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When implementing a nonlinear constraint in quantum field theory by means of a Lagrange multiplier,
λðxÞ, it is often the case that quantum dynamics induce quadratic and even higher-order terms in λðxÞ,
which then does not enforce the constraint anymore. This is illustrated in the case of unimodular gravity,
where the constraint is that the metric tensor has to be unimodular (gðxÞ≡ det gμνðxÞ ¼ −1).
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I. INTRODUCTION

Unimodular gravity (UG) is a variant of General
Relativity (GR) originally conceived by Einstein in 1919
(cf. Ref. [1] for a recent review) in which the zero-mode
component of the vacuum energy does not weigh. This is
the only fully satisfactory solution to at least part of the
well-known cosmological constant (CC) problem.
The theory rests on the assumption that only unimodular

metrics [gðxÞ≡ det gμνðxÞ ¼ −1] are admissible. This
poses a formidable problem in practice because it is a
nonlinear constraint. There have been at least three attempts
to implement this constraint, namely:
(1) The simplest one consists in supplementing the GR

Lagrangian with a Lagrange multiplier term imple-
menting the constraint either as

ΔSUG ≡
Z

ddx
1

κ
λðxÞðgðxÞ þ 1Þ or as

ΔSUG ≡
Z

ddx
1

κ
λðxÞð

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
− 1Þ; ð1Þ

along with the standard linear splitting gμνðxÞ ¼
ḡμνðxÞ þ κhμνðxÞ. Examples of this are to be found in
[2,3]. Note that the mass dimension of the multiplier
is ½λðxÞ� ¼ 3 in d ¼ 4.

(2) The second one just defines an auxiliary unrestricted
metric gμν in terms of which the unimodular metric is
obtained

γμνðxÞ≡ g−1=dðxÞgμνðxÞ: ð2Þ
This introduces a new Weyl gauge symmetry under

gμνðxÞ → Ω2ðxÞgμνðxÞ: ð3Þ
This formalism has been used extensively in [4].

(3) Finally, use can be made of the theorem on the effect
that any unimodular metric is the exponential of a
traceless one

gμνðxÞ ¼ ðeGðxÞÞμν; ð4Þ
with

trGμνðxÞ ¼ 0: ð5Þ
This has been used in Refs. [5–8].

The purpose of the present work is to examine the
consistency of the first alternative under quantum correc-
tions, although some comments will also be made on the
exponential parametrization.
It is quite intuitive that the coupling of the multiplier with

the graviton can induce divergent diagrams of higher order in
themultipliers and even, in somecases kinetic energy terms for
them; see Figs. 1 and 2below.Examples of related phenomena
appear in the principal chiral model [9] and in the physics of
gravitons in a codimension-one brane [10], among others.
The conclusion is that any consistent renormalization1

must include finite values for the coupling constants in front
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1Somebody could be tempted to put by hand all these coupling
constants to zero. This would be most unnatural; it is more or less
equivalent to putting to zero all coupling constants in front of the
higher-dimensional operators in quantum gravity—no known
symmetry principle supports this.
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of these operators, which in turn conveys the fact that the
Lagrange multiplier does not work as a multiplier anymore: it
has become a full-fledge field with its own dynamics.
We shall, in fact, demonstrate in detail how the operator

O1 ≡ λðxÞ2; ð6Þ

is generated by one-loop diagrams. We further argue,
without explicit calculation, that a two-loop diagram will
induce the kinetic energy correction

O2 ≡ ð∂μλðxÞÞ2: ð7Þ

To be specific, let gðxÞ denote, as usual, the determinant
of the metric. Assume that the unimodularity condition;
gðxÞ ¼ −1, is enforced with the first alternative just
exposed, i.e., by including in the path integral the additional
contribution,

Z
Dλe

i
κ

R
d4xλðxÞðgðxÞþ1Þ: ð8Þ

We want to explore the implications of such a gauge-fixing
procedure when radiative corrections are taken into account
in the covariant perturbation theory of quantum gravity.
Consider gravitons, hμνðxÞ propagating on a flat back-
ground, ημν, such that,

gμνðxÞ ¼ ημν þ κhμνðxÞ: ð9Þ
Since,

−gðxÞ ¼ 1þ κhðxÞ þ κ2

2
ðh2ðxÞ − hμνðxÞhμνðxÞÞ þOðκÞ3;

ð10Þ
where hðxÞ ¼ hμνðxÞημν, the term in Eq. (8) gives rise to an
interaction

FIG. 2. Kinetic contributions to λðxÞ.

FIG. 1. Feynman diagram yielding a divergent λ2ðxÞ part.
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i
κ

2

Z
d4xλðxÞhμ1ν1ðxÞhμ2ν2ðxÞVL

μ1ν1μ2ν2 ; ð11Þ

VL
μ1ν1μ2ν2 ¼ 1

2
ð2ημ1ν1ημ2ν2 − ημ1μ2ην1ν2 − ημ1μ2ην1ν2Þ: ð12Þ

At the tree level, the contribution to the 1PI function is
linear in λðxÞ for it is given by Eq. (8). However, radia-
tive corrections yield, in fact, a one-loop contribution to
the 1PI functional quadratic in λðxÞ. Such contribution is
given by the 1PI diagram in Fig. 1, whose value in
dimensional regularization is given by the following
Feynman integral:

ΓLðpÞ ¼
κ2

2

Z
ddq
ð2πÞd VL

μ1ν1μ2ν2Gμ1ν1ρ1σ1ðpÞ

×Gμ2ν2ρ2σ2ðpþ qÞVL
ρ1σ1ρ2σ2; ð13Þ

where the vertices VL are given by Eq. (12) andGμ1ν1ρ1σ1ðpÞ
denotes the graviton propagator discussed in Sec. II.

II. COMPUTING THE DIAGRAM

In this section we shall work out ΓLðpÞ in Eq. (13) for
quantum unimodular gravity as defined in [4] on the one
side and [3] on the other.
The general structure of the propagator is of the form,

Gμ1ν1μ2ν2ðqÞ ¼ −
1

q2

�
A1ðημ1μ2ην1ν2 þ ημ1ν2ην1μ2Þ þ A2ημ1ν1ημ2ν2 þ A3

1

q2
ðημ1ν1qμ2qν2 þ ημ2ν2qμ1qν1Þ

þ A4

1

q2
ðημ1μ2qν1qν2 þ ημ1ν2qν1qμ2 þ ην1μ2qμ1qν2 þ ην1ν2qμ1qμ2Þ þ A5

1

q4
qμ1qν1qμ2qν2

�
: ð14Þ

The value of the coefficients A1 to A5 depends, in general,
on the set of fields introduced by the Becchi-Rouet-Stora-
Tyutin (BRST) quantization procedure. The set of fields
introduced in [4] is quite different from the set of fields in
[3]. Let us then begin by adapting the BRST formalism of
[4], which was developed for the unrestricted metric in
Eq. (2), to our case.
The action of the quantum theory is not invariant under

the full diffeomorphism group but only under the TDiff
subgroup,

δgμν ¼ ∇μcTν þ∇νcTμ ; ∇λcTλ ¼ 0: ð15Þ

The nilpotent BRST operator s2D ¼ 0 is defined by

sDgμν ¼ 0;

sDhμν ¼ ∂μcTν þ ∂νcTμ þ cTρ∂ρhμν þ hρν∂μcTρ þ hρμ∂νcTρ;

ð16Þ

and

sDgðxÞ ¼ 2gðxÞ∇μcTμ ¼ cTμ∂μgðxÞ;
sDλðxÞ ¼ cTρ∂ρλðxÞ; ð17Þ

where cTμ is the ghost fields for transverse diffeomor-
phisms, the transverse condition implies ∂μcTμ ¼ 0. The
BRST transformations are then defined in such a way that
the BRST algebra closes.

First of all, let us note that

Z
ddxs2DλðxÞ ¼ −

Z
ddx∂ρðcTρcTσ∂σλðxÞÞ ¼ 0: ð18Þ

The action is invariant under sD because

sD

Z
ddxλðxÞðgðxÞ þ 1Þ ¼

Z
ddx∂ρ½cTρðgðxÞ þ 1ÞλðxÞ�:

ð19Þ

Introduce now the following set of fields

hð0;0Þμν ; cð1;1Þμ ; bð1;−1Þμ ; fð0;0Þμ ; ϕð0;2Þ;

πð1;−1Þ; π0ð1;1Þ; c̄ð0;−2Þ; c0ð0;0Þ;

cð1;1Þ; bð1;−1Þ; fð0;0Þ; ð20Þ

where cð1;1Þμ denotes cμ and hð0;0Þμν is hμν and the superscript
ðn;mÞ carries the Grassmann number, n (defined modulo
two) and ghost number, m. Also we need to introduce a
projector Θμν

cTμ ¼ Θμνcν ¼ ðημν□ − ∂μ∂νÞcνð1;1Þ; ð21Þ
and

∂μðcρT∂ρcTμÞ ¼ 0; ∂μ½ðQ−1ÞμνðcρT∂ρcTμÞ� ¼ 0; ð22Þ
where

ðQ−1Þμν ¼ 1

□
δμν : ð23Þ
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To summarize, the action of sD over the fields (20)

sDgμν ¼ 0;

sDhμν ¼ ∂μcTν þ ∂νcTμ þ cρT∂ρhμν þ hρν∂μcTρ þ hρμ∂νcTρ;

sDcð1;1Þμ ¼ ðQ−1ÞμνðcρT∂ρcTνÞ þ ∂
μϕð0;2Þ;

sDϕð0;2Þ ¼ 0;

sDb
ð1;−1Þ
μ ¼ fð0;0Þμ ;

sDf
ð0;0Þ
μ ¼ 0;

sDc̄ð0;−2Þ ¼ πð1;−1Þ;

sDπð1;−1Þ ¼ 0;

sDc0ð0;0Þ ¼ π0ð1;1Þ;

sDπ0ð1;1Þ ¼ 0;

sDcð1;1Þ ¼ cTρ∂ρcð1;1Þ;

sDbð1;−1Þ ¼ cTρ∂ρbð1;−1Þ;

sDfð0;0Þ ¼ cTρ∂ρfð0;0Þ: ð24Þ

The fermion XTD performing the gauge fixing of the
TDiff symmetry reads

XTD ¼ bð1;−1Þμ ½Fμ þ ρ1fμð0;0Þ� þ c̄ð0;−2Þ½Fμ
2c

ð1;1Þ
μ þ ρ2π

0ð1;1Þ�
þ c0ð0;0Þ½Fμ

1b
ð1;−1Þ
μ þ ρ3π

ð1;−1Þ�; ð25Þ

where Fμ is a function containing the graviton field and Fμ
1,

Fμ
2, and the three operators ρi can be freely chosen.
For the computation at hand, one can choose

Fμ ¼ γ1∂
νhμν þ γ2∂μh;

Fμ
1 ¼ α1∂

μ;

Fμ
2 ¼ α2∂

μ;

ðρ2 − ρ3Þ−1 ¼ γ□: ð26Þ

Applying the sD operator over the gauge fixing term
using Eq. (24)

Z
ddxsDXTD ¼

Z
ddxffð0;0Þμ ½Fμ þ ρ1fμð0;0Þ� − bð1;−1Þμ sDFμ þ πð1;−1Þ½Fμ

2c
ð1;1Þ
μ þ ρ2π

0ð1;1Þ�

þ c̄ð0;−2ÞFμ
2∂μϕ

ð0;2Þ þ π0ð1;1Þ½Fμ
1b

ð1;−1Þ
μ þ ρ3π

ð1;−1Þ� þ c0ð0;0ÞFμ
1f

ð0;0Þ
μ g; ð27Þ

in which,

sDFμ ¼ γ1□cTμ þ γ1∂ν½cρT∂ρhμν þ hρν∂μcTρ þ hρμ∂νcTρ� þ γ2∂
μ½cTρ∂ρhþ 2hρσ∂ρcTσ�: ð28Þ

The bosonic quadratic action in our problem reads,

S2 − STDhf ¼ −
1

2

Z
ddx

�
hαβ

�
1

4
ηβνηαμ□̄ −

1

4
ηαβημν□̄þ 1

2
ηαβ∂μ∂ν −

1

2
ηβν∂α∂μ

�
hμν − 2hλ

− 2hμν
�
γ1
2
ð∂νfð0;0Þμ þ ∂μf

ð0;0Þ
ν Þ þ γ2ημν∂

λfð0;0Þλ

�
þ 2ρ1f

ð0;0Þ
μ fμð0;0Þ þ 2α1c0ð0;0Þ∂μf

ð0;0Þ
μ

�
; ð29Þ

which has the general structure

S2 − STDhf ¼ −
1

2

Z
ddxψAKABψ

B; ð30Þ

where we have written the quadratic operator corresponding to the generalized field, ψA, defined as a vector

ψA ≡

0
BBB@

hμν

fð0;0Þμ

c0ð0;0Þ

λ

1
CCCA: ð31Þ

After going into momentum space, the graviton propagator can be obtained by finding the inverse of the KABðpÞ operator,

KABGBC ¼ ICA: ð32Þ
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By doing so, one finds that

GρσμνðpÞ ¼ −
1

p2

�
2ðηρμησν þ ηρνησμÞ −

4

ðd − 2Þ ηρσημν þ
8

ðd − 2Þ
1

p2
ðημνpρpσ þ ηρσpμpνÞ

þ −
2ðγ21 − ρ1Þ

γ21

1

p2
ðηρμpσpν þ ηρνpσpμ þ ησμpρpν þ ησνpρpμÞ þ −

8ð2γ21 þ ðd − 2Þρ1Þ
ðd − 2Þγ21

1

p4
pρpσpμpν

�
: ð33Þ

We are now ready to calculate the 1PI diagram in Fig. 1 in dimensional regularization. After substituting in Eq. (13) for
the obtained vertex and propagator, the resulting integral can be expressed as a linear combination of integrals of the type,

Z
ddq
ð2πÞd

1

q2ðqþ pÞ2
Pðα;βÞðq; qþ pÞ
ðq2Þαððpþ qÞ2Þβ ; ð34Þ

where, α and β are non-negative integers such that 0 ≤ αþ β ≤ 4 and Pðα;βÞðq; qþ pÞ is a polynomial in qμ and ðpþ qÞμ of
dimension 2ðαþ βÞ.
The value of such integrals can be consulted in [11] or elsewhere, and setting d ¼ 4þ 2ϵ yields,

ΓLðpÞ ¼ −
3ið3γ41 þ ρ21Þ

2π2γ41ϵ
þ
ið9ð1þ 4γEÞγ41 − 6γ21ρ1 þ 12ð3γ41 þ ρ21Þ lnð−p

2

μ2
Þ þ ð5þ 12γEÞρ21Þ

8π2γ41
þOðϵÞ; ð35Þ

where, in Eq. (35), we have set κ ¼ 1, and γE is the Euler-
Mascheroni constant.
Let us now move on and obtain ΓLðpÞ in Eq. (13) for the

BRST formulation of [3]. Now the vertex VL
μ1ν1μ2ν2 reads

Vμ1ν1μ2ν2
L ¼ 1

4
ðημ1ν1ημ2ν2 − ημ1μ2ην1ν2 − ην1μ2ημ1ν2Þ; ð36Þ

for it is
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

rather than gðxÞ which couples to λðxÞ.
The graviton propagator of [3] [see (3.15), therein] is
retrieved by setting

A1 ¼ 1; A2 ¼ −1; A3 ¼ 2; A4 ¼ −1; A5 ¼ −4;

in (14). For this choice of Ais and the vertex in (36), ΓLðpÞ
turns out to be equal to

−
9i

32π2ϵ
−
3ð11þ 12γÞi

128π2
−

9i
32π2

ln

�
p2

μ2

�
þOðϵÞ; ð37Þ

where d ¼ 4þ 2ϵ and metric signature is ð−;þ;þ;þÞ.
Again, we have set κ ¼ 1.
Had we chosen to define the theory à la Wilson by

assuming, for example, that all fields vanish when their
momentum is bigger than the UV cutoff scale, ΛUV, then
the integration of the fast graviton modes with momentum

p ∈ ½Λ;ΛUV�; ð38Þ

would give rise for the low-energy modes λlowðxÞ (that is,
those whose Fourier transform vanishes when p > Λ) to

c ln

�
ΛUV

Λ

�
κ2

Z
d4x

1

2
λlowðxÞ2; ð39Þ

where c ¼ 3ð3γ4
1
þρ2

1
Þ

π2γ4
1

and c ¼ 9
16π2

, respectively, for the two

BRST formulations of unimodular gravity we have dis-
cussed. The result that we have obtained above means that
the low-energy modes λlowðxÞ do not work as a Lagrange
multiplier so that the unimodularity condition is not
imposed on the corresponding graviton low-energy modes.

III. A COMMENT ON GR
IN THE UNIMODULAR GAUGE

The phenomena discussed here also affect GR in the
unimodular gauge as discussed in [12]. The propagator of
GR has the same general form discussed above, with

A1 ¼ −1; A2 ¼
2

d − 2
; A3 ¼ −

4

d − 2
;

A4 ¼ 1 − α; A5 ¼
4ð2þ αðd − 2ÞÞ

d − 2
:

This leads to the UV divergent result for the correspond-
ing diagram

− i
3ð3þ α2Þ
32π2ϵ

þ i
9þ 36γ þ αð−6þ αð5þ 12γÞÞ

128π2

þ i
3ð3þ α2Þ
32π2

ln

�
p2

μ2

�
þOðϵÞ: ð40Þ

The MS renormalization implies a counterterm

3ð3þ α2Þ
32π2ϵ

Z
d4x

1

2
λðxÞ2; ð41Þ

QUANTUM DYNAMICS OF LAGRANGE MULTIPLIERS PHYS. REV. D 108, 026013 (2023)

026013-5



spoiling the working of the Lagrange multiplier as
such. It is worth pointing out that this counterterm
does not jeopardize the BRST quantization of GR,
owing to the fact that it is BRST exact. What it means
is that the gauge-fixing fermion was not general
enough, which is always a delicate issue for theories
like GR that are not renormalizable by power
counting.
A similar computation can be carried out for GR in the

unimodular gauge as defined in [13]. The result that
one obtains is Eq. (37), for it turns out that the graviton
propagator of [13] is the same as the graviton propagator
from the unimodular theory of [3].

IV. A REMARK ON THE EXPONENTIAL
PARAMETRIZATION

Let us present a formal proof of the fact that this third
approach of the Introduction does not suffer from this
sickness, at least if the unimodularity condition is imple-
mented by adding to the action the termZ

ddx
1

κ
λðxÞhðxÞ;

λðxÞ being a Lagrange multiplier and hðxÞ ¼ hμμðxÞ.
Now, let us set κ ¼ 1 and define the partition function as

follows:

Z½JμνðxÞ; jðxÞ; � � �� ¼ eiW½JμνðxÞ;jðxÞ;���� ¼
Z

DhμνDλ � � � eiSþi
R

d4xλðxÞhðxÞþiðJμνðxÞhμνðxÞþjðxÞλðxÞÞþ���;

where hðxÞ≡ ḡμνhμνðxÞ and the dots stand for contributions involving other fields and external sources but no λðxÞ. An
identity can be easily written as

0 ¼
Z

DhμνDλ � � � δ

δλðxÞ ðe
iSþi

R
d4xλðxÞhðxÞþiðJμνðxÞhμνðxÞþjðxÞλðxÞÞþ���Þ ¼ ihhðxÞ þ jðxÞi; ð42Þ

where as usual

hFðxÞi≡
Z

DhμνDλ � � �FðxÞeiSþi
R

d4xλðxÞhðxÞþiðJμνðxÞhμνðxÞþjðxÞλðxÞþ���Þ: ð43Þ

This Ward identity can be written as

−iḡμν
δZ
δJμν

þ jðxÞ; Z ¼ 0 ¼ ḡμν
δW
δJμν

þ jðxÞ: ð44Þ

Define now the 1PI effective action as

Γ½hμν; λ; � � ��≡W½Jμν; j; � � �� −
Z

d4xðJμνhμνðxÞ þ jλðxÞÞ þ � � �Þ: ð45Þ

Then,

ḡμνhμνðxÞ −
δΓ

δλðxÞ ¼ 0: ð46Þ

It follows that the full dependence on the Lagrange
multiplier is captured by

Γ ¼ Γ̃þ
Z

d4xλðxÞḡμνhμνðxÞ; ð47Þ

where

δΓ̃
δλðxÞ ¼ 0: ð48Þ

V. COMMENTS AND CONCLUSIONS

Let us begin by pointing out that aside from the diagram
here studied, one can expect higher-loop diagrams making
other terms involving λðxÞ present in the action, following
Gell-Mann’s totalitarian principle; whatever is not forbid-
den is compulsory. In particular, we expect diagrams such
as those in Fig. 2 give rise to kinetic terms for the λðxÞ field;
the 1PI diagram in Fig. 2 is quadratically divergent by
power counting.
At any rate, we have shown in this work that the

imposition of the unimodular constraint in UG through a
Lagrange multiplier does not survive, in general, quantum
effects; unless the exponential parametrization is used
appropriately. These generate, in general, (UV divergent)
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quadratic (and higher)-order terms in the multiplier, as well
as kinetic-energy contributions, all of which spoil the work
of the Lagrange multiplier as such.
A reasonable hypothetical cancellation of those diagrams

would be in an appropriately quantized unimodular super-
gravity [14]. Of course, were we ready to pay the price
of giving up unitarity to get a renormalizable theory of
gravity—e.g., by considering quadratic gravity2 [15]—with
propagators falling off at infinity as 1=p4, then the relevant
diagrams computed in this paper would be UV finite by
power counting. Hence, the problem that we have unearthed
in this paper for a unimodular gravity theory based solely on
the Einstein-Hilbert would disappear. Whether a similar

problem shows up again at a higher-loop level demands
an analysis which lies outside the scope of this paper.
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