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The complex critical points are analyzed in the four-dimensional Lorentzian Engle-Pereira-Rovelli-
Livine spinfoam model in the large-j regime. For the four-simplex amplitude, taking into account the
complex critical point generalizes the large-j asymptotics to the situation with non-Regge boundary data
and relates to the twisted geometry. For generic simplicial complexes, we present a general procedure to
derive the effective theory of Regge geometries from the spinfoam amplitude in the large-j regime by using
the complex critical points. The effective theory is analyzed in detail for the spinfoam amplitude on the
double-Δ3 simplicial complex. We numerically compute the effective action and the solution of the
effective equation of motion on the double-Δ3 complex. The effective theory reproduces the classical
Regge gravity when the Barbero-Immirzi parameter γ is small.
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I. INTRODUCTION

The perturbative expansion is widely used in quantum
theory to make approximate predictions order by order in
certain parameter. The method of perturbative expansion is
well-connected to the path integral formulation, whose
stationary-phase approximation results in the semiclassical
expansion in ℏ. By the stationary phase approximation, the
path integral is approximately computed by the dominant
contribution from the critical point and neighborhood. The
critical point is the solution of the equation of motion,
which is obtained from variating the action in the path
integral. Given a path integral in terms of real variables,
traditionally, the semiclassical expansion only takes into
account critical points inside the real integration cycle.
However, the recent progress in many research areas
demonstrates that the complex critical point generically
away from the real integration cycle plays a crucial role in
the semiclassical expansion of the path integral (see
e.g., [1–6]). The complex critical point is the critical point
of the analytically continued path integral, where the
integrand is analytically extended to the complexification
of the real integration cycle.

The method of stationary phase approximation has been
applied extensively to the spinfoam amplitude in loop
quantum gravity (LQG) (see e.g., [7–11]). The importance
of the complex critical point has been demonstrated in the
recent progress in the semiclassical analysis of spinfoam
amplitude [12–14]. A key result is that the semiclassical
curved spacetime geometry can only emerge from the
complex critical point of the spinfoam amplitude. Taking
into account that the complex critical point provides the
resolution to the long-standing “flatness problem,” i.e., the
problem of discovering only the flat spacetime geometry in
the spinfoam amplitude. This problem turns out to be the
confusion from ignoring the complex critical point.
The present work continues from the earlier work [12]

and further study the complex critical points and their
implications in spinfoam amplitude. The discussion in this
work focuses on the four-dimensional Lorentzian Engle-
Pereira-Rovelli-Livine (EPRL) spinfoam model. Our
results demonstrate the impact of the complex critical
points mainly from two perspectives:

(i) At the level of one four-simplex amplitude, taking
into account the complex critical point generalizes
the large-j asymptotics by Barrett et al. [8] to the
case of non-Regge boundary data. The geometry of
the non-Regge boundary data gives the boundary
tetrahedra that are glued only with area-matching but
without shape-matching, in contrast to the Regge
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boundary data that requires the shape-matching
condition (as well as the orientation matching
condition) and determines the Regge boundary
geometry. The generalized four-simplex amplitude
asymptotic behavior depends analytically on the
boundary data. This analytic dependence is not
manifest in the original asymptotic formula in [8].
The computation of the generalized asymptotic
behavior relies on the numerical method. The dis-
cussion in Sec. IV provides the general algorithm of
computing the complex critical point of the ampli-
tude, and demonstrates the numerical results of the
asymptotics for a one-parameter family of non-
Regge boundary data.

(ii) Based on the application of complex critical points,
we develop a formalism to derive the effective
theory of Regge geometry from the large-j spinfoam
amplitude. As the result, given a simplicial complex
KwithM internal segments, the spinfoam amplitude
AðKÞ with Regge boundary data reduces to the
integral over the internal line-segment lengths lI ,
I ¼ 1;…;M,

AðKÞ∼
Z YM

I¼1

dμðlIÞeλSð⃗lÞ½1þOð1=λÞ�; λ≫ 1;

ð1:1Þ

within the neighborhood of the integration domain

of AðKÞ. λ is the scaling parameter of spins jf. eλSð⃗lÞ

with the effective action Sð⃗lÞ comes from evaluating
the analytically continued integrand of AðKÞ at the
complex critical point, which depend analytically on
lI . The integral in (1.1) reduced from AðKÞ is over
the Regge geometries with the fixed boundary
condition. The equation of motion ∂lISð⃗lÞ ¼ 0 gives
the effective dynamics of Regge geometry implied
by the spinfoam amplitude. The formalism of
deriving the effective theory is discussed in Sec. III.
In Secs. VI and VII, we apply the formalism to the
double-Δ3 simplicial complex, which contains only
a single internal segment, i.e., M ¼ 1. The complex
critical points and the effective action Sð⃗lÞ are
computed numerically following the general algo-
rithm. The spinfoam amplitude depends on the
Barbero-Immirzi parameter γ. The computations
are performed for many different values of the
Barbero-Immirzi parameter γ, ranging from small
to large. The resulting Sð⃗lÞ are compared with the
Regge action on the double-Δ3 complex. Sð⃗lÞ is
well-approximated by the classical Regge action in
the small-γ regime, and Sð⃗lÞ provides the correction
to the Regge action with increasing γ. The solutions
of the effective dynamics are computed numerically

for different values of γ and compared to the solution
of Regge equation. The solution from Sð⃗lÞ well-
approximates the Regge solution for small γ and
gives larger correction when increasing γ. Recover-
ing the classical Regge action and solution from the
effective dynamics of spinfoam amplitude gives
evidence of the semiclassical consistency of spin-
foam quantum gravity.

Recovering the classical Regge gravity from the spinfoam
amplitude with small γ has been argued earlier in [15–20].
Our numerical result confirms this property for the spinfoam
amplitude on the double-Δ3 complex.
The numerical computations are performed for different

γ’s ranging from small to large. Fixing the boundary data,
the solutions of the effective dynamics give a trajectory in
the space of Regge geometries parametrized by γ. The
trajectory approaches the solution of the classical Regge
equation for small γ as mentioned above. For large γ, the
trajectory stablizes at the Regge geometry that is different
from the classical Regge solution. It suggests that the
effective theory for large γ differs significantly from the
Regge gravity. The solutions both at small and large γ give
nonsuppressed contributions to the spinfoam amplitude. In
particular, the solutions for large γ violate the known bound
jγδhj≲ λ−1=2 [11–13] (δh is the deficit angle of the Regge
geometry), which is valid for nonsuppressed contributions
to the amplitude with finite and small γ.
Studying the complex critical points in the spinfoam

amplitude closely relates to the recent progress in numeri-
cal studies of spinfoam amplitudes [21]. Given the com-
plexity of the spinfoam amplitude, the complex critical
point and the corresponding contribution to the spinfoam
amplitude has to be computed numerically. The numerical
analysis of complex critical points connects to the
Lefschetz thimble and Monte Carlo computation for the
spinfoam integral [22], because every complex critical
point associates to an integration cycle known as
Lefschetz thimble, and the integral on the Lefschetz
thimble collects all contributions associated to the complex
critical point. Another related numerical result is the
semiclassical expansion of the spinfoam amplitude to the
next-to-leading order from the stationary phase approxi-
mation [23]. We also would like to mention a few other
numerical approaches for spinfoam quantum gravity,
including the “sl2cfoam-next” code for the nonperturbative
computation of the spinfoam amplitude [24–26], the
effective spinfoam model [13,27], the hybrid algo-
rithm [28], and the spinfoam renormalization [29,30], etc.
This paper is organized as follows: Section II gives a

brief review of the integral representation of the EPRL
spinfoam amplitude and the definition of the large-j
regime. In Sec. III, we define the real and complex critical
points and discuss the general formalism of deriving the
effective dynamics of Regge geometry. Section IV studies
the complex critical point of the four-simplex amplitude
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and generalizes the large-j asymptotics to include the
non-Regge boundary data. Section V revisits the known
results on the spinfoam amplitude on Δ3 complex as the
preparation for analyzing the amplitude on the double-Δ3

complex. Section VI discusses the complex critical point in
the spinfoam amplitude on the double-Δ3 complex and
computes the effective action. Section VII discusses the
numerical solution of the effective dynamics on the double-
Δ3 complex. In Sec. VIII, we conclude and discuss some
outlooks.

II. SPINFOAM AMPLITUDE

A four-dimensional simplicial complex K contains
4-simplices v, tetrahedra e, triangles f, line segments,
and points. The internal and boundary triangles are denoted
by h and b (f is either h or b). The SU(2) spins jh; jb ∈
N0=2 are assigned to internal and boundary triangles h, b.
The spins label the quanta of triangle areas. The LQG area
spectrum indicates that the quantum area of triangle f is
given by af ¼ 8πγGℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðjf þ 1Þp

[31,32]. In the large-j
regime, which we will focus on, the area spectrum gives
af ≃ 8πγGℏjf, or af ≃ γjf when we set the unit such that
8πGℏ ¼ 1.
The Lorentzian EPRL spinfoam amplitude on K is given

by summing over internal spins fjhg,

AðKÞ ¼
X
fjhg

Y
h

djVðfÞjþ1
jh

Z
½dgdz�eSðjh;gve;zvf ;jb;ξebÞ; ð2:1Þ

½dgdz� ¼
Y
ðv;eÞ

dgve
Y
ðv;fÞ

dΩzvf ; ð2:2Þ

where djh ¼ 2jh þ 1. The boundary states are SU(2)
coherent states jjb; ξebi where ξeb ¼ ueb⊳ð1; 0ÞT,
ueb ∈ SUð2Þ. jb and ξeb are determined by the area and
the 3-normal of the boundary triangle b. The summed/
integrated variables are gve ∈ SLð2;CÞ, zvf ∈ CP1, and jh.
dgve is the Haar measure on SLð2;CÞ,

dg¼dβdβ�dγdγ�dδdδ�

jδj2 ; ∀g¼
�
α β

γ δ

�
∈SLð2;CÞ; ð2:3Þ

and dΩzvf is the scaling invariant measure on CP1,

dΩzvf ¼
i
2

ðz0dz1 − z1dz0Þ ∧ ðz̄0dz̄1 − z̄1dz̄0Þ
hZvef; ZvefihZve0f; Zve0fi

;

∀ zvf ¼ ðz0; z1ÞT; ð2:4Þ

where Zvef ¼ g†vezvf, h·; ·i is the Hermitian inner product
on C2, and zvf is a 2-component spinor for the face f.
The spinfoam action S in Eq. (2.1) is complex and linear

to jh, jb in an expression of the form [33],

S ¼
X
e0
jhFðe0;hÞ þ

X
ðe;bÞ

jbF
in=out
ðe;bÞ þ

X
ðe0;bÞ

jbF
in=out
ðe0;bÞ ; ð2:5Þ

Fout
ðe;bÞ ¼ 2 ln

hZveb; ξebi
kZvebk

þ iγ ln kZvebk2; ð2:6Þ

Fin
ðe;bÞ ¼ 2 ln

hξeb; Zv0ebi
kZv0ebk

− iγ ln kZv0ebk2; ð2:7Þ

Fðe0;fÞ ¼ 2 ln
hZve0f; Zv0e0fi
kZve0fkkZv0e0fk

þ iγ ln
kZve0fk2
kZv0e0fk2

: ð2:8Þ

Here, e and e0 are boundary and internal tetrahedra,
respectively. In the dual complex K�, the orientation of
∂f� is outgoing from the vertex dual to v and incoming to
another vertex dual to v0, and the orientation of the face f�
dual to f induces ∂f�’s orientation. As for the logarithms in
the spinfoam action, we fix all the logarithms to be the
principal values. The derivation of the spinfoam action S is
given in [33].
The spinfoam amplitude in the formulation (2.1) has the

following three types of continuous gauge degrees of
freedom, and thus some gauge fixings are needed to remove
the redundant degrees of freedom:

(i) Firstly, there is SLð2;CÞ gauge transformation at
each v:

gve↦x−1v gve; zvf↦x†vzvf; xv∈SLð2;CÞ: ð2:9Þ

To remove this gauge degree of freedom, we fix
one gve to be a constant SLð2;CÞ matrix for each
four-simplex. The amplitude is independent of the
choices of constant matrices.

(ii) Secondly, there is SU(2) gauge transformation on
each internal e:

gv0e↦gv0eh−1e ; gve↦gveh−1e ; he∈SUð2Þ: ð2:10Þ

To fix this SU(2) gauge freedom, one can parameter-
ize one of two SLð2;CÞ elements: gve, or gv0e by the
upper triangular matrix

k¼
�
λ−1 μ

0 λ

�
; λ∈Rnf0g; μ∈C ð2:11Þ

Here, we use the fact that any g ∈ SLð2;CÞ can be
decomposed as g ¼ kh with h ∈ SUð2Þ and k an
upper triangular matrix in Eq. (2.11).

(iii) Thirdly, for each zvf, there is the scaling gauge
freedom:

zvf ↦ λvfzvf; λvf ∈ C: ð2:12Þ

Here, we fix the gauge by setting the first component
of zvf to 1, i.e. zvf ¼ ð1; αvfÞT, where αvf ∈ C.
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Furthermore, in Eq. (2.1), we assume the summation
over internal jh ∈ N0=2 is bounded by jmax. In some
situations, jmax is determined by boundary spins jb via
the triangle inequality, otherwise jmax are imposed as the
cutoff to regularize the infinite sum over spins. To prepare
for the stationary phase analysis, we would like to change
the summation over jh in Eq. (2.1) to integrals. The idea is
to apply the Poisson summation formula. Firstly, we
replace each djh by a smooth compact support function
τ½−ϵ;jmaxþϵ�ðjhÞ satisfying

τ½−ϵ;jmaxþϵ�ðjhÞ ¼ djVðfÞjþ1
jh

; for jh ∈ ½0; jmax�; and

τ½−ϵ;jmaxþϵ�ðjhÞ ¼ 0; for jh ∉ ½−ϵ; jmax þ ϵ�;

for any 0 < ϵ < 1=2. This replacement does not change the
value of the amplitude AðKÞ but makes the summand ofP

jh smooth and compact support in jh. Then, by applying
the Poisson summation formula,

X
n∈Z

fðnÞ ¼
X
k∈Z

Z
R
dnfðnÞe2πikn;

the discrete summation over jh in Eq. (2.1) becomes the
summing of integrals:

AðKÞ ¼
X

fkh∈Zg

Z Y
h

djh
Y
h

2τ½−ϵ;jmaxþϵ�ðjhÞ
Z

½dgdz�eSðkÞ ;

ð2:13Þ

SðkÞ ¼ Sþ 4πi
X
h

jhkh: ð2:14Þ

By the area spectrum, the classical area af and small ℏ
imply the large spin jf ≫ 1. This motivates understanding
the large-j regime as the semiclassical regime of AðKÞ.
Then, to probe the semiclassical regime, we scale uni-
formly both the boundary spins jb and the internal spin
cutoff jmax by

jb → λjb; jmax → λjmax; λ ≫ 1; ð2:15Þ

so S → λS as a result from S being linear in jb, jh. As a
consequence, the spinfoam amlitude AðKÞ in the large-j
regime is

AðKÞ ¼
X

fkh∈Zg

Z
R

Y
h

djh
Y
h

2λτ½−ϵ;λjmaxþϵ�ðλjhÞ

×
Z

½dgdz�eλSðkÞ ; ð2:16Þ

SðkÞ ¼ Sþ 4πi
X
h

jhkh; ð2:17Þ

by the change of integration variables jh → λjh, and jh is
continous.

III. COMPLEX CRITICAL POINT
AND EFFECTIVE DYNAMICS

The integral in (2.16) at each kh can be analyzed with the
stationary phase method in the regime λ ≫ 1. By the
standard argument of the stationary phase approximation,
by fixing the boundary data, the integral with λ ≫ 1 is
approximated by the dominant contributions from the
solutions of critical equations and neighborhood. In the
case of the integrals in (2.16), the critical equations are

ReðSÞ ¼ ∂gveS ¼ ∂zvfS ¼ 0; ð3:1Þ

∂jhS ¼ 4πikh; kh ∈ Z: ð3:2Þ

The solutions inside the integration domain are denoted by

fj∘h; g∘ve; z∘vfg. The integration domain is viewed as a real
manifold, and the integration variables are real and imagi-
nary parts of the matrix elements in gve and zvf. We call

fj∘h; g∘ve; z∘vfg the real critical point accordingly.
The existence of the real critical point in (2.16) depends

on the boundary condition. The real critical point may not
exist for the generic boundary condition. We know that S is
a complex action with n real variables x, and ∂xS ¼ 0
gives n complex thus 2n real equations, which is over-
constrained for n real variables. Consequently, the critical
equations (3.1) and (3.2) coupled with one more equation
ReðSÞ ¼ 0 result in the nonexistence of the general real
solution, unless for some special boundary conditions.
As a solution to this problem of overconstrained equa-

tions, the integration variables have to be complexified, and
action S has to be analytically continued to the complex
variables z. We are only interested in the integration domain
where the spinfoam action S is analytic. The analytically
continued action is denoted by S. On the space of complex
variables, the complex critical equation ∂zS ¼ 0 is not
overconstrained anymore because it gives n complex
equations for n complex variables. ReðSÞ ¼ 0 is dropped
when we study S instead of S. In the space of complex
variables, the solutions of ∂zS ¼ 0 are called the complex
critical points, which play the dominant role for the
asymptotics of AðKÞ in the case that the real critical point
is absent.
Before discussing the complex critical point, let us firstly

review some known results from the critical equations (3.1)
and (3.2) with the boundary data corresponding to Regge
geometry on ∂K. The real solutions of the part (3.1) have
been well-studied in the literature [7–9,33]. We call these
solutions the pseudocritical points. As one of the results,
the pseudocritical point satisfying a nondegeneracy con-
dition endows a Regge geometry on K with certain four-
simplex orientations. When focusing on the pseudocritical
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points endowing the uniform orientations to all four-
simplices, further imposing (3.2) to them gives the acci-
dental flatness constraint to their corresponding Regge
geometries, i.e., every deficit angle δh hinged by the
internal triangle h [11,34] satisfies

γδh ¼ 4πkh; kh ∈ Z: ð3:3Þ

When kh ¼ 0, δh at every internal triangle is zero, and the
Regge geometry endowed by the real critical point is flat.
Equation (3.3) is a strong constraint to the allowed
geometry from the spinfoams and can be satisfied only
for special boundary conditions that admit the flat bulk
geometry (mod 4πZ). The accidental flatness constraint is
consistent with the above argument about overconstrained
equations, and it has been demonstrated explicitly in the
example well-studied in, e.g., [12,35]. If one only considers
the real critical point for the dominant contribution to AðKÞ,
Eq. (3.3) would imply that only the flat geometry (mod
4πZ) exists. This confusion leading to the flatness problem
results from ignoring the complex critical point in the
stationary phase analysis.
In the following discussion, we show that the large-λ

spinfoam amplitude does receive dominant contributions
from the complex critical points away from the real
integration domain. The complex critical points precisely
correspond to the curved Regge geometries emergent from
the spinfoam amplitude. Interestingly, the application of
complex critical points leads to a derivation of effective
dynamics of Regge geometry from the spinfoam amplitude.
The emergent curved Regge geometries are constrained by
the effective dynamics. We firstly provide a general
formalism below, then we apply the formalism to the
concrete models with several different K in the following
sections.
Motivated by relating to the dynamics of Regge geom-

etry, we separate the integral in the amplitude (2.16) into
two parts. Suppose K has M internal segments, the
dynamics of Regge geometry should relate to the dynamics
of these internal segment lengths. Motivated by this, we
separate M internal areas jho (ho ¼ 1;…;M) from other jh̄
(h̄ ¼ 1;…; F −M), where jho relates to the segment
lengths. Here, F is the total number of internal triangles
in K, and M equals the number of the separated internal
segments. The spinfoam amplitude (2.16) then becomes

AðKÞ ¼
X
fkhg

Z YM
ho¼1

djhoZ
fkhg
K ðjhoÞ; ð3:4Þ

where Zfkhg
K , called the partial amplitude, is given by

Zfkhg
K ðjhoÞ ¼

Z Y
h̄

djh̄
Y
h

ð2λdλjhÞ
Z

½dgdz�eλSðkÞ : ð3:5Þ

We can then change variables from the areas jho to the
internal segment-lengths flIgMI¼1, with I denoting the
internal segment. The internal triangles ho ¼ 1;…;M are
suitably chosen such that the change of variables is well-
defined in the interested region, e.g., a neighborhood of

fj∘hog of fj∘h; g∘ve; z∘vfg corresponding to the flat geometry.
Indeed, the chosenM areas fjhog are related to M segment
lengths flIg by Heron’s formula. Inverting the relation
between fjhogMho¼1 and flIgMI¼1 defines the local change of
variables ðjho ; jh̄Þ → ðlI; jh̄Þ in a neighborhood K of a
given Regge geometry in the integration domain of (2.16).
This procedure is just changing variables without imposing
any restrictions. When focusing on the integrals in the
neighborhood K, we have dMþNjh ¼ J ldMlIdF−Mjh̄,
where J l ¼ detð∂jho=∂lIÞ is the Jacobian obtained by
the derivatives of Heron’s formula. Therefore, the contri-
bution to AðKÞ from the neighborhood K is expressed as

X
fkhg

Z YM
I¼1

dlIJ lZ
fkhg
K ðlIÞ; ð3:6Þ

The partial amplitude Zfkhg
K has the external parameters

r≡ flI; jb; ξebg including not only the boundary data
jb; ξeb but also internal segment-lengths lI . The above
decomposition of jh integrals closely relates to the earlier
proposal [36,37] (see also [38] in the context of area Regge
calculus). lI parametrizes a submanifold MRegge in the
space of jh. The submanifold MRegge collects jh’s that can
be interpreted as areas determined by the segment lengths lI
(by Heron’s formula). Generically, the space of jh is much
larger than the space of segment lengths [39]. jh̄ para-
metrizes the direction transverse to MRegge.

To study the partial amplitude Zfkhg
K , we apply the

theory of stationary phase approximation for complex
action with parameters [40,41]. In the following, we only
consider the partial amplitude with kh ¼ 0, while the
situation with other kh can be studied analogously. We
consider the large-λ integral

R
K eλSðr;xÞdNx, and regard r as

the external parameters. Sðr; xÞ is an analytic function of
r ∈ U ⊂ Rk; x ∈ K ⊂ RN . U × K is a neighborhood of

ðr∘; x∘Þ, where x
∘
is a real critical point of Sðr∘; xÞ. Sðr; zÞ

with z ¼ xþ iy ∈ CN is the analytic extension of Sðr; xÞ to
a complex neighborhood of x

∘
. The complex critical

equation is

∂zS ¼ 0; ð3:7Þ
whose solution is z ¼ ZðrÞ. Here, ZðrÞ is an analytic

function of r in the neighborhoodU. When r ¼ r
∘
, Zðr∘Þ ¼ x

∘

reduces to the real critical point. When r deviates away

from r
∘
, ZðrÞ ∈ CN can move away from the real plane RN ,

thus it is called the complex critical point (see Fig. 1). With
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this in mind, we have the following large-λ asymptotic
expansion for the integral

Z
K
eλSðr;xÞdNx ¼

�
1

λ

�N
2 eλSðr;ZðrÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−∂2z;zSðr; ZðrÞÞ=2πÞ
q

× ½1þOð1=λÞ�; ð3:8Þ

where Sðr; ZðrÞÞ and δ2z;zSðr; ZðrÞÞ are the action and
Hessian at the complex critical point. In addition, the real
part of S is zero or negative. More precisely, there exists a
constant C > 0 such that

ReðSÞ ≤ −CjImðZÞj2: ð3:9Þ

See [40,41] for the proof of this inequality. This inequality
indicates that ReðSÞ ¼ 0 resulting in the oscillatory phase
in (3.8) can only happen at the real critical point, where

ImðZÞ ¼ 0 and r ¼ r
∘
. When r deviates from r

∘
with a finite

distance, such that ImðZÞ is finite and ReðSÞ is negative,
(3.8) is exponentially suppressed when scaling λ to large.
The asymptotic formula (3.8) depends analytically on r and
interpolates the two different behaviors smoothly in the
parameter space of r:

(i) The critical point is not real, then ReðSÞ < 0, which
gives the exponentially decaying amplitude.

(ii) The critical point is real, then ReðSÞ ¼ 0, and thus
eλS gives an oscillatory phase.

These two distinct behaviors are obtained by fixing r and
scaling λ. But since the asymptotic formula (3.8) depends
on r analytically, we can vary r simultaneously as scaling λ.
Then we can arrive at the regime where the asymptotic
behavior (3.8) is not suppressed at the complex critical

point. Indeed, for any large λ, there always exists r ≠ r
∘
but

sufficiently close to r
∘
, such that ImðZÞ and ReðSÞ are small

enough, then eλS in (3.8) is not suppressed at the complex
critical point.
The importance of (3.8) is that the integral can receive a

dominant contribution from the complex critical point away
from the real plane. These complex critical points indeed
give the curved Regge geometries missing in the argument
of the flatness problem. The parameter r including both the
boundary data and internal segment lengths determine
the Regge geometry that is generically curved. Hence
the asymptotic formula (3.8) computes the weight of the
Regge geometry contributing to the amplitude and reduces
AðKÞ in K to

�
1

λ

�N
2

Z YM
I¼1

dlIN leλSðr;ZðrÞÞ½1þOð1=λÞ� ð3:10Þ

at each kh. Here, N l ∝
Q

h ð4jhÞJ l½detð−δ2z;zS=2πÞ�−1=2 at
ZðrÞ, and r ¼ flI; jb; ξebg. Given that flIg determines the
Regge geometry onK, Eq. (3.10) is a path integral of Regge
geometries with the effective action S. The integration
domain of lI includes curved geometries. The integral
(3.10) derived from the spinfoam amplitude defines an
effective theory of Regge geometries. Indeed, if we focus
on the dominant contribution and neglect corrections of
Oð1=λÞ, by the stationary phase approximation of (3.10),
the effective action S gives the equation of motion

∂S
∂lI

¼ 0; I ¼ 1;…;M; ð3:11Þ

which determines the effective dynamics of Regge geom-
etry. S is generally complex, so (3.11) should be analyti-
cally continued to complex lI , and thus the solution is
generally not real. As we are going to see in Sec. VII, we
are mainly interested in the regime where the imaginary
part of the solution lI is negligible, then the solution has the
interpretation of the Regge geometry.
In the following, we make the above general analysis

concrete by considering the examples of spinfoam ampli-
tudes on a single four-simplex and the double-Δ3 complex.
We also revisit briefly the existing results on Δ3 complex
for the completeness. We compute numerically the com-
plex critical points and S, confirming the contribution of
the complex critical points to the spinfoam amplitude. In
particular, the double-Δ3 model corresponding to M ¼ 1
exhibits the nontrivial effective dynamics of the Regge
geometries. The effective dynamics approximates the
classical Regge calculus in the small-γ regime.

IV. FOUR-SIMPLEX AMPLITUDE

This section applies the above general procedure to the
simplest situation—the four-simplex amplitude. In this

FIG. 1. The real and complex critical points x
∘
and ZðrÞ. Sðr; zÞ

is analytic extended from the real axis to the complex neighbor-
hood illustrated by the red disk.
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case, there is no internal triangle as F ¼ M ¼ 0. The
external parameter r only contains the boundary data
r ¼ ðjb; ξebÞ. The four-simplex and its dual diagram are
illustrated in Figs. 2(a) and 2(b). The points of the four-
simplex v are labeled by (1, 2, 3, 4, 5). The five tetrahedra
on the boundary are labeled by

fe1; e2; e3; e4; e5g ¼ fð1; 2; 3; 4Þ; ð1; 2; 3; 5Þ; ð1; 2; 4; 5Þ;
ð1; 3; 4; 5Þ; ð2; 3; 4; 5Þg:

These tetrahedra carry group variable gve ∈ SLð2;CÞ. The
triangle is shared by the tetrahedra and carries an SU(2)
spin jf, e.g., the tetrahedron e1 ¼ ð1; 2; 3; 4Þ and the
tetrahedron e2 ¼ ð1; 2; 3; 5Þ share the face f1 ¼ ð1; 2; 3Þ.

A. The amplitude and parametrization of variables

According to (2.1), theEPRL four-simplex amplitudewith
the boundary state has the following expression [7–9,42–44]:

Avðjf; ξefÞ ¼
Z Y

e

dgveδiσ3ðgve1Þ
Z
ðCP1Þ10

eS
Y
f

djf
π

dΩzvf :

ð4:1Þ

Here, all triangles are on the boundary, jf ¼ jb. To fix the
SLð2;CÞgauge,gve1 is fixed to be constantmatrix diagði;−iÞ
(the timelike normal of the reference tetrahedron e1 is past-
pointing). The integrand in (4.1) is written as an exponential
eS with the action

S¼
X
f

2jf ln
hξef;ZvefihZve0f;ξe0fi

kZvefkkZve0fk
þ iγjf ln

hZve0f;Zve0fi
hZvef;Zvefi

:

ð4:2Þ

The orientations of dual faces follow fromFig. 2(c). To study
the large-j behavior of the amplitude, we scale all boundary
spins jf → λjf by the parameter λ ≫ 1. The scaling of spins
results in the scaling of action S ↦ λS, such that the integral
(4.1) can be studied by the stationary phase approximation.
In the following, we firstly compute the real critical point

fg∘ve; z∘vfg, which is the solution of the critical equation (3.1)
and then describe the algorithm to compute the complex
critical point in the neighborhood.
To obtain the real critical point, we adopt the four-

simplex geometry used in [22,23,45] to generate the
boundary state. The coordinates of the five vertices Pa
in Fig. 2(a) in the Minkowski spacetime are set as

P1 ¼ ð0; 0; 0;0Þ; P2 ¼ ð0; 0; 0;−2
ffiffiffi
5

p
=31=4Þ;

P3 ¼ ð0; 0;−31=4
ffiffiffi
5

p
;−31=4

ffiffiffi
5

p
Þ;

P4 ¼ ð0;−2
ffiffiffiffiffi
10

p
=33=4;−

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ;

P5 ¼ ð−3−1=410−1=2;−
ffiffiffiffiffiffiffiffi
5=2

p
=33=4;−

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ:
ð4:3Þ

Then, the 4D normals of the tetrahedra are

FIG. 2. Panel (a) plots the four-simplex v ¼ ð1; 2; 3; 4; 5Þ. The boundary comprises five tetrahedra ei sharing ten faces fi [The shared
faces are labeled by ff1; f2;…; f10g ¼ fð1; 2; 3Þ; ð1; 2; 4Þ; ð1; 2; 5Þ; ð1; 3; 4Þ; ð1; 3; 5Þ; ð2; 3; 4Þ; ð2; 3; 5Þ; ð3; 4; 5Þg. For convenience, in
this section, the notations e and f mean that e ∈ fe1;…; e5g and f ∈ ff1;…; f10g]. Panel (b) is the dual complex of the four-simplex.
Five boxes correspond to boundary tetrahedra carrying gve ∈ SLð2;CÞ. The strands correspond to triangles carrying spins jf . The circles
as endpoints of strands carry boundary states ξef . The arrows represent the orientations of strands.
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Ne1 ¼ ð−1; 0; 0; 0Þ; Ne2 ¼
�

5ffiffiffiffiffi
22

p ;

ffiffiffiffiffi
3

22

r
; 0; 0

�
;

Ne3 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;
2ffiffiffiffiffi
33

p ; 0

�
;

Ne4 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;
1ffiffiffiffiffi
11

p
�
;

Ne5 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;−
1ffiffiffiffiffi
11

p
�
: ð4:4Þ

The spinor ξef relates to the 3D normals nef by nef ¼
hξef; σ⃗ξefi (σ⃗ are Pauli matrices). The Regge boundary data

of ten areas j
∘
f, 3D normals n

∘
ef and the corresponding

spinors ξ
∘
ef of the four-simplex are listed in Appendix A.

With the Lorentzian-Regge boundary data r
∘ ¼ ðj∘f; ξ

∘
efÞ,

we solve for the real critical point ðg∘ve; z∘vfÞ which satisfies
ReðSÞ ¼ ∂gveS ¼ ∂zvfS ¼ 0. The results in the litera-
ture [8,9] show that there are exactly two real critical
points, which have the interpretations as the geometrical
four-simplex with opposite four-orientations. The four-
simplex geometrical interpretation of the critical points
results in the same geometry as the one given by (4.3). We
compute the real critical point following the strategy
described in [12,14,45], where the boundary data and
critical points for a single four-simplex are studied in

detail. The data of the real critical point ðg∘ve; z∘vfÞ is given
in Appendix A.
By fixing the rescaling gauge of zvf, each zvf can be

parametrized with two real variables xvf; yvf,

zvf ¼ ð1; xvf þ iyvfÞT: ð4:5Þ

gvei ; i ¼ ð2; 3; 4; 5Þ are parametrized as

 
1þ ðx1ve þ iy1veÞ=

ffiffiffi
2

p ðx2ve þ iy2veÞ=
ffiffiffi
2

p

ðx3ve þ iy3veÞ=
ffiffiffi
2

p
1þðx2veþiy2veÞðx3veþiy3veÞ=2

1þðx1veþiy1veÞ=
ffiffi
2

p

!
;

x1ve; y1ve; x2ve; y2ve; x3ve; y3ve ∈ R: ð4:6Þ

Therefore, the four-simplex action is a function in terms of
all real variables x ¼ ðxvf; yvf; x1ve; y1ve; x2ve; y2ve; x3ve; y3veÞ
for all f in ff1;…f10g and e in fe2; ::e5g. The real critical
point z

∘
vf is in the form z

∘
vf ¼ ð1; α∘ vfÞT , where α

∘
vf ¼

x
∘
vf þ iy

∘
vf ∈ C. It is convenient to set one of the critical

points at the origin x
∘ ¼ f0; 0;…; 0g by modifying (4.5)

and (4.6) to

zvf ¼ ð1; α∘ vf þ xvf þ iyvfÞT;

gve ¼ g
∘
ve

� 1þ ðx1ve þ iy1veÞ=
ffiffiffi
2

p ðx2ve þ iy2veÞ=
ffiffiffi
2

p

ðx3ve þ iy3veÞ=
ffiffiffi
2

p
1þðx2veþiy2veÞðx3veþiy3veÞ=2

1þðx1veþiy1veÞ=
ffiffi
2

p

�
:

ð4:7Þ

With the parametrization in (4.7), the measures dgve and
dΩzvf are

dgve ¼
1

128π4
dx1vedx2vedx3vedy1vedy2vedy3ve���1þ x1veþiy1veffiffi

2
p

���2 ;

dΩzvf ¼
dxvfdyvf

hZvef; ZvefihZve0f; Zve0fi
: ð4:8Þ

As a result, the four-simplex amplitude is in the form

Av ¼
Z

d44xμðxÞeλSðr;xÞ; ð4:9Þ

where r ¼ ðjf; ξefÞ are boundary data. The integral is 44
real-dimensional. In the following, we focus on a neigh-

borhood K of x
∘
. We have defined the local coordinates

x ∈ R44 covering K.

B. Deviating from the shape matching

The amplitude Av has the real critical points with the

nondegenerate Regge boundary data r
∘
. However, the real

critical point disappears when the boundary data deviates

away from r
∘
. Considering a neighborhood U of r

∘
in the

space of boundary data, such that any r ∈ U (different from

r
∘
) does not correspond to any Regge geometry or vector
geometry.1 If we fix r ∈ U and scale the spins with a large
λ, there are two possible behaviors for the amplitude [8,43]:

(i) For r ¼ r
∘
, the amplitude has two critical points

whose geometrical interpretations have opposite
orientations. S evaluated at critical points gives
the Regge action of the 4-simplex with opposite
sign. Therefore, the asymptotic amplitude of the
four-simplex gives two oscillatory phases

Av ≃ λ−12ðNþeiλSRegge þ N−e−iλSReggeÞ: ð4:10Þ

(ii) For r ≠ r
∘
, it leads to no solutions to (3.1) and the

exponentially suppressed amplitude.
To interpolate smoothly between the oscillatory phases and
the exponential suppression in the asymptotics (4.10), the

1In the Lorentzian EPRL spinfoam amplitude, the critical
points corresponding to the nondegenerate Regge geometry are
isolated critical points.
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discussion in Sec. III suggests making r vary and intro-
ducing the complex critical points.

The boundary data r
∘ ¼ fj∘f; ξ

∘
efg of the Lorentzian

Regge geometry satisfies the shape-matching condition,

i.e., five geometrical tetrahedra determined by r
∘
on the

boundary are glued with the triangles matching in shapes.
Consider the four-simplex action Sðr; xÞ in the neighbor-

hood K × U of ðr∘; x∘Þ. We define z ∈ C44 as the complex-
ification of x, and Sðr; zÞ extends holomorphically Sðr; xÞ
to a complex neighborhood of x

∘
. To avoid confusion, we

note that the integration variables x are complexified, while
the boundary data r ¼ ðjf; ξefÞ is real.
Next, we let r ¼ r

∘ þ δr vary, such that the shape-
matching condition violates. We describe below a para-
metrization of the tetrahedron shapes. A tetrahedron in R3

is determined by four points fP̃a; P̃b; P̃c; P̃dg up to a
R3 ⋊ Oð3Þ symmetry. We gauge fix the R3 ⋊ Oð3Þ sym-
metry by choosing P̃a at the origin, P̃b along the z axis, and
P̃c within the ðy; zÞ-plane. The last point P̃d is not con-
strained. Given the tetrahedron’s segment lengths, the
coordinates of the points are fixed in R3 by the above
gauge fixing. For example, for the tetrahedron e2 ¼
f1; 2; 3; 5g, r∘ implies that the coordinates of the points
in R3 are given by

P̃1 ¼ ð0; 0; 0Þ; P̃2 ¼ ð0; 0;−3.40Þ;
P̃3 ¼ ð0;−2.94;−1.70Þ;
P̃5 ¼ ð−0.651;−0.981;−1.70Þ: ð4:11Þ

All other four tetrahedra can be described similarly, and the

coordinates of the points inR3 are determined by r
∘
. The 3D

face-normals n⃗ implied by the coordinates match with the
data in Table III up to a simultaneous SO(3) rotation. The
spinors ξ associating with each face are given by

ξ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffi

1þw
p

;
xþ iyffiffiffiffiffiffiffiffiffiffiffi
1þw

p
�

T
; if n⃗¼ðx;y;wÞT: ð4:12Þ

When we deform the boundary data, we keep the areas

jf ¼ j
∘
f unchanged, while ξef are deformed, such that the

boundary data r is deformed to violate the shape-matching
condition. We move the vertices P̃a ∈ R3 to deform the
tetrahedron shapes. For example, the vertices in (4.11) are
moved to new positions

P̃1 ¼ ð0; 0; 0Þ; P̃2 ¼ ð0; 0;−3.40þ δwð2Þ
2 Þ;

P̃3 ¼ ð0;−2.94þ δyð2Þ3 ;−1.70þ δwð2Þ
3 Þ;

P̃5 ¼ ð−0.651þ δxð2Þ5 ;−0.981þ δyð2Þ5 ;−1.70þ δwð2Þ
5 Þ:
ð4:13Þ

In the notations δxðaÞi ; δyðaÞi ,δwðaÞ
i , a ¼ 1;…; 5 labels the

tetrahedron, and i ¼ 1;…; 5 labels the variables associated

to the vertex P̃i. There are 30 variables δxðaÞi ; δyðaÞi ,δwðaÞ
i in

total. We keep the face areas unchanged. Then in each
tetrahedron, Heron’s formula gives four constraint equa-
tions, each corresponding to a face area. For example, in the
tetrahedron e2 ¼ f1; 2; 3; 5g, the equations are

8>>>>><
>>>>>:

A123ðδwð2Þ
2 ; δyð2Þ3 ; δwð2Þ

3 Þ ¼ 5

A125ðδwð2Þ
2 ; δxð2Þ5 ; δyð2Þ5 ; δwð2Þ

5 Þ ¼ 2

A135ðδyð2Þ3 ; δwð2Þ
3 ; δxð2Þ5 ; δyð2Þ5 ; δwð2Þ

5 Þ ¼ 2

A235ðδwð2Þ
2 ; δyð2Þ3 ; δwð2Þ

3 ; δxð2Þ5 ; δyð2Þ5 ; δwð2Þ
5 Þ ¼ 2:

ð4:14Þ

At least in a neighborhood of the deformation, δwð2Þ
2 ; δyð2Þ3 ;

δwð2Þ
3 ; δxð2Þ5 can be solved in terms of δyð2Þ5 ; δwð2Þ

5 from
(4.14). The shape of the tetrahedron is parametrized by

two variables δyð2Þ5 ; δwð2Þ
5 . This way of parametrization is

convenient in our computation. However, it is different
from the known strategy, such as the Kapovich-Millson
phase space [46] or using dihedral angles [47]. For each
tetrahedron, we adopt the same strategy. We have in

total ten variables B≡ðδyð1Þ4 ;δwð1Þ
4 ;δyð2Þ5 ;δwð2Þ

5 ;δyð3Þ5 ;δwð3Þ
5 ;

δyð4Þ5 ;δwð4Þ
5 ;δwð5Þ

5 ;δwð5Þ
5 Þ to parametrize the deformation of

five tetrahedra. The spinors ξef of each face can be
expressed in terms of B according to (4.12). At this point,
the boundary data is rðBÞ ¼ ðjf; ξefðBÞÞ. We insert rðBÞ
into the action SðrðBÞ; xÞ in (4.2), whose analytical
extension is SðrðBÞ; zÞ. Then, the complex critical equa-
tions are FðB; zÞ ¼ ∂zSðrðBÞ; zÞ ¼ 0, from which we solve
for the complex critical point zðBÞ.
The asymptotics of the four-simplex amplitude with the

boundary data violating the shape-matching condition is
given by (3.8). Here, the complex critical point zðBÞ
inserting into the analytic continued action gives
SðrðBÞ; zðBÞÞ. In contrast to the Regge action obtained
from spinfoamasymptotics in [8],SðrðBÞ; zðBÞÞ is an action
of the twisted geometry [48].2 Indeed, SðrðBÞ; zðBÞÞ
depends on the degrees of freedom of semiclassical tetra-
hedra, which are not constrained by the shape-matching
condition. These degrees of freedom are beyond the Regge
geometry and belong to the twisted geometry of the
boundary.
To solve the complex critical point, we can linearize (4.14)

and obtain the linear solution ðδwð2Þ
2 ; δyð2Þ3 ; δwð2Þ

3 ; δxð2Þ5 Þ in

2The condition for shape matching differs from the shape
matching condition discussed in [48]. In their work, Freidel
et al. [48] introduced an additional angle variable as a degree of
freedom in twisted geometry, which is canonically conjugate to
the area variable. While these two conditions share an intuitive
similarity, they are not precisely identical.
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terms of δyð2Þ5 ; δwð2Þ
5 . We can also linearize the complex

critical equation at B ¼ ð0;…; 0Þ, and then solve for the
complex critical point z ¼ zðlinÞðBÞ. The solution zðlinÞðBÞ is
a linear function of the perturbations B. The coefficients
in the linear function can be computed numerically.
Inserting this linear solution into the action, we obtain
SðrðBÞ; zðlinÞðBÞÞ as a function of B and expand it to the
second order,

SðrðBÞ; zðlinÞðBÞÞ ¼ QijBiBj þ LjBj þ S0; ð4:15Þ

where the coefficientsQij;Lj can be computed numerically.
S0 is the spinfoam action evaluated at the real critical point

with B ¼ ð0;…; 0Þ. In Fig. 3, we let B ¼ ð0; 0; 0; δwð2Þ
5 ;

0; 0; 0; 0; 0; 0Þ, the red curves in (a) and (b) are the real part

and imaginary part of SðrðBÞ; zðlinÞðBÞÞ with δwð2Þ
5 varying

from −1 to 1.
The linear solution may have a large error when

components in B are large. We apply the Newton-
Raphson method to numerically search for the solution,
which is more accurate than the linear solution. To compare
with the linear solution in Fig. 3, we still only focus on

the deformation of e2 ¼ f1; 2; 3; 5g and set δyð2Þ5 ¼ 0. We
outline the procedure in the following.
For any given δwð2Þ

5 , we can numerically solve Eq. (4.14)

for ðδwðaÞ
2 ; δyðaÞ3 ; δwðaÞ

3 ; δxðaÞ5 Þ. There are multiple solutions.
We select the solution that is within a neighborhood at (0, 0,
0, 0), by requiring jδw2

2 þ δy23 þ δw2
3 þ δx25j ≤ 4jδw2

5j. The
coordinates in (4.13) given by the solution result in the 3d
face normal vectors n⃗ and spinors ξ, which are the
boundary data r violating the shape-matching condition.
We apply the Newton-Raphson method to search for the

complex critical point satisfying ∂zS ¼ 0. An outline of the
procedure in the Newton-Raphson method is given in
Appendix B. In Fig. 3, the blue curves in (a) and (b) are
the real part and imaginary part of the analytically con-
tinued action at the complex critical points. This numerical

result (blue curves) and the result from the linear solution
(red curves) are close when the deformation is small.
However, the linear solution is less accurate when the
deformation is large.
Figure 3 demonstrates the smooth interpolation between

the oscillatory and exponential suppression behaviors
mentioned at the beginning of this subsection. In addition
to scaling large λ, we need to consider the smooth
deformation B. For any given λ, there exists sufficiently
small deformation B beyond the shape matching, such that
ReðSÞ is small, and thus the amplitude is not suppressed.

V. REVISITING THE Δ3 AMPLITUDE

In this section, we revisit briefly the existing result on the
spinfoam amplitude on the Δ3 complex, for the complete-
ness and preparing the discussion of the double-Δ3 com-
plex in the next section. The Δ3 complex contains a single
internal face F ¼ 1 but has no internal segment M ¼ 0.
There is an internal jh that is an integrated variable in the
amplitude AðΔ3Þ in (2.16).
The Δ3 complex and its dual cable diagram are repre-

sented in Fig. 4. All tetrahedra and triangles are spacelike.
The Regge geometry on Δ3 is completely fixed by the
Regge boundary data fjb; ξebg that is determined by the
boundary segment lengths. In this section, we only focus on
the Regge boundary data, in contrast to the discussion of
four-simplex amplitude in the previous section. The gen-
eralization to non-Regge boundary data should be straight-
forward. In terms of the notation in Sec. III, we have

r ¼ fjb; ξebg as the boundary data. r
∘ ¼ fj∘b; ξ

∘
ebg fixes the

flat geometry gðr∘Þ with deficit angle δh ¼ 0. x
∘ ¼

fj∘h; g∘ve; z∘vfg is the real critical point associated to r
∘
.

The data r
∘
, gðr∘Þ, and x

∘
are computed numerically in [12].

According to the general spinfoam amplitude (2.16) and
the spinfoam action (2.17), the Δ3 amplitude AðΔ3Þ can be
written as

FIG. 3. In both panels, the blue curves are the numerical results with the Newton-Raphson method, and the red curves are the results
from the linear solution. Panel (a) is the real part of the analytically continued action S at the complex critical points varying with δwð2Þ

5 .

Panel (b) is the imaginary part of S at the complex critical points varying with δwð2Þ
5 . The range of δwð2Þ

5 is ½−1; 1�.
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AðΔ3Þ ¼
X
kh∈Z

2λ

Z
djhdλjh

Z
½dgdz�eλSðkÞ ;

SðkÞ ¼ Sþ 4πi
X
h

jhkh: ð5:1Þ

For each kh in (5.1), the real critical point fj∘h; g∘ve; z∘vfg
happens only when the boundary data satisfies the acci-
dental flatness constraint (3.3).
Given the boundary data r

∘
corresponding to δh ¼ 0, we

consider its neighborhood U in the space of the non-
degenerate Regge boundary data, such that any boundary
data r ∈ U satisfies jγδhj < 4π. For large λ, the sectors
with kh ≠ 0 do not give dominant contribution to AðΔ3Þ as
far as r ∈ U. If we arbitrarily fix the boundary data r ∈ U
and scale λ large, the amplitude has two asymptotic
behaviors analogous to the discussion at the beginning
of Sec. IV B

(i) For the boundary data that corresponds to a flat
Regge geometry, there is a real critical point, and the
amplitude gives an oscillatory phase.

(ii) For the boundary data corresponding to a curved
Regge geometry, there are no real critical points, and
the amplitude is exponentially suppressed.

However, this way of presenting the asymptotic behavior
leads to confusion about the flatness problem. From the
discussion in Sec. III, it is clear that there is a smooth
interpolation between the oscillatory phase and the expo-
nential suppression behaviors, since the boundary data

varies smoothly. The interpolation is obtained by applying
the method of the complex critical point. The formal
discussion of the complex critical point and the asymptotic
behavior of this model have been given in [12]. Figure 5(a)
plots eλReðSÞ in the asymptotic formula (3.8) versus δh
determined by the boundary data and demonstrates the
smooth interpolation between the above two asymptotic
behaviors. Letting the boundary data vary at the same time
as scaling λ, we find the boundary data for the curved
geometries with small nonzero δh for any λ, such that the
amplitude AðΔ3Þ is not suppressed, shown in Fig. 5(b). The
range of δh for nonsuppressed AðΔ3Þ is nonvanishing as far
as λ is finite. The range of δh is enlarged when γ is small,
shown in Fig. 5(c). δh that leads to non-suppressed
eλ×Re½SðZðrÞÞ� satisfies the bound

jγδhj≲ λ−1=2: ð5:2Þ

The above result provides evidence for the emergence of
curved geometries from the spinfoam amplitude. The
bound (5.2) is consistent with the earlier proposal [11]
and the result in the effective spinfoam model [13,27,50].
So far, the bound (5.2) has only been confirmed in the
regime of small or finite γ as we are going to see in Sec. VII,
in the large-γ regime, geometries are violating the bound
(5.2) but still giving a nonsuppressed contribution to the
spinfoam amplitude.

FIG. 4. Panel (a) illustrates the simplicial complex Δ3 made by three four-simplices fv1; v2; v3g and 12 tetrahedra ei sharing nineteen
faces fi. There are eighteen boundary faces and one internal face. Panel (b) is the dual cable diagram of the Δ3 spinfoam amplitude: The
boxes correspond to tetrahedra carrying gve ∈ SLð2;CÞ. The strands stand for triangles carrying spins jf. The strand with the same color
belonging to a different dual vertex corresponds to the triangle shared by the different four-simplices. The circles as the endpoints of the
strands carry boundary states jjb; ξebi. The arrows represent orientations. This figure is adapted from [49].
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VI. DOUBLE-Δ3 AMPLITUDE
AND EFFECTIVE ACTION

A. Some setups

TheΔ3 complex does not have any internal segment, and
the boundary data determines the Regge geometry com-
pletely. AðΔ3Þ does not give the lI-integral as in (3.10) by
M ¼ 0, so the effective dynamics of Regge geometry is
trivial. In this section, we study the spinfoam amplitude on
the “double-Δ3” complex [see Fig. 6(a)], which is denoted
by Δ2

3. The double-Δ3 complex contains a single internal
segment, so M ¼ 1, and thus AðΔ2

3Þ gives (3.10) as a

one-dimensional integral. So the double-Δ3 complex
admits nontrivial effective dynamics of the Regge geo-
metry. Note that the same complex is also considered in the
context of the effective spinfoam model [50].
The double-Δ3 complex glues a pair of Δ3 complex

around the internal segment (1, 2). The complex has seven
points P1…; P7. The four-simplices are given by

fv1;…; v6g ¼ fð1; 2; 3; 4; 6Þ; ð1; 2; 3; 5; 6Þ; ð1; 2; 4; 5; 6Þ;
ð1; 2; 3; 4; 7Þ; ð1; 2; 3; 5; 7Þ; ð1; 2; 4; 5; 7Þg:

FIG. 5. Panel (a) plots eλReðSÞ versus the deficit angle δh at λ ¼ 1011 and γ ¼ 0.1 in AðΔ3Þ. The panels (b) and (c) are the contour plots
of eλReðSÞ as functions of ðλ; δhÞ at γ ¼ 0.1 and of ðγ; δhÞ at λ ¼ 5 × 1010 in AðΔ3Þ. They demonstrate the (nonblue) regime of curved
geometries where the spinfoam amplitude is not suppressed. These figures first appeared in [12].

FIG. 6. A complex made of six simplices sharing the bulk edge (1, 2) with length l12 (the red line in panel (a)). In panel (a), the
boundary edges are colored black, blue, violet, and cyan. The bulk edge is colored red. Panel (b) is the dual complex of the triangulation.
The internal faces carrying j123, j124, j125, j126, j127, are bounded by red loops, and other faces are boundary faces.
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The tetrahedra are labeled by fe1;…; e21g.3 There are
twelve boundary tetrahedra and nine internal tetrahedra
among them. jh ¼ fj123; j124; j125; j126; j127g are carried by
five internal triangles, whose dual faces are bounded by red
loops shown in the dual diagram Fig. 6(b). Since there is
only one internal segment (1, 2) and all other segments are
on the boundary, the boundary data and the length l12 of the
internal segment determine the Regge geometry gðrÞ on
Δ2

3. Following the procedure described in (3.5) and (3.6),
we pick up the internal spin j123 and express the spinfoam
amplitude as

AðΔ2
3Þ ¼

Z
dj123Zðj123; jb; ξebÞ;

Zðj123; jb; ξebÞ ¼
X
fkhg

Z Y4
h̄¼1

djh̄
Y5
h¼1

2λτ½−ϵ;λjmaxþϵ�ðλjhÞ

×
Z

dμðg; zÞeλSðkÞ ; ð6:1Þ

where jh̄ ¼ fj124; j125; j126; j127g. The external data of Z is
rl ¼ fj123ðl12Þ; jb; ξebg including both the boundary data
and j123ðl12Þ. Identifying γjf to be the area of f (in Planck
units), the Heron’s formula

γj123ðl12Þ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l212l

2
13 − ðl212 þ l213 − l223Þ2

q
ð6:2Þ

relates j123 to the internal segment length l12 and boundary
segment lengths l13, l23. We consider the Regge boundary
data that determines all the boundary segment lengths. We
can always make a local change of the real variable j123 →
l12 within a neighborhood K of a given Regge geometry,
where the correspondence j123 ↔ l12 is one-to-one.
In the following discussion, we only focus on the case

with kh ¼ 0. The Regge geometries under consideration are
of small deficit angles. The following describes the
procedure to compute the complex critical points ZðrlÞ
of Z.
We embed the double-Δ3 complex in ðR4; ηIJÞ and

determines a flat Regge geometry with all tetrahedra
spacelike. We assign the following coordinates to the
points,

P1¼ð0;0;0;0Þ; P2¼ð−0.0680;−0.220;−0.532;−1.33Þ;
P3¼ð0;0;0;−3.40Þ;
P4¼ð−0.240;−0.694;−0.981;−1.70Þ;
P5¼ð0;0;−2.94;−1.70Þ; P6¼ð0;−2.77;−0.981;−1.70Þ;
P7¼ð−2.47;−3.89;−1.36;−1.91Þ:

From the coordinates, we can compute the length of the
segments of the triangulation by using

lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηIJðPi − PjÞIðPi − PjÞJ

q
: ð6:3Þ

with ηIJ ¼ Diagðf−1; 1; 1; 1gÞ the Minkowski metric. The
segment lengths are shown in Table I. The triangles within a
four-simplex are classified into two categories [8]. The
triangle corresponds to the thin wedge if the inner product
between the timelike normals of the two adjacent tetrahedra
is positive, otherwise the triangle corresponds to the thick
wedge. The dihedral angle θv;ei;ej are given by

thin wedge∶ Nvei · Nvej ¼ cosh θv;ei;ej ;

thick wedge∶ Nvei · Nvej ¼ − cosh θv;ei;ej ; ð6:4Þ

where the inner product is the Minkowski inner product
defined by η. Then we check the deficit angles δhi
associated to the shared triangles hi

0 ¼ δh1 ¼ θv1;e1;e2 þ θv2;e2;e6 þ θv4;e1;e13 þ θv5;e6;e13

≈ 0.514þ 0.464 − 0.575 − 0.404;

0 ¼ δh2 ¼ θv1;e1;e3 þ θv3;e3;e10 þ θv4;e1;e15 þ θv6;e10;e15

≈ 1.08 − 1.02 − 1.30þ 1.24;

0 ¼ δh3 ¼ θv2;e6;e7 þ θv3;e7;e10 þ θv5;e6;e17 þ θv6;e10;e17

≈ −0.360 − 0.481þ 0.414þ 0.426;

0 ¼ δh4 ¼ θv1;e2;e3 þ θv2;e2;e7 þ θv3;e7;e10

≈ −0.723 − 0.208þ 0.931;

0 ¼ δh5 ¼ θv4;e1;e15 þ θv5;e13;e17 þ θv6;e15;e17

≈ −0.903þ 1.20 − 0.301; ð6:5Þ

which implies the Regge geometry is flat. The data of the

flat geometry determines the external data r
∘
l for the partial

amplitude Z, which has the real critical points ðj∘h̄; g
∘
ve; z

∘
vfÞ

corresponding to this flat Regge geometry and endowing
the consistent four-orientations to all four-simplices. The
boundary data of the flat geometry and the real critical point
can be found in Appendix C 1, and Mathematica code can
be found in [51,52]. In this case, given the boundary data,
the flat Regge geometry is the solution of the classical
Regge equation of motion, and it is also the solution

3The tetrahedra are fe1;…; e21g ¼ ff1; 2; 3; 4g; f1; 2; 3; 6g;
f1; 2; 4; 6g; f1; 3; 4; 6g; f2; 3; 4; 6g; f1; 2; 3; 5g; f1; 2; 5; 6g;
f1; 3; 5; 6g; f2; 3; 5; 6g; f1; 2; 4; 5g; f1; 4; 5; 6g; f2; 4; 5; 6g;
f1; 2; 3; 7g; f1; 2; 4; 7g; f1; 3; 4; 7g; f2; 3; 4; 7g; f1; 2; 5; 7g;
f1; 3; 5; 7g; f2; 3; 5; 7g; f1; 4; 5; 7g; f2; 4; 5; 7gg.
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ðj∘h̄; g
∘
ve; z

∘
vfÞ to the critical equations from the spinfoam

amplitude.
We are going to compare the classical Regge dynamics

and the spinfoam effective dynamics for curved geometries.
This comparison is based on the numerical computations.
In concrete, we deform the boundary segment length l35 →
l35 þ 10−3 but keep the other boundary segment lengths
unchanged. The boundary data does not admit any flat
geometry on Δ2

3 [see Fig. 7(b)].4 With this deformation, a
classical Regge solution (i.e., the solution to the classical
Regge equation δSRegge ¼ 0) gives the deficit angles

δh1 ¼ 0.0118; δh2 ¼ 0.0661; δh3 ¼ −0.0215;

δh4 ¼ −0.0236; δh5 ¼ −0.0252; ð6:6Þ

which implies that the classical Regge dynamics gives
curved geometry. We fix the boundary data and vary the
internal segment length l12 ¼ L0 þ δL where L0 ¼ 1.45 is
the length l12 in the flat geometry. The change of l12 is
denoted by δL with δL ∈ ½−0.0129; 0.00251�.5 The
classical Regge action SRegge as a function of δL is plotted
in Fig. 7(a). The above solution leading to (6.6) is close to
the origin δL ¼ 0 and is denoted by δLRegge

c . There exists
another Regge solution in δL < 0 and far from δL ¼ 0 as
shown in Fig. 7(a). We denote this solution by δL̃Regge

c .
Likely, the solution δL̃Regge

c is a discretization artifact
because when smoothly deforming the boundary data l35
back to the one for the flat geometry, δLRegge

c reduces back to
the flat solution. In contrast, δL̃Regge

c still reduces to a curved
Regge geometry. Some boundary data also exist such that the
second solution δL̃Regge

c disappears. Nevertheless, we will
take into account both solutions δLRegge

c and δL̃Regge
c in

discussing the effective dynamics in Sec. VII.
The boundary data ðjb; ξefÞ and the corresponding pseu-

docritical points ðj0h; g0ve; z0vfÞ for the curved geometry with
the boundary segment length l35 → l35 þ 10−3 and the
internal edge l12 ¼ L0 þ δLRegge

c are listed in Appendix C 2.
Notice that the geometrical areas in the boundary data

relate to jb by ab ¼ γjb, and the area ab relates to the
lengths lij by Heron’s formula. The following discussion
involves fixing the geometrical area ab and performing
computations at different Barbero-Immirzi parameter γ, so
this leads to different jb at different γ. Fixing the geomet-
rical area instead of fixing jb is useful when we compare

with the Regge action SRegge, since SRegge only depends on
the geometrical boundary data.

B. Numerical computing the effective action

Given the boundary condition ðjb; ξebÞ corresponds to
the above Regge boundary data with the deformed l35, and
given any l12 and j123ðl12Þ taking value inside a neighbor-
hood of the value for the flat geometry, we find the
pseudocritical point ðj0

h̄
; g0ve; z0vfÞ close to the real critical

point inside the real integration domain. The pseudocritical
point only satisfies ReðSÞ ¼ ∂gveS ¼ ∂zvfS ¼ 0 but does not
necessarily satisfy ∂jh̄S ¼ 0. The pseudocritical point
ðj0

h̄
; g0ve; z0vfÞ is the critical point of the spinfoam amplitude

with fixed jh, jb [9], and endows the Regge geometry
gðrÞ and consistent four-simplex orientations to Δ2

3 com-

plex.6 It reduces to the real critical point ðj∘h̄; g
∘
ve; z

∘
vfÞ when

rl ¼ r
∘
l corresponds to the flat geometry on Δ2

3. As the
deformation of segment length l35 is small, this curved
geometry is close to the flat geometry, so ðj0

h̄
; g0ve; z0vfÞ is

close to ðj∘h̄; g
∘
ve; z

∘
vfÞ in the integration domain. The data

for the pseudocritical point is listed in Appendix C 2.
In this computation, we still adopt the similar para-

metrizations of variables as in (4.5)–(4.7), but with the
pseudocritical points as the origin. The parametrizations of
the group element gv1e2 ; gv2e7 , gv3e3 , gv4e13 ; gv5e17 , gv6e15 ,
gv1e1 ; gv2e6 , and gv3e10 are upper-triangular matrices due to
the SU(2) gauge fixing at nine internal tetrahedra

gve ¼ g0ve

�
1þ x1veffiffi

2
p x2veþiy2veffiffi

2
p

0 �

�
; ð6:7Þ

where the entry � is determined by detðgveÞ ¼ 1. The
internal spin jh̄ is parametrized as

jh̄ ¼ j0
h̄
þ jh̄; jh̄ ∈ R: ð6:8Þ

As a result, for kh ¼ 0, the spinfoam amplitude AðΔ2
3Þ and

Zðj123Þ in (6.1) can be written in the form of

AðΔ2
3Þ ¼

Z
dl12

���� ∂j123
∂l12

����Zðj123ðl12Þ; jb; ξebÞ;

Zðj123ðl12Þ; jb; ξebÞ ∼
Z

d241xμðxÞeλSðrl;xÞ;

rl ¼ ðj123ðl12Þ; jb; ξebÞ; ð6:9Þ

4If the boundary data admitted a flat Regge geometry on the
complex, the flat geometry would be a solution to the Regge
equation. However, the solution of the Regge equation is a curved
geometry with the given boundary data, contradicting the
assumption of admitting the flat geometry.

5The range used here is restricted by the existence of curved
Regge geometry with all tetrahedra spacelike.

6Since the correspondence between j123 and l12 is not one-to-
one globally, it might be possible to have multiple pseudocritical
points corresponding to different Regge geometries with the same
value of j123. However, in our numerical analysis, the other l12
from the same j123 does not satisfy the triangle inequality.
Therefore all pseudocritical points correspond to the same Regge
geometry but with different four-simplex orientations, although
we only focus on a fixed orientation.
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where x≡ ðx1ve; y1ve; x2ve; y2ve; x3ve; y3ve; xvf; yvf; jh̄Þ. The par-
ametrizations of ðl12; xÞ define the coordinate chart cover-
ing the neighborhood K enclosing x̃0 ¼ ðj123; x0Þ ¼
ðj0h; g0ve; z0vfÞ, and x̃

∘ ¼ ðj∘123; x∘Þ ¼ ðj∘h; g∘ve; z∘vfÞ. This
neighborhood is large enough since the parametrizations
are valid generically. The pseudocritical point is
x0 ¼ ð0; 0;…; 0Þ, which contains 241 zero components.
Here we use “∼” instead of “¼” because (1) we only
consider kh ¼ 0 but ignore other kh terms,7 (2) we only
focus on the contribution from the neighborhood K
enclosing a single pseudocritical point.8 In our discussion,
we only consider the effective dynamics within a sector of
Regge geometries with the fixed 4D orientation.
We compute the complex critical point ofZ for any given

external data rl. Here, both Sðr; xÞ and μðxÞ are analytic in
the neighborhood K of x0. Sðr; xÞ can be analytically
continued to a holomorphic function Sðrl; zÞ, and z ∈
C241 is in a complex neighborhood of x0. The analytic
continuation is obtained by simply extending x ∈ R241 to
z ∈ C241. The formal discussion of the analytic continuation
of the spinfoam action is given in [14]. We fix the boundary
data to be the one resulting in (6.6) and vary the length
l12 ¼ L0 þ δL, whereL0 ¼ 1.45 (the value of l12 in Table I)
and the change of l12, δL ∈ ½−0.0129; 0.00251�. For any
given δL, combining the boundary data, we repeat the steps
above (from the beginning of this subsection) to reconstruct
the Regge geometry and the corresponding pseudocritical
point. Taking the pseudocritical point as the starting point,
we apply the Newton-Raphson method by repeating the
steps in (B2)–(B8) to numerically compute the complex
critical point ZðrlÞ for a sequence of δL. By evaluating S at
the complex critical point and apply the asymptotic for-
mula (3.8), we obtain the following asymptotic behavior of
Z andAðΔ2

3Þ for the dominant contribution from the integral
on K

Zðj123ðl12Þ; jb; ξebÞ ∼
�
1

λ

�241
2

N leλSðrl;ZðrlÞÞ½1þOð1=λÞ�;

AðΔ2
3Þ ∼

�
1

λ

�241
2

Z
dl12

���� ∂j123
∂l12

����N leλSðrl;ZðrlÞÞ½1þOð1=λÞ�;

ð6:10Þ

where N l ¼ μðZðrlÞÞ detð−∂2z;zSðrl; ZðrlÞÞ=2πÞ−1=2.
Effectively, AðΔ2

3Þ gives a path integral of Regge geometry
on Δ2

3. Sðrl; ZðrlÞÞ is the effective action for the Regge
geometry in the large-λ regime of the spinfoam amplitude.

The stationary phase approximation of the l12-integral in
(6.10) relates to the variation of Sðrl; ZðrlÞÞ with respect to
l12. The effective equation of motion

∂l12Sðrl; ZðrlÞÞ ¼ 0 ð6:11Þ

determines the effective dynamics of Regge geometry.

C. Comparing to Regge action

It is interesting to compare the effective action
Sðrl; ZðrlÞÞ to the classical Regge action SRegge since both
actions define the dynamics of Regge geometry. The
definition of Regge action SReggeðl12Þ is reviewed in
Appendix D. In order to compare, we compute and plot
the real and imaginary parts SR and SI of Sðrl; ZðrlÞÞ
respectively,

Sðrl; ZðrlÞÞ ¼ SRðγ; δLÞ þ iSIðγ; δLÞ; ð6:12Þ

We view both SR and SI as functions of two variables γ and
δL, and we compute the numerical values of SR and SI with
samples of γ ∈ ½10−9; 106� and δL ∈ ½−0.0129; 0.00251�.
It is known that the spinfoam action contains an overall

phase, which needs to be subtracted to compare to the
Regge action. We denote the overall phase by ϕðγÞ. This
overall phase can be computed numerically by inserting the
pseudocritical point ðj0

h̄
; g0ve; z0vfÞ in the spinfoam action S

and subtracting the Regge action at the corresponding
geometry. Generally, we have

ϕðγÞ ¼ α=γ; ð6:13Þ

where the coefficient α depends on the boundary data. In
terms of the spinfoam variables, the overall phase comes
from the γ-independent terms in S and is linear to the
boundary spins ϕ ∼ jb, but here we fix the boundary area
and let γ vary, then ϕ ∼ ab=γ. The numerical value of α is
α ¼ 0.003993 resulting from our setup of the boundary
data. In general, the overall phase in the spinfoam action

TABLE I. Each cell of the table is the segment length for
vertices Pi and Pj.

j 1 2 3 4 5 6 7

lij

i

1 1.45 3.40 2.07 3.40 3.40 3.81
2 1.45 2.14 0.729 2.45 2.62 2.96
3 3.40 2.14 2.07 3.40 3.40 3.62
4 2.07 0.729 2.07 2.07 2.07 2.34
5 3.40 2.45 3.40 2.07 3.40 3.41
6 3.40 2.62 3.40 2.07 3.40
7 3.81 2.96 3.62 2.34 3.41

7The integrals in the neighborhood K with kh ≠ 0 give
exponentially suppressed contributions.

8there may exist other pseudocritical points outside K in Z,
e.g., the ones corresponding to different orientations of four-
simplices. But our discuss only focuses on the critical points
inside K.
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can be cancelled by the phase choice of boundary ξeb.
To remove the overall phase from SI , we define S0

I by

SIðγ; δLÞ ¼ −S0
Iðγ; δLÞ þ ϕðγÞ: ð6:14Þ

S0
I as a function of δL is compared to the classical Regge

action for different values of γ in Fig. 8. The minus sign in
front of S0

I relates to the four-simplex orientation in the real
and pseudocritical points. As indicated by Fig. 8, S0

I well-
approximates the Regge action for small γ with negligible
corrections. When increasing γ, S0

I gives nontrivial correc-
tions to the Regge action.
For any given γ, the real part SR is always negative, and

jSRj is larger for larger jδLj, so eλS is smaller for larger jδLj.
However, if we fix δL and vary γ, jSRj is smaller so eλS is
less suppressed for any λ, when γ is smaller. In other words,
the smaller γ opens a larger range of δL, in which jSRj is
small and eλS is not suppressed for a given λ. In this range
of δL, the numerical result indicates that Sðrl; ZðrlÞÞ well-
approximates the Regge action. The similar situation has
appeared in the Δ3 amplitude, where the amplitude with
smaller γ admits a wider range of curved geometries [see
Fig. 5(c)].

VII. SOLUTIONS OF EFFECTIVE DYNAMICS
ON DOUBLE-Δ3

A. Spinfoam complex critical point
and the Regge solution δLRegge

c

The above discussion compares the effective action
Sðrl; ZðrlÞÞ to the classical Regge action. It is also
interesting to compare the solution of the effective equation
∂l12Sðrl; ZðrlÞÞ ¼ 0 to the solution of the Regge equation.
By the above computation, the real and imaginary parts of

Sðrl; ZðrlÞÞ are obtained as the numerical function.
Numerically solving the effective equation involves finding
the possible complex roots of numerical derivatives of the
complex Sðrl; ZðrlÞÞ, which requires an estimation of
Sðrl; ZðrlÞÞ on the complex δL plane and may give a
relatively large numerical error. In the following, we
introduce an alternative strategy, which computes the
solution of the effective equation more efficiently.
Instead of introducing the partial amplitude Z, we

consider the full spinfoam amplitude, which can be written
as the following integral for the same contribution as
in (6.10)

AðΔ2
3Þ ∼

Z
dδLd241xμðδL; xÞeλS̃ðr0;δL;xÞ: ð7:1Þ

Here the external parameter r0 is just the boundary data
r0 ¼ ðjb; ξebÞ. S̃ðr0; δL; xÞ is the spinfoam action S with
j123 ¼ j123ðl12Þ and l12 ¼ L0 þ δL.
Recall that δLRegge

c is a solution of the classical Regge
equation. The Regge geometry with δLRegge

c corresponds to
a pseudocritical point of S̃ðr0; δL; xÞ. Both S̃ðr0; δL; xÞ and
μðδL; xÞ are analytic in the neighborhood of this pseudoc-
ritical point. Therefore, S̃ðr0; δL; xÞ and μðδL; xÞ can be
analytic continued to the holomorphic functions
S̃ðr0; δL; zÞ and μðδL; zÞ, where ðδL; zÞ ∈ C242 is in a
complex neighborhood of the pseudocritical point. We fix
the boundary data r0 to be the same as the one used in
Fig. 7. Since r0 is a small deformation from the boundary
data of the flat geometry, the neighborhood covers the real
critical point corresponding to the flat geometry and the
boundary data before the deformation.

FIG. 7. Panel (a) is the Regge action varying with δL when we deform the boundary segment length l35 → l35 þ 10−3 from the
boundary data of the flat geometry. In this case, the Regge solutions are given by δLRegge

c ≃ 0.000439 and δL̃Regge
c ≃ −0.00834. Panel

(b) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP5

i¼1 δ
2
hi
Þ=5

q
versus δL with the deformed boundary data. All geometries in the range of δL are not flat. The minimum offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP5
i¼1 δ

2
hi
Þ=5

q
is 0.013.
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For each γ, we would like to numerically compute the
complex critical points ðδL; zÞ ¼ ðδLSpinfoam

c ; Z̃Þðr0Þ as the
solution to the following equations:

∂zS̃ðr0; δL; zÞ ¼ 0; ð7:2Þ

∂δLS̃ðr0; δL; zÞ ¼ 0: ð7:3Þ

Since we fix the boundary data r0 and vary γ, the complex
critical points give a continuous trajectory parametrized
by γ in the complex space of ðδL; zÞ. In the numerical

FIG. 8. The red curves plots the Regge action as a function of δL. In comparison to the Regge action, the blue curves plots S0
I of the

analytic continued spinfoam action at complex critical points. The green curve plots the real part SR of the analytic continued spinfoam
action at complex critical points.
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computation, we sample a sequence of γ ∈ ½10−9; 106� and
compute the complex critical point for each γ by theNewton-
Raphson method, following the steps in (B2)–(B8). For any
γ, the recursion of the Newton-Raphson method can be
initialized at the pseudocritical point and give the convergent
result within the desired tolerance. Moreover, all resulting
complex critical points depend smoothly on the boundary
data δl35 and reduces to the real critical point when δl35 → 0
(see Fig. 13 for an example).
The solution δL from (7.2) and (7.3) is the same as the

solution of ∂δLSðrl; ZðrlÞÞ ¼ 0. Indeed,

0 ¼ ∂δLSðrl; ZðrlÞÞ

¼ ∂Sðrl; ZðrlÞÞ
∂rl

����
ZðrlÞ

·
∂rl
∂δL

þ ∂Sðrl; ZðrlÞÞ
∂ZðrlÞ

����
rl

·
∂ZðrlÞ
∂δL

¼ ∂Sðrl; ZðrlÞÞ
∂rl

����
ZðrlÞ

·
∂rl
∂δL

¼ ½∂δLSðrl; zÞ�z¼ZðrlÞ; ð7:4Þ

where we have used ∂Sðrl; ZðrlÞÞ=∂ZðrlÞjrl ¼ 0. ZðrlÞ
depends on δL. z ¼ ZðrlÞ is the solution of (7.2),
when analytic continuing δL → δL. The result
½∂δLSðrl; zÞ�z¼ZðrlÞ ¼ 0 from (7.4), followed by analytic
continuing δL → δL, is equivalent to (7.3) with the
solution of (7.2) inserted.

FIG. 9. Panels (a) and (b) are log-log plots of the distances (7.5) between the spinfoam and Regge solutions in a neighborhood of
δL ¼ 0 as a function of γ. The boundary data has the boundary segment length l35 deformed from the flat geometry by l35 → l35 þ 10−3

for (a) and l35 → l35 þ 10−10 for (b).

FIG. 10. Panels (a) show the real part of the spinfoam solution δLSpinfoam
c vs log-scaled γ value with the boundary data deformed from

the flat geometry by l35 → l35 þ 10−3. Panel (b) is the log-log plot of the absolute value of the imaginary parts of the spinfoam solution
δLSpinfoam

c as a function of γ.

FIG. 11. The log-log plot of the average of the absolute value of
the imaginary part of the complex critical point vs γ.
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The complex critical point gives δL≡ δLSpinfoam
c ðγÞ as a

trajectory parametrized by γ in a complex neighborhood
at δL ¼ 0, see Figs. 10(a) and 10(b). This solution is
compared to the Regge solution δLRegge

c ≃ 0.000439 (recall
Fig. 7(a)). This solution δLSpinfoam

c ðγÞ is complex generi-
cally, although it is close to the real axis, especially
for small γ. Figure 9(a) demonstrates the distance (in
the complex plane) between the spinfoam solution
δLSpinfoam

c ðγÞ and the classical Regge solution δLRegge
c ,

jδLSpinfoam
c ðγÞ − δLRegge

c j: ð7:5Þ

This distance is small in the small-γ regime. So the classical
Regge dynamics is reproduced by the spinfoam effective
dynamics for small γ. This result is consistent with
comparing the actions in Fig. 8. This result is also
consistent with some earlier arguments in [17–20]
about the semiclassical approximation of spinfoams with
small γ.
The distance (7.5) becomes larger when increasing γ.

It indicates that the spinfoam amplitude with larger γ gives
larger correction to the classical Regge solution. Therefore
the effective theory in the large-γ regime hasmore significant
difference from theRegge gravity. Furthermore, the distance
(7.5) stabilizes in the large-γ regimes, as shown in Fig. 9(a).
The distance value where it stablizes becomes smaller when
the boundary data is closer to the one for the flat geometry, by
comparing Figs. 9(a) and 9(b). The small- and large-γ
regimes might be viewed as two phases of the spinfoam
amplitude. The effective dynamics is closer to the Regge
dynamics for small γ but more different from the Regge
dynamics for large γ.
The critical point ðδLSpinfoam

c ; Z̃Þðr0Þ is generally com-
plex for every γ (see Fig. 11). Figures 12(a) and 12(b) plot
the analytic continued action S̃ðr0; δL; zÞ [with the overall

phase ϕðγÞ removed] evaluated at the complex critical
points for a large number of samples of γ. The real part
ReðS̃Þ is close to zero for both the small-γ and large-γ
regimes, so eλS̃ in the asymptotic formula (3.8) is not
suppressed for large λ for both the small and large γ. The
nonsuppressed eλS̃ for small γ has been anticipated since it
can be predicted by the bound (5.2). But the nonsuppressed
eλS̃ with large λ in the large-γ regime violates the bound
(5.2). This result suggests that the bound (5.2) is not
universal but only valid for the small or finite γ.

FIG. 12. Panels (a) are the log-log plot of the negative real parts of S̃ðr0; δL; zÞ at the complex critical points z ¼ Z̃ðr0; δLÞ as a
function of γ with the boundary data deformed from the flat geometry by l35 → l35 þ 10−3. Panels (b) show the imaginary parts of
S̃ðr0; δL; zÞ at the complex critical points z ¼ Z̃ðr0; δLÞ vs log-scaled γ. We subtract the overall phase ϕðγÞ from Im½S̃ðr0; δLSpinfoam

c ; Z̃Þ�
and add a minus sign in plotting (b). In panel (b), the overall phase ϕðγÞ ≃ 0.003993γ−1, and the maximum and minimum of the plot
range are Maxa ≃ 0.121606 and Mina ≃ 0.121596.

FIG. 13. The red points are the list-plot of the norm of the
complex critical point ðδLSpinfoam

c ; Z̃Þ vs the deformation of the
boundary segment length δl35. For any complex critical points
ðδLSpinfoam

c ; Z̃Þ ¼ ðδLSpinfoam
c ; z1; z2;…; z241Þ, the norm is defined

as kðδLSpinfoam
c ;Z̃Þk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδLSpinfoam

c j2þjz1j2þjz2j2þ���þjz241j2
q

.
Here, the boundary segment length l35 is deformed from the flat
geometry by l35 → l35 þ δl35 at γ ¼ 10−6, δl35 ∈ ½0; 10−3�. The
blue point is the complex critical point as δl35 ¼ 10−3, and the
green point is the real critical point at the origin (0,0) corre-
sponding to the flat geometry. The cyan curve represents the fitted
function kðδLSpinfoam

c ; Z̃Þk ≃ 1.97 × 106δl35 − 5.49 × 107ðδl35Þ2.
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Figure 9(b) plots jδLSpinfoam
c − δLRegge

c j for the different
boundary data, which deform the boundary data of the flat
geometry by l35 → l35 þ 10−10. This boundary data is
closer to the boundary data for the flat geometry.
The results are qualitatively similar to the results from
the previous boundary data, although the maximum of

jδLSpinfoam
c − δLRegge

c j become smaller comparing to the
results from the previous boundary data. Changing the
boundary data seems not to shift the location in the γ-space,
where the small-γ phase [where (7.5) is small] transits to the
large-γ phase [where (7.5) is stabilizes], as suggested by
comparing Figs. 9(a) and 9(b).

FIG. 14. Panel (a) is the log-log plot of the distance between the spinfoam solution and the Regge solution in a neighborhood of
δL̃ ¼ δL̃Regge

c as a function of γ. Panel (b1) shows the real of the spinfoam solution δL̃Spinfoam
c vs γ. Panel (b2) is the log-log plot of the

imaginary parts of the spinfoam solution δL̃Spinfoam
c vs γ. Panel (c1) is the real parts of S̃ðr0; δL̃; zÞ at the complex critical points vs γ, and

the small figure in (c1) is the log-log plot. Panel (c2) plots the imaginary parts of S̃ðr0; δL̃; zÞ at the complex critical points vs γ.
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B. Complex critical point and the other
Regge solution δL̃Regge

c

Recall from Fig. 7(a) that there is another classical Regge
solution δL ¼ δL̃Regge

c with the boundary condition under
consideration. This solution corresponds to a different
pseudocritical point, which we use as the starting point of
initializing the recursion in the Newton-Raphson method.
Following the same procedure discussed above, we obtain a
new trajectory of complex critical points parameterized by γ.
The complex critical point gives δL ¼ δL̃Spinfoam

c ðγÞ, which
is generically complex. Figure 14 plots the distance
jδL̃Spinfoam

c ðγÞ − δL̃Regge
c j, the real and imaginary part of

the δL̃Spinfoam
c ðγÞ, and the real and imaginary part of the

action S̃ evaluated at the complex critical points. For small γ,
δL̃Spinfoam

c ðγÞ is approximately real and close to the classical
Regge solution δL̃Regge

c . Increasing γ results in that
δL̃Spinfoam

c ðγÞ makes larger corrections to δL̃Regge
c .

Both the complex critical point here, denoted by
ðδL̃Spinfoam

c ; Z̃Þðr0Þ, and ðδLSpinfoam
c ; Z̃Þðr0Þ discussed in

the last subsection give contributions to AðΔ2
3Þ. When

we compare their contributions. eλS is suppressed faster at
the critical point here than at the one in the last subsection
(see Fig. 15) for fixed γ < 0.1. This relates to the fact that
δL̃Regge

c gives larger deficit angles. Therefore the complex
critical point here contributes to the amplitude much less
than the one in the last subsection for generic small γ and
large λ. Recall that δL̃Regge

c likely relates to the discretiza-
tion artifact. The result suggests that the spinfoam ampli-
tude should suppress the contribution from the
discretization artifact, in favor of a good continuum limit.
The complex critical points used in Fig. 14 are likely

beyond the stationary phase approximation (for complex
action) described above and below (3.7), because these
complex critical points do not analytically relate to the real
critical point ðj∘h; g∘ve; z∘vfÞ for the flat geometry. It relates to
the existence of complex critical points with ReðS̃Þ > 0 in
Fig. 14(c1)violating (3.9). Indeed, when we continuously
deform the boundary data r0 by the deformation by l35 →
l35 þ δl35 from the boundary data of flat geometry to the
one that does not admit flat geometry, the solution of (7.2)
and (7.3) deforms analytically from the real critical point to
the previous complex critical point ðδLSpinfoam

c ; Z̃Þðr0Þ (see
Fig. 13, and the similar property holds for the complex
critical points in Sec. VI), but not to any of the complex
critical points used in Fig. 14.
The complex critical point used in Fig. 14 has to be

studied by the fully-fledged Picard-Lefschetz theory (see,
e.g., [22,53,54]). Consequently, given that the spinfoam
amplitude is defined on the real integration cycle where
ReðSÞ ≤ 0, the complex critical point with ReðS̃Þ > 0 does
not contribute to the asymptotics of the amplitude, because
the steepest-ascent flow associated to this critical point

turns out to have no intersection with the real integration
cycle. Therefore, the contributions from the complex
critical points in Fig. 15 are vanishing or suppressed for
finite or larger γ, where ReðSÞ > 0 or eλReðSÞ is suppressed.

VIII. CONCLUSION AND OUTLOOK

Our above analysis demonstrates the importance of
complex critical points in understanding the asymptotic
behavior of the spinfoam amplitude in the large-j regime.
In the case of the four-simplex amplitude, taking into
account the complex critical point generalizes the asymp-
totics to non-Regge boundary data and relates to the twisted
geometry. In the case of the simplicial complex, the
complex critical point plays an important role in deriving
the effective dynamics from the spinfoam amplitude.
The effective dynamics closely relate to the Regge grav-
ity in the small-γ regime, as demonstrated by the numeri-
cal computation for the amplitude on the double-Δ3

complex.
In this paper, we examine the semiclassical behavior of

the spinfoam amplitude within the regime of large-j. The
semiclassical limit characterizes a scenario where the
spinfoam amplitude exhibits behavior akin to classical
gravity. This limit relates to the region where the values
of Planck’s constant are small, leading to the emergence of
classical behavior. On the other hand, the continuous limit
relates to the situation in which a discrete system
approaches a continuous or smooth description. This
typically involves taking a large number of discrete
elements or degrees of freedom and allowing them to
become infinitely numerous, resulting in a continuous and
infinitely divisible system. It may relate to the situation that
the triangulations underlining spinfoams are refined such
that the geometries are made by refined Planckian size
cells. Note that it is actually possible to relate certain

FIG. 15. Figure is the log-log plot of eλRe½S̃ðr0;δL
Spinfoam
c ;Z̃Þ� (blue

curve) and eλRe½S̃ðr0;δL̃
Spinfoam
c ;Z̃Þ� (red curve) as a function of λ

at γ ¼ 10−8.

COMPLEX CRITICAL POINTS IN LORENTZIAN SPINFOAM … PHYS. REV. D 108, 026010 (2023)

026010-21



refinement and small-j spinfoam amplitudes to some
semiclassical behaviors, as shown in [55]. Generally
speaking, while these two limits are related, they are not
interchangeable. For spinfoams, both limits are relevant and
may be taken simultaneously. It is indeed possible, as
shown in [37,56], where the semiclassical gravity on the
continuum is recovered in certain regime with both the
large-j and refinement.
Our work provides a general procedure to derive the

effective theory in the large-j regime. From the perspective
of semiclassical analysis, our numerical computation
should be generalized to triangulations larger than dou-
ble-Δ3, which has more internal segments. One should
check if the Regge gravity still can be reproduced by the
large-j effective dynamics on larger triangulations.
The effective dynamics in LQG has been primarily

investigated in the context of symmetry-reduced models,
such as loop quantum cosmology (LQG) and black holes,
see, e.g., [57,58]. The effective dynamics is useful in
deriving the singularity resolution. Our result shows that
the spinfoam amplitude also results in certain effective
dynamics. However, this effective dynamics is in terms of
the discrete Regge geometry, in contrast to the effective
dynamics in terms of smooth fields in LQC and black holes.
A research in progress is to understand if the effective
dynamics from the spinfoam amplitude can relate to LQC
and black holes. If the relation exists, it might provide a
new approach toward embedding LQC and black hole
models in the full theory of LQG.

It is also interesting to investigate the behavior of the
effective dynamics under the lattice refinement for spin-
foam amplitudes. The Regge geometries approach to the
continuum limit under the refinement, so we expect that the
effective dynamics of Regge geometries from spinfoams
should reduce to certain effective dynamics of the smooth
geometry.
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APPENDIX A: BOUNDARY DATA
FOR SINGLE FOUR-SIMPLEX

In Sec. III, we introduce the real critical points of the
four-simplex, which corresponds to the Regge geometry.
We construct the Regge boundary geometry, Tables II–IV
record areas a

∘
f ¼ γj

∘
f, 3D normals n

∘
ef and the correspond-

ing spinors ξ
∘
ef of the single four-simplex.

Tables V and VI record the values of the real critical
point g

∘
ve and z

∘
vf for the four-simplex with the boundary

data ðj∘f; ξ
∘
efÞ.

All the Regge boundary data r
∘ ¼ ðj∘f; ξ

∘
efÞ and the data of

the real critical point ðg∘ve; z∘vfÞ for the four-simplex
amplitude can be found in the Mathematica notebook [59].

TABLE II. Each cell shows the area of the face shared by line
number tetrahedra and column number tetrahedra.

e0 e01 e02 e03 e04 e05

a
∘
f

e

e1 5 5
e2 2 2
e3 5 2
e4 2 2
e5 5 2

TABLE III. Each cell shows the 3D normal vectors of the face shared by line number tetrahedra and column number tetrahedra.

e0 e01 e02 e03 e04 e05

n
∘
ef

e

e1 (1.00, 0, 0) (−0.333, −0.943, 0) (−0.333, 0.471, −0.816) (−0.333, 0.471, 0.816)
e2 (0.938, 0, −0.346) (−0.782, −0.553, 0.289) (−0.948, 0.276, −0.160) (−0.616, 0.276, 0.738)
e3 (−0.313, −0.884, −0.346) (0.782, 0.553, 0.289) (0.0553, 0.986, −0.160) (−0.0553, 0.673, 0.738)
e4 (−0.244, 0.345, −0.907) (0.739, −0.215, 0.639) (−0.0431, −0.768, 0.639) (−0.0862, 0.122, 0.989)
e5 (−0.436, 0.617, 0.655) (0.859, −0.385, −0.338) (0.0771, −0.938, −0.338) (0.154, −0.218, −0.964)
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APPENDIX B: THE
NEWTON-RAPHSON METHOD

The Newton-Raphson method for the single-variable
equation fðxÞ ¼ 0 is initialized with a starting point x0, and
then one iterate

xnþ1 ¼ xn −
fðxnÞ
f0ðxnÞ

; ðB1Þ

to approach the solution with higher accuracy. In single
four-simplex case as an example, the equations of motion is
44 dimensions, we denote by

F

0
BB@
2
664
z1

..

.

z44

3
775
1
CCA ¼

2
664

f1ðz1;…; z44Þ
..
.

f44ðz1;…; z44Þ:

3
775: ðB2Þ

The derivative of this system is the 44 × 44 Jacobian
given by

Jðz1;…; z44Þ ¼

2
664

∂f1
∂z1

… ∂f1
∂z44

..

. ..
. ..

.

∂f44
∂z1

… ∂f44
∂z44

3
775: ðB3Þ

We define the function G by

GðzÞ ¼ z − JðzÞ−1FðzÞ: ðB4Þ

The functional Newton-Raphson method for nonlinear
systems is the iteration procedure that evolves from the

initial zð0Þ, which in our case is the real critical point x
∘
, and

generates

zðkÞ ¼ Gðzðk−1ÞÞ
¼ zðk−1Þ − Jðzðk−1ÞÞ−1Fðzðk−1ÞÞ; k ≥ 1: ðB5Þ

We can write this as

TABLE IV. Each cell shows a spinor ξef corresponding to a 3-normal to the face.

e0 e01 e02 e03 e04 e05

ξ
∘
ef

e

e1 (0.707, −0.707) (0.707, −0.236 − 0.667i) (0.953, 0.175 − 0.247i) (0.953, −0.175þ 0.247i)
e2 (0.820, −0.572) (0.803, −0.487 − 0.344i) (0.762, 0.622 − 0.181i) (0.932, −0.330þ 0.148i)
e3 (0.572, −0.273 − 0.774i) (0.596, −0.655 − 0.463i) (0.648, 0.043þ 0.761i) (0.362, 0.076 − 0.929i)
e4 (0.976, 0.125 − 0.177i) (0.905, 0.408 − 0.119i) (0.425, 0.051þ 0.904i) (0.997, −0.0432þ 0.0611i)
e5 (0.910, −0.240þ 0.339i) (0.818, −0.525þ 0.236i) (0.576, 0.067 − 0.815i) (0.991, −0.0778þ 0.1100)

TABLE V. Each cell of the table is the critical point of g
∘
ve.

e e1 e2 e3 e4 e5

g
∘
ve

�
0 −i
−i 0

� �
0 −1.03i

−0.969i −0.358i

� �
0 −1.03i

−0.969i 0.337þ 0.119i

� �
0 −1.17i

−0.855i −0.149þ 0.105i

� �
0 0.874i

−1.14i −0.199þ 0.141i

�

TABLE VI. Each cell shows the critical points of z
∘
vf .

e0 e1 e2 e3 e4 e5

z
∘
vf

e

e1 (1, −1) ð1.00; 1.82þ 2.57iÞ
e2 ð1.00;−0.915þ 0.402iÞ ð1.00;−1.41 − 0.31iÞ
e3 ð1.00;−0.333þ 0.943iÞ ð1.00; 0.086 − 0.690iÞ
e4 ð1.00; 1.86þ 0.99iÞ ð1.00; 5.72þ 8.08iÞ
e5 ð1.00;−1.82 − 2.57iÞ ð1.00; 0.071þ 0.470iÞ
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2
664
zðkÞ1

..

.

zðkÞ44

3
775 ¼

2
664
zðk−1Þ1

..

.

zðk−1Þ44

3
775þ

2
664
Δzðk−1Þ1

..

.

Δzðk−1Þ44

3
775; ðB6Þ

where

2
664
Δzðk−1Þ1

..

.

Δzðk−1Þ44

3
775 ¼ −Jðzðk−1ÞÞ−1Fðzðk−1ÞÞ: ðB7Þ

We set the desired tolerance ϵ ¼ 10−100, and we stop after n
iterations when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���ðΔzðn−1Þ1 Þ2 þ � � � þ ðΔzðn−1Þ44 Þ2
���

r
< ϵ: ðB8Þ

The resulting zðnÞ is the approximated solution within the
tolerance. We evaluate the analytic continued four-simplex
action S at zðnÞ and apply it to the asymptotic formula (3.8).

APPENDIX C: BOUNDARY DATA
FOR THE Δ2

3 COMPLEX

1. Boundary data and the real critical point
for the flat Δ2

3 complex

We construct the flat geometry with the segment lengths
in Table I. The corresponding boundary data for flat
geometry is shown in Tables VII–XII. Here, the area af
and the spins jf satisfy af ¼ γjf.
Once the flat geometry is constructed, the real critical

points ðj∘h; g∘ve; z∘vfÞ can be obtained by solving the critical
equations Eqs. (3.1) and (3.2). The solution of the criti-
cal point equations relates to theLorentzian-Reggegeometry,

as described in [8,9]. g
∘
ve relates to the Lorentzian trans-

formation acting on each tetrahedron and gluing them
together to form the Δ2

3 complex. In this model, we fix
gve to be constant SLð2;CÞ matrices for v1e5; v2e9;
v3e12; v4e16; v5e19; v6e21. The group elements gve for the
bulk tetrahedra v1e1; v1e2; v2e6; v2e7; v3e3; v3e10; v4e13;
v5e17; v6e14 are fixed to be the upper triangular matrix.
For the Δ2

3 triangulation, there are five internal faces hð12kÞ
with k ¼ 3, 4, 5, 6, 7. The areas of these internal faces are
shown in Table XIII. The numerical results of the real critical

point ðg∘ve; z∘vfÞ corresponding to the flat geometry are listed
in Tables XIV–XIX.

TABLE VII. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v1 ¼ f1; 2; 3; 4; 6g.

e0 e01 e02 e03 e04 e05

ξ
∘
eb

e

e1 (−0.41þ 0.73i,
−0.15 − 0.52i)

e2 (−0.61þ 0.22i,
−0.76i)

e3 (−0.078 − 0.033i,
0.04 − 1.0i)

e4 (0.60,
−0.66 − 0.46i)

(0.76,
−0.04 − 0.65i)

e5 (0.43,
−0.18 − 0.88i)

(0.95, −0.03þ 0.31i)

e’ e01 e02 e03 e04 e05

a
∘
b

e

e1 0.75
e2 5
e3 0.55
e4 2 2
e5 2.8 2.0
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TABLE VIII. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v2 ¼ f1; 2; 3; 5; 6g.

e0 e02 e06 e07 e08 e09

ξ
∘
eb

e

e2 (−0.72þ 0.13i,
0.02 − 0.68i)

e6 (0.81i, −0.59i)
e7 (−0.27 − 0.19i,

−0.94i)
e8 (0.71,

−0.24 − 0.67i)
(0.95, −0.17þ 0.25i)

e9 (0.74,
−0.67þ 0.05i)

(1.0,
0.048 − 0.068i)

e0 e02 e06 e07 e08 e09

a
∘
b

e

e2 2.8
e6 5
e7 5
e8 5 5
e9 2.6 3.2

TABLE IX. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v3 ¼ f1; 2; 4; 5; 6g.

e0 e03 e07 e010 e011 e012

ξ
∘
eb

e

e3 (−0.22 − 0.03i, 0.07 − 0.97i)
e7 (−0.10 − 0.073i, −0.99i)
e10 (0.18þ 0.98i, 0.065 − 0.11i)
e11 (0.98, 0.12 − 0.18i) (0.43, −0.87þ 0.25i)
e12 (0.99, −0.01 − 0.17i) (1.0, −0.018þ 0.025i)

e0 e03 e07 e010 e011 e012

a
∘
b

e

e3 2
e7 3.2
e10 0.69
e11 5 2
e12 0.55 2
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All the boundary data r
∘ ¼ ðj∘b; ξ

∘
ebÞ and the data of

the real critical point ðj∘h; g∘ve; z∘vfÞ can be found in the
Mathematica notebook in [59].

2. Boundary data and the pseudocritical points
for the curved Δ2

3 complex

The boundary data in Appendix C 1 admits a flat
geometry. To construct a curved geometry, we deform

the segment length l35 → l35 þ 10−3 and keep the other
boundary segment lengths unchanged. We list the boundary
data for this curved geometry in Tables XX–XXV as the
internal segment length is l12 ¼ L0 þ δLRegge

c .
The curved geometry does not have real critical point.

However, we can find the pseudocritical point ðj0h; g0ve; z0vfÞ,
which is close to the real critical point inside the real
integration domain. The pseudocritical point satisfies the
critical equation (3.1) but violates the critical equation (3.2).

TABLE X. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v4 ¼ f1; 2; 3; 4; 7g.

e0 e01 e013 e014 e015 e016

ξ
∘
eb

e

e1 (−0.33þ 0.75i, −0.11 − 0.56i)
e13 (−0.52þ 0.71i, −0.35 − 0.32i)
e14 (−0.59þ 0.71i, −0.18 − 0.35i)
e15 (0.90, −0.14 − 0.41i) (0.63, 0.33þ 0.71i)
e16 (0.94, −0.25 − 0.22i) (0.94, 0.28 − 0.18i)

e0 e01 e013 e014 e015 e016

a
∘
b

e

e1 2
e13 3.2
e14 2.1
e15 5.6 2.3
e16 0.75 0.5

TABLE XI. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v5 ¼ f1; 2; 3; 5; 7g.

e0 e06 e013 e017 e018 e019

ξ
∘
eb

e

e6 (0.04þ 0.77i, 0.01 − 0.63i)
e13 (−0.48þ 0.71i, −0.31 − 0.41i)
e17 (−0.19þ 0.17i, −0.18 − 0.95i) (−0.05þ 0.25i, −0.06 − 0.97i)
e18 (0.90, −0.43)
e19 (0.71, −0.26 − 0.65i) (0.95, 0.19þ 0.25i)

e0 e06 e013 e017 e018 e019

a
∘
b

e

e6 2.6
e13 5.6
e17 5.4 3.5
e18 5
e19 3.2 5.2
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TABLE XII. Boundary data ða∘b; ξ
∘
ebÞ for the 4-simplex v6 ¼ f1; 2; 4; 5; 7g.

e0 e010 e014 e017 e020 e021

ξ
∘
eb

e

e10 (0.20þ 0.91i, 0.07 − 0.35i)
e14 (−0.55þ 0.68i, −0.16 − 0.46i)
e17
e20 (0.76, 0.22 − 0.61i) (0.74, 0.57 − 0.36i) (0.85, 0.52 − 0.1i)
e21 (0.95, −0.31þ 0.07i) (0.39, 0.89 − 0.23i)

e0 e010 e014 e017 e020 e021

a
∘
b

e

e10 2
e14 0.5
e17
e20 2.1 5.4 2.4
e21 0.69 3.5

TABLE XIII. Areas of internal faces h in Δ2
3 complex.

ahð123Þ ahð124Þ ahð125Þ ahð126Þ ahð127Þ
0.971 0.333 1.55 1.78 1.93

TABLE XIV. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v1 ¼ ð1; 2; 3; 4; 6Þ.
e e1 e2 e3

g
∘
v1e

�
0.96 0.42þ 0.04i
0 1

� �
0.99 −0.05 − 0.15i
0 1

� �
0.77 −0.13 − 0.72i
0 1.3

�
e e4 e5
g
∘
v1e

�
0 −1.0i

−0.97i 0.34þ 0.12i

� �
0 −1.1i

−0.91i 0.46þ 0.12i

�

e0 e01 e02 e03 e04 e05

jz∘v1fi
e

e1 (1;−0.94þ 0.69i) (1;−0.82þ 0.45i)
e2 (1; 0.87 − 0.49i) (1;−0.33þ 0.94i)
e3 (1;−0.1þ 1.5i) (1; 2.5þ 6.0i)
e4 (1;−0.92þ 0.40i) (1; 0.3þ 2.1i)
e5 (1;−0.14þ 0.75i) (1; 0.2 − 1.4i)
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The data for the pseudocritical point is listed in
Tables XXVI–XXXI.
The boundary data for the curved geometry and the

corresponding pseudocritical point can be found in
Mathematica notebook [59].

APPENDIX D: REGGE ACTION

Let us first recall the volume of the simplex. The volume
formula for the Lorentzian four-simplex σ is given
by [60,61]

Vσ ¼
ð−1Þ4
24ð4!Þ2 detðCσÞ; ðD1Þ

where Vσ is the volume square and detðCσÞ is the Cayley-
Menger determinant. The Cayley-Menger matrix Cσ is the
6 × 6 matrix with entries l2ij for i; j ¼ 0;…; 4, where lij is
the segment length. The Cayley-Menger matrix is aug-
mented by an additional row and column with entries given
by ðCσÞ5;5 ¼ 0 and ðCσÞi;5 ¼ ðCσÞ5;j ¼ 1. That is

Cσ ¼
� l2ij 1i

1j 0

�
ðD2Þ

Similarly, the volume formula of the Euclidean tetrahedron
is given by

TABLE XV. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v2 ¼ ð1; 2; 3; 5; 6Þ.
e e2 e6 e7

g
∘
v2e

�
0.99 −0.05 − 0.15i
0.99 −0.05 − 0.15i

	 �
0.98 0.32
0 1

	 �
1.0 −0.031þ 0.044i
0 0.96

	
e e8 e9
g
∘
v2e

�
0 −1.0i

−1.0i 0

	 �
1.26 0.09 − 0.13i

0.09þ 0.13i 0.82

	

e0 e02 e06 e07 e08 e09

jz∘v2fi
e

e2 (1;−0.1þ 1.5i) (1;−0.14þ 0.75i)
e6 (1; 0.87 − 0.49i) (1; 0.87 − 0.49i)
e7 (1;−0.86 − 0.07i) (1; 1.8þ 2.6i)
e8 (1;−0.33þ 0.94i) (1;−1.8 − 2.6i)
e9 (1;−1.09 − 0.05i) (1; 4.9þ 7.0i)

TABLE XVI. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v3 ¼ ð1; 2; 4; 5; 6Þ.
e e3 e7 e10

g
∘
v3e

�
0.77 −0.13 − 0.72i
0 1.3

	 �
1.0 −0.031þ 0.044i
0 0.96

	 �
0.96 0.38
0 1

	
e e11 e12
g
∘
v3e

�
0 −1.2i

−0.86i −0.15þ 0.11i

	 �
0 −1.8i

−0.55i −0.16þ 0.12i

	

e0 e03 e07 e010 e011 e012

jz∘v3fi
e

e3 (1;−0.94þ 0.69i) (1; 0.3þ 2.1i)
e7 (1;−0.1þ 1.5i) (1; 4.9þ 7.0i)
e10 (1;−0.86 − 0.07i) (1;−0.45 − 0.08i)
e11 (1; 1.8þ 2.6i) (1;−0.68 − 0.15i)
e12 (1; 2.5þ 6.0i) (1; 5.7þ 8.1i)
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V τ ¼
ð−1Þ3þ1

23ð3!Þ2 detðCτÞ ðD3Þ

here, Cτ is the Cayley-Menger matrix for the tetrahedron,
which is a 5 × 5 matrix defined similarly as the above.
Given a⃗ and b⃗ as timelike normal vector of two

tetrahedra τa, τb of the four-simplex σ, the Lorentzian
dihedral angles are [62,63]

θtðσÞ ¼ sgnða⃗ · b⃗Þcosh−1
�
sgnða⃗ · b⃗Þ a⃗ · b⃗

ja⃗jjb⃗j

�
;

sgnða⃗ · b⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða⃗ · b⃗Þ2

q
a⃗ · b⃗

: ðD4Þ

In the four-dimentional triangulation, the hinge of the angle
is a triangle denoted by t. Given a triangle t, it is shared by
τa and τb, and st̄ is the length square of the segment
opposite to the triangle t in σ. For example, in the four-
simplex σ ¼ ð12345Þ, the tetrahedra τa ¼ ð1234Þ and τb ¼
ð1235Þ share the triangle t ¼ ð123Þ. Then t̄ is the segment
(45). The dihedral angles with respect to t are given by [64]

θtðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
V t

∂Vσ
∂st̄

	
2

r
1
V t

∂Vσ
∂st̄

cosh−1

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
V t

∂Vσ
∂st̄

	
2

r
1
V t

∂Vσ
∂st̄

32·42
V t

∂Vσ
∂st̄ffiffiffiffiffiffiffiffiffiffiffi

32
Vτa
V t

q ffiffiffiffiffiffiffiffiffiffiffi
32

V τb
V t

q
1
CCA

ðD5Þ

TABLE XVII. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v4 ¼ ð1; 2; 3; 4; 7Þ.
e e1 e13 e14

g
∘
v4e

�
0.96 0.42þ 0.04i
0 1

	 �
0.84 0.82þ 0.19i
0 1.2

	 �
0.68 1.3þ 0.9i
0 1.5

	
e e15 e16
g
∘
v4e

�
0 −1.3i

−0.79i −0.34 − 0.92i

	 �
0 −1.3i

−0.77i −0.49 − 1.01i

	

e0 e01 e013 e014 e015 e016

jz∘v4fi
e

e1 (1; 0.87 − 0.49i) (1;−0.92þ 0.40i)
e13 (1;−0.92þ 0.75i) (1;−0.73þ 0.54i)
e14 (1;−0.94þ 0.69i) (1;−0.94þ 0.77i)
e15 (1;−0.83þ 0.56i) (1;−1.1 − 1.2i)
e16 (1;−0.82þ 0.45i) (1;−1.0þ 0.81i)

TABLE XVIII. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v5 ¼ ð1; 2; 3; 5; 7Þ.
e e6 e13 e17

g
∘
v5e

�
0.98 0.32
0 1

	 �
0.84 0.82þ 0.19i
0 1.2

	 �
0.84 0.73 − 0.05i
0 1.2

	
e e18 e19
g
∘
v5e

�
0 −1.1i

−0.88i −0.72i

	 �
0 −1.2i

−0.86i 0.03 − 0.72i

	

e0 e06 e013 e017 e018 e019

jz∘v5fi
e

e6 (1;−0.86 − 0.07i) (1;−1.09 − 0.05i)
e13 (1; 0.87 − 0.49i) (1;−0.83þ 0.56i)
e17 (1;−0.92þ 0.75i) (1; 1;−3.2þ 0.6i)
e18 (1;−1) (1;−1.9þ 2.2i)
e19 (1;−0.73þ 0.54i) (1;−1.8 − 0.8i)
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Here, V are volume square (V t ¼ a2t is the area square) and
s is length square. As we only consider the spacelike
triangles and tetrahedra, so all the volume square are
positive. The above formula can be simplified as

θtðσÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
V t

∂Vσ
∂st̄

	
2

r
1
V t

∂Vσ
∂st̄

cosh−1

0
BB@
42

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
V t

∂Vσ
∂st̄

	
2

r
ffiffiffiffiffiffiffi
V τa

p ffiffiffiffiffiffiffi
V τb

p
1
CCA: ðD6Þ

Here, the volume of four-simplex, tetrahedra and areas of
triangles can be computed by following Eqs. (D1) and
(D3). Given any simplicial complexK, Regge action can be
defined as

SRegge ¼
X
σ⊂K

X
t⊂σ

atθtðσÞ; ðD7Þ

where at are the areas of the triangles t and θt is the dihedral
angle of triangle t.

TABLE XIX. The real critical point ðg∘ve; z∘vfÞ for the 4-simplex v6 ¼ ð1; 2; 4; 5; 7Þ.
e e10 e14 e17

g
∘
v6e

�
0.96; 0.38

0 1

	 �
0.68 1.3þ 0.9i
0 1.5

	 �
0.84 0.73 − 0.05i
0 1.2

	
e e20 e21
g
∘
v6e

�
0 −1.1i

−0.93i −0.17 − 0.96i

	 �
0 −1.2i

−0.84i 0.4 − 2.3i

	

e0 e010 e014 e017 e020 e021

jz∘v6fi
e

e10 (1;−0.94þ 0.69i) (1;−0.68 − 0.15i)
e14 (1;−0.92þ 0.75i) (1;−1þ 0.81i)
e17 (1;−0.86 − 0.07i) (1;−1.9þ 2.2i)
e20 (1;−0.94þ 0.77i) (1;−2.7 − 0.4i)
e21 (1;−0.45 − 0.08i) (1;−3.2þ 0.6i)

TABLE XX. Boundary data ðab; ξebÞ of the curved geometry for the four-simplex v1 ¼ f1; 2; 3; 4; 6g.
e0 e01 e02 e03 e04 e05
ξeb

e

e1 (−0.40þ 0.73i, −0.15 − 0.53i)
e2 (−0.61þ 0.22i, −0.76i)
e3 (−0.079 − 0.033i, 0.04 − 1.0i)
e4 (0.60, −0.66 − 0.46i) (0.76, −0.04 − 0.65i)
e5 (0.43, −0.18 − 0.88i) (0.95, −0.03þ 0.31i)

e’ e01 e02 e03 e04 e05
ab

e

e1 0.75
e2 5
e3 0.55
e4 2 2
e5 2.8 2.0
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TABLE XXI. Boundary data ðab; ξebÞ of the curved geometry for the four-simplex v2 ¼ f1; 2; 3; 5; 6g.
e0 e02 e06 e07 e08 e09
ξeb

e

e2 (−0.71þ 0.13i, 0.02 − 0.69i)
e6 (0.81i, −0.59i)
e7 (−0.27 − 0.19i, −0.94i)
e8 (0.71, −0.24 − 0.67i) (0.95, −0.17þ 0.25i)
e9 (0.74, −0.67þ 0.05i) (1.0, 0.049 − 0.065i)

e0 e02 e06 e07 e08 e09
ab

e

e2 2.8
e6 5
e7 5
e8 5 5
e9 2.6 3.2

TABLE XXII. Boundary data ðab; ξebÞ of curved geometry for the four-simplex v3 ¼ f1; 2; 4; 5; 6g.
e0 e03 e07 e010 e011 e012
ξeb

e

e3 (−0.22 − 0.03i, 0.07 − 0.97i)
e7 (−0.105 − 0.072i, −0.99i)
e10 (0.18þ 0.98i, 0.065 − 0.106i)
e11 (0.98, 0.12 − 0.18i) (0.43, −0.87þ 0.25i)
e12 (0.99, −0.01 − 0.17i) (1.0, −0.018þ 0.025i)

e0 e03 e07 e010 e011 e012
ab

e

e3 2.0
e7 3.2
e10 0.69
e11 5 2
e12 0.55 2
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TABLE XXIII. Boundary data ðab; ξebÞ of curved geometry for the four-simplex v4 ¼ f1; 2; 3; 4; 7g.
e0 e01 e013 e014 e015 e016
ξeb

e

e1 (−0.33þ 0.75i, −0.12 − 0.57i)
e13 (−0.52þ 0.71i, −0.35 − 0.32i)
e14 (−0.58þ 0.71i, −0.19 − 0.35i)
e15 (0.90, −0.14 − 0.41i) (0.63, 0.33þ 0.71i)
e16 (0.94, −0.25 − 0.22i) (0.94, 0.28 − 0.18i)

e0 e01 e013 e014 e015 e016
ab

e

e1 2
e13 3.2
e14 2.1
e15 5.6 2.3
e16 0.75 0.5

TABLE XXIV. Boundary data ðab; ξebÞ of the curved geometry for the 4-simplex v5 ¼ f1; 2; 3; 5; 7g.
e0 e06 e013 e017 e018 e019
ξeb

e

e6 (0.04þ 0.77i, 0.01 − 0.64i)
e13 (−0.48þ 0.71i, −0.31 − 0.41i)
e17 (−0.19þ 0.17i, −0.18 − 0.95i) (−0.05þ 0.25i, −0.05 − 0.97i)
e18 (0.90, −0.43)
e19 (0.71, −0.26 − 0.66i) (0.95, 0.19þ 0.24i)

e0 e06 e013 e017 e018 e019
ab

e

e6 2.6
e13 5.6
e17 5.4 3.5
e18 5
e19 3.2 5.2
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TABLE XXV. Boundary data ðab; ξebÞ of the curved geometry for the four-simplex v6 ¼ f1; 2; 4; 5; 7g.
e0 e010 e014 e017 e020 e021
ξeb

e

e10 (0.20þ 0.91i, 0.07 − 0.35i)
e14 (−0.55þ 0.68i, −0.16 − 0.47i)
e17
e20 (0.76, 0.22 − 0.61i) (0.74, 0.57 − 0.36i) (0.85, 0.52 − 0.1i)
e21 (0.95, −0.31þ 0.07i) (0.39, 0.89 − 0.23i)

e0 e010 e014 e017 e020 e021
ab

e

e10 2
e14 0.5
e17
e20 2.1 5.4 2.4
e21 0.69 3.5

TABLE XXVI. The pseudocritical point ðg0ve; z0vfÞ for the four-simplex v1 ¼ ð1; 2; 3; 4; 6Þ.
e e1 e2 e3

g0v1e
�
0.96 0.40þ 0.02i
0 1

	 �
0.99 −0.06 − 0.16i
0 1

	 �
0.78 −0.12 − 0.71i

−0.00024 − 0.00065i 1.29

	
e e4 e5
g0v1e

�−0.0016 − 0.0001i −1.0i
−0.97i 0.34þ 0.12i

	 �
0 −1.1i

−0.91i 0.46þ 0.12i

	

e0 e01 e02 e03 e04 e05

jz0v1fi
e

e1 (1;−0.95þ 0.70i) (1;−0.82þ 0.45i)
e2 (1; 0.87 − 0.50i) (1;−0.34þ 0.95i)
e3 (1;−0.1þ 1.5i) (1; 2.5þ 6.0i)
e4 (1;−0.92þ 0.40i) (1; 0.3þ 2.1i)
e5 (1;−0.14þ 0.75i) (1; 0.2 − 1.4i)
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TABLE XXVII. The pseudocritical point ðg0ve; z0vfÞ for the four-simplex v2 ¼ ð1; 2; 3; 5; 6Þ.
e e2 e6 e7

g0v2e
�

0.99 −0.05 − 0.15i
0.0024 − 0.0112i 1.01

	 �
0.98 0.30
0 1

	 �
1.0 −0.029þ 0.048i
0 0.97

	
e e8 e9
g0v2e

�
0.0008þ 0.00056i −1.0i

−1.0i −0.0054 − 0.0011i

	 �
0 −0.98i

−1.0i 0.029þ 0.016i

	

e0 e02 e06 e07 e08 e09

jz0v2fi
e

e2 (1;−0.1þ 1.5i) (1;−0.14þ 0.75i)
e6 (1; 0.87 − 0.48i) ð1;−1)
e7 (1;−0.86 − 0.07i) (1; 1.8þ 2.6i)
e8 (1;−0.33þ 0.94i) (1;−1.8 − 2.6i)
e9 (1;−1.09 − 0.05i) (1; 4.7þ 6.9i)

TABLE XXVIII. The real critical point ðg0ve; z0vfÞ for the four-simplex v3 ¼ ð1; 2; 4; 5; 6Þ.
e e3 e7 e10

g0v3e
�
0.78 −0.13 − 0.72i
0 1.29

	 �
1.04 −0.030þ 0.046i

−0.0010þ 0.0018i 0.96

	 �
0.96 0.38
0 1

�
e e11 e12
g0v3e

�−0.00013 − 0.0001i −1.2i
−0.85i −0.15þ 0.11i

	 �
0 −1.8i

−0.55i −0.16þ 0.12i

	

e0 e03 e07 e010 e011 e012

jz0v3fi
e

e3 (1;−0.94þ 0.69i) (1; 0.3þ 2.1i)
e7 (1;−0.1þ 1.5i) (1; 4.9þ 7.0i)
e10 (1;−0.86 − 0.07i) (1;−0.45 − 0.08i)
e11 (1; 1.8þ 2.6i) (1;−0.68 − 0.15i)
e12 (1; 2.5þ 6.0i) (1; 5.7þ 8.1i)
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TABLE XXIX. The pseudocritical point ðg0ve; z0vfÞ for the four-simplex v4 ¼ ð1; 2; 3; 4; 7Þ.
e e1 e13 e14

g0v4e
�

0.96 0.42þ 0.04i
0.02 − 0.02i 1.05

	 �
0.84 0.82þ 0.2i
0 1.2

	 �
0.68 1.3þ 0.9i

−0.0023þ 0.0038i 1.5þ 0.01i

	
e e15 e16
g0v4e

�
0.0032 − 0.0015i −1.3i

−0.79i −0.34 − 0.92i

	 �
0 −1.3i

−0.77i −0.49 − 1.01i

	

e0 e01 e013 e014 e015 e016

jz0v4fi
e

e1 (1; 0.88 − 0.46i) (1;−0.91þ 0.40i)
e13 (1;−0.92þ 0.75i) (1;−0.73þ 0.54i)
e14 (1;−0.94þ 0.68i) (1;−0.94þ 0.77i)
e15 (1;−0.83þ 0.56i) (1;−1.1 − 1.2i)
e16 (1;−0.82þ 0.45i) (1;−1.0þ 0.81i)

TABLE XXX. The pseudocritical point ðg0ve; z0vfÞ for the four-simplex v5 ¼ ð1; 2; 3; 5; 7Þ.
e e6 e13 e17

g0v5e
�

0.98 0.32
0.011þ 0.006i 1.03

	 �
0.84 0.82þ 0.19i

−0.0012þ 0.011i 1.19

	 �
0.84 0.73 − 0.05i
0 1.2

	
e e18 e19
g0v5e

�−0.00066þ 0.00052 −1.1i
−0.88i −0.72i

	 �
0 −1.2i

−0.86i 0.03 − 0.72i

	

e0 e06 e013 e017 e018 e019

jz0v5fi
e

e6 (1;−0.86 − 0.07i) (1;−1.09 − 0.06i)
e13 (1; 0.87 − 0.50i) (1;−0.83þ 0.56i)
e17 (1;−0.93þ 0.75i) (1; 1;−3.2þ 0.6i)
e18 (1;−1) (1;−2þ 2.2i)
e19 (1;−0.73þ 0.54i) (1;−1.8 − 0.8i)
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