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Ultraviolet behavior of conformally reduced quadratic gravity
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We study the conformally reduced R + R’ theory of gravity and we show that the theory is
asymptotically safe with an ultraviolet critical manifold of dimension three. In particular, we discuss
the universality properties of the fixed point and its stability under the use of different regulators with the
help of the proper-time flow equation. We find three relevant directions, corresponding to the /g, /gR, and

\/§R2 operators, whose critical properties are very similar to the ones shared by the full theory. Our result
shows that the basic mechanism at the core of the asymptotic safety program is still well described by the
conformal sector also beyond the Einstein-Hilbert truncation. Possible consequences for the asymptotic

safety program are discussed.
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I. INTRODUCTION

Despite the fact that the asymptotically safe approach to
quantum gravity is a relatively new approach to the
quantization of the gravitational field, the basic assump-
tions of this approach are deeply rooted in old-fashioned,
standard quantum field theory. The basic idea at the core of
this program is that, as long as we do not insist on the
notion of continuum limit tailored to perturbation theory,
gravity can be treated along the same lines as similar
quantum field theories whose continuum limit is defined
nonperturbatively. This possibility was first suggested by
Weinberg [1] and further implemented by Reuter [2] by
means of the Wilsonian renormalization group (RG)
formalism in quantum field theory (QFT) [3-11]. (See
the recent books [12,13] for a pedagogical introduction to
the subject.)

It is possible to explain the technical mechanism which
lies at the root of the nonperturbative renormalization of
Einstein’s gravity in simple physical terms. Perhaps the
most illuminating discussion in this context has been
presented by Polyakov [14], who noticed that as gravity
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is always attractive and therefore a larger cloud of virtual
particle implies a stronger gravitational force, Newton’s
constant G should be antiscreened at small distances. The
implication of this behavior suggests that the dimensionless
coupling constant g(#) = G(¢)/¢? tends to a finite non-
zero limit at small distances

limg(£) < g* #0 (1)

as G scales as #? according to its natural dimensions. A
theory whose dimensionless coupling constant approaches
a non-Gaussian (nonvanishing) fixed point (NGFP) in the
short distance limit as in (1) is called asymptotically safe (at
variance with the more familiar case of the asymptotic
freedom where ¢g* = 0.)

In a series of papers Reuters and collaborators have
clarified that conformal factor plays a central role in the
emergence of the NGFP in the ultraviolet region and in
the determination of the critical properties of the theory
[15-17]. There are two issues in particular which make the
emergence of (1) highly nontrivial, the first one is the use of
the background field approach, and the second is the pivotal
role played by the conformal mode instability. In fact, the
central idea of conformal field quantization is to employ the
background metric (in the sense of the background field
method) in constructing the Wilsonian renormalization
group equations. On the other hand, as the conformal
factor has the wrong kinetic sign in the Euclidean theory,
either the conformal factor is integrated out before doing
any functional integral [18], or a special regulator must be
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employed to cutoff modes with the “wrong” ultraviolet
stability properties. As first discussed in [19], the IR
evolution of the renormalization trajectory can be prob-
lematic and only an ultraviolet evolution can be consis-
tently defined. Most probably a new kind of perturbative
continuum limit for quantum gravity emerges in the deep
UV for the conformally reduced theory, in this case, [20].

The role of the conformal degrees of freedom in
determining the presence of the NGFP has been discussed
for pure R? in [21]. The authors found that the fixed point
disappears for pure gravity but is present when matter is
included. In four dimensions the question was further
discussion in a conformally reduced version of the f(R)
theory in [22]. The authors found a scaling solution with
properties qualitatively very similar to the ones constructed
from the full flow equation obtained using a smooth
approximation to the full spectrum of the hyperspherical
harmonics. More recently the existence of the NGFP for the
conformally reduced R + R? theory has been questioned in
[23] a flat-space derivative expansion combined with an
exponential parametrization for the fluctuations of the
conformal factor has been used.

In this work, close in spirit to the original [24] calcu-
lation, we consider a conformally reduced R + R? theory
with a linear parametrization for conformal factor fluctua-
tions, and a compact background projection. We find that
the NGFP is clearly present and, more importantly, the
universal properties of the UV critical manifold of the
reduced theory are very similar to those shared by the full
quadratic theory. Our conclusion is that the role of the other
degrees of freedom of the metric is mostly relevant for the
actual location of the fixed point in the space of the
coupling constants, but it plays no significant role in
deciding the universal properties of the theory.

II. FUNCTIONAL FLOW EQUATION
FOR THE CONFORMAL FACTOR

It is instructive to clarify the main steps in the derivation of
the flow equation for the conformal factor. Let S[y] be the
action for the fundamental field y(x) that we write as y(x) =
x8(x) + f(x) where yp(x) is a nondynamical background
field and f(x) a dynamical (fluctuating) field. In this
formalism y plays the same role of a microscopic metric
Y in the full theory. In the complete framework a back-
ground metric g, is chosen in order to perform the actual
calculations, and the fluctuations £, are thus “integrated-
out” in momentum shell (in the Wilsonian approach). The
background should be dynamically determined by the
requirement that the expectation value of the fluctuation
field vanishes, (4,,) = l_ilw = (. Any physical length must
then be proper with respect to the background metric g, .
In the conformally reduced theory the expectation values
f=(f) and ¢ = (y) = yp + f are the analogs of h,, =
(h,) and g,, = (y,,) = G + hy, in the full theory.

The central idea of the conformal field quantization is to
employ the background metric

g/u/ = X%}yg;w (2)

where g, is a reference metric which plays no dynamical
role but it is instead fixed to perform the actual calculations
on the geometry defined by g. The momentum scale k is
therefore a “proper”-g,, momentum scale defined from the

eigenvalues of the —[J operator. Therefore
K= p5k (3)

in the case of a constant y [15,25] As discussed in [15,19]
the difference AS;, = Sy, 11, — Sk, can then be evaluated
in the infinitesimal momentum shell between kp and
kg + Okp, where kg is the “proper” momentum operator
built with the background metric g,,. A functional flow
equation is finally obtained by taking the dkz — 0 limit and
performing a renormalization group improvement of the
resulting expression. After this step is accomplished, the
“background-independent” flow is obtained expressing all
the running “proper” momenta in terms of the reference
energy scale k. Rewriting the (regularized) one-loop con-
tribution in the Schwinger “proper-time” formalism one
finds

Ly [245 FSilfx
0Sklfxs) = —ETTA T@,Pk exp{—s%},

(4)

where 7 =log(k) is the RG time and p; = pi[ys]. The
important difference between this type of functional proper-
time flow equation and the version used in earlier inves-
tigations is that the trace in (4) is here computed by means
of the representation provided by the spectrum of —[J,

Tr[A] = / Al /5(xAlx) = / A/ (A, (5)

For actual calculations we shall use various families of
smooth cutoffs p; = p}(’z(s, n) that have been widely used
in the literature [19,26,27] whose explicit expressions are

[(n,sZk*) —T(n, sZA?)

phls.m) = ol (6

[(n, snZk*) —T(n, snZA?)
2 _ ’ ’
pk(s7 l’l) - F(n) .

(7)

Here n is an arbitrary real, positive parameter that controls
the shape of the p,lc’Q(s, n) in the interpolating regions, and
[(a,x) = [*®di®'e™" denotes the incomplete gamma-
function. Furthermore, Z is a constant which has to be
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adjusted: being the kinetic terms of the field of type a of the
form —Zalj, we impose exactly Z = Z,. With this pre-
scription, in (6) the eigenvalues of [J are cut off at ~IA<2,
instead of ~k> /Z,. Similarly, in (7) the cutoff is located at
~k?/n. These two choices represent two so-called “spectral
adjustments.” Moreover, as background independence must
be achieved, the trace inside the flow equation (4) must be
performed on the modes of the background g,,. This is
concretely performed inside the regularizators through the
identification k> = y2k?. Finally, A represents the cutoff in
the UV. As we are interested only in the Wilson-Kadanoff
portion of the RG, the UV cutoff is sent to infinity. Overall,
this leads to implementing the scaling laws

2 2v
at,[)}((S’ n) = _m (SZkQ)(%U)ne_SZkZXB . (8)

0P (s.n) = =~ (snZKgy Ve B (9)

2
T'(n)
inside the flow equation. Concretely, the calculations for both
cutoff families are performed through a range of values for
the smoothness parameter n: n = {3,5,7,9, 10, 15, 20,
30,40,50}. The limiting case n — oo is also considered
for the second regularizator: this is readily done through the

already known identity [28]
0 : (10)
Tz )

Finally, as an extra check for the robustness of the physical
results under a change in the regularizator shapes, a slight
modification in the cutoff structure p,lc’z is also studied.
Cutoffs (8) and (9) are built through the regularization on K2,
which are the modes of the —[] operator. Because our model
(described in detail in Sec. III) contains both —J and [?
operators, following the reasonings of [29], we also apply a
regularization on the quadratic operator in order to check
possible differences in the physics of the results. New cutoffs
are defined:

e 2
,}ggoatpi '(s,n) = 7
B

[(n, s(Zk* + Z2k*)) = T(n, s(ZA2 + Z2A%))

=1
pk(s’ I’l) - F(}’l)
(11)
.  T(n,sn(Zk + Z2k*)) =T (n,sn(ZA? + Z*A*))
Pi(s,n) = ’
I'(n)
(12)
In particular in the A — oo limit we obtain,
2
OPks.m) = ~ s (2R + 2K
% e—s(ZkZ)(?—O—sz'ﬁ(f{). (13)

2
F(n) (sn(Zk2 2v —|—sz4)(%”))"

X e—sn(ZkZJ(%" +sz4)(§}”) .

o,pi(s,n) =

(14)

III. NONPERTURBATIVE g-FUNCTIONS

In this section implement the RG flow equation approach
to study the conformal sector of the following theory:

:/ddx\/g[ﬁ(—R—i—ZA)—i—ﬁRz} (15)

A Weyl rescaling g,, = ¢(x)*,, is implemented, where
v =12/(d-2)and j,, is a reference metric. Weyl rescaling
leads to

R= g (k-0 T g
where g(d) = 2u(d = 1) —1*(d-1)(d-2)) =0 as v =

2/(d—2) and R = R(). Being the scaling of the metric
V9 = ¢™\/3, the effective action is

I = / ddx@[—lzmmqs Ul

d— 24-8_
#16(575) nCarg
d_ 2d— 8
+ -8 (m)ﬂk (Eg)pi= 1} (17)
where U] = AZRP* — 2AZ, At + B R P2, A =
(d-2)/8(d—1) and
, 1 d-1
K 0nGrd -2

The expansion of the conformal factor ¢ = y + f with
f = 0leads to the left-hand side (lhs) of the flow equation:

N 2d
or, - / /30,2 ARY — 240, (ZeAze

+ @BR .

The explicit expression for the r.h.s. requires the computation
of the contribution of the second functional derivative of the
effective action inside the trace. From the expression of
effective action (17) it is possible to write its second func-
tional derivative. Because the field is then expanded as ¢ =
x5 + f with constant background y and fluctuation f — 0,
(2)

we can write I}

(18)

as the sum of two terms:

r® —x+y, (19)
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where X indicates the terms surviving f — 0, while the
operator ) will contain only terms involving powers of f or
derivatives of f, which will be null when considering f — 0,
hence adding no contribution to the present calculation. We
are only left with the X operator, which can be written as:

2d-8

n 2d.
X =2Z,AR = 2ABZy Ay > + CRRY 82

d— 2d -8 P 2{;1:23_2 N
w=(zrs(553) (55 - 1)@% )e

d—1\2 s 5.
+32<d 2) P LR (20)

This relatively short expression for the second functional
derivative of the effective action is due to the choice of the
projection onto a spherical geometry, where the ) operator
can be dismissed right away. In a flat geometry, for example,
R = 0 and the effective action (17) would look very different.
In this case, the terms involving derivatives of the fluctuation
field should be carried on throughout the calculation in order
to find their respective equivalents in the right-hand side (rhs)
of the flow equation: this would require the computation of )
and its evaluation inside the trace—a lengthy task, as )} will
contain many noncommuting operators, especially going at
higher orders in curvature. The choice of the spherical
geometry corresponds instead with a constant, non-null
curvature, which allows one to readily forget about all the
operators involving derivatives of the fluctuation field, which
can be considered null at earlier steps in the computation. The
original pure CREH study [19] considered two different
geometry projections (S¢ spherical and R flat geometry) in
order to perform comparisons on the results and identify
“universal quantities,” i.e., quantities unaltered by external
factors such as the choice of the geometry projection:
following the same spirit, we consider the spherical projec-
tion but implement different regularization schemes in the
cutoff of the IR spectrum. In particular, we implement the
scaling laws (8)—(9) of two different regularization families
(6)—(7) already introduced in Sec. II. As the trace must be
performed on the modes of the operator —[J, each —Olin the
operator X and each mode & in the regularizators must be
expressed in terms of their background counterparts through
[J = #%[ and k* = y%k?. For example, using the second
regularizator p? (s, n) leads to the following rhs of the flow
equation:

1 (s 2 4 .0
oI, =— | = 7 2 f2\n p=snZiypk
t+ k 2/0 s ( F(n) <S7’l KX'B ) )

2d-8
% e—s[zk(zAk—zAB/\k;(g )+Cﬁ Ry Z]TrW(—lj),

@)

where

W(=0) = e~s-@u; DR 2)G+Eﬂu{%_ziz], (22)
with D =16(4=}) (22— 1) and E = 32(%=})%. The last

trace can be performed through a Seeley-Gilkey-deWitt heat
kernel expansion at quadratic order in curvature:

WD) = [ dVEY @l0er (29

k>0

where 0, = 7 [5° d2W(z)z"~" and where the first coef-

ficients of the expansion in the spherical projection are
[ag) = 1, [a)] = R/6, [ay] = f(d)R* with

1 1 1
Fd) =13 <Z+5d(d—1)_ﬁ)' (24)

With this expansion, the rhs of the flow equation can be
written as the sum of three integrals: for example, in the case
of the second regularizator it becomes explicitly

R .
o =1, + ch+ R*f(d)I5 (25)

where each integral /; (with j = 1, 2, 3) is defined as

/ddx\/—)(B 4 )d/z ank2 dz)

1 oo q>
x— | ag—T (26
F(§1+1—j)/0 Tavbgreqy
where

-2

a—ank +Zk(2AR QABAZET?) + ChRY

b= Zk;( + DﬁkR)( ,

= BB

Notice that for d = 4 and for j = 3, the integral in the ¢
variable in (20) is seemingly divergent in ¢ = 0. This causes
no problem, as this apparent divergence is cured by the
opposite divergence given by the factor 1/I'(3 — j). After
having performed the /; integrals, the rhs (25) is then
expanded in powers of y. The trajectories 9,Z;, 9,(Z;Ay),

and 0,6, in (18) are then recovered through the identifica-

tion with the corresponding terms Ry2, ya/“"? and

R%y (Zd 8)/(d=2) respectively. Finally, the beta functions for
the dlmensionless couplings z;, 4, and f3; can be recovered,
where Z = k9727, A = k?J, and 8 = k% *b. Because of the
exceeding length in computation time for general dimension d
and regularizator smoothing parameter n, the computation
was performed fixing the value d =4 and different
finite values of n: n = {3,5,7,9, 10, 15, 20, 30, 40, 50}, as
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already mentioned in Sec. II. This was done for both
regularizators p,lc’z, where we expect no significant differences
in the physics described by the two different cutoffs. Some
examples of resulting beta functions can be found in
Appendix B. While the procedure outlined in this section
is related to finite values of smoothness parameter n, the
limiting case n — oo was also studied for the second cutoff
family. This is readily performed through the identity (10).
With this scaling law, the computations of the rhs of the flow
equation are straightforward. The rhs is then

2nd/2 ods 1
2r)T(d/2) Jo s Zkszgz

1
X O (s - i)
Zik g

2d-8_,
27, AR- 2ABZkAk;(‘1‘2 +C/ikR2 a=2
xXe Int,(s)

(27)

where Int,,(s) is defined as the integral
o 24-4 249
/ dp pd—le—S[(ZuB TRDp Ry )P EB G pY) (28)
0

The result of the computation of (27) is then expanded in
powers of R up to quadratic order and in powers of the
background field yp to identify matchings between the
rhs and the lhs of the flow equation (18) as in the finite n
case. Examples of the resulting beta functions for the
dimensionless couplings related to the d = 4 case can be
found in Appendix B.

Finally, the same calculations were performed with the
slightly altered cutoff families defined in (11)-(12), with
corresponding scaling laws (13)—(14). As already men-
tioned in Sec. II, with these new scaling laws also the [1?
operator appearing in our model is regularized. The
subsequent calculations are extremely similar to the ones
shown until now. It is found that the resulting beta functions
at fixed dimension d and steepness n perfectly coincide
with the beta functions obtained with the original regular-
izators scaling laws (8)—(9) at the same d and n, high-
lighting the robustness of the results under a change in the
cutoff shape.

IV. RESULTS

A. Check: CREH limit case f§ — 0

As a first check it was shown that, in the limit # — 0, the
newfound beta functions reproduce the old beta functions
of the pure CREH model studied originally in [19], together
with their UV attractive fixed points. We remind the reader
that critical exponents are defined as the eigenvalues of the
stability matrix of the derivatives of beta functions with

respect to the different dimensionless couplings, evaluated
at the fixed point coordinates:

p. 0B. B,
M, (FP) = [0_37 5 oif}

(zd)=(z"2")

As shown in [19] and Table I (which can be found in
Appendix A), the pure CREH critical exponents always
assume a form of the type € 4 i0”, where the Lyapunov
exponent @ is always a negative number, while the
imaginary part 0" represents a spiral behavior of the
trajectories around the fixed point. The contents of
Table I contain the results pertaining the employment of
both cutoff families p,*(s,n). As this serves only as a
check, a small selection of the finite n values was taken into
account: n = {3,5,7,9}. The limit n - +oco was also
considered for the second cutoff p2(s,n), exploiting the
identity (10) as shown in the previous Section. As expected,
the parameters obtained with p?(s,n) coincide with the
results in [19], where only the second type of cutoff p (s, n)
was studied. Switching between the two different regular-
izators, it is possible to see that while the coordinates of the
fixed points are not preserved by the regularizator switch,
the product g*A* and the values of the critical exponents
represent more universal properties of the CREH model.
This was already shown in the original paper [19], where a
comparison between the parameters obtained by the
spherical and flat geometry projection was performed.
Here the comparison is performed within the same spheri-
cal geometry projection, but with different cutoff shapes:
this different approach leads nonetheless to the same
conclusions of [19].

B. Results for the conformally reduced
quadratic theory

The beta function systems obtained in the conformal R +
R? theory (some examples of beta functions appear in
Appendix B) lead to the determination of a new UV
attractive fixed point. This happens in particular for the
beta functions related to the choice of # < 0. The properties
of this new UV fixed point (such as the coordinates
(g*(orz*), A*, b*), the products of the previous coordinates
and the critical exponents 4;,4,3 = 6 £ i6”) are summa-
rized inside Tables II-III) in Appendix A. The new fixed
point is characterized by three critical exponents: a real,
negative 4, and two complex 4, 3 = @' + i@”, with negative
Lyapunov exponent 6', closely following the CREH
behavior outlined in Sec. IVA. Similarly to the CREH
study results, the fixed point coordinates g* and 1* values
do not represent universal quantities per se, as they vary
switching between the two different cutoffs p}(s,n) and
pi(s, n)—even though the signs of the coordinates g* (or
7*), 2* and b* are kept untouched. On the other hand, the
coordinate products g*A* and b*g*1*, the coordinate »* and
the critical exponents do not change with the cutoff choice.
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FIG. 1.

The spiral-like behavior which already appeared in the pure
CREH model is still preserved, as shown by the structure of
the eigenvalues 4,3 = 8’ + i0”. Note that the signs of the
newfound fixed point ¢g* < 0, 4* > 0 and b* < 0 simply
correspond to an overall negative sign on the action (15) at
the fixed point. Clearly the precise value of the action at the
fixed point has no importance in this discussion as we are
only interested in discussing the structure of the UV critical
manifold, in particular the possibility of defining a non-
trivial continuum limit for the conformal factor in the
quadratic sector of the full theory.

We show in Fig. 1 some examples of trajectories in the 3D
parameter space obtained by integrating their correspondent
beta functions. Each figure depicts the attractive, spiral-like
behavior of the system around their fixed point. In particular,
the figure on the left shows how the spiral behavior flattens
onto a plane when it is close to the fixed point: this is
represented mathematically by the purely real, negative
critical exponent 4; which contributes to the attractiveness
of the fixed point, while 4, ; = 6 + i0” describe the attrac-
tive spiral motion component onto a 2D plane.

While the present analysis was able to show the
existence of a UV attractive fixed point for the quadratically

32 . : . . 32
30F {30
28+ 128
261 {26
241 {24
63
221 {22
20 . P P
3 5 7 910 15 20 30 40 50 w
n

-0.00038
p-0.00036
-0.00034 b

-0.00030

000025 .

Flow of g, 4, and b for various values of the cutoff.

truncated theory (notice that the number of relevant
directions in asymptotic safety has already been confirmed
to be three through universal on-shell results in [30]), we
also wish to compare our results with the ones of [24],
where a similar study was conducted taking into account all
the tensorial degrees of freedom of the metric and leading,
similarly, to the identification of an attractive fixed point.
While this main feature once again seems to be related
purely to the conformal degree of the metric, we also wish
to study in depth the details of the newfound fixed point
through its parameters shown in Tables I[I-1V. Before doing
this, we also notice that while in the pure CREH model the
UV-attractive non-Gaussian fixed point coexisted with the
usual Gaussian fixed point (g%, 1*) = (0,0), characterized
by both an attractive and repulsive direction, in this new
model the Gaussian fixed point is lost: (g, 4, b) = (0,0,0)
is a fixed point solution only for the beta functions d,g; and
0. This is in line with the results of [24], where a
Gaussian fixed point does not appear. Regarding the
parameters in Tables II-1V, we show in Fig. 2 the plots
of the resulting critical exponents at different values of n.
In order to perform a clear comparison with [24], we have

renamed 65 :=—4; and —4,5:=6"+i6" to work with
20 120
/
15F o—— 115
10 11.0
.
0.5 10.5
ool o N
3 5 7 910 15 20 30 40 50 =
n

FIG. 2. Plot of the critical exponents 4, ¢, and " for different values of n. Second cutoff family p? (s, n) implemented.
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FIG. 3. Plot of the fixed point coordinate b* and the product b*g*A* for different values of n. Second cutoff family p?(s,n)

implemented.
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FIG. 4. Plot of the fixed point coordinates g*, A* and the product g*A* for different values of n. First cutoff family p} (s, n) implemented
on the left figure, second cutoff family p?(s,n) implemented on the right figure.

positive quantities. Figure 3 contains similar plots for the
coordinate values of b* and the product b*g*A*, where the
rotation (g*, A%, b*) — (—g*,1*,—b*) was performed for
the same reason. As the quantities described in Figs. 2-3 do
not change switching cutoff family, such plots are repre-
sented for only one regularizator shape p? (s, n). Figure 4
contains instead plots regarding the behavior of the
coordinates g*, A* and product g*A*. As the coordinates
g*, and 1* depend on the regularizator shape applied, we
represent the plot for each cutoff family.

The curve describing the critical exponents closely
resembles the behavior found by [24] when implementing
a family of exponential shape functions as regulators (see
Fig. 6 of [24]). On top of this, the new critical exponent 85
is of bigger order of magnitude with respect to the other
exponents, exactly as in [24]. In particular while the other
exponents are substantially stable as a function of n, 65 is
significantly dependent on n. Applying the principle of
minimal sensitivity [31] we find indication the around n ~
100 65 (see Fig. 2) is only weakly dependent on n but the
precise value of n is difficult to determine numerically. The
curve for b* and the coordinates g*, * and g*A* also share
similar behaviors as in Fig. 3 of [24], further highlighting
the many similarities of the two studies, in spite of the big

difference in the difficulty of the problems tackled. The
only clear difference between the purely conformal theory
results and the full degrees of freedom problem is shown in
the right panel of Fig. 4, where the behavior of g* decreases
with 7 instead of increasing. As we already determined that
the universal quantities emerging from this analysis are the
critical exponents, together with g*1*, ¢*A*b* and b*, it
does not surprise us that these are the quantities which can
safely be compared between different pictures of the same
model, such as this analysis and the one already performed
in [24]. While strictly focusing on these parameters, the
behaviors in both results share many similarities: this once
again suggests that the conformal component of the metric
is truly able to capture a significant portion of the UV
behavior of the model.

V. CONCLUSIONS

In this work we have shown that the critical properties
Reuter fixed point of a conformally reduced quadratic
gravity theory like R + R? are determined by the dynamics
of the conformal factor. Our approach is closer in spirit to
the original paper by Reuter and Lauscher [24] it employs a
linear parametrization of the fluctuations and a compact
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topology for the projection of the flow equation. The role of
the additional propagating degrees of freedom, if we
compare our result with the full calculation presented in
[24] is essentially confined to the location of the fixed point
in the theory space. On the contrary the behavior and the
stability of the critical exponents against change in the
regulator is qualitatively very similar to that of the full
theory. It would be very important to consider higher
truncation in the CREH approximation to see if the critical
properties of the theory are still determined by the
conformal factor. In fact this would have far reaching
consequences for the structure of the vacuum of the full
theory which could be dominated by nonhomogeneous
field configuration which dominated the path integral as
showed in [32]. Moreover it could also shed light in a
proper definition of the cutoff for the general f(R) theory
for which the definition of a global scaling solution
strongly depend on the details of the chosen regulator
[33]. We hope to return on these points in a following work.
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APPENDIX A: FIXED POINT
PARAMETER TABLES

TABLEI. Fixed point parameters obtained using the first cutoff
pi(s,n) and the second cutoff p?(s,n) in the pure CREH limit
case f — 0.

Fixed point parameters for p}(s,n), f - 0

n Z* g* l* g*/l* 6/ 9//
3 —0.050 4712 0375 1767 =3.000 4.795
5 —0.025 9.424 0.250 2356 —-1.000 3.872
7 —0.017 13482 0.187 2527 -0.600 3.527
9 —-0.013 17.386 0.150 2.607 —-0.428 3.353
—+—m DEEEEY e e ... e DECEEY
Fixed point parameters for p2(s,n), f — 0
n Z* g* }.* g*i* 9/ 9//
3 —0.151 1.570  1.125 1.767 =3.000 4.795
5 —-0.126  1.884 1250 2356 —-1.000 3.872
7 —0.123 1.926  1.312 2527 -0.600 3.527
9 —0.123 1.931 1.350 2.607 —0.428 3.353
+o0 -0.127 1.876  1.500  2.815 0 2.828

TABLE II. Fixed point parameters obtained using the first
cutoff p}(s,n) and the second cutoff pZ(s,n) in the quadratic
theory.

Fixed point parameters for p} (s, n)
n Z* g* 1 b*
3 3.276 x 1073 —72.870 0.169 —3.695 x 107*
5 2.027 x 1073 —117.731 0.099 —3.223 x 107*
7 1.460 x 10-3 —163.484 0.069  —-3.061 x 10~*
9 1.139 x 1073 —209.495 0.053 —2.979 x 107+
10 1.026 x 1073 —232.547 0.048 —2.951 x 1074
15 6.859 x 10~* —348.009 0.031 —2.872 x 1074
20 5.149 x 10~ —463.619 0.023 —2.835 x 10+
30 3.435x 107 —694.983 0.015 —2.798 x 10~*
40 2,576 x 107 -926.417 0.011 —2.781 x 10~*
50 2061 x 107 —1157.879  0.009  —2.770 x 10~

Fixed point parameters for p?(s,n)
n Z* g* 1* b*
3 9.828 x 1073 —24.290 0.509 —3.695 x 107*
5 1.013 x 1072 —23.546 0.496 -3.223 x 107*
7 1.022 x 1072 —23.354 0.488 —3.061 x 1074
9 1.025 x 1072 —23.277 0.484 —2.979 x 107*
10 1.026 x 1072 —23.254 0.482 —2.951 x 1074
15 1.028 x 1072 —23.200 0.478 —2.872 x 1074
20 1.029 x 1072 —23.180 0.475 —2.835 x 107*
30 1.030 x 1072 —23.166 0.472 —2.798 x 10~*
40 1.030 x 1072 -23.160 0.471 -2.781 x 10~
50 1.030 x 1072 -23.157 0.470 -2.770 x 107
+00 1.031 x 1072 —23.150 0.467 —2.729 x 10~*
TABLE III. Fixed point parameters obtained using the first
cutoff p}(s,n) and the second cutoff p?(s,n) in the quadratic
theory.

Fixed point parameters for p} (s, n)
3 —12.382 —6.279 x 1073 0.026 4575 <1073
5 —11.682 -3.198 x 1073 0.037 3.765 x 1073
7 —11.418 —2.138 x 1073 0.050 3.495 x 1073
9 —-11.279 —1.604 x 1073 0.062 3.360 x 1073
10 —11.231 —1.425x 1073 0.068 3.315x 1073
15 —11.092 —9.156 x 107° 0.099 3.186 x 1073
20 —11.024 —6.741 x 107° 0.131 3.125 x 1073
30 —10.957 —4.412x 107 0.194 3.066 x 1073
40 —10.924 -3.279 x 107° 0.257 3.038 x 1073
50 —10.904 —2.609 x 107° 0.320 3.021 x 1073

Fixed point parameters for p2(s,n)
3 —12.382 —1.883 x 107 8.975 x 1073 4.575 x 1073
5 —11.682 —1.599 x 10~* 7.589 x 1073 3.765 x 1073
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TABLE III. (Continued)

Fixed point parameters for p?(s,n)

N e b A b*g" b g i
7 —11418  —1496x 107*  7.149x 1073 3.495 x 1073
9 —11279  —-1.443x10* 6934 x 103  3.360 x 1073
10 —11.231  —-1425x10* 6864 x 103  3.315x 1073
15 —11.092  -1373x10*  6.665x 103  3.186 x 1073
20 —11.024  —-1348x10*  6.572x 1073  3.125x 1073
30 —10.957 -1323x107* 6483 x 103  3.066 x 1073
40 -10.924  —1311x10™* 6441 x 103  3.038 x 1073
50 —10.904  —-1.304 x10™*  6.415x 1073  3.021 x 1073
+oo  —10.826 —-1276x10™*  6.318x 1073 2954 x 1073

APPENDIX B: EXPLICIT EXPRESSIONS
FOR BETA FUNCTIONS

In this section, we explicitly report some explicit expres-
sions for the beta functions obtained for dimension d = 4
using the second cutoff p? (s, n) at different values for the
smoothness parameter n (finite n = {3,5,7,9} and the
limit n — o0). We do not show the remaining n =
{10, 15,20, 30,40,50} as their expressions get extremely
cumbersome. Each choice of n leads to couples of beta
functions depending on the sign of the coupling f. This
section contains beta functions only related to the sign # < 0,
which are the ones leading to significant physical results as
shown in Sec. IV. Beta functions for # > 0 are not shown here
due to excessive length. To avoid further prolixity, we do not
include the explicit expressions for the beta functions
pertaining the choice of the first cutoff p)(s,n), as they
share similar structure to their second cutoff counterparts.

TABLE 1V. Fixed point parameters obtained using the first
cutoff p}(s,n) and the second cutoff pZ(s,n) in the quadratic
theory.

Fixed point parameters for p} (s, n)

n A 0 0"

3 -3.035 —-0.584 1.488
5 —2.546 -0.586 1.494
7 -2.382 -0.588 1.500
9 -2.300 -0.589 1.504
10 -2.272 -0.589 1.505
15 -2.193 -0.590 1.510
20 -2.156 -0.591 1.512
30 -2.120 -0.592 1.515
40 -2.103 -0.592 1.516
50 -2.092 -0.592 1.517

Fixed point parameters for p?(s,n)

n A 4 o’

3 -3.035 —-0.584 1.488
5 —2.546 —-0.586 1.494
7 -2.382 —0.588 1.500
9 -2.300 -0.589 1.504
10 —-2.272 -0.589 1.505
15 -2.193 -0.590 1.510
20 -2.156 -0.591 1.512
30 -2.120 -0.592 1.515
40 -2.103 -0.592 1.516
50 -2.092 -0.592 1.517
+o0 -2.503 —0.709 1.966

1. Beta functions for dimensionless couplings at d =4, with second cutoff p,% (s,n), smoothness parameter n =3

<220150628352n2b4(3 —24)07 + 4 (3272(3 = 24)27 + 27

+ —30233088b%(3 — 24)%/2(32b(24 — 3) — 2)1/288b(24 — 3) + ztanh™"! ( V2 >>

V/288b(24—3) + 2

1
% = T 1622 (3 = 22)2(288b(2A = 3) + 2)°

+ 144b(22 - 3)73(2567%(3 — 22)?z + 351)

+ 597196803 (24 — 3)3\/z(—8171/2885(3 — 24) — z + 5127%(3 — 21)%23/% — 1134,/7)

4 62208b%(3 — 21)273/2(24371/288b(3 — 21) — z + 2567%(3 — 21)%23/% — 180/2)
0,4 = !

1672(3 — 22)%,/z(288b(24 — 3) + 2)*

<z7/2(/1(189 —327%(3 = 24)%z) — 243) — 2201506283527°b*(3 — 21)04/Z

+ —5971968b% (24 — 3)3 (817241/288b(3 — 24) — z + 512724(3 — 22)223/> + 486(54 — 4)/7)
+ 1445 (21 — 3)72(2437(24 — 3)1/288b(3 — 24) — z — 25672A(3 — 24)22%/% + 35144/7)

+ —622085%(3 — 24)%z(—812(74 — 6)1/288b(3 — 24) — 7 + 2567%A(3 — 24)22>/% 4 36(231 — 27)/Z)

+ —69984b(3 — 21)21/288b(24 — 3) + 2(13824b24(2A — 3) + 144b(6 — 74)z — 2?)tanh™! ( V2 ))

\/288b(24 - 3) +z
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2021760b%z°  1944bz* N 2
24-3 (3-24)?%  (24-3)

3
© 25672(288b(24 — 3) + 2)°
+ —4478976b323/2(96/7 — 11571/288b(3 — 21) — z)

— 429981696b* (24 — 3)(757+/2/288b(3 — 22) — 7 + 5547)

0,b =

(3962711310336175(3 —22)2 +

+ 44789760b3/7(237 — 1440b(24 — 3))+/288b(21 — 3) + ztanh™! ( V2 >)
val ( ))V/288b( ) \/288b(24—3) +z

2. Beta functions for dimensionless couplings at d =4,
with second cutoff pZ(s,n), smoothness parameter n =5

1
3272(5—22)*(288b(24—5) + 2)°
+ 5184052 (5 — 22)224(15367%(5 — 24)*z + 105625) + 365203474360565762b5 (5 — 24) 'z

+ 746496053 (22 — 5)323 (409672 (5 — 24)* 7 + 433125) + 48b(24 — 5)2° (230472 (5 — 24)*z + 128125)
+ 6191736422453 (24 — 5)3,/2(—1093757/288b(5 — 24) — 7 + 122887%(5 — 22)*z/% — 2181250,/2)
+358318080b*(5 — 22)*2%/2(11156257+/288b(5 — 24) — 2 + 1843272(5 — 24)*z3/2 + 372500,/2)

2= <Z6<64ﬂ'2(5 —2)%z 43125

+ —4702924800000056% (5 — 22)*/z(288b(24 —5) — 172)1/288b(21 -5 +Ztanh‘1< V2 ))
(5~ 2)*\/2(288b (24— 5) — 172)/288b(2~ 3) TV

1
" 327%(5-24)"/Z(288b(24—5) + 2)
+ 21/2(2(9375 — 6472(5 — 22)*2) — 15625) — 24b(24 — 5)2%/2(44(11527%(5 — 22)*z — 190625) + 1265625)
+ —51840b7(5 —22)%27/>(A(15367% (5 — 24)*z — 319375) + 534375)
+ —619173642245%(22 — 5)3(10937574+/288b(5 — 24) — z + 1228872A(5 — 22)*23/% 4 6250(5411 — 480)/7)
+ —7464960b% (22 — 5)322(—656257(24 — 5)1/288b(5 — 22) — 7 + 409672A(5 — 22)*z3/% + 625(1640 — 13491)/2)
+358318080b* (5 — 24)*2(656257(294 — 30) /2885 (5 — 24) — z — 1843272A(5 — 22)*z3/2 4+ 12500(194 + 27)1/Z)
+ —979776000000563 (5 — 24)*1/288b(24 — 5) + 2

o g (—365203474360565767r2b6(5 —21)14/z

x (13824b2(24 — 5) + 48b(30 — 29)7 — Zz)tanh-l( Vz ))
\/288b(22=5) + 2

3125 1474702848b%7*  2268bz°
0b=— 32868312692450918457 (5 — 21)2
! 23047%(288b (24 —5) + z)’ ( ( S+ (5-24)? * (5-22)*

2327616b%7°  731775098880b6%73 4
773967052855 73/2(32 122857+/288b(5 —21) — S —
Q=57 21-5 * SP(32va+ 122857 (-20-9+5G 57

+ —22290251120645°(24 — 5)(15757/21/288b(5 — 24) — 2 + 163062)

+ 1462797729792065/Z(137 — 480b(24 — 5))/288b(24 — 5 +ztanh—1< V2 ))
val (24-5))/288b(24-3) /288b(24—5) + 2
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3. Beta functions for dimensionless couplings at d =4, with second cutoff p,% (s,n), smoothness parameter n =7

1
©2407%(7 — 22)°(288b5(24 = 7) + z)®
+36288b%(7 — 21)22°(307207%(7 — 24)°z + 304357963)

+ 376233984b*(7 — 21)*z* (61440072 (7 — 21)°z + 8405197507)

+ 2271857773302207479808072 b8 (7 — 2A)14z + 720b(24 — 7)z" (15367%(7 — 24)z + 14000231)

4 156764165 (24 — 7)32° (409607 (7 — 21)°z + 458713451) + 54177693696b° (24 — 7)°73(9830407%(7 — 24)°z
+20161156183) 4 4814694242058240b7 (2 — 7)7+/z(19023843371/288b(7 — 21) — 2

+1310722%(7 — 24)°73/? — 4679371326,/7) + 3900793946112055(7 — 24)073/>

x (—20382689257+/288b(7 — 24) — 7 + 19660872 (7 — 24)°z%/2 + 2242389940,/7)

+ —63606936665505713356800°(7 — 24)6+/Z(2885(24 — ) — 25z)\/288b(24 — 7) + ztanh™!

) <\/288b(;{12— 7) + z>>

1
2407%(7 — 22)°,/7(288bh(24 — 7) + z)
+ z19/2(2(9058973 — 4807%(7 — 24)°z) — 17294403)

4 —7838208b% (24 — 7)%z%/2(204(40967%(7 — 21)°z — 98236915) + 3665589893)

+ =36b(24 — 7)z"3/2(24(153607%(7 — 21)°z — 305534453) + 1158725001)

+ —36288h%(7 — 24)?z'1/2(A(307202%(7 — 24)°z — 658010857) + 1237785129)

+ —376233984b*(7 — 24)*27/2(A(6144007% (7 — 21)°z — 18035709349) 4 33706791447)

4 4814694242058240b7 (7 — 24)7 (13107272 4(7 — 24)°23/? + 1647086(38651 — 3584)+/2)
+ —9159398879832822723379207b (7 — 24)711/288b(7 — 21) — 2

+ —54177693696b° (24 — 7)°22(9830407% (7 — 24)°2z3/% — 117649(3002474 — 451080)+/2)
+ —662572256932351180807zb° (24 — 7)°22\/288b(7 — 24) — z

+ —=390079394611205°(7 — 22)°2(1966087%(7 — 24)0Az>/% — 470596(67511 — 6951)+/7)
+ —31803468332752856678407b°% (7 — 21)°(37A — 42)2+/288b(7 — 24) — 2

+ —1325144513864702361605°(7 — 24)°1/288b(24 — 7) + z

0,z =

<528(967r2 (7 —22)5z + 823543)

04 = S <—227185777330220747980807[%8(7 = 20)"/z

x x(13824b%A(2 — 7) + 48b(42 — 372)z — 2?)tanh™! ( Vz ))
\/288b(24—17) + z

823543 259743283203z  4965733912412166°z*  2760bz%

23047%(288b(24 —7) + 2)° ( (7=22)* + (7-24)? * (7-24)°

1322964099072b%z°  3452544b%77 Z
Q=77 @=7F iy

a,b =

+ 272622932796264897576965°(7 — 24)? +

159936452584538112b6°73
24—17
4 26748301344768b7(3128967> — 495495773/%1/288b(7 — 2)) — z)

+ 693315970856386565% (24 — 7)1/2(500571/2885(7 — 22) — 2 — 63718,/2)

+ —240975446815014912057 /7(2885(24 — 7) — 112)1/288b(24 — 7) + ztanh™! ( vz ))
\/288b(24=7) + z
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4. Beta functions for dimensionless couplings at d =4, with second cutoff p2(s,n), smoothness parameter n=9

1
 44872(9 — 2)8(288b(24 — 9) + 2)
4 93312h%(9 — 24)228(358407%(9 — 22)8z + 117474501609)

+ 11287019525*(9 — 22)*2°(114688072 (9 — 24)%z + 4320642433491)

+ 83588441702405°(9 — 24)°z*(128450567%(9 — 24)%z + 66078826024329)

+ 35174901281105282144969687047°5'0(9 — 22)18z + 7205 (22 — 9)z° (35847 (9 — 22)8z + 11235194181)
+ 447897603 (21 — 9)377 (5734407(9 — 24)3z + 1993020135579)

+ 69657034752b%(2) — 9)775(64225287%(9 — 24)87 + 27236736544725)

+ 842571492360192057 (24 — 9)723(209715272%(9 — 24)37 + 15922594677411)

4 23295416620774588416b° (21 — 9)°,/z(52428807%(9 — 24)37%/% — 71183865807882,/7)

+ 580766581310007717096644306534407b° (21 — 9)°1/7+/288b(9 — 21) — z

+ 727981769399205888b%(9 — 24)823/2(26214407%(9 — 22)82%/2 + 15755616446652+/7)

+ —66546170775105050917323826790407b8 (9 — 24)823/2,/2885(9 — 24) — 2
+ —120993037772918274395134230528068(9 — 24)8/2(96b(24 — 9) — 11z)

x /288521~ 9) + ztanh™ <\/288b(§ =)

0,z =

= <7z10(128n2(9 —22)87 + 387420489

1
0,4 = —3517490128110528214496968704725'°(9 — 24)'%2
T 4487%(9 — 22)8,/2(288b(24 — 9) + 2)1° < o JRAVz

+ 2'9/2(1(5036466357 — 8967%(9 — 21)8z) — 10460353203)

+ =72b(24 — 9)z'7/2(81(44807%(9 — 24)3z — 25957172763 + 428874481323)

+ —93312b%(9 — 24)?z"5/2(51(71687%(9 — 24)87 — 43175861163) + 442821618927)

+ —1119744b%(24 — 9)3213/2(22(11468807%(9 — 21)8z — 7274077961301) + 29592339211287)

+ —161243136b*(9 — 22)*z'1/2(54(160563277 (9 — 24)3z — 10946049356043) + 110185873856001)
+ —34828517376b° (24 — 9)72%/%(44(32112647%(9 — 24)87 — 24412871647125) + 194301060745725)
4 —83588441702406°(9 — 21)°77/2(A(128450567 (9 — 24)%z — 118001694801087) + 233652909495411)
4 23295416620774588416b°(9 — 22)°(52428807%A(9 — 22)873/% + 2324522934 (388151 — 36864)/7)
+ —580766581310007717096644306534407b°(9 — 22)°4+/2885(9 — 24) — 7

4 168514298472038457 (9 — 22)7z%(104857607%(9 — 21)81z3/% — 1162261467(1089411 — 181992)+/7)
+ 42011471448929956387199385607b7 (9 — 24)7 (24 — 9)z21/288b(9 — 21) — z

+ —727981769399205888h%(9 — 24)82(26214407%(9 — 24)81z3/% — 1549681956(14069 — 17559),/7)
+ —181489556659377411592701345792075% (9 — 24)¥ (51 — 6)2+/288b(9 — 24) — 2

4 —8402294289785991277439877120b7 (9 — 24)%1/288b(24 — 9) + z

x (13824b72(24 — 9) — 432b(51 — 6)z — z*)tanh ™! <\/288b(;f 9)+ >>
- z
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oh— 43046721 3200508288053z  898860664922112065z6  80792480213514584064067 74
179222 (288b(24 — 9) 4 2) ! (9 —22)° (9 —22)* (9 —24)?
19974450327552b%;7  34844256b°7° 7z
15828705576497376965236359168h'1(9 — 24)2
N O =20+ =5 oy 2i-9y7 ' (2i-9p
+191751763025568454410240z;8z3 30378356507628011526°75  23058bz10
24—9 (24 -9) (9 —24)8
+ 20965874958697129574406'°(21 — 9)/2(10939571/288b(9 — 21) — z — 1616218,/7)
+ 1455963538798411776b° (894780822 — 7767045173/%/288b(9 — 24) — 2)
+ —3185502626537045124710400°/7+/288b(21 — 9) + z(1440b(24 — 9) — 71z)tanh™" ( Ve ))
\/288b(24=9) + z

5. Beta functions for dimensionless couplings at d =4, with second cutoff p?(s.n),
smoothness parameter n — o

V2\/2(12b + 2)erfe(5 o) e 2 — 244/bz(11522%b + )
13824723/

0,z =

—V/2rerfc(

i) et B (24726 + 2) - 32) — 24/b\/Z(23047%b + €% (3 - 27))

9,4 = 122

276487032 /7
e (24v/b(72b + 2) = V27\/7e55(180b + 2)erfe(;557))

0.b =
! 99532872h3/2
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