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In this paper we consider T'T deformations in the context of pp waves obtained from gravity duals. We
propose a deformation of AdSs x $3 similar to the deformation of the single trace T7T deformation of
AdS; x §* x T* with NS-NS flux, and study it through the Penrose limit, concluding that it must
correspond to some dipole theory, probably noncommutative. We TT deform the world sheet string for the
AdSs x S pp wave, and find a corresponding spin chain Hamiltonian. Finally, directly 7T deforming the
spin chain Hamiltonian obtained from the p p wave, we find that it corresponds to an equivalent Berenstein-
Maldacena-Nastase (BMN) sector of the N' = 4 super Yang-Mills.
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I. INTRODUCTION

The TT deformations of quantum field theories in two
dimensions, defined by Zamolodchikov in [1,2], which
are of special importance for integrable theories, have
attracted a lot of interest recently. Although originally
defined as deformations of renormalized theories, through
the normal ordered product of the energy-momentum
tensors 7 and T [more precisely, the detT . operator,
50 § (TosT® — (T%,)*)], in point splitting regularization, it
was soon realized that one can equivalently define the
theory by deforming the classical Lagrangian density by
det T, at each step of the deformation, thus finding closed
forms for the Lagrangian, at least in the scalar case [3,4].l
This also leads to deformations of the classical solutions
of the theory, see [6-9]. In higher dimensions, the
equivalent of the 77 deformations is less understood,
and there are several proposals of deformations [4,10,11]
(although one can also simply extend the 7T deformed
actions to higher dimensions [9]).

Given that the most interesting applications are to
conformal and integrable field theories, a natural question
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'Note that there are arguments [5] that the 7T deformations are
generically thermodynamically unstable at high temperature.
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is this: Can one define a gravity dual that corresponds to
the TT deformations? A first such proposal was consid-
ered in [12], though it just stated that the deformation
amount to giving Dirichlet boundary conditions at a finite
cutoff position from the original boundary, in the
Renormalization Group (RG) direction, r = r.. This,
however, is not quite the definition one would like, namely
to have a deformed gravity dual of the deformed boundary
field theory.

That has been obtained, in a certain sense, in the case of
string theory in the AdS; x $° x T* with NS-NS flux,
considered in [13,14], with a boundary theory given by
M? /&, where M is a conformal field theory (CFT) with
central charge ¢ = 6k, and k is the number of NS5 branes, p
is the number of fundamental strings, with the duality to the
symmetric product space known to be valid for k = 1. In that
case, one can construct string world sheet vertex operators
that correspond to the operators in the boundary CFT that are
“single trace,” Y ¥, O;, where O; is an O(x) € M that
lives in the ith factor in the CFT product space. Then the
usual TT deformation of the CFT would be of a “double
trace type,” namely the product of 7'(x) and T'(x), both of
which are single traces Y 7, T;(x) in the CFT, and each
have a corresponding string world sheet (integrated) vertex
operator for the bulk theory. Yet what is easier to understand
in the gravity dual is instead the “single trace” deformation,

D(z.7) :AZP:Ti(z)Ti(Z), (1.1)
i=1

that has a corresponding (integrated) vertex operator for the
bulk string world sheet, and it has been shown [15] to be
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given by a TSsT transformation of the bulk in the CFT,
directions x and ¢, and to have many of the properties of the
usual 77 deformation of CFT5.

We want then first to ask this: Can we generalize this
construction to the CFT, case, i.e., to the AdSs x s°
background? We would take the agnostic point of view,
and construct a gravity dual, then try to understand the
deformation of A/ =4 SYM (super Yang-Mills) it corre-
sponds to, by taking a Penrose limit, which usually
simplifies a lot the analysis [16].

Reversely, the second question we ask is this: What is the
TT deformation of the string worldsheet for the AdSs x S°
(maximally supersymmetric) pp wave, and what does it
correspond for the spin chain in N'=4 SYM? We can
either deform the string world sheet theory, then discretize
it to obtain a corresponding spin chain Hamiltonian, or
consider the deformation of the original pp wave spin
chain Hamiltonian directly, employing a 77 deformation
procedure for one-dimensional (quantum mechanics)
Hamiltonians, which we do using the procedure defined
in [17].

The paper is organized as follows. In Sec. II we review
the two-dimensional case, for the gravity dual to the single
trace TT deformation, and its TsT construction. In Sec. 1T
we apply the procedure to the four-dimensional case. In
Sec. IV we take the Penrose limit of the gravity duals to the
single trace deformation for AdS; x $* x T*, and then to
the proposed AdSs x §° deformation, and finally propose
an interpretation for the deformation in ' =4 SYM. In
Sec. V, we consider the TT deformation of the maximally
supersymmetric pp wave obtained in the Penrose limit of
AdSs x S3, first as a deformation of the string world sheet,
discretized to give us a deformed spin chain Hamiltonian,
and then finally as a deformation of the quantum mechani-
cal spin chain Hamiltonian (obtained from the pp wave)
itself, and propose a dual interpretation for this spin chain
from V' =4 SYM. In Sec. VI we summarize and list open
questions. In the Appendix we review the derivation of the
TT deformation of a general quantum mechanical model.

II. TST TRANSFORMATIONS AND TT
DEFORMATIONS: TWO-DIMENSIONAL CASE

In the context of the AdS/CFT correspondence, in
particular in the AdS;/CFT, case, there is a proposed
relation between the TT deformation of the CFT, at the
boundary and a “single-trace” TT deformation on the string
world sheet in the bulk [13,14], of the type

|

T()T[) = AZTi(Z>Ti(Z)' (2.1)

Specifically, considering the AdS; x §* x T* solution
with NS-NS flux (using the notation in [15]),

1
R72ds* = ¥ (—df* + dx*) + dp* + 2 (63 + 05 + 03)
+ds*(T*)

1
H = =2e%dt A dx A dp +101 Aoy Ao, (2.2)

and a constant dilaton ® = @, the boundary CFT is given
by M? /@, where M is a CFT with central charge ¢ = 6k,
and k is the number of NS5-branes and p is the number of
fundamental strings (we restrict to k = 1 if we want to be
sure that we have the symmetric product boundary CFT). In
the B,y = B,; = 0 gauge, we have By = —e*.

Note that in this paper we will restrict to solutions with
NS-NS flux; the case of Ramond-Ramond (R-R) flux is not
known to be related to a single-trace 7T deformation of a
tensor product CFT, hence we will not analyze it; its pp
wave limit will also be considerably different due to the
different fluxes.

Then, as observed in [15], the TT deformed solution
(corresponding to the single trace T7T on the world sheet) in
the notation in [18] (the volume of 7% is (2zl)*v),

ds?  k(—dp +d¥?
de” _KCdr+dY) | g + kds?, + dsk,

2 - 2
ls % + 8_2¢
=2¢ —2¢
20 — U_k € — 2P €
P42 Lpe
et e_ s e—
R? R?
22 2

kl
H=— dt/\dx/\dgl’)—l—Tsal/\az/\@,

(1+1e)’
(2.3)

can be obtained as a TsT transformation in the CFT,
directions x and # (though there is no proof of the relation to
TsT outside this specific case).

To see that, write the TsT transformations from [19],
with —2y = I2/R? (note that the overall scale of the metric
is Rags = kI2). We have a T duality on ¢; (isometry
direction), then ¢, — ¢, + y¢,, then T duality back on ¢;.
In the shift step, this changes the metric as

ds* = g1, dd7 + Godd3 + 201,dddds + 2003ddrdds + 2004dprdpy + - - - —
ds* = §11dp} + G (ddpy + yddy)? + 2012dep, (depy + ydepy) + 2003 (depy + ydpy )deps + - - - =

G = g1 +720m + 2rG10.
Gi=0u+rim VY i#l,
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and similar relations for other fields (if there are any). On
the other hand, for T duality, the Buscher rules are

¢ 1 ~ By;
G”_G7H’ Gli_G”,
Gij Gy - GliGle_UBliBlj 7
Bu= .
Gy
Bij — B, - GliBle—”BliGlj ’
&)Ifb—%logG”. (2.5)

Then, indeed, after a T duality in time #, we get (dropping
the R factors)

1
ds®> = —e~2dr* + 2dtdx + dp* + 1 (61 + 03+ 03)

+ds*(T?),
1
b = (I)O —Elogezp,
BOl — O (26)

After the shift x — x 4 y¢, we find

1
ds* = di*(—e ™ + 2y) + 2dtdx + dp* + 3 (67 + 63 +03)

+ds*(T?),
1
=, - ilog e,

B01 - O (27)

And after the T duality back on ¢, we find

e¥ (—dt?* + dx*)

> 1 —2ye®

1
+dp® +7 (07 + 03+ 03) +ds*(T%),

1 1
D =P, — Elog e — Elog(e‘zl’ -27)

2w _ oo, €7
N T n—
e~ =2y
2p 2 2p
e e
By=———— = Hy,=— . 2.8
01 1— 2]/62‘0 01p (1 _ 27/62/))2 ( )

The TsT background above is an example of a
Yang-Baxter transformation. It corresponds to the classical
r matrix

1

I":EP()/\PI, (29)

where P, and P, are generators of the Poincaré group. In
general

r=AAB, (2.10)
where we say that the transformation is said to be Abelian if
[A, B] = 0. See [20] to see how we can build the deformed
backgrounds.

For a background of the form AdS,; x My_,;, TsT
deformations of the inner space M;y,_, give marginal
deformations of the CFT,_;, while TsT deformations of
the AdS (anti—de Sitter) space give massive theories.

In the AdS; x S? x T* case, the Yang-Baxter deforma-
tion r = %PO A P, gives the dual of the TT deformation.

III. TST TRANSFORMATIONS AND TT
DEFORMATIONS: FOUR-DIMENSIONAL CASE

In dimensions higher than two, the definition of TT
deformations is not unique: there are several proposals.

The first paper to deal with this, [4], notes that the two-
dimensional deformation

1
05 =5 [ Exvillere ), ) = [ dx/idar,
(3.1)

can be generalized by noting that in two dimensions
eel? = g g*° — ¢*?¢"°, and then the above deformation
can be trivially generalized to any dimension to the
quadratic form

1
05 =5 [ @xillg?e” - gog T, T (32)
which now however is not a determinant anymore. They,
however, do not explore this further, other than to say that,
for a single scalar field (with X = (d,¢)?), one gets

0L = (D=1) [gﬁ - 2xaxcc] O (33)

Instead, they consider the generalization with a deter-
. . 1
minant to an arbitrary power a, (—detT)a,

1 1 i
G,S _ a_D/ \/§|:_D!€I41...MD€ Lo DTMI”I"'T/‘DUD:| ,
(3.4)

and find that they can write a closed form expression of
the deformed Lagrangian of a free scalar field for any D

for a =1, {5 [\/1+41(X/2)P~" - 1]}77, but otherwise

the deformation can be considered for any a and any
potential V.
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The subsequent paper of Marika Taylor [10] considers,
instead of the two possibilities above, another one, a
quadratic form similar to the above, but where the trace
part has the coefficient 1/(D — 1),

1
0,8 = /de\/ﬁ [T"”TW -5 lTﬂﬂTyl/ , (3.5)

and argues that it is the correct generalization in view of the
holographic proposal of McGough et al. [12].2

But we can consider that the same arguments used
by [15] to find that the single-trace deformation on the
world sheet, giving before a CFT, TT deformation, is equal
to a TsT transformation in the boundary directions, can be
used to argue that the same is true for AdSs x S°: the TT
deformation is defined by the TsT transformation.

Furthermore, in the AdSs x S case, the TsT trans-
formation is (conjectured to be) dual to noncommutative
deformations of the N' = 4 SYM theory [21-25]. In order
to obtain a metric that is Lorentz invariant (though, of

signature, so that the results in the (01) and (23) directions
are the same, and that there are no apparent singularities (in
Minkowski signature, the (01) TsT transformation results in
a factor of 1 — y?e* instead of 1 + y%e*, even though TsT
is a symmetry of the string theory).

For a single TsT transformation, in the (01) Euclidean
directions, we start with B; = 0, ® = ®, and

ds* = e*(dr* 4 dX*) + dp* + dss. (3.6)

Then after T duality on ¢, we still find B = 0, and
ds* = e di* + e?d3* + dp* + ds,

1
b = (I)O - Elog ezP. (37)

After the shift x — x + yt, where x = x;, we still have
B =0, and

ds> =dt* (e +y*e*) +2ye* dtdx + e*’ dx* + dp® + ds>

course, the B field is not), one has to consider non- $5°
commutativity in the (01) and (23) directions, correspond- 1 2
ing to two successive TsT transformations, one in the (01) =2, —Eloge : (3:8)
directions, followed by another in the (23) directions. As
in [21,22], the construction must be done in Euclidean Finally, after the T-duality back on 7, we have
|
e? (df* + dx?)
dSz = W —+ 62/)(61.)(% + d.x%) + dp2 + dS§5,
2p 4
__re — - _ v
BOl - e—2/) 4 ]/262/) = HOlP - a/7BO1 - (6—2/) 4 J/262/))2’
1 2 1 2 22 20 20, e
¢>:d)0—510ge —Elog(e +]/€ ):>€ =e Om. (39)

But rather, for a TsT transformation in the directions (01) and one in the directions (23), but with the same parameter, we
obtain, like in [21,22], a Lorentz invariant metric, though with a non-Lorentz invariant B field,

e* (—dr* + dx?)
1+ 7/264/1

2p
BOI - 323 - 6_2/, + ]/262/)

ds> = + dp? + ds?

® = &) —loge¥ —log(e ™ + y?e¥) = &*® = > <

This is consistent with the results in [21,22]. We can now
Wick rotate back to Minkowski signature.

’Note that in [11] a deformation for which the trace part has
coefficient 2/ D was considered as the correct one for deforming a
Maxwell theory of Abelian p forms to a Born-Infeld-type one,
including cases with S duality, similar to what happens in D = 2
and D = 4.

SS’

= Hy3, = Hy, = d,By; = —

4y
(e—2p + ]/262’0)2 ’

e—2p 2
e—2p+y2€2p> . (310)

IV. PENROSE LIMIT OF SINGLE-TRACE
TT DEFORMATIONS OF AdS; x $* x T* AND
AdS; x S5/ N =4 SYM CORRESPONDENCE

In this section, we want to understand the proposed
single-trace TT deformation of AdSs x S° from the point of
view of N'=4 SYM. When a gauge/gravity duality is
difficult to understand, it helps to consider the Penrose
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limit, which will simplify both sides of the duality.
Moreover, it is interesting to understand what, if any, is
the deformation of the spin chain in the BMN limit?

A. Review of Penrose limit for AdSs x S5
in Poincaré coordinates

Since the metric (3.10) is written in Poincaré coordi-
nates, it is worth first reviewing the method for dealing with
Penrose limits in Poincaré coordinates, since it is somewhat
unusual. Note that we could consider transforming the
metric in the equivalent of AdS global coordinates, since
then the map to the CFT side is better understood. It is not
clear if that is equivalent to what we do here.

Unlike the Penrose limit in global coordinates, where the
limit is easy to do, and the null geodesic sits in the center of
AdS, at p =0, the Penrose limit in AdS in Poincaré
coordinates involves motion in an extra coordinate. The
method was developed in [26] and later, in more specific
detail, in [27], where it was done for the (near horizon limit
of) Dp-branes in Poincaré coordinates, that includes the
AdS;s x S’ case. It was further used in similar cases in [28].
In both cases, the essential point is that the null geodesic
involves, besides 7, motion in two spatial coordinates, one
being the isometry direction and the other the radial
direction.

That is different from the case of motion along a single
isometry direction, discussed for instance in [29]. In this
latter case, for motion in x*, %= =5!, so we need no
acceleration in that direction, leading to the conditions
(imposed on the geodesic)

Iy, =0. (4.1)

For static and diagonal metrics, d,g;; =0 and gy; =
¢*" = 0, the geodesic equation for i = ¢ is always satisfied,
and for motion in an isometry direction, d,;g,, = 0, we
obtain the simple condition

g'd'gy =09, =0, Vi (4.2)

Anyway, back to our more general case, for motion in
two directions, following [27], for the case p =3, i.e.,
for D3-branes giving AdSs x S° in Poincaré coordinates,
with metric

(=df? + dX3 + d7?)

Z2

ds* = R?

+R2dQZ,  (4.3)

where we write the metric in S° by separating in an angle,
plus an S*,
dQ2 = dy? + sin® ydQ;. (4.4)

We consider the null geodesic for motion in (7, z, ). It is
not completely obvious that this will give the same as the

motion at fixed p = 0 in global coordinates (in the center of
AdS), but we find this is true after the fact, since we get the
same pp wave.

The method involves the following: (1) writing an
effective Lagrangian for motion in (z, z,y). From it, we
find the geodesic in terms of a null affine parameter A that
will be x™ in the end. (2) Then, in terms of that motion on
the geodesic, we change coordinates from (z,z,y) to
(1,5, ¢) defined such that we end up with the metric in
the form stated by Penrose as always possible, and leading
to the pp wave in Rosen coordinates. (3) We take the limit
to get the pp wave in Rosen coordinates, and then (4) apply
the usual transformation to get the Brinkmann coordinates.

Applying it for the metric (4.3), we get (1) the effective
Lagrangian for (,z,) motion (taking out the irrelevant
R? factor)

L=-z72P2+27722 +y2, (4.5)
which must be taken together with the constraint L = 0, for
a null geodesic (ds> = 0). Since L is independent of 7, y
(only on the derivatives), the corresponding equations of
motion are integrated to integrals of motion,

oL JoL
— = —2F = constant, — = 2u = constant,

= 5 (4.6)

which together with the constraint L = 0 give three differ-
ential equations for #(1), z(1), w(4),

t = 72E,

W= H,
P =P -2 = =3/ -2 (47)
Then we get
Ez/u dy
pi= | o=
ywy =1
dy _ #
dz z /Z2E2 _ #2’
dt
— = E;, (4.8)
dz PET — 12
integrated to
=23)
p
t=1t,—— ,
1T E + ug
w =y, + Egp, (4.9)

where 7 and z, refer to [ 4t di and [ % dJ, respectively, and

the coefficients of the S, ¢ extra terms (independent of 4,
so ‘“constants” from the point of view of the previous
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integration) are chosen such that this change of coordinates
gives gi3 = 1, g5 = 0, as we will shortly see.
Indeed, by differentiation we obtain

dt ap ap

dt = —d) — = + udp = 2Ed) — —= + udg,
7 z TH $=z z TH ]
dy

dy = ad/1+Ed¢ udA + Edeg,

(4.10)

dz
dz _d_,ldll \/z 22E? — y?da,

and (2) by substituting this in the metric (4.3), we obtain

(#-%)

(4.11)

P 2ud
R2ds? 2dﬂdﬂ—i+g pdp
Z

x> ., 2
—l-?—l— sin“(y, + E¢)dQ;,

which is exactly in the form stated by the Penrose theo-
rem (2dVdU + adV? + 37, f;dVdY' + 37, . C; ;dY'dY/).

We can therefore (3) take the Penrose limit by rescaling
with R and taking R — oo,

v . y
U=1=u, V=p=—, Y =2, 4.12
u f=s oL @12)
where Y' stands for Qy, ¢, X5. Specifically then
= )74 % > 55/3
Q ==, =—, == 4.13
4= ¢ R X3 =7 (4.13)

The resulting pp wave in Rosen coordinates is
2 d 72
ds® =2dudv + dg? <E2 _/;_2) —I—%-I— sin®y,dyz, (4.14)

and where z = z(A = u),y;, = w;(A = u).
For the (4) transformation to Brinkmann coordinates, we
have in general

— _a b
gij = ejejoy =

u=x",
V=X += ! é el xaxl,
2 ai€p
y = elx®, (4.15)

leading to the Brinkmann form pp wave,

ds* = 2dx"dx + H(x", x")(dxT)? + dx?
H = A, xx"
Ay = &€, (4.16)
In our case, we obtain the vielbeins
IS :
ey =\|E*—=, e =—, ey =siny;,  (4.17)
z
so the new coordinates are
2
A=u=x", (ZJ=¢\/E2—/%, =1
z z
y=ysiny;  z=z(x"), (4.18)
and x~ is not needed.
Then
A—ld2sin—1dosdw
T Sing, d2 P sing,da \ "V g
d*y, dy\?
=tan~ly,—2 — [ =2 0 — u?, 4.19
anly, ( v (4.19)
and given that
d MZ MZ
— 2 _ —=— (4.20)

WU Ca\2a) T Cal\\t T2 T
U Sy S S Y
" e dR 2 [a_pdiz
E2 & E2 — &
ZZ ZZ
u? dz
— 2 (4.21)

— =2,
z /Ez_,;_idﬂ

so in the end we obtain the usual pp wave,

ds® = 2dx*dx™ — 2 (X335 + p § +Ya¥a) (dx+)?
+ dX3 + d@? + dy, (4.22)

B. Penrose limit of single-trace TT deformation
of AdS; x $3 x T*

As a warm-up exercise, we first do the Penrose limit on
the single-trace TT deformation of AdS; x S x T*, where
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we know for sure that the deformation is given by the TsT
transformation.

The metric is (reintroducing the factor of R> which was
needed for the pp wave limit, as it is taken to infinity, now
corresponding to R34 = k/3, and writing the metric on S°
as above, in terms of a y and an S?)

e (—di* + dx*)
1+ 2ye?
+ ds*(T*).

R72ds* = + dp? +4(d1;/ + sin? wdQ3)

(4.23)

Note that, strictly speaking, R = Rsq5 — o0 can be
obtained only for kK — oo, in which case we cannot observe
any potential phase transition in k.

Then (1) the effective Lagrangian for motion in (¢, p, y)
is (ignoring the overall R?)

e

. 1
L=—-————51+p+ %

4.24
1+ 2;/62/’ 4 ( )

It is independent (explicitly) on ¢ and y, so the Lagrange
equations of motion are integrated with integrals of motion,

oL te*
R —2672 — —2F = constant,
ot 14 2ye”
oL 1
@ = Ey'/ = 2u = constant, (4.25)
giving
t=e (1 +2ye*)E, W=4u.  (4.26)

The constraint L =0 (from ds*> =0, null geodesic)
gives

e’ L 1.,
L N SN
T+2e2’ ~3V 77

P =

= te’ \/Ez(l +2ye) —4pte?,  (4.27)

so that we obtain

/ VE(1
- / VE - 212("6(43/42 ~2y)’

e\ At =2y

1
= ————arcsin
4y =2y ( E

e’dp
+ 2ye*)

4ﬂ2 eZp

@y _ e
dp \/ E2(1 + 2ye%) — 442

1+ 2pe%
dar_ (1 2ye) (4.28)
dp \/E2(1 + 2ye?) — du’e®

), if4ﬂ2—2y>0,

Then the coordinate transformation (¢, p,y) to (4,5, ¢)
that puts g;5 = 1, g; = 0 is (we fix the coefficients of §, ¢
in this way)

d
dp =L dj = e\ [E2(1 1 27¢%) — 42,

di
dy
dy =L i+ Edp = 4udi + Edg,
dt d
dt = Edﬁ _B +pdp = e E(1 + 2ye*)dA
d
- Eﬂ + udg. (4.29)

Indeed, (2) substituting the above transformation in the
metric (4.23) we obtain

dﬁ2 62/) 2/)
R™%ds* = 2dd —
EX 1+ 2pe% ﬁ¢1+2
E2 2,2p d22p
cap(E - u-e i x“e :
4 14 2ype” 1+ 2ye”

+ sin?(y, + E)dQ3 + ds*(T*). (4.30)

Taking the (3) Penrose limit as usual by R — oo, with

U=21=u, V:ﬁ:%, Yi:yE, (4.31)
where Y' stands in for ¢, Q,, x, T
7 -y x' T
p=p Q=T x=L. Tu=_t (432

and where p = p(1 =u),y; = w,(1 = u), we obtain the
pp wave metric in Rosen coordinates,

2 u2er(w)
2 2\ - __~~-
ds® = 2dudv + do [4 T 2)/62/’(”)]
(dxl)ze2/)(u)

g S ()5 + (7))

(4.33)

The dilaton is unchanged through the coordinate changes,
and is

(4.34)
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The B field with the correct power of R in front is

2p(u)

Bodt ANdx =—R————dt A dx,
ol 1+ 2}/62‘0(")
e2r(u)
- R—————e (1 4-2ye* ") Edu A dx,
1 +2ye2 )
=—FEdu ndx. (4.35)
On the other hand, on the S3, we have
1
Hg = RZZUI A6y A 03 = B ~RwdQ, AdQ,, (4.36)

so in the Penrose limit, we get (y = 4ux™ in the Penrose
limit)
Bgs ~ dux™ sin® 4uxtdy, A dy,. (4.37)

To go to (4) the Brinkmann coordinates, we first define
the vielbeins,

ey = siny;(u), (4.38)
so the coordinate change is

A=u=x",

. E? ¥

=9 Z_'u 1 4 2ye?

ep
x=x
1 4 2ye?
y = ysiny,(u),
z=z(A=u=x"), (4.39)

and x~ does not need to be written.
Then, for the Brinkmann metric, we find

Ay = L& sin tan~! Py, (dyi)?
Y Sinyg, dA? Vi= Vitae di
=0- 164 (4.40)
Moreover, using that
d e’ \/ E%(1 4 2ye®) — due? (4.41)
dl /1 _‘_27/62;7 (] +2]/€ )3/2 s .

we find
/ d? e’
Aj‘cf( = 1 + 27/82‘0 <7> s
d2* \\/1+ 2ye¥
-+ /142 \/E2 +2ye¥) — dpte?
= e e )
7 (1+ 27e%)"
4
= Tt 207y [(1+2ye*)(YE? + u?) — 6pp?e™),
(4.42)
and also
- E2 e2/)
Aoy = / 1+2 . dﬂz S 1 4 2ye?’
re”
ep
S PP .
ETZ_P‘ 1+2 T+27e% dﬂ (1+27e) 2]
ye?
1 —4ye*
— g (4.43)

(1 +2ye*)?
The pp wave metric is then

ds> = 2dxTdx™ + H(x")(dx")? + d@* + dx*

+ dyE + dsA(TY), (4.44)

and

H(xb) = App@® + Ars3 + Aysya. (4.45)

Also, we have found A(p), and we saw that A = x™, so
inverting it, we get

N E ) .
e’ = _sin <x+\/4/42 —27/), if 44> =2y > 0.
VAu* =2y
(4.46)
The string action is written, as usual, in the gauge

xT =1, and the conformal (unit) gauge Vhht = yab
and with €% = +1, we get
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1

Sstring = - dndd

1 2z pt . . 1
—- do [ de|n™3 0,X10,X' - 8¢
azd J, 6/ 7[71 ad Op H-@ 1

it

(1 + 2ye?!

D)W + vE?) = bppPe

452
(14 2ye*())?

Note that X' = xe™4/1 + 2ye* andy = 7/ sin(4uxt) =
3/ sin(4uz) in the above (for the B field).

C. Penrose limit of proposed single-trace TT
deformation of AdS; x S°

We move on to the most interesting case, of the proposed
single-trace TT deformation of AdSs x S, and we repeat
the procedure.

For the solution

¥ (—d? + di2)

R2ds* = + dp? + dy? + sin? ydQ3,
1 +y%e* P v v
2p
By = By3 = o 1 e
20 20 e :
e = e 0 <m> s (448)

we consider motion in (¢,p,y), with the effective
Lagrangian

R7L = —- jﬁ -+ i, (4.49)
and equations of motion
oL 2e*'t
o e b
()L = 2y = 2u = const., (4.50)
)
t=e2E(l +y%e"),
V= . (4.51)

plus the condition of null motion, so L =0, i.e.,

e
11 2% -~y = p= ie_p\/E2<1 +y2e") —pute¥
4

(4.52)

7=

integrated to

— E0\x' + 4uxtsin® (4ux™) (001017,

2rd p*
/ do / dt[n"*G,,0,X"0,X" + €**B,,0,X"0,X" + 2nad ®R?],
0

— 4]/62/’<T) B 6/,{2_'2
+ 2ye?)

—51)’100)’2) . (4-47)

/ edp
VEX 1+ y%e™)

d(e”)

\/ 4E4 4 + 2/) - 2[‘,;2 2)

Iu2€2/)

(4.53)

We obtain

dy e’
PP 2.7 2.2
dp VEX (1 +y%e™) — e
dr e (1 +y*e®)

dp \/E2

. (454)

+ },264/) —u eZp

leading to the change of coordinates

_d - 2 2,4 2,2
dp _d—ﬂdﬂ die [ E2(1 4 ye¥) — p2e¥

dy = EdﬂJrEdqb udi+ Edp =

v =y, +Ep,
dt ap

di =L - L s,
t= G- Hudd

d
= e ¥E(1 + y?e*)dA — Eﬂ + pdo, (4.55)
which when substituted in the metric leads to (we obtain

G = 9 = 0, 9 = 1)

dﬂQ eZ/) U 62/7
R72ds? =2dAdp — ————— +2dfdp —————
g P = T3 e 2P T g
2 22 e
Take the Penrose limit,
v oy
U=si=u V=p=15. 457
so specifically
@ = ) . X
$=% Q4=ﬁ, =23, (458)

026012-9



HORATIU NASTASE and JACOB SONNENSCHEIN

PHYS. REV. D 108, 026012 (2023)

and p =p(l=u), w; =y,;(A =u). We obtain the pp
wave metric in Rosen coordinates,

ds3. ... =2dudv+de® | E*— 762;7(’4)
Rosen 1+}/2€4p(u)
.2 =2 oy e
+sin*(y, (u))dy; + (dx}) (TN (4.59)

For the B field, we find (since dt A dx; + dx, A dxy —
YEe W (1 — y2e¥W)du A dx))

4
B = Rm(dl AN dxl + dXQ A\ dX3),
= yEe*"du A dx|, (4.60)
and the dilaton remains the same,
2%
eX® = (4.61)

- (1 + 7/264/)(14))2 .

To go to the Brinkmann coordinates, we note that

5 62’0 X ep 6]
el = |E?> — > ———, e =———§",
» = w 1+ 2™ X, 1+ 2% i

ey = siny; ()5, (4.62)
so the coordinate transformation is
A=u=x", ¥ = usiny,(u)
2, ¥ +
=9 E—ﬂ1+y264,,, =z(A=u=x"),
N »
R (4.63)

Then, we find

1 4 . dy dy;\2
Ayy = ———=siny; = tan 11//,1—’1—<—'1)

siny;, dA2 dar da
=0-u° (4.64)
|
1 2 p*
Sstring = —m o do dr
L [oap? ab iy yi 2-2
=~ ) do | dzdn™y 9,X'0,X" - 2%

it
1 — },2e4p(r)

1- 8)/264/’ (@)

Moreover, using that

d e’ \/E2(1—|— 26%) — 2% 1—p%e*

—— = er)—pue —,

dA\\/1+y2e™ r H (1+y2e%)32
(4.65)

we find

&? e’
Az = e Py/1 2040
e’\/1+ye pTe —1+y2e4”

1= },264/)
X (1 + ]/264/))3/2> ’
E2(1 + J/264,/)) _’uZeZp
(T+ 7

2},262/) (3 _ 7/264/))

— (=2E2p2e¥ + 42) ﬂ7 (4.66)
1+ p2e
and also
— 2 l+’4/’ /12\/ d 1+72e4/’
r2e

[ , e’(1—y2e® }

= W s

E2 _M l+72e4/1 dl ( + 7/264/))3/2

1—8 2 ,4p _ 4,8

= gpr e "re (4.67)

(1+7267)

Then the pp wave metric is

ds? = 2dx+dx~ + [AW(,)? + AT+ A }iﬂ (dx*)?

+d@? + (dFs)? + (d3s)?, (4.68)

and the string action,
xT =1, 1is

in the light-cone gauge with

[nahG,waaXﬂa,,X" + B, 0,Xr0,X" + 27ra’<l>7€<2)} ,

_ 7,468/)(1)

CER(1 4yl

(1 + 7/264,/)(1) )2

—u? e2r(7)

- — 2,2 2p(7) 2
W2y; -5 {( —2E%y +u )1_|_y264p(1) '

<1 4 7/264,0(1'))2

22 ezp(r)(3 _ 7,264/)(1))] } + yezﬂ(f) 0,x,

(4.69)
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and note that in the above, X' = ¥e™+/1 + y?e* (for the
term coming from the B field).

As a simple check, note that the y — 0 limit of the above
reduces to the string on the maximally supersymmetric pp
wave, with parameter y (the bosonic part of the action).

D. Interpretation in A" =4 SYM of the deformation

1. Symmetries

To understand the 77T deformation, and more specifically
its Penrose limit, consider first the symmetries of the
gravitational background, and match them against the
symmetries in field theory.

In the case of the pp wave of AdSs x S°, the initial
symmetry of PSU(2,2|4), with bosonic subgroup
SO(4,2) x SO(6), gets changed in the Penrose limit to
the pp wave algebra. In particular, SO(4,2) breaks to
SO(4), x SO(2),, where SO(2), corresponds to x* trans-

lations, and SO(4), rotates the X5 and ¢, and SO(6) breaks
to another SO(4), x SO(2),, where SO(2), corresponds to

x~ translations, and SO(4), rotates the .

Of course, at least as far as the bosonic action goes,
SO(4), x SO(4), is actually enhanced to SO(8), but that is
irrelevant, since the 5-form Fs (the coupling to fermions)
breaks SO(8) back to SO(4), x SO(4),.

Now, in the 7T deformed case, for the metric, x™ = 7
translation is not a symmetry anymore, so SO(2), is gone,
and SO(4), is further broken to SO(3), that rotates X3 only
(no ¢). However, the B field breaks further SO(3) to
SO(2)}, rotating only x,, x3. So, we have the symmetry
SO(2)| x SO(4) x SO(2),. But, like in the undeformed
case, there must also be some translation-type generators e;
and e} , that supplement the breaking of the
|

, or a; and a

rotational symmetry during the Penrose limit, giving a total
number of generators equal to the one before the limit
(since the number of generators cannot decrease in the
Penrose limit).

Indeed, before the Penrose limit we have SO(2),x
SO(2), x SO(6), for xy, x; and x,, x3 rotations, and for
S5 rotations, for a total of 1414 15 =17 bosonic
generators. But after the Penrose limit we find only
14+1+6=28, so we miss 9 generators. Since the we
have the same —u2y;(dx*)? term as in the undeformed
metric, we have the same 4 + 4 extra Killing spinors (see
[30,311; 0 = 8/d5")

&, = —cos(pux™)9; — psin(ux*)y'a_,

Eer = —psin(ux™)0; + p? cos(puxt)y'o_. (4.70)

Then we can write (as in [16]) a; ~e; +e; and
M =x'0; —x/0; = t(ajaj - aTa ), with [a,,a ] 5
(harmonlc oscillators) and e = —p_ commutlng w1th
everything. We also have h = —p, =pu ), a a; and this
gives the bosonic algebra. We are still missing one
generator, but this is just My3 = x,03 — x30,.

Since the SO(4), symmetry is maintained, and that
corresponded to a R-symmetry rotation of the four positive
J fermions, it seems to suggest that the supersymmetry is
still N = 4.

2. Quantization and eigenvalues vs. SYM
anomalous dimensions

The equations of motion of the modes are

(=02 + 02—y’ =0, i=1,..,4
,1- 8y2er(t) _ 14 080(7)
_R2 40 y-e™ yre o=0
(1 _’_}/264/1(1))2
1— 72€4p E2(1 4 }/264‘0( )) _M2€2p(1)
2 2p(t) 2 ,2p(z) (R _ o2 ,4p(7) - —
{ —02 + 0 { —2E%y +u )1+72€4p() (11 ) 272D (3 —y?e?)| 3%, =0, a=2,3
1 - )/264/) E2(1 4 ]/264/)( )) _H2€2p(r)
2 2 2 2/)() 2 ,2p(7) (R _ 4,2 ,4p(7) ~
{ —0; + 05— { —2E%y TH )1+y264p() (1 _|_},2€4p(1)>2 2y7e (B-re )| (%
+ 70, [ezp( De=P(0)4 /1 4 y2etle } =0. (4.71)
We choose as usual for all the modes
X' = X} exp|—iwrt + ik;0], (4.72)

and with the usual rescaling by p™ for the gauge condition, we get for the quantization of the momenta around the o circle

n;

o+

ki,n =
ap

(4.73)
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Then the only simple modes are the j's, for which we get
the usual

(03 — ki — )3 =0 = 0} =y + k7 =
2

y 1

S Y § DL
p (ua' p*)?

o (4.74)

3. Discretization and spin chain

Consider, as usual, a Z = X' + iX? field that is charged
under the J = id,, in the gravity dual, and the rest we call
@, i=1, 2,3, 4, and their insertions into Tr[Z’] corre-
spond to string modes.

The undeformed case (N = 4 SYM) has a p p wave with
SO(4), x SO(2), x SO(4), x SO(2), symmetry, with the
1 index corresponding to the NV = 4 SYM directions, so the
insertions of D,Z = 0,Z + [A;,Z], whereas the 2 index
corresponding to the transverse scalar directions, so the
insertions of the @'s.

On the other hand, in the TT deformed case, we have a
pp wave with SO(2)| x SO(4), x SO(2), symmetry, and
again the 2 index corresponds to transverse scalar direc-
tions, so insertions of the ®'s, and it is unchanged.
Moreover, the interactions coming from the (transverse
part of the) pp wave are the same, so the interaction
Hamiltonian (the potential) in field theory is unchanged,
namely [®, /]2

But the D;Z insertions must change, since now we have
only SO(2) x SO(2) symmetry, instead of SO(4),. That
should mean a dipole theory change in the kinetic term,
breaking Lorentz invariance, (01) and (23) being singled
out. That happens for the case of noncommutative theories,
for instance (which are examples of dipolelike theories).
Also, SO(4), ~ SU(2) x SU(2), which means that there is
one N = 2 supersymmetry acting on half of the fermions
[fermions are in some complex representation, so of
SU(2)], and another N' = 2 supersymmetry on the other
half of fermions (since Lorentz symmetry is broken).

Because the TsT deformation was argued in [21-25] to
be dual to the noncommutative (star product) deformation
of the field theory, it is very likely, though the Penrose limit
could involve extra subtleties, that the dipole theory is
noncommutative. In fact, in [32] the (null) dipole deformed
theory of [33] was related to some TsT deformation, and
the full spin chain [in the SL(2) sector, away from the
BMN limit] was described.’

In conclusion, we have the 7T deformation, followed by
Penrose limit gives a deformation of the AV = 4 SYM in the
kinetic term, for instance through the change of the usual

*We thank Fedor Levkovich-Maslyuk for mentioning his work
to us after the first version of our paper appeared on the arXiv.

product with the star product, giving a noncommutative
theory, but other possibilities for the dipole theory could
also happen.

V. TT DEFORMATION OF STRING WORLD
SHEET ON AdSs x S° pp WAVE VS. N =4
SYM SPIN CHAIN DEFORMATION

Next, we consider the opposite order: first Penrose limit,
then 7T deformation. That is, we would like to find the 7T
deformation of the BMN sector of N” = 4 SYM. There are
several ways that could be defined, however.

A. First try: Discretization of two-dimensional TT
deformed string world sheet

Since the BMN spin chain Hamiltonian, describing
N =4 SYM interactions in the BMN limit, is obtained
from a discretization of the string Hamiltonian on the pp
wave, written in terms of ¢; = % just that a; are Cuntz
oscillators at a site, we can try first to discretize the TT
deformed string worldsheet Hamiltonian.

Then, by 7T deforming the string world sheet
Hamiltonian on the pp wave and discretizing, we should,
almost by definition, obtain the 77 deformed spin chain in
terms of Cuntz oscillators: we could, in fact, define the
deformed spin chain like that. The question then is whether
this would be useful, meaning whether the resulting
Hamiltonian can be derived from SYM, or from a deformed
SYM, using the same procedure [16] did for the unde-
formed case.

In [4], a TT deformed Lagrangian density for a
two-dimensional scalar with a potential V was given.
Specializing for the case of just a mass term, V = u*>X?/2,
it is

\/ 14+24(0,X)2(1 = 42X2/2) — (1 = 2 X?)

£ 20(1 = 42X%)2)

(5.1)

If we consider several scalars X;, we can consider the
independent TT deformation for each of them, and sum the
corresponding Lagrangians, which is what we will do here.

Therefore when discretizing, and when considering
several coordinates (scalars) X/, we obtain the 77T
deformed Lagrangian

L= /dx[l - > L
Li

(5.2)

where, since (9,X)? = —X* + (X)?, and (X')? discretizes
as (X; — X;1)%/a® (a is the length of a step on the chain),
we have (no sum over i and )
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AT 2GR (X X)) (0 - A (XD/2) = (1= A (X)) s
T 22(1 - 3 (X1)2/2) ' 33)
Expanding in 4, we get 1 &N o
——ZezL b,. (5.9)
1 VLIS
Li =S [(X0)? = (X[ = X[,,)* /@ = i (X])?]
1 then the mixing of forward and backward (left and right)
+ 4|7 (X0 = (X] = XL, ) a?)? _ZMI(XI) waves,
+oe (5.4)

The canonical momentum is, in the A expansion,

L[
g = X! 4 2XH((x1? - (x! -

p{ 1+l) /a)

i

and the Hamiltonian, in the same expansion,

H} = piX{ - L
1 .
=5 [(XD? + (X = X[,/ a® + i (X])?]

A .
+23(xD)* -

: 2% (] - XL, /e

= (XI = X[ ) atup(XDH 4+ (5.6)

Next, in order to find the spin chain Hamiltonian (in
terms of Cuntz oscillators at a site al), we need to write

I ale=imt 4 (al)Teik!

1 \/z ’

(5.7)

and only at the end of the calculation, after taking the time
derivatives, put t = 0. In the leading term, we obtain

I __ 1
Hl= 5 +

aj(a))" +(af)"a] 1<a{+(a{)*_
V2 V2
(5.8)

(this was what was obtained in [16]), but the next term
looks more complicated.

The total Hamiltonian H needs to be diagonalized in
order to find the spectrum. For that, we must define (at least
in the leading term, not clear if we need to modify this for
the other terms) first a Fourier transform,

ajy1 + (af+1)"'>2

Cnl + Cn2 Cnl — Cn2

p,=wl T2 oy el T2 50
\/E L \/z ( )

for n < L/2, and finally a Bogoliubov transformation
mixing cs and cs,

dn,i = 0y iCp i 'l'ﬂn,ic:rz,i7 i = 1’2’ (511)

to obtain a diagonal Hamiltonian. Moreover, one can check
that, in the dilute gas approximation d,; approximately
satisfy the usual commutation relations ([d, dT] =1,
[d,d] = 0,[d",d"] = 0), and not anymore the Cuntz ones.

We should check that/if the transformation above still
holds, and the commutation relations in the dilute gas
approximation still hold.

However, it does not hold, as we now show.

The Hamiltonian is found as follows. For the one-scalar
Lagrangian, we find

1 1+ 219" .
M) = pb— L= i L7, (5.12)
V14 20(=0 + ¢?)
where
_ - 1
I=a1-av), V=-s(1-2V).  (513)
Then, in our case, with X!, we have
, OL! 4X!
S 2(xty? ’
i X! :
\/1 + 21(1 - A"T') (=(XH2 + (xH?)
(5.14)

and so the Hamiltonian is
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1
H - y) Z(XI)Z
2,1<1 —”Tf>
5 14 24(1 = #2057 (xry2
\/ 1+ za<1 - /1”—2<§”2> (=(XH2 + (X))
1= (X])?

e B e (5.15)
2,1<1 _ ) (2“)

In order to get the spin chain Hamiltonian, we substitute
in it the fields in terms of creation and annihilation
operators, SO

()'(,I)Z(t:O):”2 [_(a) (a2 +dla +aa 1]

7
(X0 = (X=X
KD = ()4 af Pl + al'al]. (516)

The explicit formula is somewhat long, so we do not
write it here.
Then, in terms of the Fourier modes of the a namely

2zijn

al = ﬁ L, e T b, where if (approximately, for Cuntz

oscillators at a site acting on states in the dilute gas

approximation) [ak,a;] = dj;, we obtain [b,, bin] = s
and
-1 L-1
al'al =" bi'pl, (5.17)
Jj=0 n=0
and

_ + i
Al= [(a§+aj ) = (a, +aj+1)],

|:627r1inj(62mn l)bl +em /er/( 2mn l)b-”:|

(5.18)

Further, defining the forward and backward (left and
nl+Ln2

right) waves, b! = v

L'I —Cl
, bl = »=22, the commuta-

tion relations are once again respected, and moreover
Tyl opl
b” bn + bL—nbL—n Cn 1%n,1 + Cn 2Cn 2° (519)

and

L2

Z |: 2’”"] 211m )bl 27”'1/ (e Zﬂm )b’L[

Fe T -], + P 1L ] (5.20)

Until now, the steps are useful and continue to work in
the same way in our Lagrangian.

However, the essential next step does not, since it relies
on making the sum )~ ;(A%)%, and in our case, (A;)? appears
inside a complicated expression with square root, and only
then it is summed over.

With
L, L/2
2nn
> (A = Z{ <1 - COST>
j=0 n=0

(LN oI AT
X (Cn lcn 1 + Cn lc + Cn ZCn 2 + CiLZCn,Z)

27n
2({1—-cos—
+ ( cos — )

X [(ci,l + CZJZ - (sz,z - 0112)2] }, (5.21)

we would have the Hamiltonian finally in a form in which
we could use a Bogoliubov transformation.
Indeed, for a general Hamiltonian

aa’ +a'a a+ah?
H=p er o : )
B ﬂ[(l +%> Mi%(az +(a)?)|,  (522)
the Bogoliubov transformation is
b=aa+pa’, (5.23)

and if we impose that [b, bT] = 1 (like [a, a'] = 1), we get
la|?> — |8|> = 1. Imposing diagonalization, so no b> or
(b")? terms in H, we obtain the condition

<1 +%> ath* = j:% (&) + (B)*].  (5.24)

If we have @,/ € R, then we can define & —ff = ﬁ

&+ f = /o, and obtain
_ ok _ LE3a/p
N1+ 3a/8 2N 1—a/p (5:25)

and for both values of @ the diagonal Hamiltonian

bb" + bbb
H— a)% (5.26)
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B. TT deformation of quantum mechanical spin chain
in A =4 SYM

If the first try was a deformation of the two-dimensional
system, followed by a discretization, and it was not very
successful (very useful), in that we could not diagonalize
the Hamiltonian to find the spectrum, we can next try to
deform directly the one-dimensional spin chain.

One approach is defined specifically for spin chains.
In [34,35] it was argued that the previous integrability-
preserving deformation of spin chains defined by
Bargheer, Beisert, and Loebbert in [36,37] is actually a
TT deformation.

They claim that, first, the seminal paper [3] defining
explicit 7T deformations of 2 dimensional QFTs already
defines them via a Bethe ansatz, so it is worth following
the same way to define the T7 deformations of spin
chains [35].

They also say that the deformations of the Bethe-Yang
equations

N
PR S(pipy) =1, (5.27)

k]

are via a deformation of the Castillejo-Dalitz-Dyson (CDD)
factor appearing in the S matrix. Specifically, one can keep
the § matrix fixed and modify the equations as

N

eipiR+ia(X; Y=Y X) H S(pj, pr) =1,
k#j

(5.28)

or equivalently, modify the S matrix by multiplication with
a phase (CDD factor),

S(pj, i) = €“XHXIS(ppy). (5.29)
These were the integrable deformations of spin chains
found by [36,37].

In the case of the 7T deformation, the claim is that one
can take X; = p; and Y; = H(p;), but the arguments are
somewhat indirect (in particular, the fact that integrability
must be preserved).

One should also mention the works [38—40] where the
TT deformation of the world sheet string in gravity duals, in
particular on p p waves, is considered through an analysis of
the world sheet Hamiltonian arising in uniform light-cone
gauge, and is found to equal to the TsT transformation in
time ¢ and one compact direction ¢ in spacetime. For the
AdS; x 3 case [38], in the massless case one indeed finds
the usual [3,4] two-dimensional deformation of massless
bosons (on the world sheet), though in the massive case and
in the AdSs x S case [39,40] one finds a difference, which
is hard to understand physically. We do not understand this
method and the discrepancy well enough to comment

intelligently on it. Instead, in the method used below, such
discrepancy is not possible by construction.

However, there is a parallel line of inquiry, one that is
also cited by [35] as previous work, by David Gross
et al. [17,41], in which the TT deformation of quantum
mechanics is proposed, based on the holographic proposal
of McGough et al. [12] and AdS,, and a dimensional
reduction from AdS;, and a corresponding one on the
boundary.*” This is the approach we will follow here. Note
that there is some controversy about the applicability of this
result to the case with a potential: In [45] it was argued that
the original two-dimensional theory must be conformal
invariant, so no potential can be present. But the controversy
is mostly about semantics: In the Gross et al. prescription,
the definition of the one-dimensional analog of 77 defor-
mation was such that it coincides with the holographic AdS,
one of [12]. Otherwise, the reduction prescription from two
dimensions might not work for nonconformal seed theories,
as [45] argued. We will, however, continue applying the
original procedure as it was developed.

In Secs. 3 and 4 of [17], the deformation of quantum
mechanics is defined as®

1- \/1 —8/1< et V({qi}))

42 ’

H =

(5.32)

which leads to

*Note that there is also a third deformation, in terms of a
bilinear operator, in the papers of Cardy and Doyon [42], and
Yunfeng Jiang [43], though it was not developed further, so we
will not describe it.

>See also [44] for an alternative derivation of this proposal.

®Note some signs are different with respect to [17]. It was easy
to check that the signs were wrong, since the 4 — 0 limit does not
work. Instead, [17] has the formula

1= V(1 =4237,47)(1 - 82V)
B 47 ’

(5.30)

which would correspond to taking 4 - -1 AND V —» -V
in (5.33). However, in the Hamiltonian, this was not what was
considered, so their formula has incorrect signs.

One observation is that the rwo-dimensional TT deformed
Lagrangian density is

C24(1=AV) 241 =2V) ' '
and if we naively put ¢’ = 0 in (5.30), we get a similar (but not
quite! the formula above in two dimensions has the correct sign
for V in the 4 — 0 limit; it only matches with their Lagrangian for
V =0, and rescaling 4 by 2) formula to the above, which may be
the reason for the confusion.
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1=+ ) (- 8iV)

L= , 5.33
4) ( )
via
[ 1=8iV
=g — 5.34

Further, in [41] it was shown that this 7T deformation of
the quantum mechanics replaces the Hamiltonian H with a
function of it, f(H), which means that the eigenfunctions
do not change.

Note that, in general, if

H(q;., p;) = f(Ho(q: pi))- (5.35)

and H, has conserved quantities, p; =0, so ‘;%: s
then also
oH , 0H,
= f(H =0, 5.36
o0, f'(Ho) o4, (5.36)

so all classical integrals of motion remain integrals of
motion, and therefore a classically integrable system
remains integrable after the (7T, in this case) deformation.

We see that the Hamiltonian deformation (A12) is very
easy to work with. Anything that we did with H and E, we
can do with H(4) and E(4). In particular, we can write the
explicit form in a,a’ oscillators, and diagonalize it.

So the discretized pp wave Hamiltonian (dual to the
original spin chain in the dilute gas approximation) (5.8)
can be TT deformed,

al(a)t + (a
H(/l):,uﬁ[l—\/l—S/I,uZ( i) ;(

and the deformation can be diagonalized, obtaining (in the
AdS;s x §° case)

| 2N
EQ.gN.n/ 1) =pg | 1=y 1 =8 1+gﬂ—2sin27;—gl
(5.38)

Note that the discretization and 77T deformation are not
commutative. In the previous subsection we 7T deformed
first, and then discretized, now we do the opposite. This is
besides the noncommutativity of the 77 deformation and
Penrose limit, which is also present: Here we take the
Penrose limit first, then deform, whereas in the previous
section, we first deformed, then took the Penrose limit.

C. Deformation of A/ =4 SYM

We now try to interpret the quantum mechanical TT
deformation from the point of view of N =4 SYM.

1. Symmetries and symmetry algebra

We start with an analysis of the symmetries and their
algebra.

Since H(A) = f(H,), the global symmetries of the
Hamiltonian continue to be symmetries of the deformed
one. In particular, the SO(2), x SO(4), x SO(2), x
SO(4), with, in the bosonic case, SO(4), x SO(4),
extended to SO(8), continues to hold for the deformed
pp wave Hamiltonian, as it was for the usual pp wave

Digl 1 ! Iyt 1 Ioh\ 2
l) a; +¥<az —|—(Cll) _a1+1 +(al+l) > >:|’ (537)

V2 V2

[
Hamiltonian. Also true for the A/ = 4 supersymmetry (or,
more precisely, to the 16 supercharges).

This means that in this case we are dealing with a
deformed sector within N' = 4 SYM.

The bosonic symmetry algebra of the string pp wave
Hamiltonian on AdSs x S°, matching the one of N = 4
SYM, is defined in terms of Killing spinors (see [31]) for
the pp wave variables (with respect to that paper, we have
defined pu = 24),

h=¢er ==04,8 = —0_,

&, = —cos(ux")o; — psin(ux)y'o_, i=1,....8

Eer = —psin(ux®)o; + p? cos(ux*)y'a_,

§Mij :xiaj —.Xjal‘, l,] = 1, ,4 or 5, ,8 (539)

The algebra is obtained by defining harmonic oscillators
a; = (e,- -+ le;k)/\/j, SO [ai,a;] = 5ij9 then Ml] = l(ajaj -
aia;) and H=Hy=—p  =pu), ala;, while e = —p_
commutes with everything.

More precisely, we want to obtain the commutation
relations

[aiaa;] = 651‘;,

[ih, a,T] = ua}, [—ih, a” = —ua;,
[Mi;, ar] = —6ya; + 8a;, [Myj. a;] = _5ikaj' + 8.
(5.40)

But the symmetry algebra of the &s (which we will now

call just e;, e;f,Mij, h) is, redefining e; — pe;,
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le: e;f] = (ue)s;;,

[h7 ei] = /’te?’ [h’ e;k] = —He;,
[Mjj, ex] = —de; + dje;, [Mjj, ef] = —de} + de;
(5.41)
Then, defining
a; = ae; + ibe;, al = a‘el —ib*e;, (5.42)
we obtain
la;, al] = (laf* + [b*) (ne)sy;, (5.43)
o)
la|* + |b]> =~ (5.44)
Moreover,
[—ih, a;] = —pu(be; + iae?),
= —u(ae; + iae}) = —pa; = a = b,
lih,al] = +u(b'e; —ia*e;),
= +u(a‘e; —ib*e;) = +pa; = a = (5.45)
So we finally have
1 e;+ie} el —ie;
—b=——=a, = T=" 1 (5.46)
V2u V2u V2u
Then we can represent
M;; = t(aja] — aTa s (5.47)
and
h=E%"dla;. (5.48)
e~

We can redefine a; = \/ed; (since we can treat e as a
number, since it is a central charge: it commutes with
everything, it is = —p_ = —p™), and then we have (we
write H instead of A, to underline the fact that we now talk
about the 7T deformed one-dimensional Hamiltonian)

n=1
= Zc - [ﬂyOZaolaO,} ,
n>1
= /"OZ Aug)™™ I[Zamaol} (5.49)
n>1

Here ey, ag ;. EI(T)J. are the undeformed symmetry gener-
ators (in some abstract sense, equal to e, @;, T , hamely they
satisfy the same algebra, though one with ,u and another
with ug), namely their expression in terms of fields are for
the undeformed sector. The algebra of deformed generators
must be the same as of the undeformed generators. The
above relation must be solved for &; in terms of ;. One
obvious solution is (there does not seem to be a solution
involving only as, no a's, since the noncommutation of the
two makes it unlikely to disentangle)

a; = Zc [l,uZaO]aO]] ag.i,

n>0

(5.50)

which follows from (the following defines the constants c,,
and ¢,)

%(pm)
—Z e o 411( - VT=8ix)
= \/)_cZEnﬂ"x" (5.51)

n>0

Indeed, we can check that then the deformation of the
Hamiltonian is obtained, if we consider that

e=e (5.52)

(the central charge is undeformed, and it refers to the same
pT), but u is identified with the energy, so u = E(4)
and pg = E

Then the fact that the deformed and undeformed sym-
metry algebras are the same is obtained from the fact that
both are written in the same way in terms of the creation
and annihilation operators [we just have the relation (5.50)
between the as and as].

Thus we have (5.49) relating H and H, (5.50) relating a;

with ag; (and its dagger for af with alT_O), e = eq, and
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My =" [ o Moy (5.53)
J

n>0

The relation between as and ays must be one of
equivalence of the two creation/annihilation operator sets,
and consequently of their Fock spaces.

This symmetry algebra must also be obtained from
N =4 SYM, on the large J charge sector, though it
was not written explicitly in terms of fields in [16], so
we must first do that. Next we must define what are the
deformed generators in terms of the N' =4 SYM fields.

When acting on (undeformed) BMN operators (states in
the BMN sector), we can represent

P a 5 "‘T [¢ Z— a
(o) = 5(®,)7, (dq,;) = (®;)%1n,

(5.54)

where ®@;, i = 1,...,4 are the 4 scalars that are inserted
inside Tr[Z’], with their matrix indices, and In refers to
insertion of the matrix element inside the trace.

Next we must define the set of operators of the deformed
subsector. The vacua must be the same, since moreover
e = e and this corresponds to having an undeformed p™,
so undeformed J. Thus consider the same vacuum Tr[Z’],
and insert ) ;50 &, (4o D ; @; %)”Cbi, and ¢, solved from

¢, as suggested above, so

o -3z (e [0 | o
l J

n>0 J

2xml

e J .

(5.55)

In this way, we find that, at the same time we have a
deformed BMN sector, and it is equivalent to the original
one. Thus H(A) has both the same eigenstates (the
undeformed BMN sector), and the new eigenstates (the
deformed BMN sector), since they are supposed to be
equivalent. Then H(A) in the undeformed eigenstates gives
E(2), whereas H(4) in the deformed eigenstates gives E.

2. Comments on the properties of H, = f(A,H,)

As was described in detail in [41], once we have
H, = f(A, Hy), with the extra condition of analyticity at
A=0, so IH, limit, we can calculate anything in the
deformed theory from the undeformed theory, in particular
the correlations functions are found by a general formula.
Moreover, obviously (with the extra analyticity assumption,
needed for the case of an infinite dimensional Hilbert space)
we have the same spectrum of eigenstates for the two
Hamiltonians.

But note that this does not mean that the Lagrangians are
also related, L; # g(4,Ly). We can easily see this in the
formula for L (5.33), in the nontrivial case of V # 0.

Reversely, if L; = f(4,Lg), it
that Hﬂ = f(ﬂ, H())

For the DBI example = TT deformation of the V = 0
case in two dimensions,

does not mean

L :% [1 —~ \/1 +/1(—d'52+¢’2)}, (5.56)
SO
b 4 , (5.57)
V1A= + ¢?)
SO

1

H=2 [—1 - \/(1 +Ap?)(1 + Wz)}, (5.58)

so it is not a function of Hy =1 (p? + ¢").

VI. CONCLUSIONS AND DISCUSSION

In this paper we have considered 77T deformations in the
context of holography, and more specifically in the context
of the pp wave correspondence.

We have applied the TsT procedure of obtaining the
gravity dual to a single trace TT deformation in the AdS; x
§3 x T* case to the AdSs x S° case, and used the Penrose
limit to understand it, proposing that the deformation
corresponds to some dipole theory, probably a noncom-
mutative one.

Reversely, we have considered the TT deformation of
the Penrose limit of AdSs x S°, in two ways. We have
discretized the TT deformation of the world sheet string on
the pp wave, though the corresponding spin chain looks
complicated. We have instead considered the TT defor-
mation of the quantum mechanical model obtained from
the discretization of the string Hamiltonian on the pp
wave, known to correspond to the spin chain one in N = 4
SYM. Based on the corresponding symmetry algebra of
the deformed pp wave theory, we have argued that the
deformation can be understood within ' =4 SYM as
deformation of the (BMN) sector within it, but not of the
theory, obtaining moreover an equivalent sector.

There are many open questions left for further work. The
exact nature of the deformation to A/ = 4 SYM dual to the
TsT transformed AdSs x S° is not yet clear. The spin
chain obtained by discretizing the 77 deformed world
sheet string for the p p wave has no good interpretation yet.
One can try to use the same methods considered here in
other holographic cases for dimensions d > 2, for instance
the d=3 case of the Aharony-Bergman-Jafferis-
Maldacena (ABJM) model, as well as more realistic cases
like the Klebanov-Witten, Klebanov-Strassler, Maldacena-
Nunez, and Maldacena-Nastase ones. In particular
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holographic pp wave theories associated with confining
gauge dynamics analyzed in [46]. Finally, we have only
considered the bosonic part of the string world sheet theory
on the pp wave; it would be interesting to see what
happens when we add the fermions, in all the cases
considered. This is in particular interesting, since one
can construct supersymmetric 77 deformations, and the
deformation appears as a supersymmetric descend-
ant [47,48].
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APPENDIX: REVIEW OF DERIVATION OF TT
DEFORMATION OF GENERAL QUANTUM
MECHANICAL MODEL

Here we review the derivation in [17] of the 7T
deformation of general quantum mechanics systems, via
dimensional reduction, assuming the AdS;/CFT,.

In the two-dimensional CFT, it is assumed that the flow
equation is

0Sg(4) i,
= / d’x/y8TT,

(A1)

and that, along the flow, we have the equation (following
from holography of the TT deformation following [12])
Ty = =16ATT = =2T(T ;T — (Ti)?). (A2)

The AdS;/CFT, gravity dual of Banados-Teitelboim-
Zanelli-black hole (BTZ-BH) type is

dr?
ds* = (r* = r})ds? to 7
+
+ r2d¢2 _)bd. r2(d72 + d¢2> (A3)
Then the condition on the flow is
Th =T+ T = =2(T;TV - (T})?),  (Ad)

and

TijTij - (T;:)z =T, T"+ T(/)(/)T(M} + 2TT(/’TT{/} - (T; + Tﬁ)z’

— 2T, T + 2T§T$, (A5)
so the condition along the flow becomes
,  T% +4IT, T
b = i (A6)

¢ o gyrr—-1

and, given that T} = T% + T7 = —16ATT on the flow,
we have

@ T T T
STT — Ty+Tr (TP + Ty 0Sp(2)
-2 1/2 — 2AT: 04
T7)? + Ty T™
) ( T 7
— N T A
/dx\/7 1/2 = 217" (A7)

But, since (T,,) = (T™") = iJ and (T%) = E, by which
we mean more precisely integral over a circle of radius 1,
[T.p= [T =iJand [T: = E (and implicit factoriza-
tion of the square) besides the Vacuum Expectation Value
(VEV), putting y,5 = J,4, peeling off the time integral in
S, we obtain the equation for the energy eigenstates,

0E(2)  E*-J?
or  1/2-2)E

= E(1)

_ % (1- V1 - 82E, + 16222), (A8

the usual solution.
Dimensional reduction proceeds as follows: Put T, =
T =0 and T2 = T, to obtain

S / T2
s P —
ol 1/2 = 21T

Then, again peeling of dr and using (T) = E (VEV) and
factorization of the square, we obtain the equation for the
energy eigenstates,

(A9)

0E(2) E?

_ 1 —/1=82E,
oL 1/2-2)E

42 '

= E()) = (A10)

or, equivalently as we see, just put J =0 in the two-
dimensional result.
Note that if we take 1 — —A, we obtain

0E(A) E? 1-/1+4381E,
__ EQ) = =V 840
o~ inrmE - EW Y (All)
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See the discussion in the main text with respect to the
signs in H and L.

Now, we assume then that the same relation is true for the
Hamiltonians (since it is valid for all its eigenstates, and the
Hamiltonian is a Hermitian operator), so

&l -

o
- \/1 —m(z%?w({qi})) (A12)

&=
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