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In the framework of the static patch approach to de Sitter holography introduced in [L. Susskind,
J. Hologr. Appl. Phys. 1, 1 (2021)], the growth of holographic complexity has a hyperfast behavior, which
leads to a divergence in a finite time. This is very different from the anti–de Sitter (AdS) spacetime, where
instead the complexity rate asymptotically reaches a constant value. We study holographic volume
complexity in a class of asymptotically AdS geometries which include de Sitter bubbles in their interior.
With the exception of the static bubble case, the complexity obtained from the volume of the smooth
extremal surfaces which are anchored just to the AdS boundary has a similar behavior to the AdS case,
because it asymptotically grows linearly with time. The static bubble configuration has a zero complexity
rate and corresponds to a discontinuous behavior, which resembles a first order phase transition. If instead
we consider extremal surfaces which are anchored at both the AdS boundary and the de Sitter stretched
horizon, we find that complexity growth is hyperfast, as in the de Sitter case.
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I. INTRODUCTION

The AdS=CFT correspondence [1] provides an interest-
ing theoretical laboratory to address many important open
questions in quantum gravity. However, our observed
universe is rather different from an AdS background. It
is then a crucial problem to find a quantum gravity
formulation for a cosmological setting. It is interesting
to investigate generalizations of holography for de Sitter
(dS) spacetime. This is a challenging problem, because in
dS there is no natural notion of timelike boundary contrary
to asymptotically AdS spacetime.
In order to provide a holographic description of dS,

the dS=CFT correspondence [2–4] proposes a duality
between quantum gravity in dSD spacetime and a
(D − 1)-dimensional CFT living on a spacelike boundary
at the future spacelike infinity in dS. Examples of explicit
dS=CFT correspondence have been proposed for higher

spin gravity in four dimensions [5] and for 3-dimensional
Einstein gravity [6,7]. The boundary theory in these cases is
not unitary and rather exotic compared to the textbook
examples of CFTs, because it describes dS from the
perspective of a metaobserver who lives at the future
infinity.
A finite entropy can be associated with the area A of the

dS cosmological horizon [8] surrounding a static patch
observer. Following [9–11], if we consider a dS spacetime
which includes particles and black holes, we can define a
generalized entropy Sgen which includes the cosmological
horizon entropy and the ordinary entropy Sout of the matter
which can be seen by the observer at the center of the static
patch

Sgen ¼
A
4G

þ Sout; ð1:1Þ

where we denote by G the Newton constant. It has been
argued that the maximum possible value of Sgen is saturated
by the emptydSspacetime [9,10,12].Thepresence of a bound
for Sgen motivates another class of approaches to holography
for dS space, see for example [13–18], in which gravity in dS
is conjectured to be dual to a quantum mechanical system
with a finite number of degrees of freedom.
Quantum information provides a useful conceptual

framework to implement several entries of the dictionary

*roberto.auzzi@unicatt.it
†giuseppe.nardelli@unicatt.it
‡gpeddeun@sissa.it
§nicolo@hetmail.phys.sci.osaka-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 026006 (2023)

2470-0010=2023=108(2)=026006(28) 026006-1 Published by the American Physical Society

https://orcid.org/0000-0001-7534-6629
https://orcid.org/0000-0002-7416-6332
https://orcid.org/0009-0005-7130-3193
https://orcid.org/0000-0002-5629-8171
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.026006&domain=pdf&date_stamp=2023-07-10
https://doi.org/10.22128/jhap.2021.455.1005
https://doi.org/10.1103/PhysRevD.108.026006
https://doi.org/10.1103/PhysRevD.108.026006
https://doi.org/10.1103/PhysRevD.108.026006
https://doi.org/10.1103/PhysRevD.108.026006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


of holographic dualities, and might give precious
insights on how to formulate holography for the dS
spacetime [19–21]. An interesting generalization of the
Ryu-Takayanagi [22,23] entanglement entropy formula has
been proposed in the context of static patch horizon
holography in dS [24–26]. In this proposal, the AdS
boundary is replaced in dS by a stretched horizon which
is taken just inside the cosmological horizon that surrounds
a static patch observer. The Bekenstein-Hawking entropy
associated to the cosmological horizon [8] is then inter-
preted as the entanglement entropy between the left and
right static patches. Further recent works include [27–33].
Computational complexity is another concept in quan-

tum information theory which may play an important role
in holography, see [34–36] for reviews. Indeed, entangle-
ment entropy saturates too fast to describe the growth of the
Einstein-Rosen bridge inside a black hole horizon [37] in
terms of the boundary CFT. On the other hand, quantum
complexity saturates in a much larger timescale compared
to the thermalization one, so it has the correct behavior
[34,38] to overcome the limitations of entanglement
entropy. In theoretical computer science, complexity [39]
measures how hard it is to build a generic target state from a
simple reference one, applying a set of elementary gates.
For quantum systems with a finite number of degrees of
freedom, a continuous notion of complexity was introduced
by Nielsen [40] in terms of the length of geodesics in the
space of unitary operators. There is a large amount of
arbitrariness in the definition of complexity, due to the
choice of reference state and of the computational cost of
elementary gates. Despite these ambiguities, quantum
complexity is expected to exhibit several robust and
universal properties [41], provided that the computational
costs of elementary gates is chosen in such a way that the
complexity metric has negative curvature [42–47]. It is still
an open problem to generalize Nielsen’s approach to
complexity in quantum field theory. Many advances
have been made in defining complexity in free field
theory [48,49]. The definition of complexity in CFT is
still a work in progress, see [50–54].
Three main proposals have been extensively studied as a

holographic dual of quantum computational complexity:
(i) Complexity=volume (CV) [55], in which complex-

ity is proportional to the volume of the maximal
codimension-one spatial surface anchored at a
boundary time slice.

(ii) Complexity=action (CA) [56,57], in which com-
plexity is proportional to the gravitational action
evaluated on a codimension-zero bulk region, called
the Wheeler-DeWitt patch.

(iii) Complexity=volume 2.0, in which complexity is
proportional to the spacetime volume of the
Wheeler-DeWitt patch [58].

Further generalizations have been investigated in [59–61].
All these holographic proposals reproduce the expected

behavior of quantum complexity for an AdS black hole: in
the regime of bulk classical gravity, which should be
appropriate for times which are less than exponential in
the entropy of the system [62], complexity asymptotically
grows linearly with time.
As studied in [24,63], the definition of holographic

complexity can be extended to static patch horizon holo-
graphy in dS [24–26]. Much differently compared to AdS,
holographic complexity in dS exhibits a hyperfast growth,
i.e., the complexity growth is so fast that it diverges at a
finite critical time. In [24], Susskind proposed the hyperfast
growth to be a signature that the Hamiltonian of the dual of
dS is not of the usual k-local type. Here k-local means that
the Hamiltonian is the sum of terms that simultaneously act
at most on k degrees of freedom, where k is parametrically
of order unity in the limit of a large number of degrees of
freedom.
It is tempting to relate the hyperfast growth of complex-

ity in dS to the exponential growth of spacetime. In order to
further investigate the reason of a different time dependence
of holographic complexity compared to AdS, it is interest-
ing to contemplate intermediate situations. At the crossroad
between AdS and dS holography, we can consider gravity
backgrounds with an asymptotically AdSD boundary which
include dSD regions in their interior. Examples in D ¼ 2
include the centaur geometry [64,65], which can be built in
dilaton-gravity theories.1 For centaurs, the dS part of the
spacetime is not hidden behind an AdS black hole horizon.
Holographic volume complexity in these backgrounds was
recently studied in [67]. In this case, the evolution of
complexity is qualitatively different compared to both AdS
and dS cases, because complexity is a decreasing function
of time.
In this paper, we study volume complexity in higher-

dimensional examples of asymptotically AdS spacetimes
with dS bubbles in their interior [68,69]. This kind of
geometries can be realized, for instance, in an Einstein-
scalar theory where the potential has various minima
separated by a domain wall. The D ≥ 3 case significantly
differs from the D ¼ 2 one, since in higher dimensions the
dS portion of the geometry is always screened by an AdS
horizon at late time. In order to simplify the model, it is
useful to consider the limit in which the thickness of the
domain wall surrounding the dS interior is small compared
to the other physical scales, as studied in [70–72] for a flat
external space and in [68,69] for an AdS external region.
For simplicity, we specialize to D ¼ 3 bulk spacetime
dimensions and we consider spherically symmetric geo-
metries consisting of a dS region and an asymptotically
AdS spacetime separated by a domain wall with negligible
thickness. We set the AdS scale to one, and we parametrize
the dS cosmological constant by λ and the domain wall
tension by κ. Outside the bubble, the solution is a BTZ

1Related studies of dS bubbles in dilaton gravity include [66].
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black hole [73] with mass proportional to μ. While the
parameters λ and κ specify the theory, μ is a property of
the state.
We focus on backgrounds which are invariant under

time-reversal symmetry t → −t. For the critical value
μ ¼ μ0, where

μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2 þ λ − 1Þ2 þ 4λ

p
− ðκ2 þ λ − 1Þ

2λ
; ð1:2Þ

the only time-reversal invariant solution is the static bubble,
see Fig. 1. For μ > μ0, the bubble starts from zero radius
and expands to infinite size, without entering the external
true vacuum region. From the viewpoint of an external
observer, the bubble remains behind a black hole horizon.
However, no such bubble solution exists which enjoys
time-reversal invariance. So, in this paper we focus on the
regime μ ≤ μ0.
For a fixed μ < μ0, there are two time-reversal invariant

solutions:
(i) A bubble collapsing in a finite proper time, for

which the interior portion of dS has finite spacetime
volume. We refer to this case as “small bubble”
solution. We have to further distinguish between two
subcases. For 0 < μ < μs, where

μs ¼
1

κ2 þ λ
< μ0; ð1:3Þ

the dS bubble is initially on the same side of the
Penrose diagram as the AdS boundary. We refer to
this configuration as a “very small bubble,” see
Fig. 2. For μs < μ < μ0 the bubble is initially on the
opposite side of the Penrose diagram with respect to

the AdS boundary. We call this situation a “not so
small bubble,” see Fig. 3.

(ii) A bubble expanding for an infinite proper time,
which contains an infinite portion of the dS space-
time. We refer to this case as “large bubble” solution.
We here introduce

μh ¼
1 − κ2

λ
< μ0: ð1:4Þ

For 0 < μ < μh, the interior of the bubble contains
as a subset a dS static patch. We call this situation a
“very large bubble,” see Fig. 4. By contrast, we refer
to the solution with μh < μ < μ0 as a “not so large
bubble,” see Fig. 5. Note that very large bubbles can
only be obtained for small enough domain wall
tension, i.e., κ < 1.

In the parameter space, the static bubble configuration is at
the border between the small and the large bubble regimes.
With the exception of the very small bubble, in all cases

an observer outside the horizon cannot directly see the dS
bubble at any time, because it is screened by the black hole
horizon. The presence of the dS bubble is instead detected
by the volume complexity, because the extremal surface
always penetrates the dS region of the geometry.

FIG. 1. Penrose diagrams for a static bubble. We show in red
and in blue the bubble trajectory in dS (left) and in AdS (center),
respectively. Our geometry (on the right) is obtained by joining
the dS portion to the left of the red line with the AdS region to the
right of the blue line.

FIG. 2. Penrose diagrams for a very small bubble 0 < μ < μs.

FIG. 3. Penrose diagrams for a not so small bubble
μs < μ < μ0.

FIG. 5. Penrose diagrams for a not so large bubble
μh < μ < μ0.

FIG. 4. Penrose diagrams for a very large bubble 0 < μ < μh
(top panel) and for a not so large bubble μh < μ < μ0
(lower panel).
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The traditional way to apply the CV proposal is to
consider the volume of extremal surfaces which are
anchored at the AdS boundary and which are smooth both
in the AdS and in the dS portions of the spacetime. This
prescription can be applied both for large and small
bubbles. With the exception of the static bubble configu-
ration, we find that at late time holographic complexity
grows linearly with the same slope as for the BTZ black
hole. In the fine-tuned case of the static bubble, we find
instead that volume complexity is time-independent.
The time dependence of complexity that we obtain

reveals that the hyperfast growth is not necessarily related
to the exponential growth of spacetime, which is a feature
of large bubbles. If we consider the prescription in which
smooth extremal surfaces are anchored just at the AdS
boundary, we find that the dS portion of the extremal
surface always remains in the dS static patches, without
entering the regions behind the dS horizon. This is the
reason why the exponential growth of large bubbles fails to
be detected by volume complexity.
As proposed in [68], the boundary dual of a large bubble

configuration should be a a quantum field theory in a mixed
state. This observation can be justified as follows. For time-
reversal symmetric bubbles, Eq. (1.2) implies that

λμ ≤ λμ0 ≤ 1; ð1:5Þ

which is equivalent to

SBH ≤ SdS; ð1:6Þ

where SBH is the entropy of the external AdS black hole and
SdS is the entropy of the internal dS static patch SdS, i.e.,

SBH ¼ 2π
ffiffiffi
μ

p
; SdS ¼ 2πffiffiffi

λ
p : ð1:7Þ

For large bubbles, the interior region contains a portion of
the dS horizon, so the number of degrees of freedom
accessible from the AdS boundary is less than the number
of degrees of freedom of the internal dS region. We are then
forced to interpret large bubbles configurations in
AdS=CFT as gravity duals of a density matrix, obtained
by tracing over a part of the degrees of freedom of the dS
region inside the bubble.
In the context of static patch horizon holography in

dS [24–26], we can conjecture that the purification of the
dual mixed state is a generalization of thermofield double
state [74] in which the CFT living at the boundary of AdS
and the quantum system living on the stretched dS horizon
are entangled. This suggests another way to apply the CV
proposal in the case of very large bubbles: we can anchor
extremal surfaces both at the AdS boundary and at the dS
static patch stretched horizon. In this case, we find that
extremal surfaces cross the dS horizon and tend to bend

toward the future infinity. The complexity growth is
hyperfast and diverges in finite time, as in the dS case.
The paper is organized as follows. In Sec. II we describe

the bubble setup and the thin wall approximation. In
Sec. III we present the equations of the extremal surfaces
both in AdS and in dS and we discuss the refraction law for
the extremal surface on the bubble. In Sec. IV we study
volume complexity, using the prescription in which the
extremal surfaces are anchored just at the AdS boundary
and are smooth both in the AdS and in the dS regions of the
spacetime. In Sec. V we study volume complexity for very
large bubbles, using extremal surfaces which extend
between the AdS boundary and the dS stretched horizon.
We conclude in Sec. VI. Several technical details are
presented in appendices.

II. THEORETICAL SETUP

We consider a spherically symmetric dS3 bubble inside
an asymptotically AdS3 spacetime. The spacetime metric is
taken as follows

ds2i;o ¼ ðgi;oÞμνdxμi;odxνi;o
¼ −fi;oðrÞdt2i;o þ

dr2

fi;oðrÞ
þ r2dθ2; ð2:1Þ

where the subscripts i and o refer to the inside and outside
regions, respectively. The outside geometry is a BTZ black
hole [73] with

foðrÞ ¼ r2 − μ; ð2:2Þ

where the mass of the black hole is proportional to μ. For
simplicity we set the AdS length L ¼ 1. The inside
geometry is a dS3 spacetime with radius rdS ¼ 1=

ffiffiffi
λ

p
,

namely

fiðrÞ ¼ 1 − λr2: ð2:3Þ

Introducing the tortoise coordinate

r�i;o ¼
Z

dr̃
fi;oðr̃Þ

; ð2:4Þ

we can define the light-cone coordinates v, u as follows

vi;o ¼ ti;o þ r�i;oðrÞ; ui;o ¼ ti;o − r�i;oðrÞ: ð2:5Þ

An explicit evaluation of the integral (2.4) gives

r�oðrÞ ¼
1

4
ffiffiffi
μ

p log

�
r − ffiffiffi

μ
p

rþ ffiffiffi
μ

p
�

2

;

r�i ðrÞ ¼
1

4
ffiffiffi
λ

p log

�
1þ r

ffiffiffi
λ

p

1 − r
ffiffiffi
λ

p
�2

; ð2:6Þ
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where the integration constants are chosen in such a way
that r�oð∞Þ ¼ 0 and r�i ð0Þ ¼ 0.
When considering spacetime regions nearby the black

hole and the cosmological horizons, it is convenient to
write the metric in Eddington-Finkelstein (EF) coordinates
ðvi;o; rÞ or ðui;o; rÞ:

ds2i;o ¼ −fi;oðrÞdv2i;o þ 2drdvi;o þ r2dθ2

¼ −fi;oðrÞdu2i;o − 2drdui;o þ r2dθ2: ð2:7Þ

In order to describe the maximally extended versions of the
dS3 and the BTZ spacetimes, it is necessary to introduce
two copies of the EF coordinates u and v, which we denote
by uL; vL and uR; vR, where L and R stand for left and right,
respectively. Penrose diagrams for these geometries with
constant u, v lines are shown in Fig. 6. Our conventions for
Penrose diagrams are discussed in Appendix A.

A. The domain wall

The inside and the outside geometries are patched
together along a domain wall with negligible thickness,
whose trajectory on each side of the spacetime is para-
metrized by

r ¼ RðτÞ; ð2:8Þ

with τ the proper time measured on the domain wall itself.
We will denote by a dot : the derivative with respect to the
proper time τ.
The equation of motion for RðτÞ follows from Israel’s

junction conditions [75] (see [68–70,76] for reviews), i.e.:
(i) The metric must be continuous across the wall. The

coordinate r multiplies the metric of the transverse
sphere S1, so it is continuous. Instead, the coordinate
ti;o is in general discontinuous in passing from inside
to outside.

(ii) The discontinuity in the extrinsic curvature Kab
across the wall is fixed by the energy-momentum
tensor. For spherically symmetric geometries, it is
customary to introduce the quantities

βi;o ¼ ðKθ
θÞi;oR: ð2:9Þ

The jump between βi and βo is

βi − βo ¼ κR; ð2:10Þ

where in our case

βi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ fiðRÞ

q
;

βo ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ foðRÞ

q
;

κ ¼ 8πGσ: ð2:11Þ

In Eq. (2.11), σ is the domain wall tension and G is
the Newton’s constant. The sign of βi;o is positive if
the coordinate r increases as the wall is approached
from the interior or as one moves away from the wall
in the exterior, and negative in the opposite situa-
tions. If both βi;o have the same sign, r is monotonic
near the wall. If βi;o have different signs, r is locally
extremized at the location of the wall.

Squaring twice Eq. (2.10), independently of the choices
of signs in Eq. (2.11), the equation of motion can be
expressed as

_R2 þ VðRÞ ¼ 0; ð2:12Þ

where the second term, playing the role of an effective
potential, is

VðRÞ ¼ foðRÞ −
ðfiðRÞ − foðRÞ − κ2R2Þ2

4κ2R2
: ð2:13Þ

Specializing the general expression (2.13) to Eqs. (2.3)
and (2.2), we find

VðRÞ ¼ −AR2 þ B −
C
R2

; ð2:14Þ

where

Constant uR

Constant vR

Constant vL

Constant uL

tt

Constant vR

Constant uR

Constant uL

Constant vL

tt

FIG. 6. Penrose diagrams for dS3 spacetime (left) and for the BTZ black hole (right). The arrows show the directions of increasing
coordinate t on both the sides of the diagrams.
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A ¼ ðλþ κ2 − 1Þ2 þ 4λ

4κ2
;

B ¼ 1þ κ2 þ λþ μ − κ2μþ λμ

2κ2
;

C ¼ ð1þ μÞ2
4κ2

: ð2:15Þ

Note that A > 0 and C > 0. It is also convenient to
introduce

β ¼ B
A
; γ ¼ C

A
: ð2:16Þ

Depending on the values of parameters, we can have three
physically different situations:

(i) The maximum of VðRÞ is positive. In this case, the
radius of the bubble as a function of the bubble
proper time τ has either a maximum or a minimum.

(ii) The maximum of VðRÞ is exactly zero. In this case,
we have an unstable static bubble solution, besides
other solutions which approach the maximum from
both sides with asymptotically zero velocity _R.

(iii) The maximum of VðRÞ is negative. In this case, the
radius of the bubble monotonically contracts or
expands without any maximum or minimum.

The qualitative behavior of VðRÞ in these three cases is
shown in Fig. 7.
Time-reversal invariance selects a potentialVðRÞwith non-

negative maximum, as in cases (a) and (b). This requires

β2 ≥ 4γ: ð2:17Þ

For time-reversal symmetric bubbles, an explicit integration
of Eq. (2.12) gives

RðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p
2

coshð2
ffiffiffiffi
A

p
τÞ

s
: ð2:18Þ

The—sign solution corresponds to a small bubble (the bubble
has maximal radius at τ ¼ 0 and collapses in a finite proper

time), whereas the þ sign solution describes a large bubble
(the bubble hasminimal radius at τ ¼ 0 and expands forever).
The condition in Eq. (2.17) is is satisfied for 0 < μ ≤ μ0,

where the limiting value μ ¼ μ0 is defined in Eq. (1.2) and
corresponds to a static bubble.
For a given choice of the parameters λ, μ, κ with μ < μ0 it

is possible to have both a contracting and an expanding
solution. The maximal radius for the contracting bubble is

RmaxðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p
2

s
; ð2:19Þ

while the minimal radius for the expanding bubble is

RminðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p
2

s
: ð2:20Þ

Both Rmax and Rmin are real positive numbers for
0 < μ ≤ μ0. The values of Rmax and Rmin satisfy the
following constraints:

(i) Rmax ≤ Rmin, with the equality saturated for μ ¼ μ0.
(ii) Rmin ≤ 1=

ffiffiffi
λ

p
, with the equality saturated for the

special value μ ¼ μh, see Eq. (1.4).
(iii) Rmax ≥

ffiffiffi
μ

p
with the equality saturated for the special

value μ ¼ μs, see Eq. (1.3).
In Fig. 8 we show a plot of Rmax and Rmin as functions of μ,
for a fixed value of λ and κ.
In order to specify the solution, we should also determine

the time coordinates ti;o on the surface of the bubble, both
in the inside and in the outside regions. Such time
coordinates, which we denote by Ti;oðτÞ, are specified
by the equation

_T2
i;o ¼

1

fi;oðRÞ
�
1þ

_R2

fi;oðRÞ
�
; ð2:21Þ

following from the normalization of the bubble velocity
vector wα

FIG. 7. Qualitative plots of the effective potential VðRÞ in Eq. (2.14) with positive (plot a), vanishing (plot b) and negative (plot
c) maximum. Blue arrows represent the possible evolution of the bubble radius RðτÞ.

AUZZI, NARDELLI, UNGUREANU, and ZENONI PHYS. REV. D 108, 026006 (2023)

026006-6



wαwα ¼ −1; wα ¼ ð _T; _R; 0Þ: ð2:22Þ

Combining the equation of motion (2.12) with Eq. (2.21)
we find

dTi;o

dR
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi;oðRÞ − VðRÞp

fi;oðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðRÞp : ð2:23Þ

Plugging the explicit expressions for fi and fo in
Eq. (2.23), we get

dTi

dR
¼ � 1

2κ

1þ μ − R2ð1þ λ − κ2Þ
ð1 − λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p ;

dTo

dR
¼ � 1

2κ

1þ μ − R2ð1þ λþ κ2Þ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p : ð2:24Þ

Time-reversal solutions to these equations are obtained by
imposing the boundary condition

Ti;oðRmaxÞ ¼ 0 or Ti;oðRminÞ ¼ 0 ð2:25Þ

in the collapsing and the expanding case, respectively.

B. Static bubbles

A static bubble solution is realized for β2 ¼ 4γ, or
equivalently μ ¼ μ0, see Eq. (1.2). The radius of the bubble
is thus

Rstatic ¼ Rminðμ0Þ ¼ Rmaxðμ0Þ: ð2:26Þ

The matching condition between the Ti;o coordinates is

dTi

dTo
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
foðRstaticÞ
fiðRstaticÞ

s
¼ �μ0: ð2:27Þ

C. Small bubbles

In this case, Eq. (2.24) admits a smooth solution for Ti.
On the other hand, the trajectory is not smooth in the
coordinate To, which should then be replaced by an EF
coordinate, see Eq. (2.5). Referring to the Penrose diagrams
for the collapsing bubble sketched in Figs. 2 and 3, we
distinguish between two cases:

(i) Very small bubble, 0 < μ < μs. The initial position
of the bubble R ¼ Rmax is on the same side of the
AdS boundary. The smooth coordinates that should
be used are vR for the black hole (or uR for the white
hole). Denoting by UR;o and VR;o the right EF
coordinates on the bubble surface in BTZ spacetime,
the equations of motion are

dVR;o

dR
¼ −

1

2κ

1þ μ − R2ð1þ λþ κ2Þ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p þ 1

R2 − μ
;

dUR;o

dR
¼ 1

2κ

1þ μ − R2ð1þ λþ κ2Þ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p −
1

R2 − μ
:

ð2:28Þ

(ii) Not so small bubble, μs < μ < μ0. In this case we
should use uL for the black hole (or vL for the white
hole). Denoting by UL;o and VL;o the left EF
coordinates on the bubble surface in BTZ spacetime,
the equations of motion are

dUL;o

dR
¼ −

1

2κ

1þ μ − R2ð1þ λþ κ2Þ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p −
1

R2 − μ
;

dVL;o

dR
¼ 1

2κ

1þ μ − R2ð1þ λþ κ2Þ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p þ 1

R2 − μ
:

ð2:29Þ

D. Large bubbles

Large bubbles are examples of bags of gold [69,77],
which are defined as spacetimes in which an eternal black
hole exterior is attached by an Einstein-Rosen bridge
to an interior which is a portion of Friedman-Lemaitre-
Robertson-Walker (FLRW) cosmology with an infinite
spacetime volume. In these geometries, the entropy of
the interior can exceed the exterior Bekenstein-Hawking
entropy, see Eq. (1.6), so the bulk states cannot be put in
correspondence with the CFT states of the dual field theory.
It has been suggested that the Bekenstein-Hawking entropy
does not in general count all the states inside the black
hole, but only those which are distinguishable from the
outside [77,78]. In particular, large bubble solutions has
been proposed to provide the holographic dual of a density
matrix [68].
Equation (2.24) for the outside time To gives a smooth

solution, while Ti is singular because the dS horizon is

FIG. 8. Illustrative plot of Rmax and Rmin as functions of μ, for
λ ¼ 0.1 and κ ¼ 0.8.
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crossed at some time by the bubble. We then pass to EF
coordinates, see Eq. (2.5). With reference to the Penrose
diagrams for the expanding bubble sketched in Figs. 4
and 5, we discriminate between two cases:

(i) Very large bubble, 0 < μ < μh. The initial position
of the bubble R ¼ Rmin is in the right static patch.
Denoting by UR;i and VR;i the right EF coordinates
on the bubble surface in dS, the equations of
motion are

dVR;i

dR
¼ 1

2κ

1þ μ−R2ð1þ λ− κ2Þ
ð1− λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 −BR2 þC

p þ 1

1− λR2
;

dUR;i

dR
¼ −

1

2κ

1þ μ−R2ð1þ λ− κ2Þ
ð1− λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 −BR2 þC

p −
1

1− λR2
:

ð2:30Þ

(ii) Not so large bubble, μh < μ < μ0. The initial posi-
tion of the bubble R ¼ Rmin is in the left static patch.
Denoting by UL;i and VL;i the left EF coordinates on
the bubble surface in dS, the equations of motion are

dUL;i

dR
¼ 1

2κ

1þ μ−R2ð1þ λ− κ2Þ
ð1− λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 −BR2 þC

p −
1

1− λR2
;

dVL;i

dR
¼ −

1

2κ

1þ μ−R2ð1þ λ− κ2Þ
ð1− λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 −BR2 þC

p þ 1

1− λR2
:

ð2:31Þ

III. VOLUME FUNCTIONAL

According to the CV conjecture [55], complexity of the
boundary state is proportional to the volume of a maximal
codimension-one surface anchored at the given boundary
time. The volume complexity CV is usually normalized as

CV ¼ V
GL

; ð3:1Þ

where V is the volume of the maximal slice,G the Newton’s
constant and L the AdS radius. In this section we discuss
the volume of extremal surfaces in both the AdS and the dS
parts of the geometry. Then, we address the matching
condition on the domain wall.
Due to spherical symmetry, the extremal surface can be

parametrized as

r ¼ rðlÞ; t ¼ tðlÞ; ð3:2Þ

where l is a single-valued coordinate along the surface.
Since the coordinate t is singular nearby the horizons, it is
useful to write the volume functional in both the versions of
the EF coordinates u and v:

Vi;o ¼ 2π

Z
Ldl;

L ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fi;oðv0i;oÞ2 þ 2r0v0i;o

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fi;oðu0i;oÞ2 − 2r0u0i;o

q
; ð3:3Þ

where 0 denotes a derivative with respect to l. The extremal
surface is characterized by a conserved quantity Pi;o, which
in the ðv; rÞ and in the ðu; rÞ coordinates reads

Pi;o ¼
∂L
∂v0i;o

¼ rð−fi;ov0i;o þ r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fi;oðv0i;oÞ2 þ 2r0v0i;o

q ;

Pi;o ¼
∂L
∂u0i;o

¼ rð−fi;ou0i;o − r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fi;oðu0i;oÞ2 − 2r0u0i;o

q ; ð3:4Þ

respectively.
The volume functional in Eq. (3.3) is invariant under

reparametrization in l. To fix this gauge freedom, it is
convenient to impose the conditions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fi;oðv0i;oÞ2 þ 2r0v0i;o

q
¼ r orffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fi;oðu0i;oÞ2 − 2r0u0i;o
q

¼ r; ð3:5Þ

in such a way that the volume functional becomes

Vi;o ¼ 2π

Z
r2dl: ð3:6Þ

With this gauge choice, the conserved quantity Pi;o can be
expressed as follows

Pi;o ¼ −fi;ov0i;o þ r0; v0i;o ¼
r0 − Pi;o

fi;o
;

Pi;o ¼ −fi;ou0i;o − r0; u0i;o ¼
−r0 − Pi;o

fi;o
: ð3:7Þ

By inserting this back into the gauge constraint, we get

ðr0Þ2 þUi;oðrÞ ¼ P2
i;o; Ui;oðrÞ ¼ −fi;oðrÞr2;

r0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i;o þ fi;oðrÞr2

q
; ð3:8Þ

which is valid in both the EF coordinate systems ðv; rÞ and
ðu; rÞ. The conserved quantity Pi;o can also be written as

Pi;o ¼ −fi;ot0i;o: ð3:9Þ

Note that Ui;oðrÞ in Eq. (3.8) can be interpreted as effective
potentials, see Fig. 9 for qualitative plots.
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The extremum of rðlÞ represents a turning point rt for the
extremal surface. We can have a turning point both in the
external BTZ region and in the internal dS one:

(i) In the external asymptotically AdS region, rt;AdS is a
minimum of rðlÞ, given by

rt;AdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4P2

o

p
2

s
: ð3:10Þ

For a turning point to exist, it is necessary to require

P2
o ≤ P2

max ¼
μ2

4
: ð3:11Þ

(ii) In the internal dS region, rt;dS is a maximum of rðlÞ,
given by

rt;dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λP2

i

p
2λ

s
: ð3:12Þ

The difference in the time coordinate t between two
points on the extremal surface can be expressed as

ti;oðr2Þ− ti;oðr1Þ¼∓
Z

r2

r1

Pi;o

fi;o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i;oþfi;oðrÞr2

q dr; ð3:13Þ

where the − sign should be chosen for a parametrization
with r0ðlÞ > 0, while the þ sign for a parametrization with
r0ðlÞ < 0. In the integral in Eq. (3.13), the Cauchy principal
value prescription should be used when crossing the
horizon.
With the convention r2 > r1, the volume of the extremal

surface reads

Vi;o ¼ 2π

Z
r2

r1

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i;o þ fi;oðrÞr2

q dr: ð3:14Þ

A. A refraction law for the extremal surface

To determine the codimension-one extremal surfaces, we
solve Eqs. (3.8) and (3.7) both in the interior and in the
exterior of the bubble. Then, we match the two solutions on
top of the domain wall, imposing that the total volume is
extremal. Physically, the extremal surface is somehow
“refracted” by the domain wall. In Appendix B, by
introducing a coordinate system which describes both
the interior and the exterior of the bubble in terms of the
same time coordinate ti, we derive the refraction condition
in the thin wall approximation.
By spherical symmetry, it is not restrictive to focus just

on the time and radial coordinates. We denote by xμi;oðlÞ the
coordinates of the extremal codimension-one surface and
by Xμ

i;oðτÞ the trajectory of the domain wall. We then

introduce the tangent vector to the extremal surface
dxμi;o
dl and

the velocity vector of the domain wall
dXμ

i;o

dτ , namely

dxμi;o
dl

¼ ðt0i;oðlÞ; r0i;oðlÞÞ;
dXμ

i;o

dτ
¼ ð _Ti;oðτÞ; _RðτÞÞ: ð3:15Þ

The matching condition on top of the domain wall is

ðgiÞμν
dxμi
dl

dXν
i

dτ
¼ ðgoÞμν

dxμo
dl

dXν
o

dτ
: ð3:16Þ

The details of the derivation are in Appendix B. A similar
result was derived in [79] for geodesics.
Given an extremal surface intersecting the domain wall

at some value of the radial coordinate R, we denote by
ρi;oðRÞ the value of r0i;oðlÞ computed at the intersection, i.e.,

ρi;oðRÞ ¼ r0i;oðl0Þ where ri;oðl0Þ ¼ R: ð3:17Þ

By means of Eq. (3.9), we can write the matching condition
(3.16) as

FIG. 9. Effective potential for the extremal surface in the dS region (left) and in the AdS one (right).
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Pi
dTi

dR
þ ρiðRÞ
fiðRÞ

¼ Po
dTo

dR
þ ρoðRÞ
foðRÞ

: ð3:18Þ

The setup with an extremal surface crossing a null shell of
matter with negligible thickness was studied in [80] for
geodesics and in [81,82] for codimension-one surfaces.
This case formally corresponds to a domain wall moving
at the speed of light and the result is consistent
with Eq. (3.18).

IV. COMPLEXITY FROM SMOOTH
EXTREMAL SURFACES

The conservative way to apply the CV conjecture in
asymptotically AdS geometries with an internal dS bubble
is to consider extremal codimension one surfaces which are
anchored at some given time tb at the AdS boundary and
which are smooth in the interior. These surfaces lie partially
in the dS and partially in the asymptotically AdS parts of
the geometry. By convention, we choose l in Eq. (3.2) to be
positive and to vanish at the center of the dS static patch.
In order to avoid a singularity at r ¼ 0 in the dS interior,

we must impose the condition Pi ¼ 0. This can be checked
as follows. Using Eqs. (3.9) and (3.8), the induced metric
on the extremal surface in the gauge (3.5) is

ds̃2i ¼ r2ðlÞðdl2 þ dθ2Þ: ð4:1Þ

From Eq. (3.8), rðlÞ can have two qualitatively different
behaviors nearby l → 0:

(i) For Pi ¼ 0, rðlÞ ≈ r0ðlÞ, so the induced metric

ds̃2i ≈ dr2 þ r2dθ2

is smooth at l → 0, with 0 ≤ θ ≤ 2π.
(ii) For Pi ≠ 0, r2ðlÞ ≈ P2

i l
2, so the induced metric

ds̃2i ≈ P2
i ðl2dl2 þ l2dθ2Þ

has a singular scalar curvature at l → 0.
A similar property holds in the case of AdS Vaidya
spacetime, see [81].
Equation (3.9) implies that for Pi ¼ 0 the extremal

surface in the interior lies at constant ti coordinate.
Examples of these surface are shown in Fig. 10.

A. Small bubbles

For small bubbles, the inside geometry is just a region of
the left static patch. Then, there is no turning point in the dS
portion of the geometry, or equivalently r0iðlÞ > 0. As a
direct consequence, we have ρiðRÞ > 0 everywhere on the
domain wall. With the condition Pi ¼ 0, the refraction law
in Eq. (3.18), which must be implemented at the bubble
surface r ¼ RðτÞ, is

Rffiffiffiffiffiffiffiffiffiffiffi
fiðRÞ

p ¼ ρoðRÞ
foðRÞ

þ dTo

dR
Po;

Po ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2oðRÞ − foðRÞR2

q
: ð4:2Þ

Depending on the sign of the product dTo
dR Po, two physically

different solutions to the constraint (4.2) exist. Let us fix for
convenience the sign in Eq. (2.24) as follows

dTo

dR
¼ −

1

2κ

woðRÞ
ðR2 − μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p ;

woðRÞ ¼ 1þ μ − R2ð1þ λþ κ2Þ: ð4:3Þ

Note that2 the quantity woðRmaxÞ is positive for 0 < μ < μs
and negative for μs < μ < μ0. In both cases, the sign choice
in Eq. (4.3) is such that, for To ≥ 0, the bubble always
moves toward the upper direction of the Penrose diagram.
The configuration in which the bubble moves in the
opposite direction can be recovered by a time reflec-
tion t → −t.
With the assumption of positive Po, Eq. (4.2) has the

following solution

ρoðRÞ ¼ −
Rðμ − 1þ R2ðκ2 þ λ − 1ÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λR2

p : ð4:4Þ

From a direct calculation, we can check that ρoðRmaxÞ
vanishes just for μ ¼ μs. Also, we have that ρoðRmaxÞ > 0
for μ → 0. This shows that ρoðRmaxÞ is positive for 0 <
μ < μs and negative for μs < μ < μ0. In both cases, this
sign is consistent with a refraction of the extremal surface
through the domain wall. For negative Po, the solution to

FIG. 10. Examples of extremal codimension one surfaces with
Pi ¼ 0 in the dS Penrose diagram. The interior part of the smooth
extremal surfaces correspond to the portion of these surfaces
inside the bubble.

2This can be checked by the following properties: (a) the
unique positive solution of the equation woðRmaxÞ ¼ 0 in the
variable μ is μ ¼ μs; (b) for μ ¼ 0, woðRmaxÞ > 0.
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Eq. (4.2) corresponds to a “reflection” of the extremal
surface, see Appendix C 1. Thus, we discard this solution.
Plugging Eq. (4.4) into Eq. (4.2), we get

P2
oðRÞ ¼ R2ðμ − R2Þ

þ 1

4
R2

ðμ − 1þ R2ðκ2 þ λ − 1ÞÞ2
1 − λR2

; ð4:5Þ

see Fig. 11 for a plot. Note that P2
oð0Þ ¼ P2

oðRmaxÞ ¼ 0.
Using the fact that R < 1=

ffiffiffi
λ

p
for small bubbles, we obtain

the following inequality

P2
oðRÞ ≥ UoðRÞ ¼ R2ðμ − R2Þ; ð4:6Þ

where UoðRÞ is the effective potential in Eq. (3.8). The
maximum of UoðRÞ is at R ¼ R̂ ¼ ffiffiffiffiffiffiffiffi

μ=2
p

and its value is
UoðR̂Þ ¼ μ2=4 ¼ P2

max, defined in Eq. (3.11). Then, the
maximum of P2

oðRÞ is bigger than P2
max, as it is clear from

Fig. 11. Let us define the radii R� as the two solutions to
the equation

P2
oðR�Þ ¼ P2

max ¼
μ2

4
: ð4:7Þ

From the property P2
oð

ffiffiffiffiffiffiffiffi
μ=2

p Þ > μ2=4, it follows that

R− ≤
ffiffiffi
μ

2

r
≤ Rþ: ð4:8Þ

As we will see, the radii R� determine the behavior of the
complexity rate at large time tb.

1. Complexity rate

Depending on the parameter values and on R, the
quantity ρoðRÞ in Eq. (4.4) can be either positive or
negative. A detailed analysis is deferred to Appendix C 2.
Based on the sign of ρoðRÞ, the details of the extremal
surface are slightly different. Let us distinguish between the
two situations:

(i) ρoðRÞ > 0. The radial coordinate of the extremal
surface is monotonic between r ¼ R and the AdS
UV cutoff r ¼ Λ. From Eq. (3.14), the volume is

V
2π

¼
Z

R

0

rffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p drþ
Z

Λ

R

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr:

ð4:9Þ
According to Eq. (3.13), the boundary time is

tb ¼ ToðRÞ −
Z

Λ

R

1

fo

�
Poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
o þ foðrÞr2

p �
dr: ð4:10Þ

In order to find the complexity rate, we use the same
strategy as in [83]. Namely, we sum and subtract the
quantity Potb to the volume expressed in Eq. (4.9):

V
2π

¼ Potb þ
Z

R

0

rffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p dr

þ
Z

Λ

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ for2

p
fo

dr − PoToðRÞ: ð4:11Þ

Taking the derivative of Eq. (4.11) with respect to tb,
and using Eq. (4.2), we find the complexity rate

W ¼ 1

2π

dV
dtb

¼ Po: ð4:12Þ

The asymptotic linear growth corresponds to the
V → ∞ and tb → ∞ limit, which formally comes
from the divergence of the integrands in Eqs. (4.9)
and (4.10) in correspondence of the turning point
rt;AdS, see Eq. (3.10). In particular, the turning point
rt;AdS satisfies

P2
o þ for2 ¼ 0:

This singularity is integrable except for
P2
o → P2

max ¼ μ2=4. In order to find a divergent tb
in Eq. (4.10), we need the turning point rt;AdS ¼ffiffiffiffiffiffiffiffi
μ=2

p
to lie inside the integration domain ½R;∞�.

Thus, from Eq. (4.8), we find that tb is regular for
R → Rþ and diverges for R → R−. In other words,
the late time limit tb → ∞ corresponds to R → R−.

(ii) ρoðRÞ < 0. For the extremal surfaces to be attached
to the AdS boundary there must be a turning point
rt;AdS < R inside the black hole. From Eq. (3.14),
the volume is

V
2π

¼
Z

R

0

rffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p dr −
Z

rt;AdS

R

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr

þ
Z

Λ

rt;AdS

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr: ð4:13Þ

FIG. 11. Behavior of P2
oðRÞ in Eq. (4.5) for small bubbles.
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According to Eq. (3.13), the boundary time reads

tb ¼
Z

rt;AdS

R

1

fo

�
Poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
o þ foðrÞr2

p �
dr

−
Z

Λ

rt;AdS

1

fo

�
Poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
o þ foðrÞr2

p �
drþ ToðRÞ:

ð4:14Þ

The rate W can be evaluated by the same strategy as
in the previous case. The result is again given by
Eq. (4.12).
As in the previous case, the asymptotic linear

growth of complexity is in correspondence of the
divergence of the integrands in Eq. (4.14) at
r ¼ rt;AdS. The singularity is generally integrable,
except for Po ¼ Pmax, for which rt;AdS ¼

ffiffiffiffiffiffiffiffi
μ=2

p
. In

this case, the late tb limit corresponds to R → Rþ.
For 0 < R < Rþ, instead, the extremal surface never
reaches the AdS boundary.

Extremal surfaces can be found numerically by integrat-
ing the equations of motion (3.7) and (3.8). The dS portion
of these extremal surfaces corresponds to the Pi ¼ 0
surfaces shown in Fig. 10. The AdS portion of two
prototypical examples of solutions is plotted in the left
panels of Figs. 12 and 13. The complexity rate as a function
of the boundary time tb is shown on the right panels of the
same figures.
In the example in Fig. 12, for a given value of the

boundary time tb there exists a single extremal surface
anchored at the AdS boundary. Instead, in the example in
Fig. 13 in a time window centered at tb ¼ 0, i.e.

−Tb < tb < Tb; ð4:15Þ

three extremal surfaces anchored at the same value of the
boundary time tb exist. The rate W is then a multivalued
function of the time tb.
To discriminate between the two possible behaviors, it is

useful to introduce the quantity

FIG. 12. Left panel: AdS portion of the extremal surfaces for a very small bubble. Right panel: plot of the complexity rate. For every
value of the boundary time tb there exists a single extremal surface.

FIG. 13. Left panel: AdS portion of the extremal surfaces for a not so small bubble. Right panel: plot of the complexity rate. Note that
multiple extremal surfaces exist for boundary times tb inside the window in Eq. (4.15).

AUZZI, NARDELLI, UNGUREANU, and ZENONI PHYS. REV. D 108, 026006 (2023)

026006-12



K ¼ dtb
dPo

����
tb¼0

; ð4:16Þ

representing the reciprocal of the slope dW
dtb

computed at the
origin of the plots in the right panel of figures 12 and 13.
The complexity rate in Fig. 12 is characterized by K > 0,
contrary to the one in Fig. 13, where K < 0. An explicit
expression for K is given in Appendix C 3. From Eqs. (C8)
and (C11), we find that K is a decreasing function of μ at
fixed λ and κ and that K → −∞ for μ → μ0. In Fig. 14, we
show K as a function of μ for a fixed value of λ and κ. In the
parameter region

λ ≥ 2þ κ − κ2; ð4:17Þ

the quantity K is always negative, so multiple extremal
surfaces exist for every μ, see Fig. 15.

According to the CV conjecture, when multiple extremal
surfaces exist, the one with maximal volume should be
picked. To deal with this, let us consider the prototypical
behavior shown in Fig. 16. The three points C,D, and E are
obtained by extremal surfaces anchored at the same
boundary time, but whose volumes V and values of the
rate differ. To properly choose the maximal solution, let us
first consider the two points C and D. The volumes VC and
VD of the corresponding surfaces can be inferred by starting
from the volume VA of the surface located at the point A,
and following the two arrows which bring to C and D,
respectively. Since the rate is positive, the volume increases
as we move along these arrows. Hence, both VC and VD are
higher than VA. Precisely, since the growth rate as we move
from A to C is larger than the one going from A to D, we
conclude that VC > VD. Moreover, by time-reversal sym-
metry, VC ¼ VF. Moving along the curve from E to F the
rate is negative, which means that the volume is decreasing:
VF < VE. From this argument, we should choose the
lowest value of the rate for tb < 0 and the highest value
of the rate for tb > 0, see Fig. 17. Consequently, the
complexity rate W experiences a discontinuous jump at
tb ¼ 0. A similar analysis was performed in [63] for
complexity in dS spacetime.

FIG. 14. Plot of the quantity K defined in Eq. (4.16) as a
function of μ for λ ¼ 1, κ ¼ 0.5. In this numerical example K is
negative for μ > 0.53 and approaches −∞ for μ → μ0 ≈ 0.88. In
order to have multiple extremal surface for the same value of tb as
in Fig. 13, we need K < 0. The blue portion of the plot
corresponds to very small bubbles, while the red part to not so
small bubbles.

FIG. 15. The white region represents the portion of the ðλ; κÞ
plane defined in Eq. (4.17), for which K is negative for every
value of μ.

FIG. 16. Schematic plot of the complexity rate in the parameter
region where there are multiple extremal surfaces anchored at the
same boundary time.

FIG. 17. The requirement of maximal volume selects the
steplike function rate represented by the solid line.
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2. Late time complexity rate

We now discuss the late time behavior of the rate W. In
terms of the bubble radius, we will show that tb → ∞
corresponds to R → Rþ or to R → R−, depending on the
point in the parameter space. First note that ρoðRþÞ has the
same sign as ρoðR−Þ. In fact, if the signs of ρoðR�Þ were
different, we would have R− < R0 < Rþ, where R0 is
defined by the condition ρoðR0Þ ¼ 0, see Eq. (C2). Then

we should have P2
oðR0Þ > μ2

4
, see Fig. 11, but this is

impossible because

P2
oðR0Þ −

μ2

4
¼ −

ðκ2μþ λμþ μ − 2Þ2
4ðκ2 þ λ − 1Þ2 ≤ 0: ð4:18Þ

We can then check that the tb → ∞ limit corresponds to
R → Rþ or to R → R−. In particular, we can have

(i) Case 1: If ρoðRþÞ < 0, the tb → ∞ limit corre-
sponds to R → Rþ. In this case both the integrals in
Eq. (4.14) diverge, due to a singularity in corre-
spondence of rt;AdS. For large enough tb > 0 the
complexity rate is an increasing function of time (see
for example the right panel of Fig. 13).

(ii) Case 2: If ρoðRþÞ > 0, then also ρoðR−Þ > 0. From
Eq. (3.10), both for R ¼ Rþ and R ¼ R−, we have
that rt;AdS ¼

ffiffiffiffiffiffiffiffi
μ=2

p
, because P2

o ¼ μ2=4. The inte-
gral which gives tb, see Eq. (4.10), is then divergent
for R ¼ R− and not for R ¼ Rþ, because
R− ≤ rt;AdS ≤ Rþ, see Eq. (4.8). In this case, at
large enough tb > 0 the complexity rate is a decreas-
ing function of time, see for example the right panel
of Fig. 12.

Either way, the complexity rate at late time is insensitive to
the presence of the bubble

1

2π
lim
tb→∞

dV
dtb

¼ μ

2
: ð4:19Þ

However, the sign of ρoðRþÞ discriminates between a
growing or a decreasing complexity rate at late time. It
is a complicated problem to discuss the sign of ρoðRþÞ in a
generic point of the parameter space. Still, in some
particular regions of parameters we can determine the sign
of ρoðRþÞ with some simple arguments. For example, for
μ → 0 we are always in case 2, because in this limit

Rþ → Rmax; ρðRþÞ →
1

ðκ þ 1Þ2 þ λ
> 0: ð4:20Þ

Instead, depending on the value of λ and κ, for μ → μ0 we
can have both case 1 (for example λ ¼ 0.5, κ ¼ 0.5) and
case 2 (for example λ ¼ 1, κ ¼ 1). See Appendix C 2 for
further details.
According to the Lloyd’s bound [84], the maximum

allowed growth rate of quantum computational complexity

should be proportional to the total energy. In quantum
systems with holographic duals, it was proposed [57] that
the Lloyd’s bound is saturated at late time by the uncharged
planar black hole solutions in AdS. In the parameter space
portion of case 2 this version of the proposal is violated,
because the asymptotic value is approached from above.
Violations of the Lloyd’s bound have been previously
found for the CA conjecture, see [83,85–89]. In holo-
graphic models including just AdS boundaries, we do not
know about any other violation of the bound for the CV
proposal. See [90,91] for examples of AdS hairy black
holes in which the bound is instead satisfied.

B. Large bubbles

Contrary to small bubbles, for large bubbles the dS part
of the geometry contains the region beyond the cosmo-
logical horizon r ¼ 1=

ffiffiffi
λ

p
. However, recalling that Pi ¼ 0,

we point out that extremal codimension-one surfaces in the
dS part cannot enter the region with r > 1=

ffiffiffi
λ

p
, where the

potential Ui is positive, see Fig. 9. Therefore, the extremal
surfaces are confined into the static patches. In particular,
for 0 < μ < μh the extremal surfaces extend into the right
static patch. Since in this case the domain wall never enter
the left static patch, we necessarily have ρiðRÞ < 0. On the
other hand, for μ > μh no portion of the right static patch is
present in the geometry, so the extremal surfaces remain
into the left static patch. From this argument we conclude
that ρiðRÞ > 0.
Some technical details in the calculations slightly differ

in the two cases:
(i) Very large bubble, 0 < μ < μh. Equation (4.2),

which determines Po, is replaced by

−
Rffiffiffiffi
fi

p ¼ 1

fo
ρo þ

dTo

dR
Po;

Po ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2oðRÞ − foðRÞR2

q
: ð4:21Þ

We fix the sign of Eq. (2.24) as in Eq. (4.3). The
solution for positive Po is

ρo ¼
Rðμ − 1þ R2ðκ2 þ λ − 1ÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λR2

p : ð4:22Þ

From here, we obtain the same value of Po as in
Eq. (4.5). It can be checked that ρoðRminÞ in
Eq. (4.22) is always negative. Also, for fixed λ, κ,
and μ, ρoðRÞ is a decreasing function of R. There-
fore, ρoðRÞ is always negative, which means that
there is a turning point rt;AdS < R in AdS. Note that
ρoðRÞ → −∞ for R → 1=

ffiffiffi
λ

p
.

The extremal surface always crosses the dS
horizon on the bifurcation sphere, because Pi ¼ 0.
Consequently, the volume is given by
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V
2π

¼
Z

1ffiffi
λ

p

0

rffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p dr −
Z

R

1ffiffi
λ

p

rffiffiffiffiffiffiffiffiffiffi
fiðrÞ

p dr

−
Z

rt;AdS

R

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr

þ
Z

Λ

rt;AdS

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr: ð4:23Þ

The boundary time tb can be obtained by Eq. (4.14).
We find that the complexity rate is again given
by Eq. (4.12).

(ii) Not so large bubble, μh < μ < μ0. Equation (4.2)
still holds. We fix the sign of Eq. (2.24) as in
Eq. (4.3), in which woðRÞ is always negative.3 This
choice corresponds to a bubble which, for To ≥ 0,
moves in the lower direction of the Penrose diagram.
Assuming Po to be positive,

4 the ρo solution is given
by Eq. (4.4).
The quantity ρoðRÞ changes sign at R ¼ R0, given

in Eq. (C2). However, for μ > μh we have
R0 < Rmin. In addition, in the present case the
equation ρoðRminÞ ¼ 0 has no solution, so
ρoðRminÞ is always negative, in accordance with
the refraction interpretation. Putting all together, we
conclude that ρoðRÞ remains negative in the range
Rmin < R < 1=

ffiffiffi
λ

p
. In particular, for R → 1=

ffiffiffi
λ

p
we

get ρo → −∞.
Due to the negativity of ρoðRÞ, there is a turning

point at rt;AdS < R in the AdS portion. We can then
use Eq. (4.13) for the volume, Eq. (4.14) for the
boundary time, and Eq. (4.12) for the complexity
rate. The value of P2

o is still given by Eq. (4.5). From
a direct calculation

PoðRminÞ ¼ 0;

Poð1=
ffiffiffi
λ

p
Þ ¼ ∞: ð4:24Þ

Moreover, for Rmin < R < 1=
ffiffiffi
λ

p
, Po is a monotonic

function, a plot of which is displayed in Fig. 18. The
unique solution R� to the equation

P2
oðR�Þ ¼ P2

max ¼ μ2=4; ð4:25Þ

with Rmin < R� < 1=
ffiffiffi
λ

p
, corresponds to the ex-

tremal surface at tb → ∞.
In Figs. 19 and 20 we show the extremal surfaces and the

complexity rate for a very large and a not so large bubble,
respectively. In these examples, a single extremal surface

exists for any given boundary time tb and the complexity
rate is an increasing function of time.
In order to check if multiple extremal surfaces can

emerge for a given tb, we look at the behavior of K,
expressed in Eq. (C12). A plot of K as a function of μ for
fixed λ and κ is shown in Fig. 21. From the discussion
below Eq. (C13), we find that for large bubbles K is always
positive, thus there are no multiple extremal surfaces
attached at the same boundary time.
The complexity rate at large tb is still given by Eq. (4.19).

The rate is always an increasing function of tb at late time,
because P2

oðRÞ is always an increasing function of R in the
range Rmin ≤ R ≤ R�, see Fig. 18. Referring to Sec. IVA 2,
the late time rate of complexity behaves as in case 1 of
small bubbles.

C. Static bubble limit

For the strictly static bubble configuration μ ¼ μ0,
Eq. (B13) tells us that Po ¼ 0, so the complexity rate
identically vanishes. In this setup, the time-translation
symmetry is not broken by the presence of the bubble
and ∂=∂t is an everywhere well-defined Killing vector.
Also, the extremal surfaces never enter the black and white
hole regions of the AdS geometry (see Fig. 22).
Let us now comment on how the static bubble is realized

as a limit of the small and large bubbles:
(i) As μ approaches the critical value μ0 from the small

bubble direction, the time Tb in Eq. (4.15) tends to
þ∞, and the slope of the complexity rate in the
central unstable branch tends to zero, see Fig. 23.
This is consistent with K → −∞ for μ → μ0, as
shown in Fig. 14. In the static bubble limit μ → μ0,
just the central branch solution survives and the
complexity rate is zero. Interestingly, this limit is
discontinuous, since the central branch is discarded
by the maximum volume prescription, as indicated
by the dashed line in Fig. 16.

(ii) As μ approaches the static bubble value μ0 from the
large bubble direction, at small tb the complexity
rate grows very slowly, see Fig. 24. When μ → μ0,
the complexity rate remains frozen at zero for a large

FIG. 18. Behavior of P2
oðRÞ in Eq. (4.5) for large bubbles.

3As woðRÞ is a decreasing function of R, it is enough to check
this property for R ¼ Rmin, see Eq. (C15).

4If Po is negative, ρo is given by Eq. (C1). This solution
corresponds to a reflection, so we discard it.
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time. This is consistent with K diverging to þ∞ in
this limit, as shown in Fig. 21.

D. Complexity of formation

While it is possible to look at the collapse of a very small
bubble from the outside of the black hole, for all the other
kinds of bubble an external observer just see a black hole
horizon. Thus, we can ask whether complexity can help us

to discriminate, for a given value of the boundary time tb,
between a large and small bubble state with the same μ. To
look for an answer, we consider the complexity of
formation [92] at tb ¼ 0, at which time Pi ¼ Po ¼ 0.

FIG. 19. Left panel: AdS portion of the extremal surfaces for an example of very large bubble. Right panel: plot of the complexity rate.

FIG. 20. Left panel: AdS portion of the extremal surfaces for an example of not so large bubble. Right panel: plot of the complexity
rate.

FIG. 21. Plot of K, defined in Eq. (4.16), as a function of μ for
λ ¼ 1 and κ ¼ 0.5 in the case of large bubbles.

FIG. 22. AdS portion of the extremal solution for the static
bubble (which is shown in the black solid line). These surfaces
have all Po ¼ 0 and never enter the black and white hole regions
of the geometry.
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To get a finite quantity, we subtract from the volume of the
bubble V large (or Vsmall) at tb ¼ 0 the outside volume of the
BTZ black hole at the same boundary time:

VBTZ ¼ 2π

Z
Λffiffi
μ

p
rffiffiffiffiffi
fo

p dr ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − μ

q

¼ 2πΛþO

�
1

Λ

�
; ð4:26Þ

where Λ is the AdS UV cutoff. The complexity of
formation is thus proportional to

ΔV large ¼ V large − VBTZ;

ΔVsmall ¼ Vsmall − VBTZ: ð4:27Þ

From a direct evaluation from Eqs. (4.9), (4.13), and (4.23),
we find

ΔVsmall

2π
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

maxλ
p

λ
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
max − μ

q
ð4:28Þ

where the ∓ sign refers to the cases 0 < μ < μs and
μs < μ < μ0, respectively. The regularized volume of large
bubbles instead is

ΔV large

2π
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
min − μ

q
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

minλ
p

λ
ð4:29Þ

where the � sign refers to the cases 0 < μ < μh and
μh < μ < μ0, respectively.
A plot of ΔV large andΔVsmall as function of μ is shown in

Fig. 25. The large bubble has always a larger complexity
than the small one. This confirms the intuition that a large
bubble state is more complex compared to a small bubble
one with the same mass. Also, ΔVsmall is negative for
μ → 0. Very small bubbles in the limit μ → 0 then
correspond to less complex states compared to the BTZ
eternal black hole.

FIG. 23. Left panel: AdS portion of the extremal surfaces for a not so small bubble. The value of μ is rather close to the static bubble
configuration, which, with the chosen values of λ and κ, is realized for μ0 ≈ 0.88278. Right panel: plot of the complexity rate.

FIG. 24. Left panel: AdS portion of the extremal surfaces for an example of not so large bubbles with a μ rather close to the static
bubble value μ0 ≈ 0.88278. Right panel: plot of the complexity rate.
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V. COMPLEXITY WITH A DS STRETCHED
HORIZON

For a very large bubble with 0 < μ < μh, the geometry
includes a complete dS stretched horizon. Consequently,
we can consider a different prescription to compute volume
complexity, in which the extremal codimension one surface
is attached both to the AdS boundary and to the dS
stretched horizon. This is an intermediate situation between
the configuration used in the CV proposal in AdS [55] and
in dS [24]. The stretched dS horizon is located at constant
r ¼ rsh, where

rsh ¼
1ffiffiffi
λ

p ð1 − ϵÞ; ð5:1Þ

and ϵ → 0 is the horizon cutoff. An ϵ > 0 is necessary to
define a notion of time on the dS boundary, as the horizon is
a null hypersurface for ϵ ¼ 0.
We choose the parameter l in Eq. (3.2) in such a way that

it is positive and that rðl ¼ 0Þ ¼ rsh. The dS boundary
removes the conical singularity presented by extremal
surfaces at the center of the static patch for Pi ≠ 0. For
this reason, we are allowed to consider an arbitrary value
of Pi.
Extremal surfaces are stretched between the dS horizon

and the AdS boundary, so we can define the left and the
right boundary times tL, tR as the boundary conditions

tL ¼ tiðl ¼ 0Þ; where rðl ¼ 0Þ ¼ rsh

tR ¼ toðl ¼ lΛÞ; where rðl ¼ lΛÞ ¼ Λ ð5:2Þ

and Λ is the AdS UV cutoff. In the definition of the
boundary time, we consider an arbitrary linear relation
between tL and tR

tL ¼ αttR; ð5:3Þ

where αt is some opportune numerical constant. The
boundary time tb then is

tb ¼ −tL ¼ −αttR: ð5:4Þ

As a technical difference compared to the usual Kruskal
extension of the AdS black hole, there is no time-translation
Killing vector ∂t which is globally defined in all the
geometry, because time invariance is broken by the
trajectory of the bubble. If such a symmetry existed, it
would provide an appropriate value of αt which would give
a zero complexity rate. We then expect a nontrivial time
dependence of complexity for every value of αt.

A. Extremal surfaces

In the AdS part of the geometry, the domain wall is
located into the left exterior of the black hole. Thus, for the
extremal surface to cross the black or white hole interior,
we must require ρoðRÞ < 0. Instead, the sign of ρiðRÞ
might be positive or negative. Explicitly,

ρoðRÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðRÞR2

q
;

ρiðRÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðRÞR2

q
: ð5:5Þ

The condition for the extremal surface to reach the AdS
boundary without falling into the black hole singularity is
−μ=2 ≤ Po ≤ μ=2 (see the plot of the potential in the right
panel of Fig. 9). By time-reflection invariance, we take
Po ¼ Pi ¼ 0 at tb ¼ 0, when the extremal surface meets
the domain wall at R ¼ Rmin.
Under these assumptions, the matching condition in

Eq. (3.18) reads

Pi
dTi

dR
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðRÞR2

p
fiðRÞ

¼ Po
dTo

dR
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðRÞR2

p
foðRÞ

;

ð5:6Þ

where the � sign corresponds to ρiðRÞ > 0 or ρiðRÞ < 0,
respectively. We choose the sign of dTo=dR as in Eq. (4.3),
and the sign of dTi=dR in Eq. (2.24) as follows

dTi

dR
¼ −

1

2κ

wiðRÞ
ð1 − λR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR4 − BR2 þ C

p ;

wiðRÞ ¼ 1þ μ − R2ð1þ λ − κ2Þ: ð5:7Þ

As a function of μ, the quantity wiðRminÞ is positive for
μ > μh and negative for μ < μh. For μ ¼ μh, wiðRminÞ
vanishes and the bubble initially sits exactly at the dS
bifurcation point.
Equation (5.6) is solved by

Pi ¼
Poðwiwo � ξÞ þ ffiffiffi

ξ
p ðwi � woÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foR2

p
4κ2R2fo

;

ξ ¼ −4κ2VðRÞR2; ð5:8Þ

FIG. 25. Plot of ΔVsmall and ΔV large in Eqs. (4.28) and (4.29) as
functions of μ, for λ ¼ 1 and κ ¼ 0.5.
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where VðRÞ is given in Eq. (2.14). We point out that the
solution with Pi ¼ 0 reproduces the smooth extremal
surfaces studied in Sec. IV. The− sign describes an
extremal surface experiencing a refraction, see Eq. (4.5),
while theþ sign denotes an extremal surfaces undergoing a
reflection, see Eq. (C1). Specializing to the physical
refracted solution, Eq. (5.8) can be further simplified to

Pi ¼
1

2fo

�
Poð1−μþR2ð1−λ− κ2ÞÞþ

ffiffiffi
ξ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
oþfoR2

q �
:

ð5:9Þ

An extremal surface is specified by the conserved quantities
Pi and Po, which are related by Eq. (5.9). Their values for
given boundary times are fixed by the boundary condition
in Eq. (5.3), as we will explain below.
For the extremal surface to reach the AdS boundary, the

turning point defined in Eq. (3.12) must be at rt;dS ≥ R,
which holds true for

P2
i ≥ P̃2

i ; P̃2
i ¼ R2ðλR2 − 1Þ: ð5:10Þ

For Rmin < R < 1=
ffiffiffi
λ

p
, the domain wall is located on the

right side of the dS static patch, so ρiðRÞ < 0. We may
expect that at some point R ¼ R̃ > 1=

ffiffiffi
λ

p
, whose location

depends on the bubble parameters and on the choice of αt,
the function ρiðRÞ vanishes. Then, ρiðRÞ > 0 for R > R̃.
The condition ρiðR̃Þ ¼ 0 is equivalent to P2

i ¼ P̃2
i , see

Eq. (5.10). In terms of Po, this gives

Po ¼ P̃o ¼
Rðμ − 1þ R2ðλþ κ2 − 1ÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λR2 − 1

p ; ð5:11Þ

which is well defined just for R > 1=
ffiffiffi
λ

p
. Note that P̃o →

−∞ for R → 1=
ffiffiffi
λ

p
. For R > 1=

ffiffiffi
λ

p
and Po > P̃o we have

ρiðRÞ < 0, while for Po < P̃o we have ρiðRÞ > 0.

B. Complexity

For the calculation of volume and boundary time, let us
distinguish between two cases:

(i) ρiðRÞ < 0. The volume is given by

V
2π

¼
Z

rt;dS

rsh

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr

−
Z

R

rt;dS

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr

−
Z

rt;AdS

R

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr

þ
Z

Λ

rt;AdS

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr: ð5:12Þ

From Eq. (3.13), we can write the following ex-
pression for the AdS boundary time

tR ¼ ToðRÞ þ
Z

rt;AdS

R

Po

fo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr

−
Z

Λ

rt;AdS

Po

fo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr; ð5:13Þ

and the following expression for the dS boundary
time

tL ¼ TiðRÞ þ
Z

rt;dS

rsh

Pi

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr

−
Z

R

rt;dS

Pi

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr: ð5:14Þ

(ii) ρiðRÞ > 0. The volume can be written as

V
2π

¼
Z

R

rsh

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr

−
Z

rt;AdS

R

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr

þ
Z

Λ

rt;AdS

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ foðrÞr2

p dr: ð5:15Þ

Equation (5.13) is still valid. Instead, from Eq. (3.13)
we find that the time on the dS boundary is

tL ¼ TiðRÞ þ
Z

R

rsh

Pi

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr: ð5:16Þ

In order to find values of Pi and Po consistent with the
boundary condition, we need to solve Eq. (5.3) where tR
and tL are specified by (5.13) and (5.14) or (5.16),
respectively. This integral equation can be solved numeri-
cally by the shooting method.
We can then compute the extremal surfaces and their

volume numerically. In Fig. 26 we show the result for
αt ¼ 1, while in Fig. 27 we display the result for the choice
αt ¼ −1. In both cases we find a hyperfast complexity rate,
because the volume of the extremal surface diverges for a
finite value of the boundary time tb.

C. Critical time behavior

Let us now discuss the limit of hyperfast complexity
growth. Expanding Eq. (5.9) for large R, we find that

PiðRÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ ðκ − 1Þ2Þðλþ ðκ þ 1Þ2Þ

p
2

R2 þOðR0Þ:
ð5:17Þ
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The dependence of Pi on Po shows up just at order OðR0Þ.
At large R, we can approximate TiðRÞ in Eq. (2.24) as

dTi

dR
≈

1

fi

1þ λ − κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ κ2 − 1Þ2 þ 4λ

p ;

TiðRÞ ≈
1þ λ − κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλþ κ2 − 1Þ2 þ 4λ
p r�i ðRÞ þQ; ð5:18Þ

where Q is an integration constant. Note that
1þ λ − κ2 > 0, because κ < 1 in the very large bubble
regime.
Let us discriminate between two cases:
(i) λþ κ2 > 1. At large R, from Eq. (5.11) we have

P̃o → þ∞, then ρiðRÞ > 0. At large Pi, we can
approximate Eq. (5.16) as

tL ≈ TiðRÞ þ
Z

R

rsh

dr
fi

¼ TiðRÞ þ r�i ðRÞ − r�i ðrshÞ; ð5:19Þ

which gives

tL ≈ ω
1

Rλ
þQ −

1

4
ffiffiffi
λ

p log
4

ϵ2
;

ω ¼ 1þ 1þ λ − κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ κ2 − 1Þ2 þ 4λ

p : ð5:20Þ

In the above expression, we have ω > 0 because for
very large bubbles κ < 1. For large R, the dS part of
the volume in Eq. (5.15) diverges linearly:

VdS

2π
¼
Z

R

rsh

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
i þ fiðrÞr2

p dr

≈ R
Z

1

rsh
R

y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþðκ−1Þ2Þðλþðκþ1Þ2Þ

4
− λy4

q dy: ð5:21Þ

The divergence of the volume for large R is at the
value of tL given in Eq. (5.20).

(ii) λþ κ2 < 1. At large R we have P̃o → −∞, which
gives ρiðRÞ < 0. In this limit, combining Eq. (3.12)
with Eq. (5.17), we find

rt;dS ≈
Rffiffiffi
2

p
�ðλþ ðκ − 1Þ2Þðλþ ðκ þ 1Þ2Þ

λ

�
1=4

:

ð5:22Þ

At large R, corresponding to large Pi, we can
approximate tL in Eq. (5.14) as

tL ≈ TiðRÞ þ
Z

rt;dS

rsh

dr
fi

þ
Z

rt;dS

R

dr
fi

; ð5:23Þ

which gives

FIG. 26. Left and central panels: extremal surfaces in the dS and in the AdS portion of the Penrose diagram, respectively. Right panel:
plot of the volume as a function of boundary time tb. We set αt ¼ 1, see Eq. (5.3), and we choose κ ¼ 0.2, λ ¼ 1.5, μ ¼ 0.4, and
ϵ ¼ 0.06.

FIG. 27. Plots of the same quantities as in Fig. 26, with the choice αt ¼ −1.
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tL ≈ ω̃
1

λR
þQ −

1

4
ffiffiffi
λ

p log
4

ϵ2
; ð5:24Þ

where

ω̃ ¼ 2
ffiffiffi
2

p
λ1=4

½ðλþ ðκ − 1Þ2Þðλþ ðκ þ 1Þ2Þ�1=4

þ 1þ λ − κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ κ2 − 1Þ2 þ 4λ

p − 1: ð5:25Þ

In the case at hand, the quantity ω̃ is always positive.
At large R and at the finite time in Eq. (5.24), the
volume again diverges linearly as in Eq. (5.21).

Summarizing, in both cases the volume complexity
diverges for tb ¼ tcr, where the critical time is

tcr ¼
1

4
ffiffiffi
λ

p log
4

ϵ2
−Q; ð5:26Þ

and Q is the integration constant defined in Eq. (5.18). The
divergence at tb ¼ tcr takes place independently of the
parameter αt in Eq. (5.3). For tb > tcr, no extremal surface
exists which connects the left dS and right AdS boundaries.
As in [63], we may regularize the divergence in the
complexity rate by introducing a cutoff surface at large r ¼
rcut nearby the future dS infinity. With this regularization,
the complexity rate would remain finite and at t > tcr it
would saturate at a value divergent in the UV cutoff rcut.

VI. CONCLUSIONS

In this paper we investigated the time dependence of
volume complexity in a class of asymptotically AdS3
spacetimes which include a dS3 bubble in their interior.
We first focused on extremal surfaces attached just at the
AdS boundary and smooth everywhere into the interior
spacetime. With the exception of the static bubble con-
figuration, we found that complexity asymptotically grows
linearly as a function of time, with the same rate as for the
BTZ black hole. For large bubbles, the asymptotic value of
the complexity rate is always reached from below. For
small bubbles, the asymptotic limit can be instead reached
either from below (case 1) or from above (case 2),
depending on the parameter space (see Sec. IVA 2).
The static bubble configuration gives rise to a time-

independent complexity, so it does not match the expect-
ation, generically satisfied by AdS black holes, that
complexity rate at late time is of the same order of
magnitude as TS, with T the temperature and S the entropy
of the system [34]. This fine-tuned solution, which is
realized for μ ¼ μ0, interpolates between the small and the
large bubble regimes. As soon as a small perturbation is
introduced, the static bubble limit can be achieved in two
different ways:

(i) If the limit μ → μ0 in the parameter space is
approached from the large bubble configuration,
the complexity rate remains frozen to zero for an
initial amount of time which tends to infinity for
μ → μ0, see the right panel of Fig. 24. From this
side, the asymptotic complexity rate of the BTZ
black hole is recovered in a continuous way after an
arbitrarily large time.

(ii) If the limit μ → μ0 is approached from the small
bubble region of the parameter space, the static
behavior of complexity emerges from a class of
extremal surfaces with nonmaximal volume, see
Fig. 23. According to the CV prescription, the
non-maximal extremal solutions should be discarded
for μ ≠ μ0 in favor of the global maximum, as shown
by the dashed line in Fig. 17. For μ → μ0 the
complexity rate resembles a step function, thus
the limit is discontinuous, as in a first order phase
transition.

Interestingly, the discarded solutions would give
rise to a negative complexity rate, as for the two-
dimensional centaur geometries studied in [67]. We
may contemplate the possibility that other physical
configurations could exist, which resemble our
geometry nearby the discarded extremal surfaces
and in which the global maximum is cut away. If
such a surgery were performed, it would give rise to
a negative complexity rate, resembling the two-
dimensional case studied in [67], in which no black
hole horizon is present in the AdS region of the
geometry.

With both procedures, for μ → μ0 the BTZ asymptotic
complexity rate is recovered at late time. The limit is
continuous from the large bubble direction, while it is
discontinuous from the small bubble side. In this sense, the
static bubble can be seen as a fine-tuned critical configu-
ration separating qualitatively different behaviors in the
parameter space.
From the point of view of local observables on the AdS

boundary, the static bubble configuration is not distinguish-
able from the eternal BTZ black hole. The same holds for
entanglement entropy of subregions located on the AdS
boundary. To detect the discontinuous nature of the static
bubble limit, other quantum information probes, such as
holographic complexity, are required.
Contrary to the result found in [24,63] for dS, if we

consider smooth extremal surfaces attached just to the AdS
boundary there is no hyperfast growth of complexity. In
Sec. V, we checked that hyperfast growth is recovered in
the very large bubble case if we consider extremal surfaces
anchored both at the AdS boundary and at the dS stretched
horizon. This choice should correspond to complexity of a
pure thermofield double state which involves both an AdS
and a dS boundary. Defining the boundary time tb as in
Eq. (5.4), we find that the volume complexity diverges at
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tb ¼ tcr given in Eq. (5.26), independently of the parameter
αt in Eq. (5.3).
It is tempting to suggest the following interpretations for

the two different ways to apply the CV conjecture in AdS
geometries with very large dS bubbles:

(i) the volume of smooth extremal surfaces anchored
just at the boundary of AdS is proportional to the
complexity of a mixed CFT state, obtained by
tracing over the dS degrees of freedom in the
thermofield double state. This situation is reminis-
cent of the subregion complexity proposal [93–95].

(ii) the volume of the extremal surface anchored both at
the AdS boundary and at the dS static patch horizon
is proportional to the complexity of the pure prod-
uct state.

Why the latter choice of boundary conditions is possible
just for very large bubbles is an interesting question. Small
bubble solutions do not contain a stretched horizon in the
dS portion of the geometry, so the only implementable
prescription is to attach the extremal surfaces just to the
AdS boundary. In this case, we can conjecture that the dual
CFT state does not arise from a partial trace over a pure
state involving a dS boundary.
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APPENDIX A: DETAILS ABOUT PENROSE
DIAGRAMS

In this appendix we describe our conventions for Penrose
diagrams. For the BTZ external region, the relation
between the coordinates ðt̃; r̃Þ of the Penrose diagram
and the EF coordinates ðu; vÞ can be expressed as

t̃ ¼ �tan−1ðev ffiffiμp Þ − tan−1ðe−u ffiffiμp Þ
2

;

r̃ ¼ �tan−1ðev ffiffiμp Þ þ tan−1ðe−u ffiffiμp Þ
2

; ðA1Þ

where the first sign is for r >
ffiffiffi
μ

p
and the second sign

for r <
ffiffiffi
μ

p
.

For the dS spacetime interior, we use the following
choice of Penrose diagram coordinates

t̃ ¼ tan−1ðeu
ffiffi
λ

p
Þ ∓ tan−1ðe−v

ffiffi
λ

p
Þ

2
;

r̃ ¼ tan−1ðeu
ffiffi
λ

p
Þ � tan−1ðe−v

ffiffi
λ

p
Þ

2
; ðA2Þ

where the first sign is for r < 1=
ffiffiffi
λ

p
and the second sign

for r > 1=
ffiffiffi
λ

p
.

In this paper, Penrose diagrams are obtained by
a parametric plot of the coordinates ð�r̃;�t̃Þ, using
Eq. (A1) for the external BTZ region and Eq. (A2) for
the dS interior. The direction of increasing t on each side of
the diagrams is shown in Fig. 6.

APPENDIX B: DERIVATION OF THE
REFRACTION LAW FOR EXTREMAL

SURFACES

Let us assume that the change of variable between ti;o is
of the form

to ¼ GðrÞti: ðB1Þ

The function G will be specified later by requiring the
proper time on the bubble to be continuous. In terms of the
interior time coordinate ti, the outside metric in Eq. (2.1)
reads

ds2o ¼ −foG2dt2i − fo
dðG2Þ
dr

tidrdti

þ
1 − f2o

�
dG
dr

�
2
t2i

fo
dr2 þ r2dθ2; ðB2Þ

where fi and fo are functions of r given in Eqs. (2.2)
and (2.3). Hence, both the interior and the exterior metrics
have the following form:

ds2 ¼ −gðr; tiÞdt2i þ
dr2

fðr; tiÞ
þ 2hðr; tiÞdrdti þ r2dθ2;

ðB3Þ

where for the interior metric

gðr; tiÞ ¼ fi; fðr; tiÞ ¼ fi; hðr; tiÞ ¼ 0; ðB4Þ

while for the exterior metric

gðr; tiÞ ¼ G2fo;

fðr; tiÞ ¼
fo

1 − f2oðdGdrÞ2t2i
;

hðr; tiÞ ¼ −foG
dG
dr

ti: ðB5Þ

For later purposes, it is useful to evaluate the following
quantities both inside and outside the bubble:

gþ fh2

f

����
i
¼ 1;

gþ fh2

f

����
o
¼ G2: ðB6Þ
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For the metric in Eq. (B3), the volume functional is

L ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðr; tiÞt02i þ r02

fðr; tiÞ
þ 2hðr; tiÞr0t0i

s

Vi;o ¼ 2π

Z
Ldl; : ðB7Þ

It is convenient to fix the gauge as in Eq. (3.6), which is
equivalent toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðr; tiÞt02i þ r02

fðr; tiÞ
þ 2hðr; tiÞr0t0i

s
¼ r: ðB8Þ

1. Static bubble

At constant r, continuity of the proper time on the
domain wall fixes

GðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
fiðrÞ
foðrÞ

s
: ðB9Þ

Let us discuss the extremal codimension-one surfaces. In
this case, the functions f, g, h do not depend on ti, so there
is a conserved quantity

P̂ ¼ ∂L
∂t0i

¼ −gt0i þ hr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðr; tiÞt02i þ r02

fðr;tiÞ þ 2hðr; tiÞr0t0i
q r: ðB10Þ

With our gauge choice, the conserved quantity can be
written as

P̂2 ¼
�
gþ fh2

f

�
ðr0Þ2 − gr2: ðB11Þ

Using Eqs. (B6) and (B9), together with the fact that g is
continuous on the bubble, we find

ðr0iÞ2 ¼
fi
fo

ðr0oÞ2: ðB12Þ

From Eq. (2.27), we finally get

P2
o ¼

foðRÞ
fiðRÞ

P2
i ¼ μ20P

2
i : ðB13Þ

2. Dynamical bubble

For dynamical bubbles, the functions f, g, h depend on
ti. All the derivatives

∂tif; ∂tih; ∂rf; ∂rh;

will have a Dirac delta contribution localized on the surface
of the bubble

ti ¼ TiðτÞ; r ¼ RðτÞ:

We impose the condition that this delta function contribu-
tion is constant on the surface of the bubble:

dfðr; tiÞ
dτ

����
bubble

¼ dfðRðτÞ; TiðτÞÞ
dτ

¼ _Ti∂tif þ _R∂rf ¼ 0; ðB14Þ

which implies

∂tif ¼ −
dR
dTi

∂rf: ðB15Þ

So we expect

∂rf ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dTi

�
2

r δðr − RðτÞÞΔf;

∂tif ¼ −
dR
dTi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dTi

�
2

r δðr − RðτÞÞΔf;

where Δf is the discontinuity of f on the surface of the
bubble. An analogous equation holds for h.
Let us introduce the variables s and w such that

�
ti
r

�
¼
�
cosψ − sinψ

sinψ cosψ

��
s

w

�
; ðB16Þ

where

sinψ ¼
_Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2 þ _T2
i

q ; cosψ ¼
_Tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2 þ _T2
i

q ;

tanψ ¼ dR
dTi

: ðB17Þ

The derivative of f with respect to s is

∂f
∂s

¼ ∂ti
∂s

∂tif þ ∂r
∂s

∂rf ¼
_Ti∂tif þ _R∂rfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2 þ _Ti
2

q : ðB18Þ

A similar property is valid for h. From Eq. (B15), we thus
find that the relations ∂sf ¼ 0 and ∂sh ¼ 0 are satisfied by
the Dirac delta term.
Going back to the volume functional in Eq. (B7), we can

express it in the ðs; wÞ coordinates. In the approximation in
which we consider just the “fast” dependence of the
Lagrangian due to discontinuities at the two sides of the
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domain wall, the Lagrangian density is independent of s.
We have then a conserved quantity of the form

P̂ ¼ ∂L
∂s0

¼ ðhr0 − gt0iÞ cosψ þ
�
r0

f
þ ht0i

�
sinψ : ðB19Þ

The quantity P̂ is not globally conserved on the codimen-
sion-one extremal surface, but just before and after the
collision with the Dirac delta domain wall. Plugging the
gauge fixing condition (B8) in, we get

P̂2 ¼
 
gþ fh2

fg
r0 sinψ � ðg cosψ − h sinψÞ

g

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ fh2

f
ðr0Þ2 − gr2

s !2

: ðB20Þ

The conserved quantities inside and outside the domain
wall are

P̂2
i ¼

�
sinψ
fi

r0i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0iÞ2 − fir2

q
cosψ

�
2

;

P̂2
o ¼

�
1

fo
r0o sinψ �

�
G cosψ þ dG

dr
ti sinψ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0oÞ2 − for2

q �
2

: ðB21Þ

Combining the condition P̂2
i ¼ P̂2

o with Eqs. (B17) and
(B1), we find

�
1

fi
r0i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0iÞ2 − fir2

q dTi

dR

�
2

¼
�
1

fo
r0o �

dTo

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0oÞ2 − for2

q �
2

: ðB22Þ

We can consider the following crosschecks of Eq. (B22):
(i) For ψ ¼ 0, it reproduces the static bubble result

in Eq. (B13).
(ii) For a bubble moving at the speed of light, we have

dTi;o

dR
¼ � 1

fi;o
: ðB23Þ

Specializing Eq. (B22) to Eq. (B23) and combining
with Eq. (3.7), we find V 0

i ¼ V 0
o or U0

i ¼ U0
o,

depending on the choice of sign. This is in agree-
ment with the results in [81,82].

Using the notation in Eq. (3.15), the refraction condition
(B22) can be written in the covariant form

ðgiÞμν
dxμi
dl

dXν
i

dτ
¼ �ðgoÞμν

dxμo
dl

dXν
o

dτ
: ðB24Þ

By continuity with the case where there is no bubble into
the system, the physical solution should be the one with the
þ sign, which we consider in Eq. (3.16).

APPENDIX C: TECHNICAL DETAILS FOR
SMOOTH EXTREMAL SURFACES

1. Solution with Po < 0

With the assumption of negative Po and with the choice
of sign for dTo

dR in Eq. (4.3), Eq. (4.2) is solved by

P2
o ¼ −R4 þ μR2 þ ððμþ 1Þ2 þ R4ðκ2ðλ − 1Þ þ ðλþ 1Þ2Þ þ R2ðκ2ðμ − 1Þ − 2ðλþ 1Þðμþ 1ÞÞÞ2

4κ4R2ð1 − λR2Þ :

ρo ¼ −
R4ðκ2ðλ − 1Þ þ ðλþ 1Þ2Þ − R2ð2ðλþ 1Þðμþ 1Þ − κ2ðμ − 1ÞÞ þ ðμþ 1Þ2

2κ2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λR2

p ; ðC1Þ

A direct calculation gives that ρoðRmaxÞ in Eq. (C1) is
the opposite of ρoðRmaxÞ in Eq. (4.4). The same holds
true for ρoðRminÞ. So, the solution in Eq. (C1) corresponds
to a “reflection” of the codimension-one extremal
surface, and as such should be discarded. Note that
both the solutions in Eqs. (4.5) and (C1) vanish for
r ¼ Rmax ¼ Rmin.

2. Sign of ρoðRÞ for small bubbles

The function ρoðRÞ in Eq. (4.4) vanishes for R ¼ R0,
where

R0ðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ

κ2 þ λ − 1

r
: ðC2Þ

Therefore, if either R0ðμÞ is not a real number or
R0 > Rmax, the sign of ρoðRÞ does not change along the
surface of the bubble. Conversely, if R0ðμÞ is real and
R0 < Rmax, ρoðRÞ changes sign along the bubble. With a
direct calculation, it can be checked that

R0ðμsÞ ¼ ffiffiffiffiffi
μs

p ¼ RmaxðμsÞ: ðC3Þ
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There are then four possible behaviors of ρoðRÞ on the
domain wall:
(A) μ < μs and λþ κ2 > 1. The function ρoðRÞ is al-

ways positive.
(B) μ < μs and λþ κ2 < 1. When R0 is real, ρoðRÞ is

positive for R0 < R ≤ Rmax and negative for
0 < R < R0. When R0 is imaginary, ρoðRÞ is always
positive.

(C) μ > μs and λþ κ2 > 1. When R0 is real, ρoðRÞ is
negative for R0 < R ≤ Rmax and positive for
0 < R < R0. When R0 is imaginary, ρoðRÞ is always
negative.

(D) μ > μs and λþ κ2 < 1. The function ρoðRÞ is
always negative.

With reference to Sec. IVA 2, from these considerations we
find that the region of parameter space in bullet (A) belongs
to case 2, while the part of parameter space in bullet
(D) belongs to case 1.

3. Behavior of the complexity rate for tb = 0

In this appendix, we determine the explicit value of the
quantity K defined in Eq. (4.16). Let us first consider very
small bubbles. Since for tb → 0 we have ρoðRÞ > 0, we
should use Eq. (4.10) to compute dtb

dPo
. By symmetry, tb ¼ 0

corresponds to Po ¼ 0, so

K ¼ dtb
dPo

����
Po¼0

¼ H −
Z

Λ

Rmax

1

rðfoðrÞÞ3=2
dr; ðC4Þ

where

H ¼ dTo

dR
dR
dPo

����
R¼Rmax

¼ a
b

ðC5Þ

and

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λR2

max

q
ð1þ μ − R2

maxð1þ λþ κ2ÞÞ;
b ¼ R2

maxðR2
min − R2

maxÞðR2
max − μÞ

× ðλþ ðκ − 1Þ2Þðλþ ðκ þ 1Þ2Þ: ðC6Þ

We can use the explicit integral

FðrÞ ¼
Z

−1
rðr2 − μÞ3=2 dr

¼ 1

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − μ

p −
2

μ3=2
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ffiffiffi

μ
p

r − ffiffiffi
μ

p
s

ðC7Þ

to obtain

K ¼ H −
π

2μ3=2
− FðRmaxÞ: ðC8Þ

In the case of not so small bubbles, for tb → 0 we have
ρoðRÞ < 0, so dtb

dPo
is given by Eq. (4.14). To perform the

computation, we first send rt;AdS → rt;AdS þ δ, then we use
the Leibniz integral rule:

K ¼ H −
Z

Λ

rt;AdSþδ

r2

ðP2
o þ foðrÞr2Þ3=2

dr

−
Z

R

rt;AdSþδ

r2

ðP2
o þ foðrÞr2Þ3=2

dr

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
o þ ðrt;AdS þ δÞ2foðrt;AdS þ δÞ

q
× 2

drt;AdS
dPo

Po

foðrt;AdSÞ
: ðC9Þ

At small Po, the following approximations are valid:

P2
o þ foðrÞr2 ≈ ðr − rt;AdSÞðrþ ffiffiffi

μ
p Þr2;

rt;AdS ≈
ffiffiffi
μ

p
−

P2
o

2μ3=2
þOðP4

oÞ;
drt;AdS
dPo

≈ −
Po

μ3=2
;

1

foðrt;AdSÞ
≈ −

μ

P2
o
þOðP0

oÞ: ðC10Þ

Hence, we get

K ¼ H −
Z

Λ

rt;AdSþδ

1

r½ðrþ ffiffiffi
μ

p Þðr − rt;AdSÞ�3=2
dr

−
Z

Rmax

rt;AdSþδ

1

r½ðrþ ffiffiffi
μ

p Þðr − rt;AdSÞ�3=2
drþ

ffiffiffi
2

p

μ5=4
1ffiffiffi
δ

p

¼ H þ FðRmaxÞ þ
3π

2μ3=2
: ðC11Þ

Consistently, Eqs. (C8) and (C11) matches for μ ¼ μs.
In the case of large bubbles, similar calculations give

K ¼ H̃ þ FðRminÞ þ
3π

2μ3=2
; ðC12Þ

where

H̃ ¼ dTo

dR
dR
dPo

����
R¼Rmin

¼ ã

b̃
ðC13Þ

and
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ã ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λR2

min

q
ð1þ μ − R2

minð1þ λþ κ2ÞÞ
b̃ ¼ R2

minðR2
min − R2

maxÞðR2
min − μÞ

× ðλþ ðκ − 1Þ2Þðλþ ðκ þ 1Þ2Þ: ðC14Þ

Note that K in Eq. (C12) is always positive, because both
FðrÞ þ 3π

2μ3=2
> 0 and H̃ > 0. The latter property follows

from

woðRminÞ < 0; ðC15Þ

where wo is defined in Eq. (4.3). The inequality (C15)
arises from the negativity of woðRminÞ at μ ¼ 0. Indeed, no
real solutions for μ to the equation woðRminÞ ¼ 0 exist.
Consequently, woðRminÞ never changes sign as a function
of μ.
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