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Quantum dynamics of Lagrange multipliers
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When implementing a nonlinear constraint in quantum field theory by means of a Lagrange multiplier,
A(x), it is often the case that quantum dynamics induce quadratic and even higher-order terms in A(x),
which then does not enforce the constraint anymore. This is illustrated in the case of unimodular gravity,
where the constraint is that the metric tensor has to be unimodular (g(x) = det g, (x) = —1).

DOI: 10.1103/PhysRevD.108.026013

I. INTRODUCTION

Unimodular gravity (UG) is a variant of General
Relativity (GR) originally conceived by Einstein in 1919
(cf. Ref. [1] for a recent review) in which the zero-mode
component of the vacuum energy does not weigh. This is
the only fully satisfactory solution to at least part of the
well-known cosmological constant (CC) problem.

The theory rests on the assumption that only unimodular
metrics [g(x) = det g,,(x) = —1] are admissible. This
poses a formidable problem in practice because it is a
nonlinear constraint. There have been at least three attempts
to implement this constraint, namely:

(1) The simplest one consists in supplementing the GR

Lagrangian with a Lagrange multiplier term imple-
menting the constraint either as

ASyg = /ddx%/i(x) (g(x)+1) oras
ASus = [ ' A0)(V/=900 - 1), (n

along with the standard linear splitting g,,(x) =
Gy (x) + Khy, (x). Examples of this are to be found in
[2,3]. Note that the mass dimension of the multiplier
is [A(x)] =3 in d = 4.
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(2) The second one just defines an auxiliary unrestricted
metric g, in terms of which the unimodular metric is

obtained
V(%) = g7 4(x) gy (x). (2)
This introduces a new Weyl gauge symmetry under
G () = Q2(x) gy (). (3)

This formalism has been used extensively in [4].

(3) Finally, use can be made of the theorem on the effect
that any unimodular metric is the exponential of a
traceless one

G (x) = () .., (4)

with
trG,,(x) = 0. (5)

This has been used in Refs. [5-8].
The purpose of the present work is to examine the
consistency of the first alternative under quantum correc-
tions, although some comments will also be made on the
exponential parametrization.

It is quite intuitive that the coupling of the multiplier with
the graviton can induce divergent diagrams of higher order in
the multipliers and even, in some cases kinetic energy terms for
them; see Figs. 1 and 2 below. Examples of related phenomena
appear in the principal chiral model [9] and in the physics of
gravitons in a codimension-one brane [10], among others.

The conclusion is that any consistent renormalization'
must include finite values for the coupling constants in front

1Somebody could be tempted to put by hand all these coupling
constants to zero. This would be most unnatural; it is more or less
equivalent to putting to zero all coupling constants in front of the
higher-dimensional operators in quantum gravity—no known
symmetry principle supports this.
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FIG. 1. Feynman diagram yielding a divergent A%(x) part.

of these operators, which in turn conveys the fact that the
Lagrange multiplier does not work as a multiplier anymore: it
has become a full-fledge field with its own dynamics.

We shall, in fact, demonstrate in detail how the operator

O, = A(x)%, (6)

is generated by one-loop diagrams. We further argue,
without explicit calculation, that a two-loop diagram will
induce the kinetic energy correction

0, = (9,A(x))*. (7)

To be specific, let g(x) denote, as usual, the determinant
of the metric. Assume that the unimodularity condition;
g(x) = -1, is enforced with the first alternative just
exposed, i.e., by including in the path integral the additional
contribution,

h o P
' E—
AL,
/ A

/ Dot ] EA 6+ (8)

We want to explore the implications of such a gauge-fixing
procedure when radiative corrections are taken into account
in the covariant perturbation theory of quantum gravity.
Consider gravitons, h,,(x) propagating on a flat back-
ground, 7,,, such that,

g/w(x) =N + Kh;w(x)' (9)
Since,

—g(x) = 1+ kh(x) + 5 (2 (x) = b, (1), (x)) + O(x),

(10)

where /(x) = h,, (x)n"", the term in Eq. (8) gives rise to an
interaction

oo
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FIG. 2. Kinetic contributions to A(x).
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At the tree level, the contribution to the 1PI function is
linear in A(x) for it is given by Eq. (8). However, radia-
tive corrections yield, in fact, a one-loop contribution to
the 1PI functional quadratic in A(x). Such contribution is
given by the 1PI diagram in Fig. 1, whose value in
dimensional regularization is given by the following
Feynman integral:

1

K> diq
I(p) = 3/WVLMI/W2VZG#1U1P161 (p)
S Gyzyzpzo‘z (p + Q) VLplo'l/)ZUZ’ (13)

where the vertices V' are given by Eq. (12)and G, ,, 5, (P)
denotes the graviton propagator discussed in Sec. IL

II. COMPUTING THE DIAGRAM

In this section we shall work out I'; (p) in Eq. (13) for
quantum unimodular gravity as defined in [4] on the one
side and [3] on the other.

The general structure of the propagator is of the form,

1
vamzvz(Q) = 2 <A1 (nﬂlﬂzrlvll/z + nﬂlbznylllz) + Aznﬂllﬂﬂﬂzl’z + A3 ? (nﬂll’l q!lqulz + ﬂllzbzqﬂl ql/l)

q

1 1
+ Ay e (M iy v, Doy + M0y G, Dty + Mo Dy Gy Mgy Ay ysy) + As 7 D qﬂzqyz) : (14)

The value of the coefficients A; to A5 depends, in general,
on the set of fields introduced by the Becchi-Rouet-Stora-
Tyutin (BRST) quantization procedure. The set of fields
introduced in [4] is quite different from the set of fields in
[3]. Let us then begin by adapting the BRST formalism of
[4], which was developed for the unrestricted metric in
Eq. (2), to our case.

The action of the quantum theory is not invariant under
the full diffeomorphism group but only under the TDiff
subgroup,

89 = Vel + V¢

vhu»

Ve =0.  (15)

The nilpotent BRST operator 5%, = 0 is defined by

ng,uu = 0’
sphy, = 0,¢l 4+ 0,¢l + c7P0,h,, + h,,0,c™ + h,,0,c™,
(16)
and
spg(x) = 29(x)V,c™ = "9, g(x),
spA(x) = ¢'P0,A(x), (17)

where ¢’# is the ghost fields for transverse diffeomor-
phisms, the transverse condition implies d,¢’# = 0. The
BRST transformations are then defined in such a way that
the BRST algebra closes.

[
First of all, let us note that

/ddxs%ﬂ(x) = —/ddxép(cT/’cT"ag/l(x)) =0. (18)

The action is invariant under s, because

Sp / dxA(x)(g(x) +1) = /ddxaf,[cT/’(g(x) + 1)A(x)].

(19)
Introduce now the following set of fields
0,0 L1 1-1 0,0
h[<ll/ >9 c}(l )7 b}(t >’ f/<l )9 ¢(02)7
”(1.—1)7 ”/(1,1), E(o,—z)’ C/(0,0)7
C(l’l), b(l’_l), f(0,0)’ (20)
where ¢! denotes ¢, and h,(,(im is h,, and the superscript

(n,m) carries the Grassmann number, n (defined modulo
two) and ghost number, m. Also we need to introduce a
projector O,

c/f =0,,¢" = (1,0- 0,,6,/)6"(1”, (21)
and
9,(c""a,c™) =0, 2,[(0i(erTo,c™)] =0,  (22)

where

() =5at. 3)
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To summarize, the action of s, over the fields (20) The fermion Xy, performing the gauge fixing of the
TDiff symmetry reads
SpGuv = 0,
sphy, = 0,cl +0,¢f + ¢?T,h,, + h,,0,c™" + h,,0,c™, Xrp = bV R 4 py frO0] 4 g ORI 4 /(1)
spe D = (O ("7 9,c™) + 02, + OB 4 poglD)), (25)
SDG/) 02 =0,

where F* is a function containing the graviton field and FY,
sDb f,, , F%, and the three operators p; can be freely chosen.
For the computation at hand, one can choose

SDfll 0 = O,

sDC(o -2) = g1~ F, = 110h,, + 120,h,

SDﬂ'(l’_l) :O F’f:ald",

SDC/(O,O) T /(1, l) Fg Y

spr/ M =0, (pr—p3)~t =70 (26)
sDc(l-l) — CTpapC(]"l),

spbl=D) = Tr apb(l'_l), Applying the s, operator over the gauge fixing term
sp f(o,o) _ CT/)ap f(o,o)‘ (24) using Eq. (24)

/dXSDXTD /ddx{f N+ pr frO0) = b Vs P 2D R el 4 py10)]

4 eOD G 02 4 D [EERID L 5 7 (1=1)] y r(00) i 000y (27)
in which,
spF* = y10c™ +710,[c?T0,h" + W o' TP + WP ¥ cTP] + 120" [¢TP0,h + 2h,,07cT?]. (28)

The bosonic quadratic action in our problem reads,
D Voa S ] = 1 = 1 1 »
Sz — Shf = —5 dx< h Znﬂmaﬂﬂ - Znaﬁ”uvm -+ Enaﬂaﬂa,, - Enﬂbaa()ﬂ h* —2hA
v 0.0 0.0 (0.0)
~ 2 [ @i + 9 f00) + 1 £ >] +2p1 i 100 4 2, 00 g1 } (29)
which has the general structure
1
S, = SiP = —5/ dxy K agy®, (30)

where we have written the quadratic operator corresponding to the generalized field, w4, defined as a vector

h

Hv

0,0
A | A0

c/(0.0)

A

(31)

<
1

After going into momentum space, the graviton propagator can be obtained by finding the inverse of the K, (p) operator,

KABGBC - Ig (32)
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By doing so, one finds that

1 4
szr;w(p) = - ? <2(77p/ﬂ7mx + 77/)1/770';4) — 7 Mol + (d _ 2) p

(d-2)
2(ri = p1)

+_
1noop

1
) (n/)ﬂpﬁpu + n/)ypo'pﬂ + nrmp/)pp + nﬂypppﬂ) +

1
) (n;tupppa + npapﬂpu)

8(2ri +(d=2)p)) 1
1(d _ 2)7% ?p/)p(rpypv . (33)

We are now ready to calculate the 1PI diagram in Fig. 1 in dimensional regularization. After substituting in Eq. (13) for
the obtained vertex and propagator, the resulting integral can be expressed as a linear combination of integrals of the type,

PP (q,q+ p)

(34)

/ diq 1
22)"¢*(q+ p)* (¢*)*((p + 9)*)F"

where,  and /3 are non-negative integers such that 0 < a + f < 4 and P\*#)(q, g + p) is a polynomial in ¢ and (p + ¢)* of

dimension 2(a + f).

The value of such integrals can be consulted in [11] or elsewhere, and setting d = 4 + 2¢ yields,

3i(3y] + p7)

. —n2
i(9(1 +4yp)r! — 6rips + 12371 4 p3) In(=5) + (5 + 127p)p?})

r = -
L(p) 2”27/1;6

where, in Eq. (35), we have set k = 1, and y is the Euler-
Mascheroni constant.

Let us now move on and obtain I'; (p) in Eq. (13) for the
BRST formulation of [3]. Now the vertex V,*1¥1#2*2 reads

Vﬁlbl/‘?’z — (nllll/lnﬂzl/z — gk — ;7”1/42;7/411/2)’ (36)

FNII,

for it is \/—g(x) rather than g(x) which couples to A(x).
The graviton propagator of [3] [see (3.15), therein] is
retrieved by setting

Al :1, A2:—1, A3:2, A4:—1, A5:—4’
in (14). For this choice of A;s and the vertex in (36), I'; (p)
turns out to be equal to

3 9i _3(11 + 127/)1'_ 9i
3272 12872 3272

In (i-j) +0(). (37)

where d =4 + 2¢ and metric signature is (—,+,+, +).
Again, we have set k = 1.

Had we chosen to define the theory a la Wilson by
assuming, for example, that all fields vanish when their
momentum is bigger than the UV cutoff scale, Ayy, then
the integration of the fast graviton modes with momentum

p € [A Ayy]. (38)

would give rise for the low-energy modes 4., (x) (that is,
those whose Fourier transform vanishes when p > A) to

K O(e), 35
e +0().  (39)
A 1
clIn (%)Kz/d“xzﬂlow(x)z, (39)
where ¢ = %}7’%) and ¢ = %ﬂz, respectively, for the two
1

BRST formulations of unimodular gravity we have dis-
cussed. The result that we have obtained above means that
the low-energy modes ., (x) do not work as a Lagrange
multiplier so that the unimodularity condition is not
imposed on the corresponding graviton low-energy modes.

III. A COMMENT ON GR
IN THE UNIMODULAR GAUGE

The phenomena discussed here also affect GR in the
unimodular gauge as discussed in [12]. The propagator of
GR has the same general form discussed above, with

2 4
A :_1 A - 5 A - - )
: ’ *Td-2 T d=2
42+ a(d-2))
Ay=1- Ag = ———— .
T d-2

This leads to the UV divergent result for the correspond-
ing diagram

3 i3(3 + a?) i9 + 36y + a(—-6 + a(5 + 12y))
327%€ 12872
33 +ad?) p?
+ =5 In (”—2 + O(e). (40)
The MS renormalization implies a counterterm
3(3+a?) 1
———— [ d*x=A(x)%, 41
327’ / x2 (x) (41)
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spoiling the working of the Lagrange multiplier as
such. It is worth pointing out that this counterterm
does not jeopardize the BRST quantization of GR,
owing to the fact that it is BRST exact. What it means
is that the gauge-fixing fermion was not general
enough, which is always a delicate issue for theories
like GR that are not renormalizable by power
counting.

A similar computation can be carried out for GR in the
unimodular gauge as defined in [13]. The result that
one obtains is Eq. (37), for it turns out that the graviton
propagator of [13] is the same as the graviton propagator
from the unimodular theory of [3].

|

IV. A REMARK ON THE EXPONENTIAL
PARAMETRIZATION

Let us present a formal proof of the fact that this third
approach of the Introduction does not suffer from this
sickness, at least if the unimodularity condition is imple-
mented by adding to the action the term

/ ddx%ﬂ(x)h(x),

A(x) being a Lagrange multiplier and & (x) = hj;(x).
Now, let us set x = 1 and define the partition function as
follows:

Z[J (x> j(x) . } —_ eiW[.I,w(x),j(x),u-] :/ Dh. DJ--- eiS-‘rifd4x/1(x)h(x)+i(ﬂ’”(x)hw(x)-k—j(x)ﬂ(x))-&-'-'
uv\A)s ’ uy s

where h(x) = §“h,,(x) and the dots stand for contributions involving other fields and external sources but no A(x). An

identity can be easily written as

5 o T OV () (A oo . .
0— /Dhﬂ,/D/I- _ ._(ezs-szdﬁﬂ(x)h(x)-&-z(] () hy () () A(x))+ ) = i(h(x) + j(x)), (42)
SA(x)
where as usual
(F(x)) = / DhyDi-- - F(x)e™* J M)+ (6 (0)+76)0) ) (43)

This Ward identity can be written as

87 oW
S T I), Z=0=3Y s+ (). (44)
Define now the 1PI effective action as
s 2o+ = Wil foe )= [ @30 5) 4 0) +-+-). (45)
|

Then, V. COMMENTS AND CONCLUSIONS
B T Let us begin by pointing out that aside from the diagram
g"hy,(x) — 51(x) =0. (46) here studied, one can expect higher-loop diagrams making

It follows that the full dependence on the Lagrange
multiplier is captured by

r=r+ / d*xA(x) G hy, (x), (47)
where
or
i)~ © (48)

other terms involving A(x) present in the action, following
Gell-Mann'’s totalitarian principle; whatever is not forbid-
den is compulsory. In particular, we expect diagrams such
as those in Fig. 2 give rise to kinetic terms for the A(x) field;
the 1PI diagram in Fig. 2 is quadratically divergent by
power counting.

At any rate, we have shown in this work that the
imposition of the unimodular constraint in UG through a
Lagrange multiplier does not survive, in general, quantum
effects; unless the exponential parametrization is used
appropriately. These generate, in general, (UV divergent)
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quadratic (and higher)-order terms in the multiplier, as well
as kinetic-energy contributions, all of which spoil the work
of the Lagrange multiplier as such.

A reasonable hypothetical cancellation of those diagrams
would be in an appropriately quantized unimodular super-
gravity [14]. Of course, were we ready to pay the price
of giving up unitarity to get a renormalizable theory of
gravity—e.g., by considering quadratic gravity2 [15]—with
propagators falling off at infinity as 1/p*, then the relevant
diagrams computed in this paper would be UV finite by
power counting. Hence, the problem that we have unearthed
in this paper for a unimodular gravity theory based solely on
the Einstein-Hilbert would disappear. Whether a similar

*We thank an anonymous referee for pointing this out to us.

problem shows up again at a higher-loop level demands
an analysis which lies outside the scope of this paper.
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