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We describe an analytic procedure whereby scattering amplitudes are bootstrapped directly from an
input mass spectrum and a handful of physical constraints: crossing symmetry, boundedness at high
energies, and finiteness of exchanged spins. For an integer spectrum, this procedure gives a first principles
derivation of a new infinite parameter generalization of the Veneziano amplitude that is unitary while
exhibiting dual resonance and consistent high-energy behavior. Lifting to a q-deformed integer spectrum,
we derive the Coon amplitude and its analogous generalizations. Finally, we apply this logic to derive an
infinite class of deformed Virasoro-Shapiro amplitudes.
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I. INTRODUCTION

String theory is our leading candidate for a unified and
self-consistent formulation of quantum gravity. Its core
assertion is exceedingly simple: perhaps the inventory of
the universe is composed not of point particles, but rather of
extended objects. This line of inquiry has sparked an
extraordinary influx of new ideas across disciplines,
including quantum field theory, phenomenology, cosmol-
ogy, condensed matter theory, quantum information theory,
and even mathematics.
Despite these successes, pressing questions remain.

How unique is string theory? What is the minimal set of
principles from which it follows? And most importantly, is
it the only solution satisfying these criteria?
The amplitudes bootstrap is a versatile framework for

interrogating these questions with mathematical precision.
In this approach, one sculpts out a consistent space of
theories by constraining an ansatz scattering amplitude
with certain physical conditions. For example, imposing
Lorentz invariance and factorization on the scattering of
massless particles of spin one or two is sufficient to
uniquely fix the dynamics, thus deriving gauge theory
and gravity without the aid of an action [1–5].
In this paper, we show that this approach is even more

powerful if we also assume a spectrum together with a

short list of physical constraints that include crossing
symmetry, bounded high-energy scaling, and finite spin
for the exchanged states. Imposing these conditions, we
derive a new infinite parameter class of amplitudes that
subsumes the renowned Veneziano [6] and Coon [7]
amplitudes as special cases. We then use analogous
logic to derive generalizations of the Virasoro-Shapiro
amplitude [8,9], which describes gravitational scattering.

II. PHYSICAL CONSTRAINTS

We construct four-point, tree-level scattering amplitudes
for massless scalars subject to a handful of simple physical
criteria:

(i) Crossing symmetry. For external scalars exhibiting
cyclic or full permutation invariance, the corre-
sponding scattering amplitudes satisfy Aðs; tÞ ¼
Aðt; sÞ and Mðs; tÞ ¼ Mðt; sÞ ¼ Mðs; uÞ ¼ � � �, re-
spectively. Here Aðs; tÞ andMðs; tÞ can be viewed as
gauge theory and gravity amplitudes stripped of their
kinematic prefactors, F 4=u and R4, which are
products of the linearized field strengths and curva-
tures encoding polarizations. For the rest of this
section we focus on Aðs; tÞ, though our discussion
generalizes straightforwardly to Mðs; tÞ.

(ii) Polynomial residues. Exchanged states exhibit a
finite tower of spins [10]. Concretely, for a mass
spectrum defined by m2

n for nonnegative integer n,
the residue on each pole in s is a polynomial in t of
degree n,

RnðtÞ ¼ Res
s¼m2

n

Aðs; tÞ ¼
Xn
m¼0

λn;mtm; ð1Þ
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encoding exchanges up to spin n. An analysis of
more general polynomials, such as those in Ref. [13],
will be left for future work.

(iii) High-energy boundedness. The amplitude vanishes
in the high-energy Regge limit defined by sending
s → ∞ at a fixed value of t chosen to be below
the gap. In this case we can derive the dispersion
relation,

Aðs;tÞ¼
I
s0¼s

ds0

2πi
Aðs0;tÞ
s0−s

¼
Z

∞

−∞

ds0

π

ImAðs0;tÞ
s0−s

; ð2Þ

since Aðs; tÞ has poles neither in the u channel nor at
infinity [14]. At tree level, one has ImAðs0; tÞ ¼
π
P∞

n¼0 δðs0 −m2
nÞRnðtÞ, so Aðs; tÞ admits a dual

resonant representation as a sum over s-channel
poles,

Aðs; tÞ ¼
X∞
n¼0

RnðtÞ
m2

n − s
; ð3Þ

which converges for t < m2
0 or when evaluating

residues on poles in s at generic t. Hence, dual
resonance is an automatic by-product of the vanish-
ing boundary term. In string theory this happens
because the worldsheet can be deformed to exhibit
exchanges solely in a single channel.

The last and most nontrivial ingredient in our analysis
is the spectrum of the theory, input via some sequence m2

n.
We will consider integer and q-integer spectra, leaving
more general possibilities for future work.
To implement the bootstrap described above, we assume

a dual resonant ansatz for an amplitude with polynomial
residues. This leaves crossing symmetry as the final and
most difficult condition to impose. As we will see, one can
reduce this complex analysis problem in two variables to a
simpler problem of a single variable by restricting t to a
wisely chosen function of s.

III. INTEGER SPECTRUM BOOTSTRAP

To begin, let us consider an integer mass spectrum,

m2
n ¼ n; ð4Þ

in which case the dual resonant form of the amplitude is

Aðs; tÞ ¼
X∞
n¼0

RnðtÞ
n − s

; ð5Þ

where RnðtÞ is defined in Eq. (1). Here we again note that
Eq. (5) only converges for t < 0 or on poles in s.
Next, we study a special kinematic regime in which t is

displaced from s by a positive integer k,

t ¼ s − k: ð6Þ

By inserting Eq. (6) into Eq. (5) and imposing crossing
symmetry, we find that Aðs; s − kÞ ¼ Aðs − k; sÞ. This

implies that
P∞

n¼0
Rnðs−kÞ
n−s ¼ P∞

n¼0
RnðsÞ
nþk−s, which upon a

relabeling of terms becomes

X∞
n¼k

Rnðs − kÞ − Rn−kðsÞ
n − s

¼ −
Xk−1
n¼0

Rnðs − kÞ
n − s

: ð7Þ

The right-hand side comprises a finite collection of terms
whose poles are at s ¼ n < k. Since this expression is
elsewhere regular, it has vanishing residues at n ≥ k.
Demanding the same of the left-hand side yields

Rnðn − kÞ ¼ Rn−kðnÞ; ð8Þ

for 1 ≤ k ≤ n. Note that Eq. (8) should be handled with
care since it is neither necessary nor sufficient for enforcing
crossing symmetry for all s and t. It is not sufficient because
it was derived for the special kinematic choice in Eq. (6), so
crossing might hold on the support of that condition but not
away from it. Meanwhile, it is not necessary because it
originates from the infinite sum in Eq. (5), whose residues
converge at poles in s for generic t but not necessarily for t
satisfying Eq. (6). Nevertheless, for the present analysis we
take Eq. (8) as an input assumption. Crucially, in all of our
later examples, we find that the sums in Eqs. (5) and (7)
indeed converge and can be trusted. Our resulting ampli-
tudes also exhibit full crossing symmetry for generic s
and t.
The residue crossing condition in Eq. (8) imposes n

constraints on the nþ 1 free parameters in Eq. (1).
Concretely, we eliminate λn;m for m < n in terms of
λm ≡ λm;m, yielding the general solution,

RnðtÞ ¼
Xn
m¼0

λm
m!

t!
ðt −mÞ!

n!
ðn −mÞ! ; ð9Þ

where we analytically continue x! to Γðxþ 1Þ at will.
Physically, λm controls the exchange of spin m modes at
levels n ≥ m. While Eq. (9) naively admits arbitrary λm,
many choices render the sum in Eq. (5) nonconvergent. For
example, this happens if we choose λm ¼ δmm0 for somem0.
Consequently, it is necessary to determine λm for which the
expression in Eq. (5) actually converges.

IV. VENEZIANO AMPLITUDE

Evaluating Eq. (9) for the very special choice λm ¼ 1
m!
,

the Vandermonde identity implies that RnðtÞ ¼
ðtþnÞ!
t!n! ¼ ðtþn

n Þ. Inserting this residue into the dual resonant
ansatz in Eq. (5) yields
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Aðs; tÞ ¼
X∞
n¼0

1

n − s

�
tþ n

n

�
¼ Γð−sÞΓð−tÞ

Γð−s − tÞ ; ð10Þ

which is the Veneziano amplitude. Here we obtained right-
hand side by relating the sum to a hypergeometric function
and applying the Gauss summation theorem.

V. HYPERGEOMETRIC AMPLITUDE

Next, let us consider the more general parameter
choice λm ¼ r!

ðmþrÞ! for any real value of r. Here the ansatz

residue in Eq. (9) becomes RnðtÞ ¼ ðtþnþrÞ!r!
ðtþrÞ!ðnþrÞ!, so Eq. (5)

evaluates to

Aðs; tÞ ¼
X∞
n¼0

1

n − s
ðtþ nþ rÞ!r!
ðtþ rÞ!ðnþ rÞ!

¼ −
1

s 3F2

�
1;−s; 1þ tþ r

1 − s; 1þ r
; 1

�
: ð11Þ

Via a Thomae transformation [15], this expression equals

Aðs; tÞ ¼ Γð−sÞΓð−tÞ
Γð−s − tÞ 3F2

� −s;−t; r
−s − t; 1þ r

; 1

�
; ð12Þ

which is the Veneziano amplitude times a manifestly
crossing symmetric function of s and t that reduces to 1
at r ¼ 0. For arbitrary kinematics, Eq. (12) will be our
definition of a new hypergeometric amplitude.

We can recast Eq. (12) in several illuminating forms. For
nonzero real r, inserting the definition of the hypergeo-
metric function yields an infinite sum over a special case of
the generalized amplitudes derived in Ref. [13],

Aðs; tÞ ¼
X∞
n¼0

1

n!
r

rþ n
Γð−sþ nÞΓð−tþ nÞ

Γð−s − tþ nÞ ; ð13Þ

which also coincides with a particular choice of coefficients
in the string-inspired ansatz in Ref. [16].
For nonnegative integer r, Eq. (12) is also equal to

Aðs; tÞ ¼ ð−1Þrr!Γð−s − rÞΓð−t − rÞ
Γð−s − t − rÞ þ P2r−2ðs; tÞ

Q2rðs; tÞ
; ð14Þ

where P2r−2 and Q2rðs; tÞ ¼
Q

r
l¼1ðsþ lÞðtþ lÞ are pol-

ynomials of degree 2r − 2 and 2r, respectively. Here the
first and second terms in Eq. (14) exhibit spurious poles in s
and t that precisely cancel. Note that Eq. (14) can be
analytically continued to negative integer r if we also divide
λm and thus Aðs; tÞ by an overall factor of r!. In this case the
hypergeometric amplitude Aðs; tÞ is given just by the first
term in Eq. (14), which is also the basis amplitude
comprising the string ansatz in Ref. [16].
Next, it will be instructive to study various limits of

Aðs; tÞ. For example, for nonnegative integer r, the low-
energy expansion of the amplitude is

Aðs; tÞ ¼ −
1

s
−
1

t
þHr;1 þ

π2

6
ðsþ tÞ þ ζð3Þðsþ tÞ2 −Hr;1;2stþ

π4

360
ðsþ tÞð4s2 þ 4t2 þ stÞ

−
�
π2

6
Hr;2 −Hr;1;3

�
stðsþ tÞ þ ζð5Þðsþ tÞ2ðs2 þ stþ t2Þ

þ
�
π2

6
Hr;3 −

�
π2

6
þHr;2

�
ζð3Þ −Hr;1;4

�
stðsþ tÞ2

þ 2r
1þ r 7F6

�
1; 1; 1; 1; 1; 1; 1 − r

2; 2; 2; 2; 2; 2þ r
;−1

�
s2t2 þ � � � ; ð15Þ

where we have defined the generalized harmonic
number Hn;m ¼ P

n
k¼1 k

−m and its moments Hn;m;k ¼P
n
l¼1Hl;ml−k [17]. Note that Eq. (15) apparently exhibits

uniform transcendentality [20].
From Eq. (14) we can straightforwardly derive the

behavior of the amplitude for high-energy fixed-angle
scattering. In particular, sending jsj; jtj → ∞, we obtain

Aðs; tÞ ∼ eBðs;tÞ þ r
st
þ � � � ; ð16Þ

where Bðs; tÞ ¼ ðsþ tÞ logðsþ tÞ − s log s − t log tþ � � �
and ellipses denote subleading contributions we will
ignore. For nonnegative integer r, the first and second
terms in Eq. (16) are trivially derived from the first and
second terms in Eq. (14). In the physical region,
−1 ≤ cos θ ¼ 1þ 2t

s ≤ 1, we find that Bðs; tÞ < 0, so
Aðs; tÞ ∼ r=st falls off as a power law. In the unphysical
region, t > 0, we find that Bðs; tÞ > 0, in which case
Aðs; tÞ ∼ eBðs;tÞ exhibits the same behavior as the
Veneziano amplitude, in accordance with general argu-
ments [21].
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Meanwhile, the Regge limit of s → ∞ at fixed t is

Aðs; tÞ ¼ sJðs;tÞ þ r
ð1þ tÞsþ � � � ; ð17Þ

where Jðs; tÞ ¼ tþ � � � and ellipses denote subleading
terms. Here the first and second terms dominate depending
on whether t > 0 or t < 0, respectively. Any spurious poles
in t will cancel between terms, as in Eq. (14).
Rather incredibly, the hypergeometric amplitude in

Eq. (12) has an integral representation that is tantalizingly
reminiscent of the string worldsheet,

Aðs; tÞ ¼ r
Z

1

0

Z
1

0

dxdy
x−s−1yr−1ð1 − xyÞt

ð1 − xÞtþ1
: ð18Þ

Amazingly, the integral above is just the Koba-Nielsen
formula for the five-point Veneziano amplitude [22],

Z
1

0

Z
1

0

dxdy
x−s12−1y−s45−1ð1 − xyÞs23þs34−s51

ð1 − xÞs23þ1ð1 − yÞs34þ1
; ð19Þ

evaluated at s12 ¼ s, s23 ¼ t, s34 ¼ s51 ¼ −1, and
s45 ¼ −r. It is perhaps not so surprising that this object
is a viable four-point amplitude. By setting s34, s45, s51 to
constant values, we ensure that the resulting expression
exhibits singularities only in s and t, while the s ↔ t
symmetric choice of kinematics enforces crossing. For the
case of r → 0, the five-point Veneziano amplitude factor-
izes onto the massless pole at s45 → 0, so multiplying by r
to remove the singularity yields the four-point Veneziano
amplitude, as expected.
There is an infinite parameter space of amplitudes

constructed from a weighted sum over the solutions above,

λm ¼
Z

∞

−∞
dr μðrÞ r!

ðmþ rÞ! : ð20Þ

Given any choice of μðrÞ for which the integral converges,
the corresponding λm yield a consistent amplitude. The
resulting object is a linear combination of our hyper-
geometric amplitudes, so its properties are straightforward
to derive.

VI. q-INTEGER SPECTRUM BOOTSTRAP

Next, consider a spectrum defined by q-deformed
integers,

m2
n ¼ ½n�q ¼

1 − qn

1 − q
; ð21Þ

where 0 < q < 1 [23]. The q-deformed integers reduce
to the usual integers for q → 1, allowing for a simple
comparison to the results of the previous section.

To streamline our analysis, we define s ¼ ½σ�q and
t ¼ ½τ�q in analogy with Eq. (21), where σ and τ are the
natural kinematic variables given the spectrum. We also
assume a dual resonant representation for the amplitude,

Aðσ; τÞ ¼
X∞
n¼0

Rnð½τ�qÞ
½n − σ�q

; ð22Þ

where Rnð½τ�qÞ ¼ RnðtÞ is the same quantity defined in

Eq. (1). Furthermore, since 1
½n−σ�q ¼

1−ð1−qÞs
½n�q−s , Eq. (22)

exhibits simple poles in s at the points s ¼ ½n�q.
Next, let us consider special kinematics where σ and τ

are offset by a nonnegative integer k,

τ ¼ σ − k: ð23Þ

Imposing crossing symmetry on the amplitude implies that
Aðσ; σ − kÞ ¼ Aðσ − k; σÞ, so

X∞
n¼k

Rnð½σ−k�qÞ−Rn−kð½σ�qÞ
½n−σ�q

¼−
Xk−1
n¼0

Rnð½σ−k�qÞ
½n−σ�q

: ð24Þ

As before, we are motivated to impose the crossing
condition on the residues,

Rnð½n − k�qÞ ¼ Rn−kð½n�qÞ for 1 ≤ k ≤ n: ð25Þ

Solving these equations for the ansatz in Eq. (1), we obtain
the general solution,

Rnð½τ�qÞ ¼
Xn
m¼0

λmq
mðm−1Þ

2

½m�q!
½τ�q!

½τ −m�q!
½n�q!

½n −m�q!
; ð26Þ

which is the q-deformed generalization of Eq. (9).

VII. COON AMPLITUDE

For the special choice of λm ¼ qmðmþ1Þ=2 × 1
½m�q!, we use

the q-Vandermonde identity to write the residue in Eq. (26)

as Rnð½τ�qÞ ¼ ½τþn�q!
½τ�q!½n�q! ¼ ð τ þ n

n Þq, which is a q-deformed

binomial distribution. Plugging this residue back into
Eq. (22), we obtain

Aðσ; τÞ ¼
X∞
n¼0

1

½n − σ�q

�
τ þ n

n

�
q

: ð27Þ

Since Eq. (27) is literally the q-deformation of the
Veneziano amplitude in Eq. (10), it is natural to conjecture
that it is the Coon amplitude [7]. However, it is not. In fact,
the sum in Eq. (27) does not even converge, so Eq. (25) is
invalid, and s ↔ t crossing fails.
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However, if we dress each term in the sum by hand with
an additional factor of qτðσ−nÞ, we obtain

Aðσ; τÞ ¼
X∞
n¼0

qτðσ−nÞ

½n − σ�q

�
τ þ n

n

�
q

¼ qστ
Γqð−σÞΓqð−τÞ
Γqð−σ − τÞ ; ð28Þ

which is exactly the Coon amplitude [7,26,27].
Since the mysterious prefactor qτðσ−nÞ ¼ 1 for σ ¼ n, it

does not affect the residues of the amplitude and contributes
only contact interactions. Clearly, there is an infinite space
of similar functions, but only the choice made above yields
the Coon amplitude. We leave an investigation of other
possible prefactors for future work.

VIII. q-HYPERGEOMETRIC AMPLITUDE

Consider a more general parameter choice λm ¼
qmðmþ1Þ=2þrm ×

½r�q!
½mþr�q!, for which the residue is Rnð½τ�qÞ ¼

½τþnþr�q!½r�q!
½τþr�q!½nþr�q!. Again dressing each term in Eq. (22)

with qτðσ−nÞ and using the q-deformed Thomae trans-
formation [28], we obtain

Aðσ;τÞ ¼
X∞
n¼0

qτðσ−nÞ

½n− σ�q
½τþnþ r�q!½r�q!
½τþ r�q!½nþ r�q!

¼ qστ
Γqð−σÞΓqð−τÞ
Γqð−σ− τÞ 3ϕ2

�
q−σ;q−τ;qr

q−σ−τ;q1þr
;q;q

�
; ð29Þ

where the last factor is a basic hypergeometric function
[29]. The object in Eq. (29) subsumes every amplitude we

have discussed thus far, including hypergeometric (q ¼ 1),
Coon (r ¼ 0), and Veneziano (fq; rg ¼ f1; 0g).
In analogy with Eq. (20), we can also consider an

arbitrary linear combination of the λm defined above, in
which case the resulting amplitude is a corresponding linear
combination of q-hypergeometric amplitudes that sub-
sumes all of the amplitudes in Refs. [30,31].

IX. UNITARITY BOUNDS

There is a sizable parameter space, depicted in Fig. 1,
for which our new amplitudes are consistent with
unitarity. Following the analysis of Refs. [13,24,32–34],
we consider external states with mass m2

0, which is accom-
plished by simply sending ðs; tÞ → ðs −m2

0; t −m2
0Þ in the

q-hypergeometric amplitude in Eq. (29). The resulting
amplitude depends on the set of parameters fq; r; m2

0g.
Expanding the residue of the pole at level n in partial

waves, we obtain RnðtÞ ¼
P

n
l¼0 an;lG

ðDÞ
l ðcos θÞ, where

cos θ ¼ 1þ 2t
s−4m2

0

and GðDÞ
l denotes the D-dimensional

Gegenbauer polynomials. Unitarity implies that an;l ≥ 0,
thus sculpting out a consistent parameter region spanned
by fq; r; m2

0; Dg [35]. We find numerically that r is
always larger than −1, from which we analytically find
m2

0 ≤ 1=3 from an;n ≥ 0. From an;n−1 ≥ 0, we then have
the bound 2q−1−r ≥ 3 − qþm2

0ðq − 1Þ, which reduces to
r ≥ −ð1þm2

0Þ=2 as q → 1. We leave a full analysis of
partial wave unitarity for future work.

X. GRAVITY BOOTSTRAP

For the case of a gravitational amplitude Mðs; tÞ that
vanishes as s → ∞ at fixed t < 0, we can compute the
dispersion relation,

FIG. 1. Each line corresponds to a fixed choice of integer spacetime dimensionD ≥ 4. The region above this line satisfies partial wave
unitarity. Left panel: fm2

0; rg plane at fixed q ¼ 1. Right panel: fq; rg plane at fixed m2
0 ¼ 0. We have highlighted regions of physical

interest, including lines at fixedD ¼ 4 (solid), 5 (dashed dotted), 10 (dashed), and 26 (dotted), together with points corresponding to the
bosonic string (orange), superstring (red), and a critical case (purple) defined by the minimal value of r for m2

0 ¼ 0, which also happens
for exactly D ¼ 5. The dark teal region in the right panel is unitary for all D.
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Mðs; tÞ ¼
I
s0¼s

ds0

2πi
Mðs0; tÞ
s0 − s

¼
Z∞

−∞

ds0

π

ImMðs0; tÞ
s0 − s

¼
X∞
n¼0

�
1

m2
n − s

þ 1

m2
n − u

�
RnðtÞ; ð30Þ

where we assume that the external states are massless, so
sþ tþ u ¼ 0. Hence, Mðs; tÞ can be expressed as an
infinite sum over poles in the s and u channels.
Next, let us assume a linear spectrum as in Eq. (4), so that

the dual resonant form of the amplitude is

Mðs; tÞ ¼
X∞
n¼0

�
1

n − s
þ 1

n − u

�
RnðtÞ; ð31Þ

where R0ðtÞ ¼ ξ=t2 so that Mðs; tÞ ¼ ξ
stu þ � � � exhibits a

long-range force at low energies. Since 1=stu is trivially
crossing symmetric and dual resonant, it can be added or
subtracted with impunity without violating our input
assumptions. Hence, ξ is freely floating and cannot be
related to any other parts of the amplitude by crossing.
For the residues at positive n, we define

RnðtÞ ¼
X2ðn−1Þ
m¼0

κn;mtm; ð32Þ

so the modes exchanged at level n carry up to spin
2ðn − 1Þ. For graviton scattering, Mðs; tÞ is dressed with
a polarization-dependent prefactor R4 that carries spin
weight, in which case these modes carry up to spin 2n.
Next, we restrict to t ¼ s − k, which implies that u ¼

−2sþ k. Since Eq. (31) is s ↔ u symmetric, we need
only enforce crossing on s ↔ t. Equating Mðs; s − kÞ
to Mðs − k; sÞ implies that

P∞
n¼1

Rnðs−kÞ
n−s þ Rnðs−kÞ

n−kþ2s ¼P∞
n¼1

RnðsÞ
nþk−s þ RnðsÞ

n−kþ2s. Relabeling the summation and equat-
ing the residue of each s-channel pole at s ¼ n, we obtain
Eq. (8). Meanwhile, equating the residue of each u-channel
pole at s ¼ − n−k

2
, we obtain

Rn

�
−
nþ k
2

�
¼ Rn

�
−
n − k
2

�
; ð33Þ

where 1 ≤ k ≤ n. Next, we constrain the ansatz in Eq. (32)
with Eqs. (8) and (33), modulo any constraints involving ξ,
since 1=stu can be freely added or subtracted from the
amplitude as discussed above. We thus eliminate κn;m for
m < 2n in terms of the unfixed parameters κm ≡ κm;2m,
yielding

RnðtÞ¼
Xn
m¼0

κm
m!

ðtþnþmÞ!
ðtþnÞ!

ðt−1Þ!
ðt−m−1Þ!

ðn−1Þ!
ðn−m−1Þ! ; ð34Þ

where κm must be chosen so that the sum converges. For a
q-integer spectrum, the above procedure yields no solu-
tions, in accordance with general arguments [36].

XI. VIRASORO-SHAPIRO AMPLITUDE

Next, consider theparameter choice κm ¼ 1
ðmþ1þrÞ!ðmþ1−rÞ!.

In this case, the residue becomes RnðtÞ ¼
ðtþn−1þrÞ!
ðtþrÞ!ðnþrÞ!

ðtþn−1−rÞ!
ðt−rÞ!ðn−rÞ!, which inserted back into the amplitude

in Eq. (31) yields

Mðs;tÞ¼Γð−sÞ
t2−r2 4

F̃3

�
1;−s;tþr;t−r

1−s;1þr;1−r
;1

�
þs↔u: ð35Þ

By numerical evaluation, one can verify that Eq. (35) is not
crossing symmetric for generic r. This is possible because the
constraints in Eqs. (8) and (33) are not sufficient conditions
for crossing. That said, for any integer r, Eq. (35) is in fact
crossing symmetric, yielding a generalization of theVirasoro-
Shapiro amplitude,

Mðs; tÞ ¼ ð−1Þrþ1Γð−sþ rÞΓð−tþ rÞΓð−uþ rÞ
Γð1þ sþ rÞΓð1þ tþ rÞΓð1þ uþ rÞ ; ð36Þ

which in fact forms a basis for the amplitudes described in the
conclusions of Ref. [37].
Last but not least, we can actually take the principle of

dual resonance even further, writing the Virasoro-Shapiro
amplitude as a sum over s-channel poles alone,

Mðs; tÞ ¼
X∞
n¼0

Rnðs; tÞ
n − s

; ð37Þ

where Rnðs; tÞ ¼ ðtþs−1Þ!
t!s!

ðtþn−1Þ!
t!n! depends on both s and t,

and the sum is convergent for t < 0.

XII. FUTURE DIRECTIONS

The present work offers many lines of inquiry for
future study. First and foremost, it would be interesting to
bootstrap new amplitudes with different mass spectra.
Second, there is the important question of whether our
new amplitudes generalize to higher-point scattering.
Finally, it would be interesting to perform a systematic
analysis of the unitary regions of parameter space for our
amplitudes.
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