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The complex critical points are analyzed in the four-dimensional Lorentzian Engle-Pereira-Rovelli-

Livine spinfoam model in the large-j regime. For the four-simplex amplitude, taking into account the

complex critical point generalizes the large-j asymptotics to the situation with non-Regge boundary data

and relates to the twisted geometry. For generic simplicial complexes, we present a general procedure to

derive the effective theory of Regge geometries from the spinfoam amplitude in the large- j regime by using

the complex critical points. The effective theory is analyzed in detail for the spinfoam amplitude on the

double-A; simplicial complex. We numerically compute the effective action and the solution of the

effective equation of motion on the double-A; complex. The effective theory reproduces the classical
Regge gravity when the Barbero-Immirzi parameter y is small.
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I. INTRODUCTION

The perturbative expansion is widely used in quantum
theory to make approximate predictions order by order in
certain parameter. The method of perturbative expansion is
well-connected to the path integral formulation, whose
stationary-phase approximation results in the semiclassical
expansion in 7. By the stationary phase approximation, the
path integral is approximately computed by the dominant
contribution from the critical point and neighborhood. The
critical point is the solution of the equation of motion,
which is obtained from variating the action in the path
integral. Given a path integral in terms of real variables,
traditionally, the semiclassical expansion only takes into
account critical points inside the real integration cycle.
However, the recent progress in many research areas
demonstrates that the complex critical point generically
away from the real integration cycle plays a crucial role in
the semiclassical expansion of the path integral (see
e.g., [1-6]). The complex critical point is the critical point
of the analytically continued path integral, where the
integrand is analytically extended to the complexification
of the real integration cycle.
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The method of stationary phase approximation has been
applied extensively to the spinfoam amplitude in loop
quantum gravity (LQG) (see e.g., [7-11]). The importance
of the complex critical point has been demonstrated in the
recent progress in the semiclassical analysis of spinfoam
amplitude [12-14]. A key result is that the semiclassical
curved spacetime geometry can only emerge from the
complex critical point of the spinfoam amplitude. Taking
into account that the complex critical point provides the
resolution to the long-standing “flatness problem,” i.e., the
problem of discovering only the flat spacetime geometry in
the spinfoam amplitude. This problem turns out to be the
confusion from ignoring the complex critical point.

The present work continues from the earlier work [12]
and further study the complex critical points and their
implications in spinfoam amplitude. The discussion in this
work focuses on the four-dimensional Lorentzian Engle-
Pereira-Rovelli-Livine (EPRL) spinfoam model. Our
results demonstrate the impact of the complex critical
points mainly from two perspectives:

(1) At the level of one four-simplex amplitude, taking
into account the complex critical point generalizes
the large-j asymptotics by Barrett et al. [8] to the
case of non-Regge boundary data. The geometry of
the non-Regge boundary data gives the boundary
tetrahedra that are glued only with area-matching but
without shape-matching, in contrast to the Regge
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boundary data that requires the shape-matching
condition (as well as the orientation matching
condition) and determines the Regge boundary
geometry. The generalized four-simplex amplitude
asymptotic behavior depends analytically on the
boundary data. This analytic dependence is not
manifest in the original asymptotic formula in [8].
The computation of the generalized asymptotic
behavior relies on the numerical method. The dis-
cussion in Sec. I'V provides the general algorithm of
computing the complex critical point of the ampli-
tude, and demonstrates the numerical results of the
asymptotics for a one-parameter family of non-
Regge boundary data.

(ii) Based on the application of complex critical points,
we develop a formalism to derive the effective
theory of Regge geometry from the large-j spinfoam
amplitude. As the result, given a simplicial complex
IC with M internal segments, the spinfoam amplitude
A(K) with Regge boundary data reduces to the
integral over the internal line-segment lengths /;,
I=1,...M,

A(/C)~/ﬁdu(z,)eﬂs<7>[1+0(1/1)], A1,
=1

(1.1)

within the neighborhood of the integration domain
of A(K). Ais the scaling parameter of spins j;. *5()

-

with the effective action S(I) comes from evaluating
the analytically continued integrand of A(K) at the
complex critical point, which depend analytically on
[;. The integral in (1.1) reduced from A(K) is over
the Regge geometries with the fixed boundary

condition. The equation of motion d;,S (1) = 0 gives
the effective dynamics of Regge geometry implied
by the spinfoam amplitude. The formalism of
deriving the effective theory is discussed in Sec. IIL.
In Secs. VI and VII, we apply the formalism to the
double-A; simplicial complex, which contains only
a single internal segment, i.e., M = 1. The complex

-

critical points and the effective action S(/) are
computed numerically following the general algo-
rithm. The spinfoam amplitude depends on the
Barbero-Immirzi parameter y. The computations
are performed for many different values of the
Barbero-Immirzi parameter y, ranging from small

-

to large. The resulting S(/) are compared with the

-

Regge action on the double-A; complex. S(/) is
well-approximated by the classical Regge action in

-

the small-y regime, and S(/) provides the correction
to the Regge action with increasing y. The solutions
of the effective dynamics are computed numerically

for different values of y and compared to the solution

-

of Regge equation. The solution from S(I) well-
approximates the Regge solution for small y and
gives larger correction when increasing y. Recover-
ing the classical Regge action and solution from the
effective dynamics of spinfoam amplitude gives
evidence of the semiclassical consistency of spin-
foam quantum gravity.

Recovering the classical Regge gravity from the spinfoam
amplitude with small y has been argued earlier in [15-20].
Our numerical result confirms this property for the spinfoam
amplitude on the double-A; complex.

The numerical computations are performed for different
y’s ranging from small to large. Fixing the boundary data,
the solutions of the effective dynamics give a trajectory in
the space of Regge geometries parametrized by y. The
trajectory approaches the solution of the classical Regge
equation for small y as mentioned above. For large y, the
trajectory stablizes at the Regge geometry that is different
from the classical Regge solution. It suggests that the
effective theory for large y differs significantly from the
Regge gravity. The solutions both at small and large y give
nonsuppressed contributions to the spinfoam amplitude. In
particular, the solutions for large y violate the known bound
lyd,| < A=1/% [11-13] (8, is the deficit angle of the Regge
geometry), which is valid for nonsuppressed contributions
to the amplitude with finite and small y.

Studying the complex critical points in the spinfoam
amplitude closely relates to the recent progress in numeri-
cal studies of spinfoam amplitudes [21]. Given the com-
plexity of the spinfoam amplitude, the complex critical
point and the corresponding contribution to the spinfoam
amplitude has to be computed numerically. The numerical
analysis of complex critical points connects to the
Lefschetz thimble and Monte Carlo computation for the
spinfoam integral [22], because every complex critical
point associates to an integration cycle known as
Lefschetz thimble, and the integral on the Lefschetz
thimble collects all contributions associated to the complex
critical point. Another related numerical result is the
semiclassical expansion of the spinfoam amplitude to the
next-to-leading order from the stationary phase approxi-
mation [23]. We also would like to mention a few other
numerical approaches for spinfoam quantum gravity,
including the “sl2cfoam-next” code for the nonperturbative
computation of the spinfoam amplitude [24-26], the
effective spinfoam model [13,27], the hybrid algo-
rithm [28], and the spinfoam renormalization [29,30], etc.

This paper is organized as follows: Section II gives a
brief review of the integral representation of the EPRL
spinfoam amplitude and the definition of the large-j
regime. In Sec. III, we define the real and complex critical
points and discuss the general formalism of deriving the
effective dynamics of Regge geometry. Section IV studies
the complex critical point of the four-simplex amplitude
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and generalizes the large-j asymptotics to include the
non-Regge boundary data. Section V revisits the known
results on the spinfoam amplitude on A; complex as the
preparation for analyzing the amplitude on the double-A;
complex. Section VI discusses the complex critical point in
the spinfoam amplitude on the double-A; complex and
computes the effective action. Section VII discusses the
numerical solution of the effective dynamics on the double-
A5 complex. In Sec. VIII, we conclude and discuss some
outlooks.

II. SPINFOAM AMPLITUDE

A four-dimensional simplicial complex X contains
4-simplices v, tetrahedra e, triangles f, line segments,
and points. The internal and boundary triangles are denoted
by 4 and b (f is either h or b). The SU(2) spins j,, j, €
Ng/2 are assigned to internal and boundary triangles &, b.
The spins label the quanta of triangle areas. The LQG area
spectrum indicates that the quantum area of triangle f is
given by a; = 8xyGh./j;(j; + 1) [31,32]. In the large-j
regime, which we will focus on, the area spectrum gives
ay~8rxyGhyjy, or ay ~yj, when we set the unit such that
8zGh = 1.

The Lorentzian EPRL spinfoam amplitude on K is given
by summing over internal spins {j,},

ZHdW “/dgdz]eS(jh,gmzpf;jb,ém’ (2.1)

{n} h
[dgdz] = Hdgw HdQZ .

=2j,+ 1. The boundary states are SU(2)
coherent states |jj, &)  where &, = u,,>(1,0)T,
u,, € SU(2). j, and &,, are determined by the area and
the 3-normal of the boundary triangle ». The summed/
integrated variables are g,, € SL(2,C), z,; € CP', and jj,.
dg,. is the Haar measure on SL(2,C),

(2.2)

where d ;
h

dpdp*dydy*dsds
1]

dg—= . Vg= <a ﬂ) eSL(2.C). (2.3)
y o

and sz, ; is the scaling invariant measure on CP!,

(Z0dz; — 2,dZ)
<Zvef’Zvef><Zve’f’Zve’f>
Vi, = (z0.21)".

i (zodzy —z1dz) A

sz”/ - 5

(2.4)

where Z,,; = glez@,f, (-,+) is the Hermitian inner product
on C?, and z,5 is a 2-component spinor for the face f.

The spinfoam action S in Eq. (2.1) is complex and linear
to j,, j, in an expression of the form [33],

S — Z]hF ) + ZJme/out + Z me/out (25)
Z‘ ) .
Flew = 210 ZrerEer) H@eb fﬂb> +iyln||ZllP,  (2.6)
ve
. L
Py =il iz e @)
1 Zyses
Z'e’ er’e/ Zve’ 2
HZUe’f”HZv’e’fH HZv’e’fH

Here, ¢ and ¢ are boundary and internal tetrahedra,
respectively. In the dual complex K*, the orientation of
df* is outgoing from the vertex dual to » and incoming to
another vertex dual to v/, and the orientation of the face f*
dual to f induces df™*’s orientation. As for the logarithms in
the spinfoam action, we fix all the logarithms to be the
principal values. The derivation of the spinfoam action S is
given in [33].

The spinfoam amplitude in the formulation (2.1) has the
following three types of continuous gauge degrees of
freedom, and thus some gauge fixings are needed to remove
the redundant degrees of freedom:

(i) Firstly, there is SL(2,C) gauge transformation at

each v:
Goe X3 Gpos Z,f »—>x,tzvf, x, €SL(2,C). (2.9)
To remove this gauge degree of freedom, we fix
one g,, to be a constant SL(2, C) matrix for each
four-simplex. The amplitude is independent of the
choices of constant matrices.
(i) Secondly, there is SU(2) gauge transformation on
each internal e:
gv'e '_)gv’eh;l s YGoe '_)gvehzl ., h.€ SU(Z) (2 10)
To fix this SU(2) gauge freedom, one can parameter-
ize one of two SL(2, C) elements: g,,, or g,/ by the
upper triangular matrix

(A m
k_<0 ﬂ)’ A1eR\{0}, ueC (2.11)

Here, we use the fact that any g € SL(2, C) can be
decomposed as g = kh with h € SU(2) and k an
upper triangular matrix in Eq. (2.11).
(iii) Thirdly, for each z,;, there is the scaling gauge
freedom:
va d /lvfzvf, /Ibf eC. (212)
Here, we fix the gauge by setting the first component
of z,r to 1, i.e. z,; = (1, a,)", where a,; € C.
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Furthermore, in Eq. (2.1), we assume the summation
over internal j, € Ny/2 is bounded by j™*. In some
situations, j™* is determined by boundary spins j, via
the triangle inequality, otherwise j™* are imposed as the
cutoff to regularize the infinite sum over spins. To prepare
for the stationary phase analysis, we would like to change
the summation over j, in Eq. (2.1) to integrals. The idea is
to apply the Poisson summation formula. Firstly, we
replace each d; by a smooth compact support function

Ul-e,jm +¢] (jn) satisfying

PG

T[_S.jmax+€] (jh) = N fOI’ jh E [O, jmax], and

T-e, jm1x+6]( ) =0, for jn & [—6‘, jmax 6],

for any 0 < ¢ < 1/2. This replacement does not change the
value of the amplitude A(K) but makes the summand of
> ;, smooth and compact support in j,. Then, by applying
the Poisson summation formula,

d 2mkn
> =3 [ anfo

nez
the discrete summation over j, in Eq. (2.1) becomes the
summing of integrals:

/dehHZ'r ] (n /[dgdz] 5O

(2.13)

{k,ez}

SO =S+ 470y jky. (2.14)
h

By the area spectrum, the classical area a; and small 7
imply the large spin j; > 1. This motivates understanding
the large-j regime as the semiclassical regime of A(K).
Then, to probe the semiclassical regime, we scale uni-
formly both the boundary spins j, and the internal spin
cutoff j™* by

max max

Jb = AJps - Aj A>1, (2.15)
so § — AS as a result from § being linear in j,, j,. As a
consequence, the spinfoam amlitude A(K) in the large-j

regime is

A / Hd]h Hz/h- [—e. 4™ +¢] /Ijh)

{kyez}

X / [dgdz]e’s",

SO =S+ 4mi> " jky.
h

(2.16)

(2.17)

by the change of integration variables j, — Aj,, and jj, is
continous.

III. COMPLEX CRITICAL POINT
AND EFFECTIVE DYNAMICS

The integral in (2.16) at each k;, can be analyzed with the
stationary phase method in the regime 4> 1. By the
standard argument of the stationary phase approximation,
by fixing the boundary data, the integral with 4> 1 is
approximated by the dominant contributions from the
solutions of critical equations and neighborhood. In the
case of the integrals in (2.16), the critical equations are

Re(S) = 9,5 = 9,5 =0, (3.1)

9, S = 4nik,,  k, €Z. (3.2)

The solutions inside the integration domain are denoted by

{J'hvf}w, %L‘f}. The integration domain is viewed as a real
manifold, and the integration variables are real and imagi-
nary parts of the matrix elements in g,, and z,,. We call

{ns Gver %,,f} the real critical point accordingly.

The existence of the real critical point in (2.16) depends
on the boundary condition. The real critical point may not
exist for the generic boundary condition. We know that S is
a complex action with n real variables x, and 0,5 =0
gives n complex thus 2n real equations, which is over-
constrained for n real variables. Consequently, the critical
equations (3.1) and (3.2) coupled with one more equation
Re(S) = 0 result in the nonexistence of the general real
solution, unless for some special boundary conditions.

As a solution to this problem of overconstrained equa-
tions, the integration variables have to be complexified, and
action S has to be analytically continued to the complex
variables z. We are only interested in the integration domain
where the spinfoam action S is analytic. The analytically
continued action is denoted by S. On the space of complex
variables, the complex critical equation 0,5 =0 is not
overconstrained anymore because it gives n complex
equations for n complex variables. Re(S) = 0 is dropped
when we study S instead of S. In the space of complex
variables, the solutions of 0,5 = 0 are called the complex
critical points, which play the dominant role for the
asymptotics of A(K) in the case that the real critical point
is absent.

Before discussing the complex critical point, let us firstly
review some known results from the critical equations (3.1)
and (3.2) with the boundary data corresponding to Regge
geometry on oK. The real solutions of the part (3.1) have
been well-studied in the literature [7-9,33]. We call these
solutions the pseudocritical points. As one of the results,
the pseudocritical point satisfying a nondegeneracy con-
dition endows a Regge geometry on K with certain four-
simplex orientations. When focusing on the pseudocritical
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points endowing the uniform orientations to all four-
simplices, further imposing (3.2) to them gives the acci-
dental flatness constraint to their corresponding Regge
geometries, i.e., every deficit angle &, hinged by the
internal triangle h [11,34] satisfies

7/5}1 = 4ﬂ'kh, kh €. (33)
When &, = 0, §,, at every internal triangle is zero, and the
Regge geometry endowed by the real critical point is flat.
Equation (3.3) is a strong constraint to the allowed
geometry from the spinfoams and can be satisfied only
for special boundary conditions that admit the flat bulk
geometry (mod 47Z). The accidental flatness constraint is
consistent with the above argument about overconstrained
equations, and it has been demonstrated explicitly in the
example well-studied in, e.g., [12,35]. If one only considers
the real critical point for the dominant contribution to A(KC),
Eq. (3.3) would imply that only the flat geometry (mod
4z 7) exists. This confusion leading to the flatness problem
results from ignoring the complex critical point in the
stationary phase analysis.

In the following discussion, we show that the large-4
spinfoam amplitude does receive dominant contributions
from the complex critical points away from the real
integration domain. The complex critical points precisely
correspond to the curved Regge geometries emergent from
the spinfoam amplitude. Interestingly, the application of
complex critical points leads to a derivation of effective
dynamics of Regge geometry from the spinfoam amplitude.
The emergent curved Regge geometries are constrained by
the effective dynamics. We firstly provide a general
formalism below, then we apply the formalism to the
concrete models with several different /C in the following
sections.

Motivated by relating to the dynamics of Regge geom-
etry, we separate the integral in the amplitude (2.16) into
two parts. Suppose K has M internal segments, the
dynamics of Regge geometry should relate to the dynamics
of these internal segment lengths. Motivated by this, we
separate M internal areas j, (h, = 1,..., M) from other jj;
(fz =1,...,F — M), where Jn, relates to the segment
lengths. Here, F' is the total number of internal triangles
in KC, and M equals the number of the separated internal
segments. The spinfoam amplitude (2.16) then becomes

/ H d]h{,z{ " (jn, )

h,=1

(3.4)
{h}

where Z,{Ck”}, called the partial amplitude, is given by

/ HthH 2d,;,) / [dgdz]es".

zh(j (3.5)

We can then change variables from the areas j, to the
internal segment-lengths {/;}¥,, with I denoting the
internal segment. The internal triangles i, =1, ..., M are
suitably chosen such that the change of variables is well-
defined in the interested region, e.g., a neighborhood of

{Jn, } of {jn, Goes ;Uf} corresponding to the flat geometry.
Indeed, the chosen M areas {j,, } are related to M segment
lengths {/;} by Heron’s formula. Inverting the relation
between {j,, })'_; and {/;}L, defines the local change of
variables (jy, . j;) = (;.j;) in a neighborhood K of a
given Regge geometry in the integration domain of (2.16).
This procedure is just changing variables without imposing
any restrictions. When focusing on the integrals in the
neighborhood K, we have dM*VNj, = 7,dM1,d"Mj;,
where J, = det(dj, /0l;) is the Jacobian obtained by
the derivatives of Heron’s formula. Therefore, the contri-
bution to A(K) from the neighborhood K is expressed as

/ Hdl TZ8 1),

(3.6)
{kn}

The partial amplitude Z,{Ck”} has the external parameters
r={l;, jp. &} including not only the boundary data
Jp»,Eep but also internal segment-lengths /;. The above
decomposition of j, integrals closely relates to the earlier
proposal [36,37] (see also [38] in the context of area Regge
calculus). /; parametrizes a submanifold Mpgeee. in the
space of j;,. The submanifold Mpgege. collects j,’s that can
be interpreted as areas determined by the segment lengths /;
(by Heron’s formula). Generically, the space of j, is much
larger than the space of segment lengths [39]. j; para-
metrizes the direction transverse t0 Mgegge-

To study the partial amplitude Z,{Ck”}, we apply the

theory of stationary phase approximation for complex
action with parameters [40,41]. In the following, we only
consider the partial amplitude with k, = 0, while the
situation with other k;, can be studied analogously. We
consider the large-A integral [ e 48(rx)dNx, and regard r as
the external parameters. S(r,x) is an analytic function of
reUcRFxe KcRY. UxK is a neighborhood of
(r,x), where x is a real critical point of S(r,x). S(r,z)
with z = x + iy € CV is the analytic extension of S(r, x) to
a complex neighborhood of x. The complex critical
equation is

9.8 =0, (3.7)

whose solution is z = Z(r). Here, Z(r) is an analytic

function of 7 in the neighborhood U. When r = r, Z(r) = x
reduces to the real critical point. When r deviates away

from r, Z(r) € CV can move away from the real plane R”,
thus it is called the complex critical point (see Fig. 1). With
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Im(z)

FIG. 1. The real and complex critical points x and Z(r). S(r, z)
is analytic extended from the real axis to the complex neighbor-
hood illustrated by the red disk.

this in mind, we have the following large-1 asymptotic
expansion for the integral

)

N AS(r,Z(r))
/elS(r,x)de — (l) ¢
K A \/det(—ag.ZS(r,Z(r))ﬂ”)

x [1+ 0(1/2)], (3.8)

where S(r,Z(r)) and 62.S(r,Z(r)) are the action and
Hessian at the complex critical point. In addition, the real
part of S is zero or negative. More precisely, there exists a
constant C > 0 such that

Re(S) < —CIm(Z)[2. (3.9)

See [40,41] for the proof of this inequality. This inequality
indicates that Re(S) = 0 resulting in the oscillatory phase
in (3.8) can only happen at the real critical point, where

Im(Z) = 0 and r = r. When r deviates from 7 with a finite
distance, such that Im(Z) is finite and Re(S) is negative,
(3.8) is exponentially suppressed when scaling 4 to large.
The asymptotic formula (3.8) depends analytically on r and
interpolates the two different behaviors smoothly in the
parameter space of r:
(i) The critical point is not real, then Re(S) < 0, which
gives the exponentially decaying amplitude.
(ii) The critical point is real, then Re(S) = 0, and thus
¢S gives an oscillatory phase.
These two distinct behaviors are obtained by fixing r and
scaling 4. But since the asymptotic formula (3.8) depends
on r analytically, we can vary r simultaneously as scaling 4.
Then we can arrive at the regime where the asymptotic
behavior (3.8) is not suppressed at the complex critical

point. Indeed, for any large 4, there always exists r # r but

sufficiently close to 7, such that Im(Z) and Re(S) are small
enough, then ¢*° in (3.8) is not suppressed at the complex
critical point.

The importance of (3.8) is that the integral can receive a
dominant contribution from the complex critical point away
from the real plane. These complex critical points indeed
give the curved Regge geometries missing in the argument
of the flatness problem. The parameter r including both the
boundary data and internal segment lengths determine
the Regge geometry that is generically curved. Hence
the asymptotic formula (3.8) computes the weight of the
Regge geometry contributing to the amplitude and reduces
A(K) in K to

Gf / ﬁdl,]\f,ew("z(’”[l + 0(1/2)] (3.10)
I=1

at each k;,. Here, N; o« [, (4j,) 7 [det(=52 .S/ 2x)]~"/? at
Z(r), and r = {l;, jp, &.p }. Given that {/;} determines the
Regge geometry on /C, Eq. (3.10) is a path integral of Regge
geometries with the effective action S. The integration
domain of /; includes curved geometries. The integral
(3.10) derived from the spinfoam amplitude defines an
effective theory of Regge geometries. Indeed, if we focus
on the dominant contribution and neglect corrections of
O(1/4), by the stationary phase approximation of (3.10),
the effective action S gives the equation of motion

S

Z=0, I=1,..
ol,

(3.11)

which determines the effective dynamics of Regge geom-
etry. S is generally complex, so (3.11) should be analyti-
cally continued to complex [;, and thus the solution is
generally not real. As we are going to see in Sec. VII, we
are mainly interested in the regime where the imaginary
part of the solution /; is negligible, then the solution has the
interpretation of the Regge geometry.

In the following, we make the above general analysis
concrete by considering the examples of spinfoam ampli-
tudes on a single four-simplex and the double-A; complex.
We also revisit briefly the existing results on A3 complex
for the completeness. We compute numerically the com-
plex critical points and S, confirming the contribution of
the complex critical points to the spinfoam amplitude. In
particular, the double-A; model corresponding to M = 1
exhibits the nontrivial effective dynamics of the Regge
geometries. The effective dynamics approximates the
classical Regge calculus in the small-y regime.

IV. FOUR-SIMPLEX AMPLITUDE

This section applies the above general procedure to the
simplest situation—the four-simplex amplitude. In this
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case, there is no internal triangle as F =M = 0. The
external parameter r only contains the boundary data
r = (jp,Eep)- The four-simplex and its dual diagram are
illustrated in Figs. 2(a) and 2(b). The points of the four-
simplex v are labeled by (1, 2, 3, 4, 5). The five tetrahedra
on the boundary are labeled by

{61, €r,€3, €y, 65} == {(1,2,3,4), (1,2,3,5), (1,2, 4,5),
(1,3,4,5),(2,3.4,5)}.

These tetrahedra carry group variable g,, € SL(2,C). The
triangle is shared by the tetrahedra and carries an SU(2)
spin j;, e.g., the tetrahedron e; = (1,2,3,4) and the
tetrahedron e, = (1,2, 3,5) share the face f, = (1,2, 3).

A. The amplitude and parametrization of variables

According to (2.1), the EPRL four-simplex amplitude with
the boundary state has the following expression [7-9,42-44]:

d.:
. J
Av(]fv&ef) = / Hdgve5i63<gvel) /(CP‘)‘O esl;[#dgzl,f-

(4.1)

Here, all triangles are on the boundary, j; = j,. To fix the
SL(2, C) gauge, g, is fixed to be constant matrix diag (i, —i)
(the timelike normal of the reference tetrahedron e; is past-
pointing). The integrand in (4.1) is written as an exponential
e5 with the action

(a)

Zoe N Zoe 12 Eu Zow i Zow
Szzzjfln<§ef 1ef>< ve'f éef>+zy]fln< ve'f 1ef>‘

7 ’ ”Zv(,‘fHHZ'ye'fH ) <Z1)efazvef>
(4.2)

The orientations of dual faces follow from Fig. 2(c). To study
the large-j behavior of the amplitude, we scale all boundary
spins j; — Aj by the parameter 4 > 1. The scaling of spins
results in the scaling of action S — AS, such that the integral
(4.1) can be studied by the stationary phase approximation.
In the following, we firstly compute the real critical point

{ Ew, 21; 7 }» which is the solution of the critical equation (3.1)
and then describe the algorithm to compute the complex
critical point in the neighborhood.

To obtain the real critical point, we adopt the four-
simplex geometry used in [22,23,45] to generate the
boundary state. The coordinates of the five vertices P,
in Fig. 2(a) in the Minkowski spacetime are set as

P, =(0,0,0,0), P, =(0,0,0,-2v/5/3"/4),

Py = (0,0,-3"/4V/5,-31/4\/5),

Py = (0,-2v10/3%4, —\/5/33/4 —\/5/31/4),

Py = (=37141071/2,—\/5/2/3%/4, /5334, —\/5/31/4).
(4.3)

Then, the 4D normals of the tetrahedra are

(b)

FIG. 2. Panel (a) plots the four-simplex » = (1,2, 3,4, 5). The boundary comprises five tetrahedra e; sharing ten faces f; [The shared

faces are labeled by {f}, f>, ..
this section, the notations e and f mean that e € {e, .

Sfior =1{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(2,3,4),(2,3,5), (3,4,5) }. For convenience, in
..,65} and.f (S {f], ..

., f10}]- Panel (b) is the dual complex of the four-simplex.

Five boxes correspond to boundary tetrahedra carrying g,, € SL(2, C). The strands correspond to triangles carrying spins j,. The circles
as endpoints of strands carry boundary states &, ;. The arrows represent the orientations of strands.
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N, =(=1,0,0,0),

Q

5 3
N67: e _9050’
AR

5 1 2
- [ ) ’O )
’ <\/22 V66 /33 )

5 1 1 1
(a7 ) @4)

The spinor &, relates to the 3D normals n,; by n,, =
(.. 6&,r) (G are Pauli matrices). The Regge boundary data

of ten areas j;, 3D normals rozef and the corresponding

spinors &, of the four-simplex are listed in Appendix A.
With the Lorentzian-Regge boundary data r = (j o ef)s

we solve for the real critical point (g,,. %U_f) which satisfies
Re(S) =0, ,8=0,,S=0. The results in the litera-
ture [8,9] show that there are exactly two real critical
points, which have the interpretations as the geometrical
four-simplex with opposite four-orientations. The four-
simplex geometrical interpretation of the critical points
results in the same geometry as the one given by (4.3). We
compute the real critical point following the strategy
described in [12,14,45], where the boundary data and
critical points for a single four-simplex are studied in

detail. The data of the real critical point (g,,. z, ) is given
in Appendix A.

By fixing the rescaling gauge of z,;, each z,, can be
parametrized with two real variables x,r, y,,

Gpe,n i = (2,3,4,5) are parametrized as

T+ (xle +ivl)/ V2 (32 +iy2)/V2
1+ (3 +iyte) (e +ivae) /2 |

3 13
(xve =+ lylfe)/\/2 l+(x1l,f+iy},€)/\/§

1 1 2 2 3 3
Xpes Yver Xver Yoesr Xver Yve € R. (46)

Therefore, the four-simplex action is a function in terms of
all real variables x = (X7, Y, 7. Xies Voo Xoes Vaes Xoes Vie)
forall fin {fy,...f10} and e in {e,, ..e5}. The real critical
point ;,)f is in the form ;Uf = (1,&1,f)T, where &M =
)Ocvf + i;vf € C. It is convenient to set one of the critical
points at the origin x = {0,0,...,0} by modifying (4.5)
and (4.6) to

o . T
va = (1’ avf + fo + lyvf) ’

. (1 + (e Fivie)/V2 (5 +105)/V2 )
Gve = YGve .

3 4 5.3 L+ (3, ) (e +iyie ) /2
(xve + lyve)/\/E 1+(Xig+iyie)/\/§
(4.7)
With the parametrization in (4.7), the measures dg,, and
dQ, are
do — 1 deedxdadyrdy.dys,
e = 1284 (=Y
V2
dx,dy,

1) W of (4.8)

Zyp T <Zvef’ZU€f> <Zve’f’ Zye’f> .

As a result, the four-simplex amplitude is in the form

A, = /d44x/4(x)e’w(”‘), (4.9)

where r = (j,&,;) are boundary data. The integral is 44
real-dimensional. In the following, we focus on a neigh-

borhood K of x. We have defined the local coordinates
x € R* covering K.

B. Deviating from the shape matching
The amplitude A, has the real critical points with the

nondegenerate Regge boundary data r. However, the real
critical point disappears when the boundary data deviates

away from . Considering a neighborhood U of r in the
space of boundary data, such that any r € U (different from

r) does not correspond to any Regge geometry or vector

geometry.I If we fix r € U and scale the spins with a large

4, there are two possible behaviors for the amplitude [8,43]:

(i) For r=r, the amplitude has two critical points

whose geometrical interpretations have opposite

orientations. S evaluated at critical points gives

the Regge action of the 4-simplex with opposite

sign. Therefore, the asymptotic amplitude of the
four-simplex gives two oscillatory phases

A, = A712(N ePSkesse 4 N_e #Skese), (4.10)

(i1)) For r # ;, it leads to no solutions to (3.1) and the
exponentially suppressed amplitude.

To interpolate smoothly between the oscillatory phases and

the exponential suppression in the asymptotics (4.10), the

'In the Lorentzian EPRL spinfoam amplitude, the critical
points corresponding to the nondegenerate Regge geometry are
isolated critical points.
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discussion in Sec. III suggests making r vary and intro-
ducing the complex critical points.

The boundary data r = {;f &} of the Lorentzian
Regge geometry satisfies the shape-matching condition,
i.e., five geometrical tetrahedra determined by r on the
boundary are glued with the triangles matching in shapes.
Consider the four-simplex action S(r,x) in the neighbor-
hood K x U of (r,x). We define z € C* as the complex-
ification of x, and S(r, z) extends holomorphically S(r, x)
to a complex neighborhood of x. To avoid confusion, we
note that the integration variables x are complexified, while
the boundary data r = (JfEep) is real.

Next, we let r =r+ or vary, such that the shape-
matching condition violates. We describe below a para-
metrization of the tetrahedron shapes. A tetrahedron in R?
is determined by four points {P,, P,,P.,P;} up to a
R3 x O(3) symmetry. We gauge fix the R3 x O(3) sym-
metry by choosing P,, at the origin, P, along the z axis, and
P, within the (y,z)-plane. The last point P, is not con-
strained. Given the tetrahedron’s segment lengths, the
coordinates of the points are fixed in R* by the above
gauge fixing. For example, for the tetrahedron e, =
{1,2,3,5}, r implies that the coordinates of the points
in R? are given by

P, =(0,0,0),  P,=(0,0,-3.40),
= (0,-2.94, -1.70),

Ps = (-0.651,-0.981, —1.70). (4.11)

All other four tetrahedra can be described similarly, and the

coordinates of the points in R? are determined by r. The 3D
face-normals 7 implied by the coordinates match with the
data in Table III up to a simultaneous SO(3) rotation. The
spinors & associating with each face are given by

5—i<\/—1+w ”iy>T = (). (412)

When we deform the boundary data, we keep the areas

Jr= ]f unchanged, while ¢, are deformed, such that the
boundary data r is deformed to violate the shape-matching
condition. We move the vertices P, € R? to deform the
tetrahedron shapes. For example, the vertices in (4.11) are
moved to new positions

=(0,0,0), Py =(0.0,-3.40 + ow?),
Py = (0,-2.94 + 5y —1.70 + ow?),
= (=0.651 + 6x2), 0981 + 5y, =1.70 + 6w?).

(4.13)

In the notations 5xf ) 5yf ),5w( ), a=1,...,5 labels the
tetrahedron, and i = 1, ..., 5 labels the variables associated
to the vertex P;. There are 30 variables 5x\), 8y 5w in
total. We keep the face areas unchanged. Then in each
tetrahedron, Heron’s formula gives four constraint equa-
tions, each corresponding to a face area. For example, in the
tetrahedron e, = {1,2,3,5}, the equations are

A 5W2 ’5% ’5Wgz)) =5

(
Apas(6wS) x5y oWy =2
125 Wg,x5,)’5’ (414)
Ayss(6y ,5w3 ) x5y swi) =2
(

Ayss 5w2 ,5y3 ,6wg),5xg),5y§),5 <2)):2'

At least in a neighborhood of the deformation, 5w<22), 6yé2),

6wg2),5x22) can be solved in terms of 5y§ ),5w§> from
(4.14). The shape of the tetrahedron is parametrized by

two variables éygz),éwgz). This way of parametrization is
convenient in our computation. However, it is different
from the known strategy, such as the Kapovich-Millson
phase space [46] or using dihedral angles [47]. For each
tetrahedron, we adopt the same strategy. We have in
B=(oy}, oy i ol oy ol
6yg4),5wg4>,5w§5),5w§5)) to parametrize the deformation of
five tetrahedra. The spinors &, of each face can be
expressed in terms of B according to (4.12). At this point,
the boundary data is 7(B) = (j.&,;(B)). We insert r(B)
into the action S(r(B),x) in (4.2), whose analytical
extension is S(r(B), z). Then, the complex critical equa-
tions are F(B, z) = 0.5(r(B), z) = 0, from which we solve
for the complex critical point z(B).

The asymptotics of the four-simplex amplitude with the
boundary data violating the shape-matching condition is
given by (3.8). Here, the complex critical point z(B)
inserting into the analytic continued action gives
S(r(B),z(B)). In contrast to the Regge action obtained
from spinfoam asymptotics in [8], S(r( ), z(B)) is an action
of the twisted geometry [48].° Indeed, S(r(B).z(B))
depends on the degrees of freedom of semiclassical tetra-
hedra, which are not constrained by the shape-matching
condition. These degrees of freedom are beyond the Regge
geometry and belong to the twisted geometry of the
boundary.

To solve the complex critical point, we can linearize (4.14)

and obtain the linear solution (5w<22), 6y§2>, 6w§2), éxgz)) in

total ten variables

The condition for shape matching differs from the shape
matching condition discussed in [48]. In their work, Freidel
et al. [48] introduced an additional angle variable as a degree of
freedom in twisted geometry, which is canonically conjugate to
the area variable. While these two conditions share an intuitive
similarity, they are not precisely identical.
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terms of 5yg2),5wg2). We can also linearize the complex

critical equation at B = (0, ...,0), and then solve for the
complex critical point z = z("™)(B). The solution z(™ (B) is
a linear function of the perturbations B. The coefficients
in the linear function can be computed numerically.
Inserting this linear solution into the action, we obtain
S(r(B), z'"(B)) as a function of B and expand it to the
second order,

S(r(B),zm(B)) = Q;B'B/ + 8B/ + ;.  (4.15)
where the coefficients K3;;, £; can be computed numerically.
Sy is the spinfoam action evaluated at the real critical point

with B = (0,....,0). In Fig. 3, we let B = (0,0,0, 5w,
0,0,0,0,0,0), the red curves in (a) and (b) are the real part
and imaginary part of S(7(B), z"" (B)) with 5w§2) varying
from —1 to 1.

The linear solution may have a large error when
components in B are large. We apply the Newton-
Raphson method to numerically search for the solution,
which is more accurate than the linear solution. To compare
with the linear solution in Fig. 3, we still only focus on

the deformation of e, = {1,2,3,5} and set 5y§2) =0. We
outline the procedure in the following.
For any given 5w52 , we can numerically solve Eq. (4.14)

for (5w§“), 5yga), 5w@, 6xg“) ). There are multiple solutions.
We select the solution that is within a neighborhood at (0, 0,
0, 0), by requiring [5w3 + 8y3 + éw3 + 6x3| < 4|6w?|. The
coordinates in (4.13) given by the solution result in the 3d
face normal vectors 7 and spinors & which are the
boundary data r violating the shape-matching condition.
We apply the Newton-Raphson method to search for the
complex critical point satisfying .S = 0. An outline of the
procedure in the Newton-Raphson method is given in
Appendix B. In Fig. 3, the blue curves in (a) and (b) are
the real part and imaginary part of the analytically con-
tinued action at the complex critical points. This numerical

Re(S)

@
0.5 1.09%s

FIG. 3.

result (blue curves) and the result from the linear solution
(red curves) are close when the deformation is small.
However, the linear solution is less accurate when the
deformation is large.

Figure 3 demonstrates the smooth interpolation between
the oscillatory and exponential suppression behaviors
mentioned at the beginning of this subsection. In addition
to scaling large A, we need to consider the smooth
deformation B. For any given 4, there exists sufficiently
small deformation B beyond the shape matching, such that
Re(S) is small, and thus the amplitude is not suppressed.

V. REVISITING THE A; AMPLITUDE

In this section, we revisit briefly the existing result on the
spinfoam amplitude on the A; complex, for the complete-
ness and preparing the discussion of the double-A; com-
plex in the next section. The A3 complex contains a single
internal face F' =1 but has no internal segment M = 0.
There is an internal j;, that is an integrated variable in the
amplitude A(A;) in (2.16).

The A3 complex and its dual cable diagram are repre-
sented in Fig. 4. All tetrahedra and triangles are spacelike.
The Regge geometry on Aj is completely fixed by the
Regge boundary data {j,,&,,} that is determined by the
boundary segment lengths. In this section, we only focus on
the Regge boundary data, in contrast to the discussion of
four-simplex amplitude in the previous section. The gen-
eralization to non-Regge boundary data should be straight-
forward. In terms of the notation in Sec. III, we have

r={jy.&} as the boundary data. r = {;’b, £, } fixes the
flat geometry g(r) with deficit angle &6, =0. x =
{;‘h,ﬁw,;yf} is the real critical point associated to r.

The data r, g(;‘), and x are computed numerically in [12].

According to the general spinfoam amplitude (2.16) and
the spinfoam action (2.17), the A3 amplitude A(A5) can be
written as

Im(S)
15
10

2)
6w5

-1.0 0.5 1.0

(b)

In both panels, the blue curves are the numerical results with the Newton-Raphson method, and the red curves are the results

from the linear solution. Panel (a) is the real part of the analytically continued action S at the complex critical points varying with 5w52 .

Panel (b) is the imaginary part of S at the complex critical points varying with 5w§2). The range of 5wgz) is [-1,1].
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(a)

(b)

FIG. 4. Panel (a) illustrates the simplicial complex A3 made by three four-simplices {v;, v,, v3 } and 12 tetrahedra e; sharing nineteen
faces f;. There are eighteen boundary faces and one internal face. Panel (b) is the dual cable diagram of the A; spinfoam amplitude: The
boxes correspond to tetrahedra carrying g,, € SL(2, C). The strands stand for triangles carrying spins j ;. The strand with the same color
belonging to a different dual vertex corresponds to the triangle shared by the different four-simplices. The circles as the endpoints of the
strands carry boundary states |j,, &,;,). The arrows represent orientations. This figure is adapted from [49].

A(Ay) =22 / djudy;, / [dgdz]e?s”

kpez

SO =S+ 470y ks (5.1)
h

For each k;, in (5.1), the real critical point {j,. gy, %Uf}
happens only when the boundary data satisfies the acci-
dental flatness constraint (3.3).

Given the boundary data r corresponding to §;, = 0, we
consider its neighborhood U in the space of the non-
degenerate Regge boundary data, such that any boundary
data r € U satisfies |yd;,| < 4n. For large A, the sectors
with k;, # 0 do not give dominant contribution to A(A3) as
far as r € U. If we arbitrarily fix the boundary data r € U
and scale A large, the amplitude has two asymptotic
behaviors analogous to the discussion at the beginning
of Sec. IVB

(i) For the boundary data that corresponds to a flat
Regge geometry, there is a real critical point, and the
amplitude gives an oscillatory phase.

(ii) For the boundary data corresponding to a curved
Regge geometry, there are no real critical points, and
the amplitude is exponentially suppressed.

However, this way of presenting the asymptotic behavior
leads to confusion about the flatness problem. From the
discussion in Sec. III, it is clear that there is a smooth
interpolation between the oscillatory phase and the expo-
nential suppression behaviors, since the boundary data

varies smoothly. The interpolation is obtained by applying
the method of the complex critical point. The formal
discussion of the complex critical point and the asymptotic
behavior of this model have been given in [12]. Figure 5(a)
plots e’Re(S) in the asymptotic formula (3.8) versus &,
determined by the boundary data and demonstrates the
smooth interpolation between the above two asymptotic
behaviors. Letting the boundary data vary at the same time
as scaling 4, we find the boundary data for the curved
geometries with small nonzero &, for any 4, such that the
amplitude A(A3) is not suppressed, shown in Fig. 5(b). The
range of &, for nonsuppressed A(Aj3) is nonvanishing as far
as A is finite. The range of &, is enlarged when y is small,
shown in Fig. 5(c). §, that leads to non-suppressed
ePRelSZ)] satisfies the bound

[youl <2712 (5.2)

The above result provides evidence for the emergence of
curved geometries from the spinfoam amplitude. The
bound (5.2) is consistent with the earlier proposal [11]
and the result in the effective spinfoam model [13,27,50].
So far, the bound (5.2) has only been confirmed in the
regime of small or finite y as we are going to see in Sec. VII,
in the large-y regime, geometries are violating the bound
(5.2) but still giving a nonsuppressed contribution to the
spinfoam amplitude.
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0.0027; 0.0010
it 0.0008
.001
1. 0.00
0.9 0.0006
0.8 & 0.000 5
07 ® Flat geometry 0.0004
® Curved geometry
0.6 -0.001 0.0002
0.5
=r = 6h -0.002 — 0.0000
1.5x10 1.5%10 0.00015 0 2x10"4x10"°6x10"°8x10"1x10" 0.00 002 0.04 006 0.08 010
A 1%
(@ (b) (c)

FIG.5. Panel (a) plots e"R(5) versus the deficit angle &), at 4 = 10'! and y = 0.1 in A(As). The panels (b) and (c) are the contour plots
of e’Re() as functions of (4,8,) at y = 0.1 and of (y,8,) at A = 5 x 10'% in A(As). They demonstrate the (nonblue) regime of curved
geometries where the spinfoam amplitude is not suppressed. These figures first appeared in [12].

VI. DOUBLE-A; AMPLITUDE
AND EFFECTIVE ACTION

A. Some setups

The A5 complex does not have any internal segment, and
the boundary data determines the Regge geometry com-
pletely. A(A3) does not give the /;-integral as in (3.10) by
M = 0, so the effective dynamics of Regge geometry is
trivial. In this section, we study the spinfoam amplitude on
the “double-A3” complex [see Fig. 6(a)], which is denoted
by A%. The double-A; complex contains a single internal
segment, so M = 1, and thus A(A2) gives (3.10) as a

(a)

one-dimensional integral. So the double-A; complex
admits nontrivial effective dynamics of the Regge geo-
metry. Note that the same complex is also considered in the
context of the effective spinfoam model [50].

The double-A; complex glues a pair of A; complex
around the internal segment (1, 2). The complex has seven
points P;..., P;. The four-simplices are given by

b U6} - {(172’ 3»4’ 6)7 (1727 37 576>7 (172747 57 6)7
(1,2,3.4,7),(1,2.3,5.7).(1,2,4,5.7)}.

{’Ul, ..

(b)

FIG. 6. A complex made of six simplices sharing the bulk edge (1, 2) with length /;, (the red line in panel (a)). In panel (a), the
boundary edges are colored black, blue, violet, and cyan. The bulk edge is colored red. Panel (b) is the dual complex of the triangulation.
The internal faces carrying ji»3, jio4, J1255 J126s J127, are bounded by red loops, and other faces are boundary faces.
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The tetrahedra are labeled by {e;....,ey}.> There are
twelve boundary tetrahedra and nine internal tetrahedra
among them. j, = {j123, j124, 125, j1265 J127} are carried by
five internal triangles, whose dual faces are bounded by red
loops shown in the dual diagram Fig. 6(b). Since there is
only one internal segment (1, 2) and all other segments are
on the boundary, the boundary data and the length [, of the
internal segment determine the Regge geometry g(r) on
A%. Following the procedure described in (3.5) and (3.6),
we pick up the internal spin j;,3 and express the spinfoam
amplitude as

A(A3) :/deZSZ(le;jb’feb)a

> / de,,nw_e s ()

{kn} h=

where -];l = {j124, j125, j126’ j127}. The external data of Z is
r; = {j123(l12); Jp Eep } including both the boundary data
and jj»3(/12). Identifying yj, to be the area of f (in Planck
units), the Heron’s formula

Z(j1235 Jps Een) =

(6.1)

Yis(ln) = (3, + 35 — 133)? (6.2)

VAR~

relates j»3 to the internal segment length /,, and boundary
segment lengths /3, [,3. We consider the Regge boundary
data that determines all the boundary segment lengths. We
can always make a local change of the real variable j,3 —
l1, within a neighborhood K of a given Regge geometry,
where the correspondence j,3 <> [;, iS one-to-one.

In the following discussion, we only focus on the case
with k;, = 0. The Regge geometries under consideration are
of small deficit angles. The following describes the
procedure to compute the complex critical points Z(r;)
of Z.

We embed the double-A; complex in (R* 7;,,) and
determines a flat Regge geometry with all tetrahedra
spacelike. We assign the following coordinates to the
points,

’The tetrahedra are {e.....es} = {{1.2.3.4},{1.,2.3.6},
{1,2,4,6}, {1,3.4,6}, {2.3.4,6}, {1,2,3,5}, {1,2.5.6},
{1,3,5,6}, {2.3.5.6}, {1.2.4,5}, {1,4,5,6}, {2.4,5.6},
{1,2,3,7}, {1.2,4,7}, {1.3.4,7}, {2.3.4.7}. {1,2,5.7},
{1.3,5,7}, {2,3,5.7}, {1.4,5.7}, {2.4,5,7}}.

P, =(0,0,0,0), P,=(—0.0680,—0.220,—-0.532,—1.33),

P3=(0,0,0,-3.40),

P, =(—0.240,-0.694,—0.981,—1.70),

P5s=(0,0,-2.94,-1.70), Ps=(0,—-2.77,—0.981,—1.70),
= (—2.47,-3.89,—1.36,—1.91).

From the coordinates, we can compute the length of the
segments of the triangulation by using

Ly =/nu(Pi=P)'(Pi=P)".  (63)
with n;; = Diag({-1, 1,1, 1}) the Minkowski metric. The
segment lengths are shown in Table I. The triangles within a
four-simplex are classified into two categories [8]. The
triangle corresponds to the thin wedge if the inner product
between the timelike normals of the two adjacent tetrahedra
is positive, otherwise the triangle corresponds to the thick
wedge. The dihedral angle 0, ,, . are given by

thin wedge: N, -ij = cosh Qmi.ej,

thick wedge: N, -N,,, = —coshf,, . (6.4)
where the inner product is the Minkowski inner product
defined by 5. Then we check the deficit angles &,

associated to the shared triangles #;

0= 6}11 = 61}[,6‘],82 + 61}2,82,66 + 91}4,(3[,613 + 6115,6(,,613
~0.514 +0.464 — 0.575 — 0.404,
0= 6"2 = 81'1761,63 + 6”3,63-910 + 91}4-617915 + (9”67610-,615

~1.08 —1.02—-1.30+ 1.24,
0= 5”3 = €v27€6’€7 + 6”3,67-610 + 9”5&‘6,917 +0
~ —0.360 — 0.481 + 0.414 + 0.426,
0= 5h4 = 01)1~€2,€3 + evz,ez,e7 + 91}3,67,610
~ —0.723 — 0.208 + 0.931,
0= 5h5 = 61}4~€1,€15 + 9'1/‘5-,313,517
~ —0.903 + 1.20 — 0.301,

V6.€10-€17

+0

V6,€15.€17

(6.5)

which implies the Regge geometry is flat. The data of the
flat geometry determines the external data r, for the partial

amplitude Z, which has the real critical points (j;, &,}e, %Uf)
corresponding to this flat Regge geometry and endowing
the consistent four-orientations to all four-simplices. The
boundary data of the flat geometry and the real critical point
can be found in Appendix C I, and Mathematica code can
be found in [51,52]. In this case, given the boundary data,
the flat Regge geometry is the solution of the classical
Regge equation of motion, and it is also the solution
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(5 f}w,%vf) to the critical equations from the spinfoam
amplitude.

We are going to compare the classical Regge dynamics
and the spinfoam effective dynamics for curved geometries.
This comparison is based on the numerical computations.
In concrete, we deform the boundary segment length /35 —
I35 + 1073 but keep the other boundary segment lengths
unchanged. The boundary data does not admit any flat
geometry on A? [see Fig. 7(b)].* With this deformation, a
classical Regge solution (i.e., the solution to the classical
Regge equation §Sgege. = 0) gives the deficit angles

8y, = 00118, &, = 0.0661,
Sy, = —0.0236, &, = —0.0252,

8y, = —0.0215,
(6.6)

which implies that the classical Regge dynamics gives
curved geometry. We fix the boundary data and vary the
internal segment length /,, = Ly 4+ 6L where Ly = 1.45 is
the length [y, in the flat geometry. The change of [, is
denoted by 6L with 6L € [-0.0129,0.00251].° The
classical Regge action Sgeg,. as a function of 5L is plotted
in Fig. 7(a). The above solution leading to (6.6) is close to

the origin 5L = 0 and is denoted by SLE*%%°. There exists
another Regge solution in 6L < 0 and far from 6L = 0 as
shown in Fig. 7(a). We denote this solution by SLNE°,
Likely, the solution SLE*% is a discretization artifact
because when smoothly deforming the boundary data /35

Regge

back to the one for the flat geometry, L. =" reduces back to

the flat solution. In contrast, 5.8 still reduces to a curved

Regge geometry. Some boundary data also exist such that the
second solution LN disappears. Nevertheless, we will
take into account both solutions SLX%® and SL.R€ in
discussing the effective dynamics in Sec. VIL

The boundary data (j,, £, r) and the corresponding pseu-
docritical points (j;), )., z) ) for the curved geometry with
the boundary segment length I35 — 35+ 1073 and the

internal edge I,, = Lo + SLR°8 are listed in Appendix C 2.

Notice that the geometrical areas in the boundary data
relate to j, by a, =yj, and the area a, relates to the
lengths /;; by Heron’s formula. The following discussion
involves fixing the geometrical area a, and performing
computations at different Barbero-Immirzi parameter y, so
this leads to different j, at different y. Fixing the geomet-
rical area instead of fixing j, is useful when we compare

*If the boundary data admitted a flat Regge geometry on the
complex, the flat geometry would be a solution to the Regge
equation. However, the solution of the Regge equation is a curved
geometry with the given boundary data, contradicting the
assumption of admitting the flat geometry.

The range used here is restricted by the existence of curved
Regge geometry with all tetrahedra spacelike.

with the Regge action Sgegge, SINCE Spegee ONly depends on
the geometrical boundary data.

B. Numerical computing the effective action

Given the boundary condition (j,,&,,) corresponds to
the above Regge boundary data with the deformed /35, and
given any [, and ji,3(/},) taking value inside a neighbor-
hood of the value for the flat geometry, we find the
pseudocritical point (j9, g0, 2);) close to the real critical
point inside the real integration domain. The pseudocritical
pointonly satisties Re(S) = d, S = 9, S = 0 butdoes not
necessarily satisfy ;5 = 0. The pseudocritical point
(/9. 9e- 7)) is the critical point of the spinfoam amplitude
with fixed j,, j, [9], and endows the Regge geometry
g(r) and consistent four-simplex orientations to A3 com-

plex.6 It reduces to the real critical point (j;, Ew, ;U #) when
r=r corresponds to the flat geometry on A3. As the

deformation of segment length I35 is small, this curved
geometry is close to the flat geometry, so (2, g0, 7)) is

close to (jj. Gye- z, ) in the integration domain. The data
for the pseudocritical point is listed in Appendix C 2.

In this computation, we still adopt the similar para-
metrizations of variables as in (4.5)—(4.7), but with the
pseudocritical points as the origin. The parametrizations of
the group element g, ... Gu,c,s Gusess Jugerss Guserss Gugerss
Gvie,> Jvyeg» a0d g, . - are upper-triangular matrices due to
the SU(2) gauge fixing at nine internal tetrahedra

1 + )C“ xle+”ve
Gve = gge ( 0 V2 V2 >

*

(6.7)

where the entry * is determined by det(g,,) = 1. The
internal spin j is parametrized as

Ji =19 +inin €R. (6.8)
As aresult, for k;, = 0, the spinfoam amplitude A(A3) and
Z(ji23) in (6.1) can be written in the form of

aj123
oly,

A(A%) —/dllz 2(1123(112)§jb,5eb)’

Z(ial12): s Eup) ~ / 424 ()50,

rp = (j123(112>7jb7§eb>7

(6.9)

®Since the correspondence between j,3 and /;, is not one-to-
one globally, it might be possible to have multiple pseudocritical
points corresponding to different Regge geometries with the same
value of j;,3. However, in our numerical analysis, the other /;,
from the same jj,3 does not satisfy the triangle inequality.
Therefore all pseudocritical points correspond to the same Regge
geometry but with different four-simplex orientations, although
we only focus on a fixed orientation.
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where x = (x})e’ y%*ev x%ev y12)e7 x%‘e’ y?}eﬂ xva yvf"j}_l)' The par-
ametrizations of ([,,x) define the coordinate chart cover-
ing the neighborhood K enclosing Xy = (ji23,%9) =

(j?pgnggf)’ and X = (j123,)06) = (jhhavev;vf)' This
neighborhood is large enough since the parametrizations
are valid generically. The pseudocritical point is
xo = (0,0, ...,0), which contains 241 zero components.
Here we use “~” instead of “=" because (1) we only
consider k;, = 0 but ignore other k;, terms,’ (2) we only
focus on the contribution from the neighborhood K
enclosing a single pseudocritical point.8 In our discussion,
we only consider the effective dynamics within a sector of
Regge geometries with the fixed 4D orientation.

We compute the complex critical point of Z for any given
external data r;. Here, both S(r, x) and u(x) are analytic in
the neighborhood K of xy. S(r,x) can be analytically
continued to a holomorphic function S(r;,z), and z €
C*! is in a complex neighborhood of x,. The analytic
continuation is obtained by simply extending x € R**! to
7 € C**1, The formal discussion of the analytic continuation
of the spinfoam action is given in [14]. We fix the boundary
data to be the one resulting in (6.6) and vary the length
[y, = Ly + 6L, where Ly = 1.45 (the value of [, in Table I)
and the change of [y, 6L € [-0.0129,0.00251]. For any
given 0L, combining the boundary data, we repeat the steps
above (from the beginning of this subsection) to reconstruct
the Regge geometry and the corresponding pseudocritical
point. Taking the pseudocritical point as the starting point,
we apply the Newton-Raphson method by repeating the
steps in (B2)—(B8) to numerically compute the complex
critical point Z(r;) for a sequence of 5L. By evaluating S at
the complex critical point and apply the asymptotic for-
mula (3.8), we obtain the following asymptotic behavior of
Z and A(A3) for the dominant contribution from the integral
on K

. n#

Zlis(t) ) ~ () NS00+ 0(1/2)
1%

A(A%) ~ <Z> /dllz

where N = u(Z(r)) det(=0% . S(r), Z(r))) /27)~1/2.
Effectively, A(A3) gives a path integral of Regge geometry
on A3. S(r;,Z(r;)) is the effective action for the Regge
geometry in the large-4 regime of the spinfoam amplitude.

9j123
oly,

N e#StriZ(n) 14+ 0(1/4)],

(6.10)

"The integrals in the neighborhood K with k, #0 give
exponentially suppressed contributions.

Sthere may exist other pseudocritical points outside K in Z,
e.g., the ones corresponding to different orientations of four-
simplices. But our discuss only focuses on the critical points
inside K.

TABLE 1. Each cell of the table is the segment length for
vertices P; and P;.

j 1 2 3 4 5 6 7
lij

i

1 1.45 3.40 2.07 340 340 3.81
2 1.45 2.14 0729 245 2,62 296
3 3.40 2.14 2.07 340 340 3.62
4 207 0729  2.07 207 207 234
5 3.40 2.45 3.40 2.07 340 341
6 3.40 2.62 3.40 2.07 3.40

7 3.81 2.96 3.62 2.34 3.41

The stationary phase approximation of the /,-integral in
(6.10) relates to the variation of S(r;, Z(r;)) with respect to
l1,. The effective equation of motion

9,,,S(r1. Z(r;)) =0 (6.11)

determines the effective dynamics of Regge geometry.

C. Comparing to Regge action

It is interesting to compare the effective action
S(ry, Z(r;)) to the classical Regge action Sgegge since both
actions define the dynamics of Regge geometry. The
definition of Regge action Sgege(/i2) is reviewed in
Appendix D. In order to compare, we compute and plot
the real and imaginary parts Sg and S; of S(r;, Z(r)))
respectively,

S(r1.Z(r;)) = Sg(r.6L) +15,(y.6L), ~ (6.12)
We view both Sy and S; as functions of two variables y and
oL, and we compute the numerical values of Sy and S; with
samples of y € [107%,10°] and 6L € [-0.0129,0.00251].

It is known that the spinfoam action contains an overall
phase, which needs to be subtracted to compare to the
Regge action. We denote the overall phase by ¢(y). This
overall phase can be computed numerically by inserting the
pseudocritical point (9, g0, 2),) in the spinfoam action S
and subtracting the Regge action at the corresponding
geometry. Generally, we have

P(r) =alr (6.13)
where the coefficient @ depends on the boundary data. In
terms of the spinfoam variables, the overall phase comes
from the y-independent terms in S and is linear to the
boundary spins ¢ ~ j,, but here we fix the boundary area
and let y vary, then ¢ ~ a;/y. The numerical value of «a is
a = 0.003993 resulting from our setup of the boundary
data. In general, the overall phase in the spinfoam action
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can be cancelled by the phase choice of boundary &,.
To remove the overall phase from S;, we define S} by

Sir,0L) = =8;(r,6L) + ¢(7). (6.14)
&) as a function of 6L is compared to the classical Regge
action for different values of y in Fig. 8. The minus sign in
front of & relates to the four-simplex orientation in the real
and pseudocritical points. As indicated by Fig. 8, S} well-
approximates the Regge action for small y with negligible
corrections. When increasing y, S; gives nontrivial correc-
tions to the Regge action.

For any given y, the real part Sy, is always negative, and
|Sg| is larger for larger |5L|, so ¢*° is smaller for larger |SL|.
However, if we fix 5L and vary y, |Sg| is smaller so e’ is
less suppressed for any 4, when y is smaller. In other words,
the smaller y opens a larger range of 6L, in which |Sg]| is
small and ¢*° is not suppressed for a given A. In this range
of 5L, the numerical result indicates that S(r;, Z(r;)) well-
approximates the Regge action. The similar situation has
appeared in the A; amplitude, where the amplitude with
smaller y admits a wider range of curved geometries [see
Fig. 5(c)].

VIL. SOLUTIONS OF EFFECTIVE DYNAMICS
ON DOUBLE-A;

A. Spinfoam complex critical point
and the Regge solution 5L~ %8¢

The above discussion compares the effective action
S(r;, Z(r)) to the classical Regge action. It is also
interesting to compare the solution of the effective equation
0,,8(r;, Z(r;)) = 0 to the solution of the Regge equation.
By the above computation, the real and imaginary parts of

SRegge

{ 0.128

-'\

20.005 oL
(a)

-0.010

FIG. 7.

s13e99e . 0,000439

S(r;.Z(r;)) are obtained as the numerical function.
Numerically solving the effective equation involves finding
the possible complex roots of numerical derivatives of the
complex S(r;, Z(r;)), which requires an estimation of
S(r;, Z(r;)) on the complex SL plane and may give a
relatively large numerical error. In the following, we
introduce an alternative strategy, which computes the
solution of the effective equation more efficiently.

Instead of introducing the partial amplitude Z, we
consider the full spinfoam amplitude, which can be written
as the following integral for the same contribution as
in (6.10)

A(A2) ~ / dSLA>* xu(SL, x)eSUOLx) - (7.1)

Here the external parameter /' is just the boundary data
¥ = (jp. ). S(r,6L,x) is the spinfoam action S with
Ji23 = jiaa(li2) aéld lip = Lo+ SL.

Recall that 5L ¥ is a solution of the classical Regge
equation. The Regge geometry with SLE%° corresponds to
a pseudocritical point of S (',8L, x). Both S (r',8L, x) and
u(8L, x) are analytic in the neighborhood of this pseudoc-
ritical point. Therefore, S(r,5L,x) and pu(SL,x) can be
analytic continued to the holomorphic functions
S(r',8L,z) and u(5L,z), where (5£,z) € C*? is in a
complex neighborhood of the pseudocritical point. We fix
the boundary data 7’ to be the same as the one used in
Fig. 7. Since 7 is a small deformation from the boundary
data of the flat geometry, the neighborhood covers the real
critical point corresponding to the flat geometry and the
boundary data before the deformation.

(iéﬁl)/S
i=1

0.25
0.20
0.15
0.10

"0.05

oL

-0.002 -0.001 0.001  0.002

(b)

Panel (a) is the Regge action varying with SL when we deform the boundary segment length I35 — I35 + 10~ from the

boundary data of the flat geometry. In this case, the Regge solutions are given by SLE ~ 0.000439 and SLE8° ~ —0.00834. Panel
) is /(>3 5%1i) /5 versus 6L with the deformed boundary data. All geometries in the range of SL are not flat. The minimum of

(0L, 82)/5 is 0.013.
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For each y, we would like to numerically compute the

complex critical points (§£,z) = (
solution to the following equations:

5L§pinfoam ’

0.5(r'.6L.72) =0,

y =108

Z)(r') as the

(7.2)

-0.010

-0.005

oL

=0.010

-0.005

-5.x107%

-1.x1077

-1.5x1077

y=1073

0.128
0.126

-0.010

-0.005

oL

-0.010

-0.005

-0.001

-0.002

-0.003

-0.004

Regge Action

05:S(r 6L, 7) = 0.

(7.3)

Since we fix the boundary data 7 and vary y, the complex
critical points give a continuous trajectory parametrized
by 7 in the complex space of (6£,z). In the numerical

y=10"°

-0.010 -0.005
-0.010 -0.005
-5.x107°
-0.000010
-0.000015
y = 0.005

-0.010

-0.005

-0.010

===== S;at complex critical points

Sg at complex critical points

=0.005

-0.001

-0.002

-0.003

-0.004

FIG. 8. The red curves plots the Regge action as a function of SL. In comparison to the Regge action, the blue curves plots S} of the
analytic continued spinfoam action at complex critical points. The green curve plots the real part Sy of the analytic continued spinfoam

action at complex critical points.

026010-17



MUXIN HAN, HONGGUANG LIU, and DONGXUE QU

PHYS. REV. D 108, 026010 (2023)

5L§pinfoam _ 5L§egge

3 g L e
107°-
107%-
10"
10_14'_
10° 10 10 1007
(a)

5LCSpinfoam _ 5L!'\‘egge

A T < emeemensssosris
10-12; g
10-15-
10-18-
102
10°° 1074 10 108
(b)

FIG. 9. Panels (a) and (b) are log-log plots of the distances (7.5) between the spinfoam and Regge solutions in a neighborhood of
8L = 0 as a function of y. The boundary data has the boundary segment length /55 deformed from the flat geometry by I35 — 135 + 1073

for (a) and I35 — I35 + 10719 for (b).

Re <5LESpinfoam>

0.0004 -

0.0002 -

T T S T ST
-0.0002 - .

(a)

FIG. 10. Panels (a) show the real part of the spinfoam solution 6L

Spinfoam

‘Im <5LCSpinfoam> ‘

10-5- "‘-M e,
10-8:-
1071
et 10f qe e
(b)

vs log-scaled y value with the boundary data deformed from

the flat geometry by I35 — I35 + 1073, Panel (b) is the log-log plot of the absolute value of the imaginary parts of the spinfoam solution

Spinfo: .
SLP™™™ ag a function of .

computation, we sample a sequence of y € [10~%, 10°] and
compute the complex critical point for each y by the Newton-
Raphson method, following the steps in (B2)—(B8). For any
7, the recursion of the Newton-Raphson method can be
initialized at the pseudocritical point and give the convergent
result within the desired tolerance. Moreover, all resulting
complex critical points depend smoothly on the boundary
data 6155 and reduces to the real critical point when dl/35 — 0
(see Fig. 13 for an example).

The solution 6L from (7.2) and (7.3) is the same as the
solution of ds; S(r;, Z(r;)) = 0. Indeed,

0 =05, S(r;, Z(ry))

_ 08(r. Z(r)) o n o8(ry, Z(ry))|  9Z(ry)
drl Z(r,) 06L OZ(}’,) r 06L
()S(rl,Z(rl)) 0rl
= —— =10, 4] PR 7.4
or, - 5L [05.S (7, Z)sz(r,) (7.4)

where we have used 90S(r;, Z(r;))/0Z(r)|,, = 0. Z(r;)
depends on SL. z=Z(r;) is the solution of (7.2),
when analytic continuing 6L — 6£. The result
05.S(71,2)] =7,y = O from (7.4), followed by analytic
continuing 6L — 6L, is equivalent to (7.3) with the
solution of (7.2) inserted.

0.001:
5.x1074:

1.55 x 1074- - _________

5.x1075:

1.x1075:

FIG. 11. The log-log plot of the average of the absolute value of
the imaginary part of the complex critical point vs y.
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—Re[g(’f", 6L§pinfoam, Z)]

..... eosns,,

10°5- ",
10°¢- ’ '
10—10_
10-12-
10714
100 0% 10 1087
(a)

—Im[S(+', s LEPIRFeam - )] +eh(y)

Max, :

Min, . ... . ... . —
10°° 10~ 10 108 7

(b)

FIG. 12. Panels (a) are the log-log plot of the negative real parts of S(/, 8L, z) at the complex critical points z = Z(r',6L) as a
function of y with the boundary data deformed from the flat geometry by I35 — I35 + 1073, Panels (b) show the imaginary parts of

S(r, 8L, z) at the complex critical points z = Z(r, 5£) vs log-scaled y. We subtract the overall phase ¢(y) from Im[S(/, SLE""*™, Z)]

and add a minus sign in plotting (b). In panel (b), the overall phase ¢(y) ~0.003993y~!, and the maximum and minimum of the plot

range are Max, ~ 0.121606 and Min, ~ 0.121596.

Spinfoam

The complex critical point gives 6L = 6L (y)asa
trajectory parametrized by y in a complex neighborhood
at 6L =0, see Figs. 10(a) and 10(b). This solution is

compared to the Regge solution SLE8° ~ 0.000439 (recall

Fig. 7(a)). This solution SLE™**™(y) is complex generi-
cally, although it is close to the real axis, especially
for small y. Figure 9(a) demonstrates the distance (in

the complex plane) between the spinfoam solution

SLEP™™™ (1) and the classical Regge solution SLEEE,

‘5L§pinfoam (}’) _ 5Ll§egg3|. (75)

This distance is small in the small-y regime. So the classical
Regge dynamics is reproduced by the spinfoam effective
dynamics for small y. This result is consistent with
comparing the actions in Fig. 8. This result is also
consistent with some earlier arguments in [17-20]
about the semiclassical approximation of spinfoams with
small y.

The distance (7.5) becomes larger when increasing y.
It indicates that the spinfoam amplitude with larger y gives
larger correction to the classical Regge solution. Therefore
the effective theory in the large-y regime has more significant
difference from the Regge gravity. Furthermore, the distance
(7.5) stabilizes in the large-y regimes, as shown in Fig. 9(a).
The distance value where it stablizes becomes smaller when
the boundary data is closer to the one for the flat geometry, by
comparing Figs. 9(a) and 9(b). The small- and large-y
regimes might be viewed as two phases of the spinfoam
amplitude. The effective dynamics is closer to the Regge
dynamics for small y but more different from the Regge
dynamics for large y. o

The critical point (SL"™**™, Z)(r') is generally com-
plex for every y (see Fig. 11). Figures 12(a) and 12(b) plot
the analytic continued action S (', 8L, z) [with the overall

phase ¢(y) removed] evaluated at the complex critical
points for a large number of samples of y. The real part
Re(S) is close to zero for both the small-y and large-y
regimes, SO e*S in the asymptotic formula (3.8) is not
suppressed for large A for both the small and large y. The

nonsuppressed &*S for small y has been anticipated since it
can be predicted by the bound (5.2). But the nonsuppressed

*S with large A in the large-y regime violates the bound
(5.2). This result suggests that the bound (5.2) is not
universal but only valid for the small or finite y.

H (5LcSpinfoam’Z)

2000;— .
1500; g
10005— . .
500 o
0 € G obc2"6.0064" 00066 0.0008 " 0,000 953
FIG. 13. The red points are the list-plot of the norm of the

complex critical point (6L§pmf°am, 7) vs the deformation of the
boundary segment length 6/55. For any complex critical points

infoam 5 infoz . .
(6L§p'" oM7) = (5L§p'" o 21,22 -.s 2241 )» the norm is defined

as [[(SLP™O, Z)]| = /ISLTO R 4|2, 4 |23 Ptz
Here, the boundary segment length /35 is deformed from the flat
geometry by I35 — I35 + 6l35 at y = 107°, 5135 € [0, 1073]. The
blue point is the complex critical point as 6/35 = 1073, and the
green point is the real critical point at the origin (0,0) corre-
sponding to the flat geometry. The cyan curve represents the fitted

function ||(SLEP™*™ Z)|| 2 1.97 x 1008155 — 5.49 x 107 (8l35)>.
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Figure 9(b) plots [SLEP™**™ — 5LR°| for the different
boundary data, which deform the boundary data of the flat
geometry by I35 — I35 + 107'% This boundary data is
closer to the boundary data for the flat geometry.
The results are qualitatively similar to the results from
the previous boundary data, although the maximum of

|5E§pinfoam _ 5Z§egge|
0.001 -
10 - /'/
: e
107°- /"
‘ ”

' g
10'12_-/

10" 107 10 041

(a)

Re [5E§pinfoam]

0.020 -
0.015 -
0.010 -
0.005 -

S0 107 107
-0.005 -

-0.010°

(b1)

Re[S(r', 6LgPmoom, 7))
0.002

100 107
-0.002-

[ReiS(, s, 2)]
[ 0.001-
-0.004- 1w~ )
107 ,//
-0.006- *
[ 107"~ //
-0.008 - T TS ATS RV R I 4
(c1)

|SLEP™OM _ 51.RE2| pecome smaller comparing to the

results from the previous boundary data. Changing the
boundary data seems not to shift the location in the y-space,
where the small-y phase [where (7.5) is small] transits to the
large-y phase [where (7.5) is stabilizes], as suggested by
comparing Figs. 9(a) and 9(b).

100 7
‘Im[(sigpinfoam] ‘
0.001- /W
10-5- P y
107- f//
107 /’
10" - //
7
T a0 107 10t 01 100
(b2)
—Im[S(r', SLEP™om Z)] + ()
0.135-
0.130
0.125°
0.120° /\
o.115§-_
0.110-
S 100 g0 104 0 1007

(c2)

FIG. 14. Panel (a) is the log-log plot of the distance between the spinfoam solution and the Regge solution in a neighborhood of

5L = SLX® a5 a function of y. Panel (b1) shows the real of the spinfoam solution 6L}

Spinfoam

imaginary parts of the spinfoam solution 5L

7 Spinfoam

vs 7. Panel (b2) is the log-log plot of the

vs . Panel (c1) is the real parts of S(r', £, z) at the complex critical points vs y, and

the small figure in (cl) is the log-log plot. Panel (c2) plots the imaginary parts of S(#, 6L, z) at the complex critical points vs y.
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B. Complex critical point and the other
Regge solution SLX %8

Recall from Fig. 7(a) that there is another classical Regge
solution L = SLR% with the boundary condition under
consideration. This solution corresponds to a different
pseudocritical point, which we use as the starting point of
initializing the recursion in the Newton-Raphson method.
Following the same procedure discussed above, we obtain a
new trajectory of complex critical points parameterized by y.
The complex critical point gives S£ = SLe"™**™(y), which
is generically complex. Figure 14 plots the distance
|GLEP™MOMM (1) — SR8 the real and imaginary part of
the SLEP™*™(y), and the real and imaginary part of the
action S evaluated at the complex critical points. For small y,

SLEPoam (1 is approximately real and close to the classical

egge

Regge solution SLReeee, Increasing y results in that

SLSP™Ma™ () makes larger corrections to SLR2%,

Both the complex critical point here, denoted by

(SLEP™™ Z)(r), and (SLEP™™™ Z)(r) discussed in
the last subsection give contributions to A(A3). When
we compare their contributions. e*S is suppressed faster at
the critical point here than at the one in the last subsection
(see Fig. 15) for fixed y < 0.1. This relates to the fact that

SLR€ gives larger deficit angles. Therefore the complex
critical point here contributes to the amplitude much less
than the one in the last subsection for generic small y and

large . Recall that SR likely relates to the discretiza-
tion artifact. The result suggests that the spinfoam ampli-
tude should suppress the contribution from the
discretization artifact, in favor of a good continuum limit.

The complex critical points used in Fig. 14 are likely
beyond the stationary phase approximation (for complex
action) described above and below (3.7), because these
complex critical points do not analytically relate to the real
critical point (j,, gye- Z, ) for the flat geometry. It relates to

the existence of complex critical points with Re(S) > 0 in
Fig. 14(cl)violating (3.9). Indeed, when we continuously
deform the boundary data 7’ by the deformation by I35 —
[35 + 6135 from the boundary data of flat geometry to the
one that does not admit flat geometry, the solution of (7.2)
and (7.3) deforms analytically from the real critical point to
the previous complex critical point (SLeP™**™ Z)(r') (see
Fig. 13, and the similar property holds for the complex
critical points in Sec. VI), but not to any of the complex
critical points used in Fig. 14.

The complex critical point used in Fig. 14 has to be
studied by the fully-fledged Picard-Lefschetz theory (see,
e.g., [22,53,54]). Consequently, given that the spinfoam
amplitude is defined on the real integration cycle where

Re(S) < 0, the complex critical point with Re(S) > 0 does
not contribute to the asymptotics of the amplitude, because
the steepest-ascent flow associated to this critical point

o ARe(S)

10+
0.8 -
0.6 -

M eARe[‘S’(TI’l;LEpinfoam’Z)]
04 - — eARe[S(T/,JZEPiﬂanm,Z)]

0.01 10 104 107 1010

FIG. 15. Figure is the log-log plot of oRe[S(# SLF 7)) (blue

ARS[S(r/,(SZ?pinfcam 7

curve) and e 2] (red curve) as a function of A

aty = 1078,

turns out to have no intersection with the real integration
cycle. Therefore, the contributions from the complex
critical points in Fig. 15 are vanishing or suppressed for
finite or larger y, where Re(S) > 0 or ¢*R¢() is suppressed.

VIII. CONCLUSION AND OUTLOOK

Our above analysis demonstrates the importance of
complex critical points in understanding the asymptotic
behavior of the spinfoam amplitude in the large-;j regime.
In the case of the four-simplex amplitude, taking into
account the complex critical point generalizes the asymp-
totics to non-Regge boundary data and relates to the twisted
geometry. In the case of the simplicial complex, the
complex critical point plays an important role in deriving
the effective dynamics from the spinfoam amplitude.
The effective dynamics closely relate to the Regge grav-
ity in the small-y regime, as demonstrated by the numeri-
cal computation for the amplitude on the double-A;
complex.

In this paper, we examine the semiclassical behavior of
the spinfoam amplitude within the regime of large-j. The
semiclassical limit characterizes a scenario where the
spinfoam amplitude exhibits behavior akin to classical
gravity. This limit relates to the region where the values
of Planck’s constant are small, leading to the emergence of
classical behavior. On the other hand, the continuous limit
relates to the situation in which a discrete system
approaches a continuous or smooth description. This
typically involves taking a large number of discrete
elements or degrees of freedom and allowing them to
become infinitely numerous, resulting in a continuous and
infinitely divisible system. It may relate to the situation that
the triangulations underlining spinfoams are refined such
that the geometries are made by refined Planckian size
cells. Note that it is actually possible to relate certain
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refinement and small-j spinfoam amplitudes to some
semiclassical behaviors, as shown in [55]. Generally
speaking, while these two limits are related, they are not
interchangeable. For spinfoams, both limits are relevant and
may be taken simultaneously. It is indeed possible, as
shown in [37,56], where the semiclassical gravity on the
continuum is recovered in certain regime with both the
large-j and refinement.

Our work provides a general procedure to derive the
effective theory in the large-j regime. From the perspective
of semiclassical analysis, our numerical computation
should be generalized to triangulations larger than dou-
ble-A;, which has more internal segments. One should
check if the Regge gravity still can be reproduced by the
large-j effective dynamics on larger triangulations.

The effective dynamics in LQG has been primarily
investigated in the context of symmetry-reduced models,
such as loop quantum cosmology (LQG) and black holes,
see, e.g., [57,58]. The effective dynamics is useful in
deriving the singularity resolution. Our result shows that
the spinfoam amplitude also results in certain effective
dynamics. However, this effective dynamics is in terms of
the discrete Regge geometry, in contrast to the effective
dynamics in terms of smooth fields in LQC and black holes.
A research in progress is to understand if the effective
dynamics from the spinfoam amplitude can relate to LQC
and black holes. If the relation exists, it might provide a
new approach toward embedding LQC and black hole
models in the full theory of LQG.

TABLE II.  Each cell shows the area of the face shared by line
number tetrahedra and column number tetrahedra.

It is also interesting to investigate the behavior of the
effective dynamics under the lattice refinement for spin-
foam amplitudes. The Regge geometries approach to the
continuum limit under the refinement, so we expect that the
effective dynamics of Regge geometries from spinfoams
should reduce to certain effective dynamics of the smooth
geometry.
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APPENDIX A: BOUNDARY DATA
FOR SINGLE FOUR-SIMPLEX

In Sec. III, we introduce the real critical points of the
four-simplex, which corresponds to the Regge geometry.
We construct the Regge boundary geometry, Tables 1I-1V

e 2! ) € €4 ‘s record areas a + =7Jy» 3D normals %ef and the correspond-
:lf ing spinors &, of the single four-simplex.
e Tables V and VI record the values of the real critical
. 5 5 point g,, and z,, for the four-simplex with the boundary
1 o o
) 2 2 data (j;.&,r). o
3 the Regge boundary data r = (j, &, r) and the data o
e 5 ) 2 ) All the Regge boundary d i, &.s) and the data of
e o o ¥
e: 5 ) the real critical point (g,,,z,;) for the four-simplex
amplitude can be found in the Mathematica notebook [59].
TABLE III.  Each cell shows the 3D normal vectors of the face shared by line number tetrahedra and column number tetrahedra.
¢ e e 1A e, el
’%L‘f
e
e (1.00, 0, 0) (—0.333, —0.943, 0)  (—0.333, 0.471, —-0.816) (—0.333, 0.471, 0.816)

e) (0.938, 0, —0.346)
e; (—0.313, —0.884, —0.346) (0.782, 0.553, 0.289)

ey (—0.244, 0.345, —0.907) (0.739, —0.215, 0.639) (—0.0431, —0.768, 0.639)

(=0.782, —0.553, 0.289) (—0.948, 0.276, —0.160) (-0.616, 0.276, 0.738)

(0.0553, 0.986, —0.160) (—0.0553, 0.673, 0.738)
(—=0.0862, 0.122, 0.989)

es (—0.436, 0.617, 0.655) (0.859, —0.385, —0.338) (0.0771, —0.938, —0.338) (0.154, —0.218, —0.964)
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TABLE IV. Each cell shows a spinor &, corresponding to a 3-normal to the face.

/

e e} e, A e ey
fef

e

e (0.707, =0.707) (0.707, —=0.236 — 0.667i)  (0.953, 0.175 - 0.2471)) ~ (0.953, —0.175 4 0.2471)
e (0.820, —0.572) (0.803, —0.487 — 0.344i)  (0.762, 0.622 —0.181i)  (0.932, —0.330 + 0.148i)
e; (0.572, —0.273 — 0.774i) (0.596, —0.655 — 0.4631) (0.648, 0.043 + 0.7611) (0.362, 0.076 — 0.929i)
eq (0976, 0.125 - 0.177i)  (0.905, 0.408 — 0.1191)  (0.425, 0.051 + 0.904i) (0.997, —0.0432 + 0.0611i)

es (0910, —0.240 + 0.3391) (0.818, —0.525 4 0.236i) (0.576, 0.067 — 0.8151) (0.991, —0.0778 + 0.1100)

TABLE V. Each cell of the table is the critical point of E,,e.

e €1 () €3 €y [

g (O =i 0 -LO03i 0 ~1.03i 0 ~L17i 0 0.874i
—i 0 )\ ~0969 -0.358i) \ ~0.969i 0337 +0.119i ) \ ~0.855i —0.149 4 0.105i ) \ ~1.14i —0.199 + 0.141i

TABLE VI. Each cell shows the critical points of %vf-

e el €2 63 64 €5
%vf
e
e (1, =1 (1.00, 1.82 + 2.57i)
ey (1.00, —0.915 + 0.402i) (1.00, —1.41 — 0.31i)
e (1.00, —0.333 4+ 0.943i) (1.00, 0.086 — O.690i)
e (1.00, 1.86 + 0.99i) (1.00,5.72 + 8.08i)
es (1.00, —1.82 — 2.57i) (1.00,0.071 + 0.470i)
APPENDIX B: THE w4
NEWTON-RAPHSON METHOD “ i
J(zienwzaa) = 1 11| (B3)

The Newton-Raphson method for the single-variable : :
equation f(x) = 0 is initialized with a starting point x,, and % ‘;JZA
then one iterate ! ”

We define the function G by

i)
)Cn+l — n f/(x”)y (Bl)
G(z) =z-J(2)7'F(2). (B4)

to approach the solution with higher accuracy. In single
four-simplex case as an example, the equations of motion is The functional Newton-Raphson method for nonlinear

44 dimensions, we denote by systems is the iteration procedure that evolves from the
initial z<0), which in our case is the real critical point )Oc, and
Z Fi1(z1s s 2as) generates
F : = : . (B2)

Z(k) = G(Z(k_l))

244 Jaalzr, oo 2a4)- = kD — g (k=) R (7)), k>1. (BS)

The derivative of this system is the 44 x 44 Jacobian
given by We can write this as
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(k) (k=1) (k=1)

4 b4 Az,
e A E D
k k=1 k=1
154) 14(14 ) AZEM )
where
Azgk-w
= —J(Z* D)7 F(zD) (B7)

Az

We set the desired tolerance € = 107'%_ and we stop after n
iterations when

\/ (A" ATV <o (B8)

The resulting z") is the approximated solution within the
tolerance. We evaluate the analytic continued four-simplex

action S at z(") and apply it to the asymptotic formula (3.8).

APPENDIX C: BOUNDARY DATA
FOR THE A COMPLEX

1. Boundary data and the real critical point
for the flat A3 complex

We construct the flat geometry with the segment lengths
in Table 1. The corresponding boundary data for flat
geometry is shown in Tables VII-XII. Here, the area a
and the spins j, satisfy a; = yj;.

Once the flat geometry is constructed, the real critical

points (;h Gros %Wf) can be obtained by solving the critical
equations Egs. (3.1) and (3.2). The solution of the criti-
cal point equations relates to the Lorentzian-Regge geometry,

as described in [8,9]. 5,,6 relates to the Lorentzian trans-
formation acting on each tetrahedron and gluing them
together to form the A% complex. In this model, we fix
Jdye to be constant SL(2,C) matrices for v,es, v,eq,
V3€12, U4€16, U5€19, Vgeo1. The group elements g,, for the
bulk tetrahedra V€1, V1€y, Vr€gq, UVy€7, V3€3, V3€](, V4€13,
vsey7, vgeqs are fixed to be the upper triangular matrix.
For the AZ triangulation, there are five internal faces h(12k)
with k = 3, 4, 5, 6, 7. The areas of these internal faces are
shown in Table XIII. The numerical results of the real critical

point (&M, %L,f) corresponding to the flat geometry are listed
in Tables XIV-XIX.

TABLE VII. Boundary data (&,,,Eeb) for the 4-simplex v; = {1,2,3,4,6}.

/ / / /
e €] €5 €3

o

é:eb

e

€]

€

€3

ey (0.60,
—0.66 — 0.46i)

es (0.43,
—0.18 — 0.88i)

(0.76,

(—0.41 + 0.73i,
—0.15 — 0.52i)
(=0.61 + 0.22i,
—0.76i)
(—0.078 — 0.033i,
0.04 — 1.0i)

—0.04 — 0.651)

(0.95, —0.03 + 0.311)

/
e e} e,

€5 2.8

0.75

0.55

2.0
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TABLE VIII. Boundary data (a,, fd,) for the 4-simplex v, = {1,2,3,5,6}.

!/

/

/ /

e e, eg ¢, I €q

geb

e
ey (=0.72 + 0.13i,
0.02 — 0.68i)
e (0.81i, —0.59i)
€7 (=0.27 = 0.19i,
—0.94i)
eg (0.71, (0.95, —0.17 4+ 0.251)
—0.24 - 0.67i)
eq (0.74, (1.0,
—0.67 4 0.051) 0.048 — 0.068i)

e é e e, ey eg

a

e

€) 2.8

€q 5

€7 5

eg 5 5

ey 2.6 3.2
TABLE IX. Boundary data (fib,zze,,) for the 4-simplex v; = {1,2,4,5,6}.
¢ e & €lo el an
éeb
e
e3 (=0.22 - 0.03i, 0.07 — 0.971)
e (=0.10 — 0.073i, —0.991)
e (0.18 + 0.98i, 0.065 — 0.11i)
ey (0.98, 0.12 — 0.18i) (0.43, —0.87 + 0.25i)
e;n (0,99, —0.01 —0.171) (1.0, —0.018 + 0.0251)
¢ e & €lo el €
a
e
€3 2
(4] 3.2
€10 0.69
€1 5 2
€12 055 2
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TABLE X. Boundary data (&b,éeb) for the 4-simplex vy = {1,2,3,4,7}.

/ / / /
¢ € 13 €14

€5 €16

geb

e

ers (0.90, —0.14 — 0.41i)
e1s (0.94, —0.25 — 0.22i)

(0.94, 0.28 — 0.181)

(—0.33 + 0.75i, —0.11 — 0.56i)
(—0.52 + 0.71i, —0.35 — 0.32i)
(—=0.59 + 0.71i, —0.18 — 0.351)
(0.63, 0.33 + 0.71i)

! /
€ €] €13

!
€14 s €16

€13
€14

€16 0.75

32
2.1

23
0.5

TABLE XI.

Boundary data (cotb,:*eb) for the 4-simplex vs = {1,2,3,5,7}.

/ / / /
€ €6 €13 €17

! /
€lg €9

éeb

e (0.90, —0.43)
e (0.71, —0.26 — 0.65i)

(0.04 4+ 0.771, 0.01 — 0.63i)

(—0.48 +0.71i, —0.31 — 0.411)
(=0.19 +0.171, —0.18 — 0.951)

(—=0.05 + 0.251, —0.06 — 0.97i)

(0.95, 0.19 + 0.251)

/
€17 €13 €19

€13

€18 5
€19 3.2

2.6
5.6
54 35

52

All the boundary data r = (;’b,%eb) and the data of
the real critical point (;’h,gw,%
Mathematica notebook in [59].

»r) can be found in the

2. Boundary data and the pseudocritical points
for the curved A3 complex

The boundary data in Appendix C1 admits a flat
geometry. To construct a curved geometry, we deform

the segment length /35 — I35 + 10~ and keep the other
boundary segment lengths unchanged. We list the boundary
data for this curved geometry in Tables XX-XXV as the
internal segment length is I, = L + SLEE.

The curved geometry does not have real critical point.
However, we can find the pseudocritical point (), g2, Z ),
which is close to the real critical point inside the real
integration domain. The pseudocritical point satisfies the
critical equation (3.1) but violates the critical equation (3.2).
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TABLE XII. Boundary data (a,, Eeb) for the 4-simplex vg = {1,2,4,5,7}.

/ / ! /
€ €10 €14 €17 €20 €1

°
éeb
e

el (0.20 + 0.91i, 0.07 — 0.351)
e (—0.55 + 0.68i, —0.16 — 0.46i)

e (0.76, 0.22 - 0.61i) (0.74, 0.57 — 0.361) (0.85, 0.52 - 0.11)
ey (0.95, —0.31 + 0.071) (0.39, 0.89 —0.23i)

! / / / !
€ €10 €14 €17 €20 €]

€14 0.5
€17

e 2.1 5.4 24
€91 0.69 3.5

TABLE XIII.  Areas of internal faces / in A3 complex.

ap(123) j(124) j(125) Qp(126) Ap(127)
0.971 0.333 1.55 1.78 1.93

TABLE XIV. The real critical point (g,,. ;vf) for the 4-simplex v; = (1,2,3,4,6).

€ ey () e3
.alqe 0.96 0.42 + 0.04i 0.99 —-0.05-0.151 0.77 —0.13 -0.72i
0 1 0 1 0 1.3
e ey s
EW 0 —1.0i 0 —1.1i
—-0.971 0.34+0.12i —091i 046 +0.12i
e e e ey e} el
‘%171‘f'>
e
e (1,-0.94 + 0.691) (1,-0.82 + 0.45i)
e, (1,0.87 — 0.491) (1,-0.33 + 0.94i1)
e (1,-0.1 + 1.51) (1,2.5 + 6.01)
ey (1,-0.92 + 0.401) (1,0.3 + 2.11)
es (1,-0.14 + 0.751) (1,0.2 — 1.41)
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TABLE XV. The real critical point (g,,. %L,f) for the 4-simplex v, = (1,2,3,5,6).

e (%)

€q e7

La%e (0.99 —0.05 - 0. lSi)
) 099 —-0.05-0.151
e eg

§1fze < 0

—I.Oi) ( 1.26
—1.01 0 0.09 + 0.13i

(0.38 O.fZ) ( l(.)O —0.03(1).—9«—60.044i>
6)90.09 —0.13i
0.82 )

/ / !
e €5 €q

/ / !
€y €g €y

e (1,0.87 — 0.49i)

e (1,-0.86 — 0.07i)
es (1,-0.33 + 0.94i)

eo (1,-1.09 — 0.05i)

(1,-0.1 + 1.50) (1,-0.14 + 0.75i)
(1,0.87 — 0.49i)
(1,1.8 + 2.6i)
(1,-1.8 — 2.6i)
(1,4.9 + 7.0i)

The data for the pseudocritical point is listed in
Tables XXVI-XXXI.

The boundary data for the curved geometry and the
corresponding pseudocritical point can be found in
Mathematica notebook [59].

APPENDIX D: REGGE ACTION

Let us first recall the volume of the simplex. The volume
formula for the Lorentzian four-simplex o is given
by [60,61]

_ (=
Vo = 5y et(Co). (D1)

where V,, is the volume square and det(C,) is the Cayley-
Menger determinant. The Cayley-Menger matrix C, is the
6 x 6 matrix with entries l%j fori,j=0,...,4, where [;; is
the segment length. The Cayley-Menger matrix is aug-
mented by an additional row and column with entries given
by (C;)s5 =0 and (C,),5s = (C,)s; = 1. That is

(D2)

Similarly, the volume formula of the Euclidean tetrahedron
is given by

TABLE XVI. The real critical point (g,,. ;vf) for the 4-simplex v; = (1,2,4,5,6).

e €3 €7 €10

e (0.77 -0.13 — 0.72i> ( 1.0 —0.031 + 0.044i) (0.96 0.38)
’ 0 1.3 0 0.96 0 1

e (¥ (SP)

gv . ( 0 —1.2i ) ( 0 —1.81 )
’ —0.861 —0.15+0.11i —0.551 —0.16 +0.12i

e e§ 6,7 6,10 6,11 6/12

Z1)3]">

e

es (1,-0.94 + 0.691) (1,03 + 2.1i)

e (1,-0.1 + 1.51) (1, 4.9 + 7.0i)

e (1,-0.86 — 0.07i) (1,-0.45 — 0.08i)

e (1,1.8 + 2.61) (1,-0.68 — 0.15i)

e (1,2.5 + 6.0) (1,5.7 + 8.1i)
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TABLE XVII. The real critical point (g,,. zbf) for the 4-simplex v, = (1,2,3,4,7).

e €] €13 €14
E]ﬂ . (0.96 042 + 0.04i> (0.84 0.82 + 0.19i) <0.68 1.3+ 0.9i>
! 0 1 0 1.2 0 15
e €15 €16
zh . ( 0 —1.31 ) ( 0 —1.31 )
! -0.791 —0.34 —0.92i -0.771 —0.49 —1.01i
e el €3 ey €ls €l
|2114f>
e
e (1,0.87 — 0.491) (1,-0.92 + 0.401)
e (1,-0.92 + 0.75i) (1,-0.73 + 0.54i)
el (1,-0.94 + 0.69i) (1,-0.94 + 0.77i)
els (1,-0.83 + 0.561) (1,-1.1-1.21)
el (1,-0.82 + 0.451) (1,-1.0 4+ 0.811)
TABLE XVIII. The real critical point @W, ;Lf) for the 4-simplex vs = (1,2,3,5,7).
€ €6 €13 €17
;}v . (0.98 0.32) (0.84 0.82 + 0.19i> (0.84 0.73 — 0.05i>
” 0 1 0 12 0 12
& €3 €19
f}v . ( 0 —1.11 ) 0 —1.21 )
’ —-0.881 —0.72i —-0.861 0.03 —0.72i
e eg €3 ey els €lo
|Zv5f>
e
eg (1,-0.86 — 0.071) (1,-1.09 — 0.051)
e (1,0.87 — 0.491) (1,-0.83 + 0.56i)
en (1,-0.92 + 0.75i) (1,1,-3.2 + 0.60)
e (1,-1) (1,-1.9 +2.2i)
el (1,-0.73 + 0.541) (1,-1.8 —0.81)
(1) In the four-dimentional triangulation, the hinge of the angle
Ve = B(31)? det(C;) (D3) is a triangle denoted by t. Given a triangle ¢, it is shared by

here, C, is the Cayley-Menger matrix for the tetrahedron,
which is a 5 x 5 matrix defined similarly as the above.

Given a and b as timelike normal vector of two
tetrahedra 7,, 7, of the four-simplex o, the Lorentzian
dihedral angles are [62,63]

.- N
0,(c) = sgn(d - b)cosh™! <sgn(a -b) |Ci||l_?,>,
a

. \/(5.13)2'

sgn(d - b) = +— Z
a.

7, and 7,, and s; is the length square of the segment
opposite to the triangle ¢ in ¢. For example, in the four-
simplex ¢ = (12345), the tetrahedra 7, = (1234) and 7, =
(1235) share the triangle r = (123). Then 7 is the segment
(45). The dihedral angles with respect to ¢ are given by [64]

( 1 a\/5> 2 ,

= 32.42 0V,
V, 0s; =<
hatl V,

_ s
0:(0) T, oosh ERIA V., [V
V, 0s; V, 0s; 34/ 3
t t
(Ds)
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TABLE XIX. The real critical point (g,,. %L,_f) for the 4-simplex vy = (1,2,4,5,7).

e (4N

€14 €17

fhﬁe (0.96, 0.38 )
0 1

e €0

Juee (—0?931 —0.1_71;1(i).96i>

(0.68 1.3+ 0.9i> (0.84 0.73 - 0.05i>
0 L5 0 1.2
€21
-1.21 )

( 0
—-0.841 0.4 -23i

/ ! /
€ €10 €14

/ /
ey €0 €21

e (1, -0.94 + 0.69i)

ey (1,-0.86 — 0.07i)
s (1,-0.45 —0.08i)

(1,-0.92 + 0.751)

(1,-0.68 — 0.15i)

(1,—1+0.81i)
(1,-1.9 + 2.2i)

(1,-2.7 — 0.4i)
(1,-3.2 4 0.6i)

TABLE XX. Boundary data (a,,&,,) of the curved geometry for the four-simplex v; = {1,2,3,4,6}.

e e e e,

/ /
ey es

geb

e

€]

€

€3

e, (0.60, —0.66 — 0.461)

es (0.43, —0.18 — 0.88i)

(—0.40 + 0.73i, —0.15 — 0.53i)
(=0.61 4+ 0.221, —0.761)
(=0.079 — 0.0331, 0.04 — 1.01)

(0.76, —0.04 — 0.651)

(0.95, —0.03 + 0.311)

> / /
€ (] €,

/ / /
€3 64 65

ap

€

€]

€

€3

€y 2

€5 28

0.75

0.55

2.0

Here, V are volume square (V, = a? is the area square) and
s is length square. As we only consider the spacelike
triangles and tetrahedra, so all the volume square are
positive. The above formula can be simplified as

AL 42, [ (1 9v)?
\/, 0S; \/I aS;
—— €

Vv, /\/Ta /\/Tb

1 osh™!
V, os;

0:(0) = (Do)

Here, the volume of four-simplex, tetrahedra and areas of
triangles can be computed by following Egs. (D1) and
(D3). Given any simplicial complex K, Regge action can be
defined as

SRegge = Z Z atet(a)’

oCK tCo

(D7)

where q, are the areas of the triangles ¢ and 6, is the dihedral
angle of triangle .
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TABLE XXI. Boundary data (a,,&,,) of the curved geometry for the four-simplex v, = {1,2,3,5,6}.

/ / / / / /
e e € e eg ey

éeh

e

e (—0.71 + 0.13i, 0.02 — 0.69i)
es (0.81i, —0.59i)

e (—0.27 — 0.19i, —0.94i)

es (071, —0.24 — 0.67i) (0.95, —0.17 + 0.25i)

eo (0.74, —=0.67 + 0.051) (1.0, 0.049 — 0.0651)

e e eg e, eg e

ap

e

e, 2.8
€gq 5

€7 5

eg 5 5
e 26 3.2

TABLE XXII. Boundary data (a,,¢,,) of curved geometry for the four-simplex v3 = {1,2,4,5,6}.

/ / / / !/ /
€ €3 €7 €10 €l €1

geb

e

e (=0.22 — 0.03i, 0.07 — 0.97i)
e (=0.105 — 0.072i, —0.99i)
e (0.18 + 0.98i, 0.065 — 0.1061)
en (0.98, 0.12 — 0.18i) (0.43, —0.87 + 0.251)

ey (0.99, —0.01 — 0.17i) (1.0, —0.018 + 0.025i)

/! ! ! / / !
€ €3 €7 €10 €11 €

ap

€3 2.0

€7 32
et 0.69
(23] 5 2

(2] 0.55 2
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TABLE XXIII. Boundary data (ay,¢&,,) of curved geometry for the four-simplex vy = {1,2,3,4,7}.

/ / / / /
€ € €3 €1y €ls €16

é:eh

e

e, (—0.33 + 0.75i, —0.12 — 0.57i)

e (—0.52 + 0.71i, —0.35 — 0.32i)
e (—0.58 + 0.71i, —0.19 — 0.351)

ers (0.90, —0.14 — 0.41i) (0.63, 0.33 4 0.71i)

e16 (0.94, —0.25 — 0.22i) (0.94, 0.28 — 0.18i)

/
¢ i ‘13 14 ‘15 ‘16

ap

ey 2
€13 3.2

€15 5.6 2.3
e 0.75 0.5

TABLE XXIV. Boundary data (a,,&,,) of the curved geometry for the 4-simplex vs = {1,2,3,5,7}.

/ / / / / /
€ €6 €13 €17 €13 €19

5(%b

e

es (0.04 4 0.77i, 0.01 — 0.64i)
e (—0.48 + 0.71i, —0.31 — 0.41i)

en (—=0.19 + 0.17i, =0.18 — 0.95i))  (=0.05 + 0.25i, —0.05 — 0.97i)
e (0.90, —0.43)

e (0.71, —0.26 — 0.66i) (0.95, 0.19 + 0.24i)

/
€ €6 €3 €17 €13 €19

€q 2.6
€13 5.6

en 5.4 3.5
[T 5

et 32 52

026010-32



COMPLEX CRITICAL POINTS IN LORENTZIAN SPINFOAM ... PHYS. REV. D 108, 026010 (2023)

TABLE XXV. Boundary data (a,,¢&,;,) of the curved geometry for the four-simplex vg = {1,2,4,5,7}.

/ / / ! !
€ €10 €14 €17 €20 €1

éeb
e

€10 (0.20 + 0.91i, 0.07 — 0.35i)
e (—0.55 + 0.68i, —0.16 — 0.47i)

ey (0.76, 0.22 — 0.611) (0.74, 0.57 — 0.361) (0.85, 0.52 —0.11)
ey (095, =0.31 +0.071) (0.39, 0.89 — 0.231)

! / / / !
€ €10 €1y €17 €20 €21

€1y 0.5

e 2.1 54 24
e 0.69 35

TABLE XXVI. The pseudocritical point (g%, zgf) for the four-simplex v; = (1,2,3,4,6).

€ (4] (&) €3
9(316 (0‘96 0.40 + 0.02i) (0.99 -0.06 — 0.16i) ( 0.78 —0.12 -0.71 i)
0 1 0 1 —0.00024 — 0.00065: 1.29
e ey €s
®e (—0.0016—0.00011’ ~1.0i ) ( 0 ~L1i )
—-0.97i 0.34 +0.12i —-0.911 0.46 4+ 0.12i
e’ e e, el e, ek
|Z),)
e
e (1,-0.95 + 0.701) (1,-0.82 + 0.451)
e, (1,0.87 — 0.501) (1,-0.34 + 0.951)
e3 (1,-0.1 + 1.51) (1,2.5 +6.0i)
es (1,-0.92 + 0.40i) (1,03 + 2.1i)
es (1,-0.14 + 0.751) (1,0.2 — 1.41)
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TABLE XXVII. The pseudocritical point (g?,, zgf) for the four-simplex v, = (1,2,3,5,6).

e (%) €q €7
g?/.ze ( 0.99 —0.05 - 0.151') (0.98 0.30> < 1.0 —0.029 + 0.048i )
0.0024 — 0.0112: 1.01 0 1 0 0.97
e eg €9
ggze (0.0008 + 0.00056i —1.0: ) ( 0 —0.98i )
—1.0i —0. - 0. l —1.0: . + 0. i
1.0i 0.0054 — 0.0011: 1.0i 0.029 4 0.016i
e ) ey e e ey
|2)7)
e
e, (1,-0.1 + 1.51) (1,-0.14 + 0.751)
e (1,0.87 — 0.481) (1,-1)
ey (1,-0.86 — 0.071) (1,1.8 4+ 2.6i)
eg (1,-0.33 + 0.941) (1,-1.8 —2.61)
€9 (1,-1.09 — 0.051) (1,4.7 + 6.91)
TABLE XXVIIL.  The real critical point (g7, z),) for the four-simplex v; = (1,2,4,5,6).
e €3 €7 €10
'y (0.78 ~0.13 - 0.721') ( 1.04 ~0.030 + 0.0461‘) 0.96 0.38
0 1.29 —0.0010 + 0.0018i 0.96 0 1
e €1 €12
ey (—0.00013 —~0.0001 ~1.2i ) ( 0 ~1.8i )
) —0.85i —0.15+0.11: —0.55i -0.16 +0.12i
¢ € e €lo el €
|z?;3f>
e
e (1,-0.94 + 0.691) (1,03 +2.11)
eq (1,-0.1 + 1.51) (1,4.9 + 7.01)
e (1,-0.86 — 0.071) (1,-0.45 — 0.08i1)
er (1,1.8 + 2.61) (1,-0.68 — 0.151)
e (1,2.5 + 6.00) (1,5.7 + 8.1i)
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TABLE XXIX. The pseudocritical point (g%,, z?)f) for the four-simplex vy = (1,2,3,4,7).

e € €3 €14
g?/.48 ( 0.96 0.42 + 0.041') (0.84 0.82 + O.Zi) ( 0.68 1.3+0.9i )
0.02 —0.02{ 1.05 0 1.2 —0.0023 + 0.0038; 1.5+ 0.01:
e €15 €16
gg“, (0.0032 —0.0015: —1.3i ) ( 0 —1.3i )
-0.79i —-0.34 — 0.92i -0.77i —-0.49 —1.01:
e e} el €y els €
|Z(34_f>
e
e (1,0.88 — 0.461) (1,-0.91 + 0.401)
e (1,-0.92 + 0.751) (1,-0.73 + 0.541)
e (1,-0.94 + 0.681) (1,-0.94 + 0.771)
ers (1,-0.83 + 0.561) (1,-1.1-1.21)
el (1,-0.82 + 0.451) (1,-1.0 + 0.811)

TABLE XXX. The pseudocritical point (g, 2),) for the four-simplex v5 = (1,2,3,5,7).

e € €13 €17
ggse ( 0.98 0.32) ( 0.84 0.82 + 0.19i) (0.84 0.73 — 0.05i>
0.011 +0.006i 1.03 —0.0012 +0.011: 1.19 0 1.2
e €1g €19
Pe (—0.00066 +0.00052 —1.1: ) ( 0 -1.2i )
‘ —0.88i -0.72i —-0.86; 0.03 —-0.72i
e eg €l el elg €
0
|z1;5f>
e
e (1,-0.86 — 0.071) (1,-1.09 — 0.061)
es (1,0.87 — 0.501) (1,-0.83 + 0.561)
er (1,-0.93 + 0.751) (1,1,-3.2 +0.61)
e (1,-1) (1,-2+2.2i)
e (1,-0.73 + 0.541) (1,-1.8 — 0.81)
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TABLE XXXI. The pseudocritical point (g9,, zgf) for the four-simplex vg = (1,2,4,5,7).

e €10 €14 €17
g?/.ﬁe ( 0.96,0.38 ) 0.68 13+ 0.9i> ( 0.83 0.73 — 0.0Si)
0.00077 4+ 0.00070:; 1.05 0 1.5 —-0.0014 — 0.0019 1.2
e €20 €3]
ggoe (—0.00019 —0.00100: —1.1i ) ( 0 —1.21 )
-0.93; 0.17 — 0.96i —-0.841 0.4 -23i
e €l ey el iz e
|Zgﬁf>
e
e (1,-0.94 + 0.681) (1,-0.68 — 0.151)
e (1,-0.92 + 0.751) (1,—-1+0.81i)
erq (1,-0.86 — 0.071) (1,-1.9 4+ 2.2i)
ey (1,-0.94 + 0.771) (1,-2.7—-0.41)
es (1,-0.45 — 0.081) (1,-3.2 4 0.61)
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