derivative theory, with a quadratic FðM̄Þ ¼ −M̄2.

2. On the ansatz of Dijkgraaf, Verlinde, and Verlinde

Based on the form of the Virasoro operator L0 in the CFT
description of the black hole background, Dijkgraaf,
Verlinde, and Verlinde (DVV) conjectured that certain
metric and dilaton profiles could represent the exact black
hole solution in the α0 expansion [22] (Sec. IV. 1). Their
solution requires some careful translation, for their dilaton
ϕ multiplies the action as eϕ and ours is the duality
invariant dilaton. With this taken into account, their ansatz
for the dilaton is

e−Φ ¼ sinh x̄: ð3:102Þ

This is actually the dilaton profile of the two-derivative
theory (with q ¼ −2), and as proven above, this means that

within our framework the only possible solution is that of
the two-derivative theory. The DVV profile cannot be seen
as a solution of the α0 corrected theory in the presentation
we have chosen. As we mentioned in the introduction to
this section, this result was expected, as the duality trans-
formations in the DVV profile do not correspond to those of
our manifestly dual formulation.
In fact, this is not the only complication. The proposal

also says that the metric profile takes the form

m2ðx̄Þ ¼ 1

coth2ðx̄
2
Þ − 2

k

¼ 1
cosh x̄þ1
cosh x̄−1 −

2
k

: ð3:103Þ

With this we now compute:

M̄ ¼ 1

2
∂m2ðx̄Þ ¼ sinh x̄

ðcosh x̄ − 1Þð1þ 2
k þ ð1 − 2

kÞ cosh x̄Þ
:

ð3:104Þ

Given that cosh x̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch2x̄

p
=csch x̄ we quickly

find that

M̄ ¼ csch x̄

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch2x̄

p
− csch x̄Þðð1þ 2

kÞcsch x̄þ ð1 − 2
kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ csch2x̄

p
Þ : ð3:105Þ

This has a Taylor series in the variable csch x̄, as required
for our setup. Moreover the leading term is linear in csch x̄
as required for fðM̄Þ leading term to be linear in M̄. In fact,
with M̄ ¼ p−1

M ∘ csch, the Taylor series is

p−1
M ðuÞ ¼ u

1 − 2
k

−
4u2

kð1 − 2
kÞ2

þOðu3Þ

¼ 9u − 144u2 þOðu3Þ; for k ¼ 9=4: ð3:106Þ
We then have pMðuÞ ¼ 1

9
uþ 16

81
u2 þ � � �. This also violates

the present framework, as we showed above that the
polynomial pM cannot have a quadratic term. All in all,
our framework does not give any evidence that the DVV
ansatz is a solution. A solution is meaningful if we also
have the associated equations of motion. Those are missing
in the DVV conjecture.

IV. BIANCHI I COSMOLOGY

Following the approach of [17], in this section we go
back to strings in the critical dimension (so there is no
cosmological term) and we classify the α0 corrections for
backgrounds known as Bianchi type-I cosmologies. These
backgrounds were also studied in [29], with a focus on
nonperturbative α0-complete solutions with matter sources.
Bianchi type-I cosmologies feature a diagonal metric with

a priori independent “scale factors” on the diagonal. In the
first subsection we define these backgrounds and determine
the corresponding two-derivative action and equations of
motion. In the second subsection we classify the most
general higher-derivative terms, up to field redefinitions,
thereby arriving at the classification of α0 corrections.

A. Bianchi I ansatz

Bianchi type-I (BI) cosmologies are given by a homo-
geneous but generically anisotropic metric, where the
B-field vanishes:

gmnðtÞ ¼ amðtÞ2δmn; bmnðtÞ ¼ 0: ð4:1Þ

Here m; n ¼ 1;…; d are internal indices, and the indices
are not summed over. In general, the am are d independent
scale factors, but we will consider the case where there are
only q ≤ d different scale factors. We then have groups of
Ni scale factors ai with i ¼ 1;…; q such that

Pq
i¼1 Ni ¼ d.

By definition all Ni are nonzero positive integers. The case
where all scale factors are different is included for q ¼ d
and Ni ¼ 1 for all i, while the fully isotropic case (FRW) is
included for q ¼ 1 and N1 ¼ d. For each of these q scale
factors ai we define the corresponding Hubble parameter
Hi as follows:
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Hi ≡Dai
ai

; i ¼ 1;…; q; ð4:2Þ

where D≡ 1
n
∂

∂t is a covariant derivative under one-
dimensional diffeomorphisms.
Following the notation and conventions of [17], the

generalized metric and its derivative take the form

SM
N ¼

�
0 a2mδmn

a−2m δmn 0

�
;

ðDSÞMN ¼ 2

�
0 Hma2mδmn

−Hma−2m δmn 0

�
; ð4:3Þ

where there is no sum of repeated indices. Even powers of
DS are given by

ððDSÞ2kÞMN ¼ ð−Þk22k
�
H2k

m δm
n 0

0 H2k
m δmn

�
; ð4:4Þ

and its trace is given by

TrððDSÞ2kÞ ¼ ð−Þk22kþ1trðH2k
m δm

nÞ

¼ ð−Þk22kþ1
Xq
i¼1

NiH2k
i ; ð4:5Þ

where we noted that there are only q different directions
and each of them is repeated Ni times. In particular, for
k ¼ 1 we have

TrððDSÞ2Þ ¼ −8
Xq
i¼1

NiH2
i : ð4:6Þ

The twoderivative action in the cosmological setting is [17]

I ¼
Z

dtne−Φ
�
−ðDΦÞ2 − 1

8
TrððDSÞ2Þ

�
; ð4:7Þ

with n the lapse function,Φ the dilaton, andS the generalized
metric that we evaluated above for the BI setup with scale
factors ai. Thus the BI two-derivative action reads

Ið0ÞBI ¼
Z

dtne−Φ
�
−ðDΦÞ2 þ

Xq
i¼1

NiH2
i

�
: ð4:8Þ

The equations of motion are given by

ai
δIð0ÞBI

δai
¼ 0 ⇒ DHi ¼DΦHi; i¼ 1;…;q; ð4:9aÞ

δIð0ÞBI

δΦ
¼ 0 ⇒ 2D2Φ ¼ ðDΦÞ2 þ

Xq
i¼1

NiH2
i ; ð4:9bÞ

n
δIð0ÞBI

δn
¼ 0 ⇒ ðDΦÞ2 ¼

Xq
i¼1

NiH2
i : ð4:9cÞ

Using (4.9c) in (4.9b) we get a more useful version of the
equations:

DHi ¼ DΦHi; i ¼ 1;…; q; ð4:10aÞ

D2Φ ¼
Xq
i¼1

NiH2
i ; ð4:10bÞ

ðDΦÞ2 ¼
Xq
i¼1

NiH2
i : ð4:10cÞ

In the context of BI backgrounds,Oðd; dÞ symmetry reduces
to a ðZ2Þq invariance under the transformations

ai → a−1i ⇒ Hi → −Hi; i ¼ 1;…; q;

Φ → Φ; n → n: ð4:11Þ
Asexpected, (4.8) and (4.9) are duality invariant.Note that the
duality transformations act on each different scale factor
individually. Because of this, while H2

1 or H2
2 are duality

invariant, terms like H1H2 are not. The latter, however,
is invariant under a subset of duality transformations, full-
factorized T-dualities, which transform all scale factors
simultaneously.

B. Classification

In the context of string low energy effective actions,
Eq. (4.8) is just the leading contribution to the full action,
containing an infinite expansion in α0, namely

I ¼
X
p≥0

α0pIðpÞ; ð4:12Þ

where each order IðpÞ can contain a sum of different terms

IðpÞ ¼
X
k

cp;kI
ðpÞ
k ; ð4:13Þ

where the coefficients cp;k are constant real numbers. Our
goal now is to use field redefinitions to reduce these higher-
order terms to a minimal set of couplings in the spirit of
[17]. To this end we will use the lowest-order equations
of motion (4.10) simply as substitution rules in the action
which we rewrite here for convenience:

DHi ≃DΦHi; i ¼ 1;…; q; ð4:14aÞ

D2Φ ≃
Xq
i¼1

NiH2
i ; ð4:14bÞ

H2
q ≃

1

Nq

�
ðDΦÞ2 −

Xq−1
i¼1

NiH2
i

�
: ð4:14cÞ
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The way in which we reordered the last rule distinguishes
one particular Hubble parameter over the others. The
reason of this split is that, in what follows, we will prove
that one of the scale factors can be completely removed
from higher-order terms, appearing only in the two-
derivative theory (4.8). Without loss of generality, we
chose the scale factor aq.
For BI universes, the first steps of the classification are

similar to those applied in [17]. Specifically, the same step-
by-step proof of Sec. II D with the same itemization,
proceeds as follows. We assume that to any order in α0

any term in the action is writable as a product of factorsDkΦ
and DlHi with i ¼ 1;…; q. We can now perform field
redefinitions of ai and the combination of Φ and n that
yields rules (4.14a) and (4.14b) in order to establish the
following:
(1) A factor in an action includingD2Φ can be replaced

by a factor with only first derivatives.
This follows directly from the substitution rule

in (4.14b).
(2) A factor in an action includingDHi can be replaced

by a factor with only first derivatives.
This follows directly from the first substitution

rule (4.14a).
(3) Any action can be reduced so that it only has first

derivatives of Φ.
The proof proceeds as in [17]: We write any

higher derivative as Dpþ2Φ ¼ DpðD2ΦÞ, and then
integrate by parts the Dp. Then we substitute
D2Φ →

Pq
i¼1 NiH2

i , after which we integrate back
one-by-one, eliminating any second derivative

created, using (1) or (2). At the end we are left
with only first-order derivatives of Φ.

(4) Any action can be reduced so that it only contains
products of Hi, not their derivatives.
The proof is identical to the previous one.

(5) Any higher-derivative term is equivalent to one
without any appearance of DΦ.
Up to this point, any higher-order term in the

action is of the form

I ¼
Z

dtne−ΦðDΦÞp
Yq
i¼1

Hli
i : ð4:15Þ

For this term to be a higher-derivative one, the total
number of derivatives must be larger or equal to
four:

pþ l ≥ 4; with l≡Xq
i¼1

li: ð4:16Þ

Because of duality invariance we must have li ∈ 2Z,
and therefore l is also even. Some li could be zero,
and the analysis should hold even if all li are zero.
Since the total number of derivatives must be even, it
follows that p ∈ 2Z. So p ≥ 2.
We proceed to show that any appearance of DΦ

can be removed. To this end, consider the generic
term (4.15) with the conditions above and manipu-
late it as follows:

I ¼ −
Z

dtnDðe−ΦÞðDΦÞp−1
Yq
i¼1

Hli
i

¼
Z

dtne−Φ
�
ðp − 1ÞðDΦÞp−2D2Φ

Yq
i¼1

Hli
i þ ðDΦÞp−1

Xq
j¼1

ðljH−1
j DHjÞ

Yq
i¼1

Hli
i

�

≃
Z

dtne−Φ
�
ðp − 1ÞðDΦÞp−2

Xq
j¼1

ðNjH2
jÞ
Yq
i¼1

Hli
i þ lðDΦÞp

Yq
i¼1

Hli
i

�
: ð4:17Þ

To pass to the second line we integrated by parts, and to
pass to the third line we used (4.14a) and (4.14b). The last
term of the third line is in fact proportional to I. Bringing it
to the left-hand side we end up with

I ≃
p − 1

1 − l

Z
dtne−ΦðDΦÞp−2

Xq
j¼1

ðNjH2
jÞ
Yq
i¼1

Hli
i : ð4:18Þ

Since l is even, 1 − l ≠ 0, and the right-hand side is well
defined. Using (4.18) recursively we can reduce the number
of DΦ’s in steps of two, ending up with zero since p is
even. The above formula works fine if all li are zero;

one simply sets l ¼ 0 and the rightmost product is replaced
by one.
The above chain of arguments proved that there is a field

basis in which all higher-derivative terms are of the form

I ¼
Z

dtne−Φ
Yq
i¼1

Hli
i : ð4:19Þ

Here l ¼ P
i li ≥ 4 is still even. Using the three rules (4.14)

we now show that any appearance of Hq can be removed
from these higher-order terms. We begin by rewriting I in a
convenient way,
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I¼
Z

dtne−Φ
Yq
i¼1

Hli
i ¼

Z
dtne−ΦH2

qH
lq−2
q

Yq−1
i¼1

Hli
i : ð4:20Þ

Using (4.14c) we now have

I ≃
1

Nq

Z
dtne−Φ

�
ðDΦÞ2 −

Xq−1
j¼1

NjH2
j

�
H

lq−2
q

Yq−1
i¼1

Hli
i ;

≃
1

Nq

Z
dtne−Φ

�
1

3 − l

Xq
j¼1

NjH2
j −

Xq−1
j¼1

NjH2
j

�
H

lq−2
q

Yq−1
i¼1

Hli
i ;

¼ 1

Nq

Z
dtne−Φ

�
l − 2

3 − l

Xq−1
j¼1

NjH2
j þ

1

3 − l
NqH2

q

�
H

lq−2
q

Yq−1
i¼1

Hli
i ;

¼ 1

Nq

l − 2

3 − l

Z
dtne−ΦH

lq−2
q

Yq−1
i¼1

Hli
i

Xq−1
j¼1

NjH2
j þ

1

3 − l
I: ð4:21Þ

In passing to the second line we used (4.18) on the dilaton
term with p ¼ 2 and with l → l − 2. In passing to the third
line we separated the qth direction from the first sum.
Finally, in the last line, we recognized the original term
(4.19). Since l is even, the denominators are different from
zero. Taking the latter to the left-hand side and since l ≠ 2,
we end up with

I ¼
Z

dtne−Φ
Yq
i¼1

Hli
i

≃ −
1

Nq

Z
dtne−ΦH

lq−2
q

�Yq−1
i¼1

Hli
i

�Xq−1
j¼1

NjH2
j : ð4:22Þ

This shows that we can reduce by two units the power of
Hq, at the expense of increasing the powers of the other
H’s. Using the result recursively, we are able to redefine
away any appearance of Hq at higher orders in α0, and its
only appearance is in the two-derivative action (4.8)! The
most general higher-derivative term is therefore given by

I ¼
Z

dtne−Φ
Yq−1
i¼1

Hli
i : ð4:23Þ

As a corollary of this result, we get the absence of α0
corrections for two particular cases of Bianchi Type-I
universes:

(i) FRW: In this case we have only one independent
scale factor:

q¼ 1; N1¼ d; a1ðtÞ≡aðtÞ; H1ðtÞ≡HðtÞ:
ð4:24Þ

Since from (4.23) we can always remove one
Hubble parameter completely, there is a scheme

where there are no α0 corrections in the action at all.
The action to all orders in α0 is just given by the two-
derivative theory:

IFRW ¼
Z

dtne−Φ½−ðDΦÞ2 þ d ·H2�: ð4:25Þ
(ii) Isotropic and static directions: A slightly more

general case than FRW corresponds to the case

q ¼ 2; N1 ≡ N; N2 ¼ d − N;

a1ðtÞ≡ aðtÞ; H1ðtÞ≡HðtÞ;
a2ðtÞ ¼ const: ⇒ H2 ¼ 0: ð4:26Þ

This is one of the simplest anisotropic backgrounds
where we have N isotropic directions and d − N
static ones. As in FRW, there is only one Hubble
parameter, that we can redefine away. From (4.23)
we see that there are no higher-order corrections at
all. In this case the full action is given by the lowest
order one:

Istatic ¼
Z

dtne−Φ½−ðDΦÞ2 þ N ·H2�: ð4:27Þ

A few comments are in order concerning the FRW case,
which appears to be in conflict with [17]. There it was
shown that in terms of a generic generalized metric S,
encoding a general time-dependent spatial metric and
B-field, there is a minimal field basis in terms of which
all α0 corrections are of the form

I0½S� ¼
Z

dtne−Φfα0c2;0TrððDSÞ4Þ

þ α02c3;0TrððDSÞ6Þ þ � � �g; ð4:28Þ
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with the ellipsis denoting higher-order single-trace
and multitrace terms of even powers of ðDSÞ, but
without factors TrððDSÞ2Þ. The coefficients c2;0, c3;0,
etc., cannot be changed by field redefinitions and hence
have an invariant meaning (and are certainly nonzero).
Specializing (4.28) then to FRW backgrounds with a single
scale factor aðtÞ one obtains corrections of (4.25) with
higher powers of H2. Depending on the coefficients the
resulting theory may exhibit, for instance, nonperturbative
de Sitter vacua, which are not visible in (4.25). So how is
this result consistent with our above statement that for FRW
background all higher-derivative corrections are removable
by field redefinitions?
To understand the subtlety let us consider the first

correction in α0 and let us add a term proportional to
TrððDSÞ2Þ:

Ið1Þ½S� ¼
Z

dtne−Φ
	
c2;0TrððDSÞ4Þ þ ξ½TrððDSÞ2Þ�2



:

ð4:29Þ

As recalled above and shown in [17], the new term in here
can be removed by field redefinitions: the coefficient ξ has
no invariant meaning and we may choose ξ ¼ 0, as done in
(4.28). We can, however, also choose it to be nonzero and
adjust it so that for FRW backgrounds it cancels the
contribution from the single trace term. Specifically,

ξ≡ −
c2;0
2d

⇒ Ið1Þ½SFRW� ¼ 0; ð4:30Þ

where SFRW denotes the generalized metric (4.3) for a
single scale factor. Thus, there is a field basis also for S so
that, when evaluated on FRW backgrounds, the first-order
α0 corrections disappear. Similar remarks apply to all
higher-derivative corrections.
So what, in view of the above discussion, is the fate of

potential nonperturbative de Sitter vacua? It must be
emphasized that the above manipulations using field
redefinitions order by order in α0 are strictly perturbative.
There is no reason why a nonperturbative solution that is
visible in one perturbative scheme must also be visible in
another perturbative scheme, and one must await a better
understanding of nonperturbative string theory even in this
simple setting. Relatedly, whether a given solution physi-
cally exhibits the properties of de Sitter space depends
on how one probes the spacetime with matter (or, more
concretely, with “clocks”) and in which field basis one
couples the clock to the background fields.5

V. CONCLUSIONS AND OUTLOOK

The target space description of string theory contains
Einstein gravity coupled to matter fields, universally
including an antisymmetric tensor (B-field) and a scalar
(dilaton), but importantly it also receives an infinite number
of higher-derivative corrections. These corrections are only
meaningful up to field redefinitions and can hence only be
determined up to those redefinitions. Classifying the
possible higher-derivative terms up to field redefinitions
is hence the important first step of any attempts to
determine these corrections. In this paper we have explored
some surprising, and to the best of our knowledge largely
unremarked, phenomena that arise when considering
higher-derivative corrections for particular backgrounds
and/or in noncritical dimensions. We have shown that
for flat FRW backgrounds (i.e., spatially flat and homo-
geneous backgrounds with a single scale factor) all α0
corrections are on-shell trivial. More generally, for so-
called Bianchi type-I backgrounds governed by q scale
factors only q − 1 receive nontrivial higher-derivative
corrections. Moreover, and perhaps more thought-
provokingly, we have emphasized that for noncritical
dimensions there are no invariant terms other than the
cosmological term, as any term with two or more deriv-
atives can be traded for terms with an arbitrary number of
derivatives, hence invalidating the familiar setting of
perturbative α0 corrections. However, assuming that the
numerical coefficients governing the terms in the action fall
off in such a manner that terms with more derivatives are
subleading relative to terms with less derivatives one can
give a meaningful classification of higher-derivative cor-
rections, as displayed in the main text and applied to the
black hole solution of 2D string theory.
Our work is relevant to the understanding of effective field

theory in gravitational theories with a cosmological term.We
have argued that, although legal, perturbative redefinitions
that generate variations of the order 1=α0 cosmological term
do not respect the canonical structure of α0 corrections.
Higher-derivative terms in gravity are subtle in that their
physical effect, small in the context of a derivative expan-
sion, can sometimes be large. For the 2D string black hole,
we have seen that they are always intrinsically large. As
discussed recently by Horowitz et al. in [30] for near-
extremal black holes, higher-derivative terms have an
unusually strong effect allowing for a very highly curved
geometry near the horizon for generic solutions.
It would be important to extend the research reported

here in various directions, for instance:
(i) Based on the results of [17,18] various promising

string cosmology proposals have already been ex-
plored, see for instance [27,29,31–37]. In view of the
results presented here, these should be revisited for
models with two or more scale factors, in particular
with a focus on semirealistic embeddings into string
theory.

5We thank Robert Brandenberger for discussions on these
points.
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(ii) While we have not been able to find the exact black
hole solution proposed by Dijkgraaf, Verlinde, and
Verlinde within our classification of higher-derivative
corrections, there should be a different scheme in
which it is a solution, as implied by [23,26]. The
proposed solution will likely only be useful if the
actual theory of which it is a solution can be
written down.

(iii) The observation that in gravity theories with cos-
mological constant apparently any term in the action
but the cosmological term can be removed by field
redefinitions arguably deserves further investigation.
The most extreme form of this effect can be
displayed for an action with cosmological constant
Λ of the form

S ¼ −2Λ
Z

dDx
ffiffiffiffiffiffi
−g

p
LðgÞ; with

L ¼ 1 −
1

2Λ
Rþ � � � ; ð5:1Þ

which describes Einstein-Hilbert gravity with a
cosmological constant, plus arbitrary higher-
derivative terms implicit in the ellipsis. The field
redefinition

g0μν ¼ ½LðgÞ�2=Dgμν ð5:2Þ

maps the purely cosmological constant theory S0 ¼
−2Λ

R
dDx

ffiffiffiffiffiffiffi
−g0

p
into the action S above.6 Of

course, the fractional powers in (5.2) are generally
problematic, but for functions L of the above form
they can be defined as a power series.

(iv) It may be possible to investigate the possible field
redefinitions of gravitational theories with cosmo-
logical term by exploring how observables of such
theories are preserved. The entropy of black holes
may provide a useful observable for this analysis.

(v) The arguably most exciting prospect of having an
“α0-complete” theory governing black holes would be
as a model for how string theory deals with the black
hole singularity (see, e.g., [38]) and the information
loss paradox. Tentative speculations along these lines
are as old as string theory itself, but what has been
lacking are methods that allow one to write down
concrete theories in which such questions can be
explored in a precise manner. The framework pre-
sented should get us closer to that goal.
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APPENDIX: ALL-ORDER
PERTURBATIVE SOLUTION

In this appendix we prove there exist coefficients aðpÞk

and bðpÞk such that (3.82) solve the all-order equations of
motion (3.41). To see this, it is easier to work with the
inverse of (3.82b), which, together with (3.82a), is given by

M̄ ¼
X
p≥0

M̄ðpÞϵp; M̄ðpÞ ¼
Xp
k¼0

aðpÞk csch2kþ1x̄; ðA1aÞ

Ω ¼
X
p≥0

ΩðpÞϵp; ΩðpÞ ¼
Xp
k¼0

dðpÞk csch2k−1x̄; ðA1bÞ

where the new coefficients dðpÞk depend on bðpÞk . For

instance, dð0Þ0 ¼ 1

bð0Þ
0

¼ − q
2
.

The proof follows by induction. Assuming (A1) holds up
to an including order ϵp−1, we demonstrate that this
structure is also a solution of the order p equations of
motion, for some particular choice of coefficients.
To begin with, we take the second equation of (3.41) in

the n ¼ 1 gauge, expand it in powers of ϵ, and read the
order p equation

ΩðpÞ00 −ΩðpÞ − ½hðM̄ÞΩ�ðpÞ ¼ 0: ðA2Þ

In order to get the coefficients ½hðM̄ÞΩ�ðpÞ we recall the
definition of hðM̄Þ (3.42), which, after using the definition
of fðM̄Þ and gðM̄Þ, reads

hðM̄Þ ¼ 1

2
M̄fðM̄Þ − gðM̄Þ ¼ −

X
i≥0

iciϵiM̄2iþ2: ðA3Þ

Multiplying this expansion with Ω, and expanding

M̄2iþ2Ω ¼
X
p≥0

½M̄2iþ2Ω�ðpÞϵp; ðA4Þ

we can use the Cauchy product identity for product of
power series to read6We thank Ashoke Sen for pointing out this formulation.
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−½hðM̄ÞΩ�ðpÞ ¼
Xp
i¼0

ici½M̄2iþ2Ω�ðp−iÞ

¼
Xp−1
i¼0

ðiþ 1Þciþ1½M̄2iþ4Ω�ðp−i−1Þ; ðA5Þ

where for the second equality we used that the i ¼ 0 term in
the series was zero and then we just renamed the index
i → iþ 1. Equation (A5) shows explicitly that ½hðM̄ÞΩ�ðpÞ
depends on solutions to previous orders only, namely ΩðkÞ

and M̄ðkÞ with k < p, which is a direct consequence of (A3)
starting at order ϵ. This last step is crucial in our proof since
now, to get ½M̄2iþ4Ω�ðkÞ with k < p, we can use the
expansion (A1). In order to do so we need a preliminary
result: consider two fields A and B admitting an ϵ
expansion with coefficients of the form

AðpÞ ¼
Xp
k¼0

aðpÞk csch2kx̄;

BðpÞ ¼
Xp
k¼0

bðpÞk csch2kx̄: ðA6Þ

It can be shown that the product of them also admits an
expansion of the same form, namely

½AB�ðpÞ ¼
Xp
k¼0

fða; bÞðpÞk csch2kx̄; ðA7Þ

where each fða; bÞðpÞk depends on aðjÞi and bðjÞi with i ≤ k
and j ≤ p. Since now AB has the same expansion as A and
B, we can repeat the previous step by multiplying AB with
another A or B and use (A7) for the new product. By
repeating this procedure iteratively, we end up with the
extended result

½AqBl�ðpÞ ¼
Xp
k¼0

fða; bÞðpÞk csch2kx̄; ðA8Þ

with q and l integers. Obviously the coefficients fða; bÞðpÞk
here are not the same as in (A7), but they follow the same
convention.
Coming back to our problem, we can use this inter-

mediate result to get ½M̄2iþ4Ω�ðjÞ by noticing that, up to
order p − 1, M̄

cschx̄ and cschx̄Ω has the same structure as A
and B above. [As it can be seen from (A1).] Then, we can
use (A8) directly with

A→
M̄

cschx̄
; B¼ cschx̄Ω; q¼ 2iþ4; l¼ 1; ðA9Þ

so to get

½M̄2iþ4Ω�ðjÞ ¼ csch2iþ3x̄
Xj

k¼0

fða; dÞðjÞk csch2kx̄; ðA10Þ

which is only valid for j < p and. With these coefficients,
we can come back to (A5) to get

−½hðM̄ÞΩ�ðpÞ ¼
Xp−1
i¼0

Xp−i−1
k¼0

ðiþ 1Þciþ1fða; dÞðp−i−1Þk

× csch2ðkþiÞþ3x̄

¼
Xp−1
k¼0

gða; dÞðp−1Þk csch2kþ3x̄; ðA11Þ

where in the second equality we noticed that both sums can
be merged into one, upon defining new combinations

gða; dÞðp−1Þk which depend on coefficients that were deter-
mined from previous steps of the inductive procedure.
Finally, we can insert this result back into the order-p
equation (A2) to get

ΩðpÞ00 − ΩðpÞ þ
Xp−1
k¼0

gða; dÞðp−1Þk csch2kþ3x̄ ¼ 0: ðA12Þ

Then, we can propose

ΩðpÞ ¼
Xp
k¼0

dðpÞk csch2k−1x̄ ⇒ ΩðpÞ00

¼
Xp
k¼0

dðpÞk ð2k − 1Þ2csch2k−1x̄þ
Xp
k¼0

dðpÞk 2kcsch2kþ1x̄;

ðA13Þ

and check whether there exist coefficients dðpÞk such
that (A12) is satisfied. By inserting (A13) into (A12),
manipulating the limits of the series and renaming indices
we arrive at

0 ¼
Xp−2
k¼0

�
dðpÞkþ24ðkþ 2Þðkþ 1Þ þ dðpÞkþ12ðkþ 1Þ

þ gða; dÞðp−1Þk

�
csch2kþ3x̄

þ
�
2pdðpÞp þ gða; dÞðp−1Þp−1

�
csch2pþ1x̄: ðA14Þ

By demanding that each term in the sum vanishes, we arrive
at a linear system, involving p equations for the p

coefficients dðpÞk with 1 ≤ k ≤ p, while dðpÞ0 is uncon-
strained.7 One can check that this is an independent system

7These undetermined coefficients just renormalize the zeroth-
order integration constant q.
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with a unique solution and so dðpÞk are completely deter-
mined from previous-order coefficients. This concludes the
proof for the dilaton solution, and now we move into M̄.
We start from the first equation of (3.41),

fðM̄Þ ¼ qΩ−1 ⇒ ½fðM̄Þ�ðpÞ ¼ q
Xp
k¼0

bðpÞk csch2kþ1x̄;

ðA15Þ

where we inserted (3.82b) to read the order p coefficient.

The coefficients bðpÞk are all known from invertingΩp. They

depend on the dðpÞk that we just determined in our previous
step. Using the definition of fðM̄Þ, we read ½fðM̄Þ�ðpÞ

½fðM̄Þ�ðpÞ ¼
Xp
i¼0

2ðiþ 1Þci½M̄2iþ1�ðp−iÞ

¼ −2M̄ðpÞ þ
Xp−1
i¼0

2ðiþ 2Þciþ1½M̄2iþ3�ðp−i−1Þ

¼ −2M̄ðpÞ þ
Xp
k¼1

fðaÞðp−1Þk−1 csch2kþ1x̄; ðA16Þ

where in the second equality we separated the term i ¼ 0 in
the sum and renamed indices i → iþ 1. For the third
equality we used (A8) [which is possible because
½M̄2iþ3�ðp−i−1Þ involves lower-order solutions of the form
(A1a)], wrote everything as a power series in cschx̄ and

renamed indices one more time. The coefficients fðaÞðp−1Þk
are fully determined from previous orders and the ci
coefficients. Finally, by inserting this result into (A15)
we can isolate M̄ðpÞ to get

M̄ðpÞ ¼−
q
2
cschx̄−

1

2

Xp
k¼1

�
qbðpÞk −fðaÞðp−1Þk−1

�
csch2kþ1x̄;

ðA17Þ

where we can see that, indeed, M̄ðpÞ has the desired form

(A1) with the new coefficients aðpÞk completely determined

from dðpÞk and fðaÞðp−1Þk .
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