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We study quantum effects in higher curvature extensions of general relativity using the functional
renormalization group. New flow equations are derived for general classes of models involving Ricci scalar,
Ricci tensor, and Riemann tensor interactions. Our method is applied to test the asymptotic safety
conjecture for quantum gravity with polynomial Riemann tensor interactions of the form
∼
R ffiffiffi

g
p ðRμνστRμνστÞn and ∼

R ffiffiffi
g

p
R · ðRμνστRμνστÞn, and functions thereof. Interacting fixed points,

universal scaling dimensions, gaps in eigenvalue spectra, quantum equations of motion, and de Sitter
solutions are identified by combining high order polynomial approximations, Padé resummations, and full
numerical integration. Most notably, we discover that quantum-induced shifts of scaling dimensions can
lead to a four-dimensional ultraviolet critical surface. Increasingly higher-dimensional interactions remain
irrelevant and show near-Gaussian scaling and signatures of weak coupling. Moreover, a new equal weight
condition is put forward to identify stable eigenvectors to all orders in the expansion. Similarities and
differences with results from the Einstein-Hilbert approximation, fðRÞ approximations, and fðR;Ric2Þ
models are highlighted and the relevance of findings for quantum gravity and the asymptotic safety
conjecture is discussed.
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I. INTRODUCTION

Even more than a century after the discoveries of quantum
mechanics and general relativity, an understanding of gravity
as a fundamental quantum field theory of the metric field
continues to offer challenges. Many proposals have been put
forward to combine the principles of quantum physics with
general relativitywithinandbeyondquantumfield-theoretical
settings and include string theory, loop quantum gravity,
asymptotically safe gravity, dynamical triangulations, matrix
models, group field theory, causal sets, and more.
The asymptotic safety conjecture for gravity [1] stipulates

the existence of an interacting high-energy fixed point under
the renormalization group (RG) evolution of couplings [2–6].
Quantum effects turn gravitational couplings into running
ones with a short-distance fixed point triggered by the
antiscreening nature of gravity. Renormalization group tra-
jectories connect the short-distance quantum regime with the
large-distance regime of classical general relativity, and a
small set of fundamentally free parameters ensures predictiv-
ity. As such, asymptotic safety bears the promise to overcome

the nonrenormalizability of Einstein’s theory [7–9] and the
absence of asymptotic freedom in renormalizable fourth order
extensions [10,11].
Proofs for asymptotic safety, however, are hard to

come by. In four space-time dimensions, and without
gravity, asymptotic safety for gauge-matter theories has
recently been established rigorously both at weak [12–17]
and at strong coupling [18] using RG methods, also
offering new directions for model building. Similarly, for
certain perturbatively nonrenromalizable theories—such
as 3D theories with elementary four- or six-fermion
interactions—asymptotic safety has also been established
rigorously [19–22] using large-N techniques. For 4D
quantum gravity, however, anomalous dimensions are
expected to be large and a fixed point search requires
nonperturbative tools. Still, canonical power counting can
be used as a guiding principle for a bootstrap search [23],
together with functional renormalization [24–29]. By now,
strong circumstantial hints for asymptotic safety have been
found in the Einstein Hilbert theory [30–59] and higher
curvature extensions [60–93]. Intriguingly, high-order
studies also observed that most quantum scaling dimen-
sions become near-Gaussian despite of residual inter-
actions, except for a few dominant ones, indicating that
asymptotically safe quantum gravity becomes “as Gaussian
as it gets” [23,77,90,91].
In this paper, we investigate the impact of higher order

curvature interactions for quantum gravity. There are
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several motivations for this. First, higher curvature exten-
sions have become of interest as extensions of classical
general relativity, often in view of cosmology and inflation
[94–97], and holography [98]. It is then natural to also
investigate the impact of quantum fluctuations. Second,
from the viewpoint of the asymptotic safety conjecture,
higher order curvature interactions will be present rather
naturally owing to residual interactions in the UV, and
should therefore be taken into consideration. In particular,
results in the Einstein-Hilbert or fourth order approxima-
tions require validation beyond the lowest orders of
interaction monomials. Similarly, model studies, which
besides Einstein-Hilbert terms only retain individual higher
curvature invariants, often lead to very large scaling
dimensions and should be revisited, e.g., [60,62,77,86].
To analyze higher curvature invariants systematically, a

bootstrap search strategy was introduced in [23]. It relies on
the hypothesis that canonical mass dimension remains a
good ordering principle even at interacting fixed points,
which is known to be true for fixed point systems observed
in nature. The virtue of this setup is that the validity of the
hypothesis can be verified a posteriori order by order in the
approximation: If an additional operator with higher mass
dimension is added, then the newly introduced quantum
scaling dimension should be more irrelevant than those
found at the previous approximation order, while the
remaining scaling dimensions are, at best, shifted by a
small amount. The bootstrap strategy has first been used
in fðRÞ models [77] retaining monomials

R ffiffiffi
g

p
Rn up to

n ¼ 70 powers in curvature [91]. Most notably, the fixed
point for Newton’s coupling and the cosmological constant
come out close to the Einstein-Hilbert results, supporting
the view that the latter is a faithful image of the fixed point
in the full theory. On the other hand, the inclusion of high
order Ricci tensor interactions [90] has lead to more
substantial shifts away from Einstein-Hilbert results. As
such, Fig. 1 illustrates clearly that the impact of higher
order curvature interactions requires further scrutiny.
A third motivation for our work is the number of

fundamentally free parameters of asymptotically safe

gravity, also known as the dimension of the UV critical
surface. In particular, one may wonder whether classically
marginal or irrelevant interactions may become relevant
quantum mechanically. Thus far, the observed quantum
shifts in the eigenvalue spectra compared to canonical
values are typically of the order of a few. In principle, this
pattern implies that some dim-6 invariants may very well
become relevant in the quantum world. It also suggests that
the number of fundamentally free parameters cannot be
larger than the number of operators with mass dimension
≤ 6; see Table I for a full list. Therefore, interaction
monomials up to dim-6 are of particular interest if we
want to understand the dimensionality of the UV critical
surface. In practice, however, examples for any dim-6
interaction term to become relevant in quantum gravity
have not yet been observed, either because quantum
corrections are not large enough, or because they point
into the irrelevant direction [77,90,91]. It is therefore
important to check whether this remains true for approx-
imations involving other dim-6 curvature invariants.
With these aims in mind, we derive new functional

renormalization group equations for models of quantum
gravity involving Ricci scalar, Ricci tensor, and Riemann
tensor interactions. The setup is rather general, and covers
many higher curvature extensions of classical general
relativity [94–97]. Our three-parameter families of quantum
effective actions, once Taylor expanded to high order, allow
for systematic fixed point searches beyond Einstein-Hilbert
gravity. A key focus of this work are fixed points in new
models of quantum gravity with high order Riemann tensor
interactions, which are studied in depth. Results include
fixed points, scaling dimensions, gaps in eigenvalue spec-
tra, quantum equations of motion, de Sitter solutions, and
the impact of Riemann interactions on the location of fixed
points, complementing Fig. 1. We also study the new dim-6
curvature invariant

R ffiffiffi
g

p
RRiem2 that can become relevant

at shortest distances. This feature is qualitatively new and
different from the previously studied dim-6 invariantsR ffiffiffi

g
p

R3,
R ffiffiffi

g
p

RRic2, and the Goroff-Sagniotti termR ffiffiffi
g

p
Rρσ

μνRμν
αβRαβ

ρσ, and the implications are elaborated
in detail.

FIG. 1. Impact of higher curvature invariants beyond Einstein-
Hilbert approximation.

TABLE I. List of curvature invariants up to canonical mass
dimension six.

Curvature Invariants

dim-0 1
dim-2 R
dim-4 R2; RμνRμν; RρσμνRρσμν;□R
dim-6 R3; RRμνRμν; RRρσμνRρσμν; RμνRνρRμ

ρ; RμρRνσRμνρσ ;
Rμ
νRναβγRμαβγ ,

Rμν
ρσRρσ

αβRαβ
μν; RμνρσRμ

α
ρ
βRνασβ;∇μR∇μR;

∇ρRμν∇ρRμν
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Another novelty of our study is a first complete order-by-
order analysis of eigenperturbations at fixed points. With
the help of a new equal weight condition, we find that
eigenperturbations are genuinely stable, and in accord with
expectations from eigenvalue spectra. We also provide a
detailed comparison of results with previous work and
highlight similarities and differences due to different types
of higher curvature interactions. On the technical side, we
expand beyond previous efforts and use polynomial
approximations of the action up to 144 orders in curvature,
alongside Padé resummations and full numerical integra-
tion, to achieve our results.
The remainder of this work is organized as follows. In

Sec. II we derive the main equations using functional
renormalization with a particular emphasis on Riemann
tensor interactions and lay out our fixed point search
strategy. In Sec. III we discuss the main Riemann fixed
point, its fixed point effective action, de Sitter solutions,
and residuals. In Sec. IV, we find the universal scaling
exponents and the UV critical surface. We also perform a
bootstrap test and observe signatures of weak coupling. In
Sec. V we detail our results for a pair of weakly coupled
Riemann fixed points. In Sec. VI, we identify all eigen-
vectors and eigenperturbations for all fixed points by
removing a rescaling ambiguity through a new equal
weight condition. In Sec. VII we discuss the main features
of our results and compare with earlier studies in different
approximations. Finally, Sec. VIII gives a brief summary of
our results and conclusions. Three appendices summarize
technicalities such as the first and second variations
(Appendix A), Hessians (Appendix B), and the gravita-
tional renormalization group equations (Appendix C).

II. RENORMALIZATION GROUP FOR GRAVITY

In this section, we derive new functional renormalization
group equations for quantum gravity involving Riemann
tensor interactions using heat kernel methods on spherical
backgrounds. Our work completes a line of research
initiated in [77,84,90].

A. Action

We are interested in gravitational actions of the form

Γ̄k½gμν� ¼
Z

d4x
ffiffiffi
g

p ½FkðXÞ þ R · ZkðXÞ�; ð1Þ

with X being an arbitrary dim-4 curvature invariant. F and
Z are a priori unspecified functions. The index k indicates
the Wilsonian RG scale at which the quantum effective
action is evaluated. Ultimately, we are interested in the
quantum effects induced by fluctuations of the metric
fields, and the RG flow k∂k of the quantum effective action
and the gravitational couplings contained in it, and its fixed
points in the high energy limit. The most general form of X
can be written as

X ¼ aR2 þ bRic2 þ cRiem2: ð2Þ

Since the overall normalization of X is irrelevant in that it
can always be absorbed into a redefinition of coupling
constants, only two out of the three parameters fa; b; cg are
truly independent.1 This slight redundancy is of no rel-
evance for the present work and we will therefore stick to
the parameters fa; b; cg. The family of theories described
by (1) with (2) contains the Einstein-Hilbert theory with
scale-dependent cosmological constant Λk and Newton’s
coupling Gk as the leading order coefficients

Fkð0Þ ¼
Λk

8πGk
; Zkð0Þ ¼ −

1

16πGk
ð3Þ

of a Taylor expansion in curvature. In the infrared limit
(k → 0) the running couplings will have to agree with data,
i.e., with Newton’s constant G0 ≈ 6.67 × 10−11 m3=ðkg s2Þ
and with the cosmological constant Λ0 ≈ 1.1 × 10−52 m−2.
Besides being toy models for asymptotically safe gravity,
actions of this type also arise as higher curvature extensions
of classical general relativity, e.g., [94–97].
Akey feature of themodels (1)with (2) is that a polynomial

expansion of the action retains only a single curvature
invariant with canonical mass dimension ð−dþ 2nÞ for
any n ≥ 0, whose RG flows are found unambiguously on
spherical backgrounds [90]. To make this statement more
explicit, we construct a complete operator basis at any mass
dimension containing the terms Xn and RXn together with
operators vanishing on spherical backgrounds. One way to
construct such a basis consists in using the scalar Ricci
curvature together with the traceless Ricci tensor and the
Weyl tensor.AssumingX to benonvanishingon the sphere, all
operators of this basis except forXn andRXn can be chosen to
be proportional to at least one traceless Ricci or the Weyl
tensor. Thus, all operators in this basis except forXn andRXn

vanish on a spherical geometry. In this way, spherical back-
groundscanbeused toprojectontoactionsof the form(1)with
(2) provided X does not vanish on spheres (see also [99]).
Effectively, in this setting the terms Xn and RXn act as
representatives for higher order curvature invariants of
dimension 4n and 4nþ 2, respectively. Hence, the corre-
sponding actions on spheres takes the form

Γ̄kjsphere ¼
Z

d4x
ffiffiffi
g

p
· f̄a;b;cðRÞ; ð4Þ

similar to the local potential approximation for fðRÞ-type
gravity advocated in [72]. In this light, our models are
generalizations of the local potential approximation on
maximally symmetric backgrounds, the main addition being

1A simple choice of independent parameters are the surface
angles fθ;ϕg of the three-dimensional unit sphere spanned by the
parameters fa; b; cg.
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that theunderlyingdynamicsnotonly involves theRicci scalar
but also the fluctuations due to Ricci and Riemann tensor
interactions. We will sometimes refer to the functions
f̄a;b;cðRÞ as “rays” in the space of curvature invariants.
In these conventions, the ray f̄1;0;0ðRÞ correspond to the
conventional, fðRÞ-type, local potential approximation [72]
(see also [23,77]). The ray f̄0;1;0ðRÞ which involve Ricci
tensor interactions have previously been investigated in [90].
The ray f̄0;0;1ðRÞ which are sensitive to Riemann tensor
interactions are the central subject of this study.

B. Functional renormalization

Next, we derive the renormalization group flow for
general gravitational actions (1) with (2) using the method
of functional renormalization [25,27] in the context of
gravity [6,37] (see [100,101] for recent textbooks),

∂tΓk ¼
1

2
Trfð∂tRkÞðΓð2Þ

k þRkÞ−1g; ð5Þ

where Γk is the gauge fixed effective average action, Γ
ð2Þ
k its

second variation matrix and Rk the regulator. A path
integral representation for these classes of theories has
been given in [90]. Note that, within the background field
method, this functional differential equation gives rise
to a functional Γk½ḡμν;ϕi�, depending on a background
metric ḡμν and some quantum fluctuation fields ϕi. We can
rewrite this as

Γk½ḡμν;ϕi� ¼ Γ̄k½gμν� þ Γ̂k½ḡμν;ϕi�; ð6Þ
with

Γ̂k½ḡμν; 0� ¼ 0: ð7Þ
We then simplify this ansatz using the so-called single field
or background field approximation. This means, we impose
that Γ̂k includes only terms of the bare action arising from
the functional measure. Explicitly, this includes gauge
fixing terms Γgf;k and ghost terms Γgh;k whose RG-running
is neglected. Thus, they only enter on the right-hand side of

(5) through the Hessian Γð2Þ
k . Since the left-hand side then

depends only on Γ̄k½gμν� it is sufficient to evaluate the right-
hand side at vanishing fluctuation fields ϕi ¼ 0, including
hμν ¼ 0. In addition, we choose the gauge fixing to be

Γgf;k ¼
1

2α

Z
ddx

ffiffiffi
g

p
F μF μ; ð8Þ

with

F μ ¼
ffiffiffi
2

p
κ

�
∇νhμν −

1

d
∇μh

�
: ð9Þ

Here, κ ¼ ð32πGNÞ−1=2 and the gauge parameter is chosen
to be α → 0. Further, we split the background metric field
from the quantum fields using a linear split,

gμν ¼ ḡμν þ hμν; ð10Þ

where hμν denotes the metric quantum fluctuation.
Alternatively, one may use an exponential split as advo-
cated in [102,103] (see also [50,51,104]) where the back-
ground field is split off the quantum field multiplicatively
according to

gμν ¼ ḡμλðexp hÞλν ≡ ḡμν þ hμν þ
1

2
hμτhτν þOðh3Þ: ð11Þ

In this case quadratic terms in the fluctuation field hμν are
retained and contribute both to the Hessians in (5) and the
flow of couplings. In this work, and to make contact with
previous studies, we adopt to the linear split (10) through-
out. Moreover, the York decomposition is used to decom-
pose the metric fluctuations according to

hμν ¼ hTμν þ∇μξν þ∇νξμ þ
�
∇μ∇ν −

gμν
d

∇2

�
σ þ gμν

d
h:

ð12Þ

This ensures that no nonminimal differential operator will

be present in the second variation matrix Γð2Þ
k when

evaluated on the sphere. Ghost contributions coming from
this field redefinition as well as the gauge fixing term are
denoted as Γgh;k such that

Γk ¼ Γ̄k þ Γgf;k þ Γgh;k; ð13Þ

within our approximation. With these definitions we find
for the flow equation

∂tΓk ¼
1

2
Tr2

∂tRhThT
k ð−∇2Þ

Γð2Þ
hThT ð−∇2Þ þRhThT

k ð−∇2Þ
þ 1

2
Tr0

∂tRhh
k ð−∇2Þ

Γð2Þ
hh ð−∇2Þ þRhh

k ð−∇2Þ

−
1

2
Tr000

∂tRkð−∇2 − R
d−1Þ

−∇2 − R
d−1 þ Rkð−∇2 − R

d−1Þ
−
1

2
Tr01

∂tRkð−∇2 − R
dÞ

−∇2 − R
d þ Rkð−∇2 − R

dÞ
: ð14Þ
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Here, traces with respect to spin 2 fields (transverse
traceless tensors) are denoted by Tr2, traces of spin 1
fields (transverse vectors) by Tr1, and traces of scalar
modes by Tr0. Primes are used to denote the exclusion of
lowest modes in the calculation of these traces. At one loop
accuracy, the flow equation can be integrated in closed form
for any regulator to provide a regularized form of the full
one loop effective action.
For the present purposes, we are interested in quantum

effects beyond one loop. To that end, we choose the
regulatorRk for each Hessian according to the replacement
rule

Γkð−∇2Þ þRkð−∇2Þ → Γkð−∇2 þ Rkð−∇2ÞÞ; ð15Þ

and RkðzÞ denotes the momentum cutoff which we take to
be the optimized cutoff [29,34,105],

RkðzÞ ¼ ðk2 − zÞθðk2 − zÞ: ð16Þ

The optimized cutoff function is key to finding explicit
analytical expressions of flows [34]. Cutoff functions RkðzÞ
where z ¼ −∇2 are termed type I, and those where z ¼
−∇2 þ aϕR are termed type II [64]. For the flow equa-
tion (14) we use a type I cutoff for the fluctuations arising
from the physical transverse and scalar modes of the
graviton. However, using a type I cutoff for the terms
arising from the gauge fixing and ghost contributions leads
to spurious, convergence-limiting unphysical poles in the
flow equation, for any real Ricci curvature [91]. Therefore,
following [91], these have been removed by using suitable
type II cutoffs for the terms arising from the gauge fixing
and ghost contributions, as can be seen explicitly from the
two last traces in (14).
The first and second variations of X as defined in (2) are

given in Appendix A, see (A2) and (A3). The variations of
the Ricci scalar curvature can be found in [90,100], for

example, and the Hessians Γ̄ð2Þ
k for hThT and hh are given in

Appendix B, see (B1) and (B2), respectively.
To obtain the final form of the flow equation, we define

dimensionless functions and parameters through

fðxÞ ¼ 1

16π
k−dFkðXÞ; zðxÞ ¼ 1

16π
k−dþ2ZkðXÞ; ð17Þ

with dimensionless variables and fields given by x ¼ k−4X
and r ¼ k−2R, and calculate the traces using usual heat
kernel techniques [90,106,107]. Owing to the optimized
cutoff only a finite set of heat kernel coefficients is
required. More recently, all heat kernel coefficients on
spheres in any dimension have been derived [107], which
enables the use of more general cutoff functions. The
resulting flow equation for general ða; b; cÞ, which is the
main new result of this section, takes the form

∂tf þ r∂tz ¼ −4f − 2rzþ
�
4aþ bþ 2

3
c

�
r2ðf0 þ rz0Þ

þ 1

24π
I½f; z; a; b; c�ðrÞ: ð18Þ

Terms on the rhs arise due to the canonical scaling of fields
and variables, and due to quantum fluctuations. The explicit
form of the fluctuation integrals I½f; z; a; b; c�ðrÞ is given in
Appendix C. It is worth pointing out that due to the freedom
of an overall rescaling of all couplings, models with
parameters ða; b; cÞ are physically equivalent to models
with parameters ða0; b0; c0Þ, provided that ða; b; cÞ ¼
λ · ða0; b0; c0Þ, and λ ≠ 0 a real number. We indicate this
equivalence with the symbol “≃”. Flow equations in the
special cases ða; b; cÞ ≃ ð1; 0; 0Þ representing fðRÞ gravity,
or ða; b; cÞ ≃ ð0; 1; 0Þ representing certain types of higher
order Ricci tensor interactions, have been given previously
in [77,90,91]. For a path integral representation of the
theory for all scales, see [90].
We remark that (18) is a coupled set of partial differential

equations for two unknown functions f and z. The flow is
partly disentangled by projecting onto the even and odd
parts with respect to background curvature, leading to

∂tf¼−4fþ
�
4aþbþ2

3
c

�
r2f0 þ I½f;z�ðrÞþ I½f;z�ð−rÞ

48π
;

∂tz¼−2zþ
�
4aþbþ2

3
c

�
r2z0 þ I½f;z�ðrÞ− I½f;z�ð−rÞ

48πr
:

ð19Þ

The representation (19) is very convenient for numerical
integrations of the flow. The flow equations (18) and (19)
are a central new result of this study. They are put to work
for Riemann tensor interactions in the following sections.

C. Emergence of general relativity

Prior to searching for quantum fixed points, it is
interesting to show how classical general relativity emerges
in the classical limit, following [77,90]. Most importantly,
while the renormalization flows of the functions f and z
mix on the quantum level, (19), the mixing is absent in the
classical limit where the fluctuation integrals can be
neglected I → 0,

∂tf ¼ −4f þ
�
4aþ bþ 2

3
c

�
r2f0

∂tz ¼ −2zþ
�
4aþ bþ 2

3
c
�
r2z0: ð20Þ

In this limit, the flow (20) is further simplified by
introducing the new function

f̄ðrÞ ¼ fðxÞ þ r · zðxÞ; ð21Þ

FIXED POINTS OF QUANTUM GRAVITY AND THE … PHYS. REV. D 108, 026005 (2023)

026005-5



where x≡ X=k4 ¼ ðaþ b
4
þ c

6
Þr2 on spheres, leading to

ð∂t þ 4 − 2r∂rÞf̄ ¼ 0: ð22Þ

It states that all dimensionful couplings in the classical
theory are independent of the energy scale. The flow (22)
has the general solution

f̄ðr; tÞ ¼ r2 ·Hðr · e2tÞ; ð23Þ

where the function HðzÞ is determined by the initial
conditions for couplings at the reference scale t ¼ 0.
Classical fixed points are the t-independent solutions of
(23). A trivially t-independent solution is achieved via
the boundary condition HðzÞ ¼ const. It leads to a line of
fixed points for classical theories of gravity with actions
∼λ2

R ffiffiffi
g

p
X where X ¼ aR2 þ bRic2 þ cRiem2, parame-

trized by the free parameter λ2 which in four space-time
dimensions is a marginal coupling. The linearity of (22)
also implies the existence of a Gaussian fixed point f̄� ≡ 0.
Moreover, from the flow for the inverse,

ð∂t − 4 − 2r∂rÞ ðf̄−1Þ ¼ 0; ð24Þ

we observe the existence of an infinite Gaussian fixed
point [108]

1=f̄� ≡ 0: ð25Þ

The Gaussian and infinite Gaussian fixed points arise from
(23) in asymptotic UV and IR limits where t → �∞,
respectively [77,90].
We continue with the scaling analysis for monomials of

degree n in curvature. For these, the result (23) states that
the corresponding coupling λn scales canonically with
Gaussian exponents ϑG,

λnðtÞ ¼ λnð0Þ expðϑG;ntÞ;
ϑG;n ¼ 2n − 4: ð26Þ

Hence, the dimensionless vacuum energy term (n ¼ 0) and
the dimensionless Ricci scalar coupling (n ¼ 1) are rel-
evant operators, and their dimensionless couplings diverge
towards the IR, leading to the infinite Gaussian fixed point
(25) in the IR. Using (3) and Gk ¼ g=k2 and Λk ¼ λk2, we
can relate the IR diverging couplings λ0 and λ1 to the
dimensionless Newton coupling g and the dimensionless
cosmological constant λ as

g ¼ −
1

λ1
; λ ¼ −

λ0
2λ1

: ð27Þ

In terms of these, the infinite Gaussian fixed point implies

1=λ → 0; g → 0; ð28Þ

in such a way that Λk and Gk are constants in the IR limit
k → 0. We conclude that general relativity with positive
or negative vacuum energy corresponds to the infinite
Gaussian IR fixed point (28) provided that λ is positive or
negative, respectively. Moreover, the infinite Gaussian
fixed point is IR attractive in both couplings. The theory
also displays an IR fixed point corresponding to a vanishing
vacuum energy,

λ → 0; g → 0: ð29Þ

This fixed point is IR attractive in g and IR repulsive in λ.
Classically, it can only be achieved by fine-tuning the
vacuum energy to zero through the boundary condition.
This analysis can straightforwardly be extended to higher
order monomials. According to (26), for all couplings with
n > 2 (n < 2) the Gaussian fixed point λn → 0 is IR
attractive (repulsive) and therefore approached in the IR
limit (UV limit), whereas the infinite Gaussian fixed
point 1=λn → 0 is IR repulsive (attractive) and therefore
approached in the UV limit (IR limit).
Finally we emphasize that the emergence of classical

general relativity as the infinite Gaussian fixed point (25)
with (28) or (29) is consistent with the nonperturbative RG
flow (19). The reason for this is that the fluctuation-induced
contributions I½f; z� in (19) are parametrically suppressed
over the classical contributions owing to I½f; z�=f̄ → 0 in
the limit 1=f̄ → 0, also recalling (21). Therefore, the limit
(25) collapses the full RG flow onto the classical flow,
which has general relativity with positive, negative, or
vanishing cosmological constant amongst its low energy
solutions, possibly amended by higher curvature inter-
actions. The result is independent of the parameters
ða; b; cÞ. Previously, the emergence of classical general
relativity as the infinite Gaussian fixed point of the func-
tional RG flow has been shown for fðRÞ and fðR;Ric2Þ
models [77,90].

D. Riemann tensor interactions

For the rest of this work, we fix the free parameters
ða; b; cÞ of the flow equation (18) to be

ða; b; cÞ ≃ ð0; 0; 1Þ: ð30Þ

We recall that (30) represents the class of equivalent models
with ða; b; cÞ ¼ ð0; 0; λÞ where λ ≠ 0 is any real number. In
terms of (2) this corresponds to the choice

X ¼ Riem2: ð31Þ

For this setting, the first few leading terms of the gravi-
tational effective action (1) in a polynomial expansion read
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Γ̄k½gμν� ¼
Z

d4x
ffiffiffi
g

p ½λ̄0þ λ̄1Rþ λ̄2RρσμνRρσμν

þ λ̄3R ·RρσμνRρσμνþ λ̄4ðRρσμνRρσμνÞ2þ �� �� ð32Þ

up to higher powers in curvature OðR · Riem4;Riem6Þ.
For the fixed point search below, we retain interaction
terms up to and including ∼λ̄142ðRρσμνRρσμνÞ71 and ∼λ̄143R ·
ðRρσμνRρσμνÞ71 monomials, corresponding to a total of
Nmax ¼ 144 interaction terms in the effective action (32).
Most notably, this action involves new Riemann curva-

ture invariants which have not been studied previously
within the nonperturbative RG for gravity. The main
purpose of this study is to establish whether the dynamics
due to Riemann tensor interactions is going to affect the UV
behavior of the theory in any significant manner. Using a
polynomial ansatz for (17) of the form

fðxÞ ¼
XbN−1

2
c

l¼0

λ2lx2l; zðxÞ ¼
XbN−2

2
c

l¼0

λ2lþ1x2l; ð33Þ

and evaluating everything on a spherical background, a
series expansion in small dimensionless Ricci scalar
curvatures is performed and equations containing the beta
functions and the couplings of the theory are found. The
parameter N determines the number of different operators
included in the effective average action (32).
At the fixed point, the beta functions vanish and the

remainder of the flow equation (18) using (30) is given by

4f −
2

3
r2f0 þ r

�
2z −

2

3
r2z0

�
¼ 1

24π
I0½f; z�ðrÞ: ð34Þ

Performing a series expansion in r we can bring the flow
equation into the form

0 ¼
X∞
l¼0

rlPlðλ0;…; λlþ2Þ: ð35Þ

To fulfil this at any approximation order N, all coefficients
Pl with l < N must vanish. Hence, we are left with a
system of algebraic equations which can be solved to find
fixed points. In fðRÞ theories of gravity, the polynomial
conditions can be solved recursively starting with a linear
equation for λ2 from P0, and leading to unique expressions
for all couplings in terms of two parameters (λ0; λ1) which
then need to be determined by other means [77]. In our
models, and ultimately due to the presence of fourth order
propagating degrees of freedoms, it turns out that P0 is
quadratic in the highest coupling [90]. In consequence, a
recursive algebraic solution is more cumbersome, therefore
we resort to a numerical method instead.

E. Search algorithm and fixed point scan

After having derived the expressions Plðλ0;…; λlþ2Þ,
we need to solve them to find fixed points of the system. At
any approximation order N, we are given N equations

Plðλ0;…; λlþ2Þ ¼ 0 with l < N; ð36Þ

depending on N þ 2 couplings λ0;…; λNþ1. Thus, there
are more open couplings than equations to solve and we
need to impose boundary conditions on two of them. The
effect of these boundary conditions on the fixed point
solutions has been studied in [77]. In our fixed point search
algorithm, we follow the choice of standard boundary
conditions given by

λN ¼ λNþ1 ¼ 0; ð37Þ

at each approximation order N. Sometimes we refer to the
choice (52) as “free” boundary conditions for the fixed
point search.
A recursive solution strategy to find the exact expressions

for the fixed point couplings in gravity has been put forward
in [77]. Solving (36) provides us with expressions for the
couplings λlþ2 in terms of the lower order couplings λn with
n < lþ 2. InfðRÞ theories, these lead to explicit expressions
for couplings that reduce to algebraic expressions for all
couplings λnðλ0; λ1Þ with n ≥ 2 upon iteration (level 2)
[23,77,91]. We emphasize that the expressions are algebraic
throughout, the reason for this being that the first nontrivial
equation is linear in the unknown quantity (i.e., the coupling
λ2). For theories with general Ricci tensor or Riemann tensor
interactions such as here this is no longer the case and
the leading equation becomes quadratic. One may still solve
the recursive relations for each branch separately, though the
expressions become impractical very fast. Alternatively, one
may start with the next coupling in line, λ3, which again obeys
a linear equation. Upon iteration, we find closed algebraic
expressions λnðλ0; λ1; λ2Þ starting with n ≥ 3 (level 3). The
quadratic condition giving λ2ðλ0; λ1Þ is then exploited at the
very end.
In this work, we perform a brute force numerical fixed

point search. This can be initiated by using the fixed point
in the Einstein-Hilbert approximation, the so-called Reuter
fixed point, as a starting point [27,30,33,34]. Then, we
enhance the operator base and include the one with the
smallest larger canonical mass dimension into the system,
search for solutions in the vicinity of the previous fixed
point coordinates, and repeat in the form of a bootstrap
N → N þ 1 [23] until some maximum order which we take
to be Nmax ¼ 144. This strategy has worked well for fðRÞ
gravity [23,77,91] and fðR;Ric2Þ gravity [90], where the
fixed point coupling g� remains close to its Einstein-Hilbert
value. In this sense, these fðRÞ and fðR;Ric2Þ fixed points
may be viewed as the higher order extension of the Reuter
fixed point.
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On the other hand, the system may very well have global
fixed point solutions where Newton’s coupling and the
cosmological constant differ sizeably from their Einstein-
Hilbert values. We explore the latter possibility bymodifying
the search algorithm and adding random perturbations to the
fixed point couplings at some order. By this token, we
explore the possibility whether additional stable fixed points
are available. If so, these new fixed point candidates are then
further extended to higher orders, as before, using the
bootstrap strategy. We also check that the thereby-found
solutions, if any, do not depend on the order at which random
perturbations in the initial values were added initially.
Overall, these strategies allow us to scan a substantial
portion of parameter space. As a word of caution, however,
we stress that our search is not exhaustive. Due to the large
parameter space there may still exist fixed points that have
gone unnoticed in the numerical search, or fixed point
solutions which defy the ordering principle set by canonical
mass dimension [23].
The result of our scan gives 23 fixed point candidates

all of which have been computed consistently up to order
N ¼ 36 in a first run.2 To illustrate the parameter range
considered by our search algorithm we show these candi-
dates in Fig. 2. As a point of reference, we also show the
result in the Einstein-Hilbert (EH) approximation, which in
our conventions is given by

g�jEH ¼ 0.943; λ�jEH ¼ 0.119; λ�g�jEH ¼ 0.112: ð38Þ

In Fig. 2, we observe a fair spread in the values for g�. Most
fixed point candidates except two are similarly or more
strongly coupled than the Einstein-Hilbert one, with g� >
g�jEH ≈ 1 indicated by the gray shaded area. Results show
isolated fixed point candidates as well as small clusters of
two, three or four candidates close to each other. A cluster
of four candidates is close to the Einstein-Hilbert solution.
Two of the fixed points are termed “secondary” and two
further ones are too close to be visible in Fig. 2. Further
small clusters are in regions with larger gravitational
coupling. We also find three subsets of candidates which
have very similar values for the scale-invariant product of
couplings λ� · g�. In Fig. 2, this is highlighted by the three
(dashed gray) lines of constant λ� · g�. There are four fixed
point candidates with couplings very close to g�jEH and
λ�jEH, and six candidates whose product is close
to ðλ� · g�ÞjEH.
Once a fixed point candidate has been found consistently

up to order N ¼ 36, we further check its viability by
studying convergence of couplings, and the stability and
convergence of scaling exponents, and discard those that
turn out to be unstable, have unnaturally large relevant or

irrelevant eigenvalues, or show other inconsistencies. To
explain this step, we show the convergence of the four most
relevant eigenvalues for the fixed point candidates in
Fig. 3.3 According to this figure, we select the three fixed
points with the best observed convergence properties up to
order N ¼ 36. Note that some of the tertiary fixed points
show a mild convergence in the first few scaling exponents
that weakens, however, when going to higher orders. A
similar picture is established in the convergence of fixed
point coordinates. We emphasize that our criterion of
convergence does not preselect the size of the gravitational
scaling dimensions in any way.
This second step eliminates the 20 fixed point candidates

termed “tertiary,” including two fixed point candidates very
close to the “secondary” ones which are not visible in
Fig. 2. Hence, we are left with the primary Riemann fixed
point and two secondary fixed points, highlighted by a red
and a magenta arrow in Fig. 2. These fixed points are then
computed to even higher approximations as discussed

FIG. 2. Shown are the values for the cosmological constant and
Newton’s coupling ðλ; gÞ� of 23 Riemann fixed point candidates
whose coordinates are determined up to order N ¼ 36 in the
expansion. The color coding differentiates primary (red), secon-
dary (magenta), or tertiary (blue) Riemann fixed points, and, for
comparison, the Einstein-Hilbert fixed point (gray box). Gray
dashed lines correspond to constant λ�g�, and the gray shaded
area indicates regions of strong coupling g� > 1. Further viability
tests select the primary and secondary fixed point candidates (red
and magenta arrow) and eliminate all tertiary candidates (see
main text).

2We refer to these fixed points as “fixed point candidates”
since they may contain spurious fixed point solutions. Thus, some
of candidates may show instabilities in coupling coordinates.

3Two spurious candidates have been excluded from the plot as
they display unphysically large relevant eigenvalues of the order
of −1013 (at N ¼ 36), and increasingly negative with increasing
approximation orders thereafter.
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below. For ease of reference, we denote the three remaining
fixed points as FP4s, FP4, and FP3, where the integer states
the number of relevant eigendirections, and the subscript
“s” distinguishes the more strongly coupled fixed point of
the two with four relevant directions. Occasionally, we also
refer to FP4s as the “primary” Riemann fixed point whose
properties are analyzed in more depth in Secs. III and IV.
The analysis and discussion of the secondary Riemann
fixed points FP4 and FP3 is relegated to Sec. V.
A further consistency check of these fixed points found

with standard boundary conditions is given by the use of
nonperturbative boundary conditions as introduced in [77].
Once a fixed point is found at all orders up toNmax, the idea
of improved boundary conditions at any lower approxima-
tion order N < Nmax is to fix the two highest couplings
according to the values already found at the higher order
approximations,

λN ¼ λ̄�N; λNþ1 ¼ λ̄�Nþ1; ð39Þ

rather than (52). In (39), the barred couplings λ̄�N denote
accurate estimates for the fixed point couplings deduced
independently from a sufficiently higher order in the
expansion, typically from an expansion up to Nmax ¼
144 with free boundary conditions (52). With this choice
of boundary condition all fixed point couplings λ�n≤N at
approximation order N automatically take the more

accurate values of the fixed point couplings λ̄�n as deter-
mined from the highest approximation order Nmax. Besides
stabilizing the fixed point coordinates from the outset, the
virtue of the a posteriori choice (39) is that it also leads to
improved results for scaling exponents, most notably at low

FIG. 3. Convergence of the four most relevant eigenvalues (top left to bottom right) for all fixed point candidates shown in Fig. 2
towards their values at N ¼ 36. Tertiary fixed points are illustrated by gray lines, the two secondary fixed points by purple and the
primary fixed point by red lines. The quantity on the y axis gives minus the number of relevant digits, i.e., the number of digits that no
longer change when extending the approximation order. Two fixed point candidates, deemed unreliable due to very large relevant
eigenvalues, have been excluded (see main text).

FIG. 4. Convergence of couplings λlðNÞ with approximation
order N at the Riemann fixed point, and for l ¼ 0;…; 36 (bottom
to top). Couplings are normalized to their values at order
Nmax ¼ 144. The convergence pattern persists all the way up
to N ¼ Nmax (not shown).
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orders [77]. For later reference, and opposed to (52), we
refer to choices of the type (39) as improved boundary
conditions.

III. RIEMANN FIXED POINT

We report in this section the evidence for the primary
fixed point with Riemann tensor interactions and provide
an overview of its main features such as coupling coor-
dinates, convergence of effective action, de Sitter solutions,
and residuals.

A. Fixed point coordinates

For the Riemann fixed point FP4s we have calculated
its fixed point coordinates up to approximation order
Nmax ¼ 144, involving up to Nmax powers of the
Riemann tensor. We find that the fixed point coordinates
fluctuate initially at low approximation orders but then

converge nicely starting with approximation orders N ≈ 6.
This is illustrated in Fig. 4 where we show the convergence
of couplings, derived with standard boundary conditions
and normalized to their asymptotic values at Nmax, up to
approximation order N ¼ 36. The pattern of convergence
continues up to the maximal order Nmax (not shown).
Quantitative results are summarized in Table II for the

first 14 fixed point couplings. Values set in bold indicate
couplings which arise with the wrong sign at the leading
order. Most of these adjust to the correct sign after a single
step N → N þ 1, except for λ2 or λ5 where the convergence
requires three or four steps, respectively. Moreover, a fast
convergence of couplings towards large N is observed
starting with approximation orders N ≈ 6. Qualitatively,
this is associated to the deviation of λ2ðNÞ from its large N
limit in the first few approximation orders N ¼ 3; 4; 5.
Once λ2ðNÞ has settled, all other couplings follow suit. The
coupling λ2 proportional to the square of the Riemann

TABLE II. Fixed point coordinates of the first 14 couplings up to approximation order N ¼ 144. A fast convergence is observed
starting with approximation orderN ≈ 6. Notice that some couplings arise with the wrong sign at the leading orders (bold). Most of these
adjust to the correct sign after a single step N → N þ 1, except for λ2 (λ5) where the convergence requires three (four) steps.

N 10 × λ0 λ1 10 × λ2 10 × λ3 λ4 1000 × λ5 λ6

2 2.51678 −1.06039
3 2.51891 −0.686794 2.26290
4 1.45783 −1.17577 4.54396 1.31729
5 0.867111 −0.926808 3.83082 0.662210 0.140972
6 0.0419731 −0.375446 −0.518439 0.354710 −0.208929 69.8789
7 0.576504 −0.346204 −0.487432 0.668691 −0.263364 25.7418 −0.190734
8 0.597978 −0.348344 −0.491396 0.687706 −0.280608 5.18091 −0.278698
9 0.599183 −0.348194 −0.491317 0.688467 −0.280511 5.60590 −0.277357
10 0.552336 −0.352094 −0.492529 0.656860 −0.276576 −0.566918 −0.290361
11 0.552505 −0.352087 −0.492532 0.656981 −0.276618 −0.588649 −0.290484
12 0.552485 −0.352054 −0.492494 0.656932 −0.276487 −0.372249 −0.289603
13 0.552835 −0.352013 −0.492468 0.657154 −0.276470 −0.241403 −0.289146
14 0.552300 −0.352057 −0.492485 0.656796 −0.276424 −0.319270 −0.289350
15 0.552219 −0.352061 −0.492485 0.656739 −0.276409 −0.317244 −0.289325
16 0.552202 −0.352061 −0.492484 0.656726 −0.276402 −0.309584 −0.289290
17 0.552207 −0.352060 −0.492483 0.656728 −0.276399 −0.303941 −0.289269
18 0.552210 −0.352060 −0.492483 0.656730 −0.276399 −0.302915 −0.289265
19 0.552210 −0.352060 −0.492482 0.656731 −0.276399 −0.302833 −0.289265
144 0.552211 −0.352060 −0.492482 0.656731 −0.276399 −0.302828 −0.289265

N 10 × λ7 λ8 10 × λ9 10 × λ10 10 × λ11 10 × λ12 10 × λ13

8 −0.517518
9 −0.504042 0.00394341
10 −0.788545 −0.148690 −0.967082
11 −0.788653 −0.148214 −0.959884 0.0297045
12 −0.782596 −0.147738 −0.979088 −0.130361 −0.131648
13 −0.777856 −0.146315 −0.979261 −0.197352 −0.239536 −0.475794
14 −0.781649 −0.148185 −0.989428 −0.184008 −0.149578 0.235337 0.597885
15 −0.781833 −0.148433 −0.992146 −0.192045 −0.144420 0.341166 0.755831
16 −0.781670 −0.148470 −0.993356 −0.199061 −0.147722 0.363293 0.825565
17 −0.781495 −0.148440 −0.993679 −0.202765 −0.151586 0.355885 0.843862
18 −0.781457 −0.148427 −0.993668 −0.203258 −0.152464 0.351623 0.843120
19 −0.781453 −0.148425 −0.993658 −0.203274 −0.152558 0.350902 0.842530
144 −0.781452 −0.148425 −0.993652 −0.203262 −0.152576 0.350644 0.842196
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tensor is expected to play a key role because it is
canonically dimensionless. On the other hand, the initially
slow convergence of λ5ðNÞ at N ¼ 6; 7; 8; 9 has no notice-
able impact on the convergence of other couplings due to its
smallness. Overall, we conclude that a viable Riemann
fixed point has been identified which is very stable in the
polynomial approximation.
Note, that the fixed point value g� ≈ 2.8 for Newton’s

coupling (Table II) comes out nearly thrice as large as the
result g� ≈ 0.9–1.2 in the Einstein-Hilbert approximation,
in fðRÞ models, and in fðR;Ric2Þ models, with all other
technical parameters the same. Hence, this is an example
where the higher order interactions impact noticeably onto
the lower order fixed point couplings. A more detailed
comparison is postponed until Sec. VII.

B. Quantum effective action

In Fig. 5 we show the fixed point effective action
fðr2=6Þ þ rzðr2=6Þ at the Riemann fixed point at different
approximation orders N. A converging behavior within r ≈
�1.9 can be observed and it can be seen that the polynomial
solution diverges alternatingly at the boundary of the
converging regime. This suggests that the poles that limit
the radius of the convergence of the polynomial solution are
not on the real axis but somewhere in the complex plane.

This behavior and the fact that the fixed singularities
of the differential equation (18) are at r ≈ 2.00648 and
r ≈ −9.99855 suggest that the radius of convergence of the
polynomial solution is not maximal and can be extended. It
is then natural to numerically integrate the differential
equation and enlarge the converging region. The result of
the numerical integration is shown by the thick black line in
Fig. 5. As expected, the radius of convergence is enlarged
compared to the polynomial case. The new radius of
convergence reaches up to r ≈ 2. More work is required
in order to go beyond the point r ≈ 2.00648, which
necessitates the (numerical) lifting of an apparent pole in
the flow; see [83,88] for examples.
We close with a general remark on global solutions.

From the viewpoint of the asymptotic safety conjecture, it
will be important to understand how the Reuter fixed point
extends into a global fixed point, including the regime of
asymptotically large fields. Using the method of functional
renormalization in simpler theories—such as OðNÞ or
UðNÞ symmetric scalar ðϕaϕaÞ23d theories or Gross-
Neveu ðψ̄aψaÞ23d theories—global fixed point have indeed
been found rigorously based on the invariants ϕ2 or ψ̄ψ,
respectively. Identifying global solutions in gravity is more
demanding, because many more independent invariants can
be constructed out of the Riemann tensor. Further, it is not
known which of these dominate the large-field asymptotics,
nor whether the very same set will also dominate the small
field region [91]. Therefore, it is not warranted to pre-
suppose that global solutions must exist for any given
subset of curvature invariants retained in the action.

C. Equations of motion and de Sitter solutions

Solutions to the equations of motion for quantum
effective actions (32) evaluated on the sphere are of
physical interest for inflationary cosmology as they corre-
spond to Euclidean–de Sitter and anti–de Sitter (AdS)
solutions [84,109,110].4 Previously, de Sitter (dS) solutions
have been found in the UV scaling regime of asymptoti-
cally safe fðRÞ and fðR;Ric2Þ models of quantum gravity
[77,90,91,114].
Denoting the equation of motion as EðrÞ, we find for our

model

δΓk

δgμν
∝
�
4f

�
r2

6

�
−
2

3
r2f0

�
r2

6

�
þ r

�
2z

�
r2

6

�
−
2

3
r2z0

�
r2

6

���
¼ EðrÞ: ð40Þ

Plugging in the couplings of the Riemann fixed point we can see how this equation behaves at different values for the
dimensionless Ricci scalar. Using the polynomial approximation, this is shown at different ordersN in Fig. 6, where the first

FIG. 5. Effective action of the Riemann fixed point from
polynomial solution at approximation orders 10 ≤ N ≤ 144
(color coded in the legend) and numerical solution (black line).
Results from Padé approximants coincide with those from
numerical integration (not shown).

4Note that this assumes the validity of analytic continuation to Lorentzian signature [84]. For recent discussions of subtleties related to
the Wick rotation from Euclidean to Lorentzian quantum gravity, see [111–113].
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ten approximations have been neglected. Solutions to the
quantum equations of motion obey EðrdSÞ ¼ 0. A first
Euclidean–de Sitter solution is found at

rdS1 ≈ 0.31318: ð41Þ
Moreover, had we limited ourselves to just the Einstein-
Hilbert approximation, a de Sitter solution would be
located at

rdSjEH ≈ 0.475: ð42Þ
Comparing (42) with (41) we observe a strong downward
shift of the de Sitter solution due to the Riemann fixed point
being more strongly interacting than the Einstein-Hilbert
one. Overall, the shift goes into the opposite direction as the
shift induced by Ricci scalar or Ricci tensor interactions
[84,90,91]. Furthermore, if we take the Riemann fixed
point and disregard all invariants beyond the Einstein-
Hilbert one (i.e., all Riemann interactions), the de Sitter
solution (41) reduces to

rdS1 jEH ≈ 0.31370: ð43Þ
Comparing (41) with (43) we conclude that the vacuum
solution (41) arises primarily due to the fixed point value of
the cosmological constant, while the set of higher order
Riemann interaction terms has only a minor effect.
Further, EðrÞ approaches zero again just before the

radius of convergence ends (Fig. 6). However, within the
polynomial solution it is uncertain whether a second
Euclidean–de Sitter solution is apparent at the fixed point
or not. This question can be answered using numerical
integration, which enhances the radius of convergence of
the polynomial expansion and renders it maximal. In Fig. 6
we show the corresponding plot for the equation of motion.
Indeed, the enlarged radius of convergence gives rise to a
second Euclidean–de Sitter solution at

rdS2 ≈ 1.8567: ð44Þ

This vacuum solution is entirely due to higher order
Riemann interactions and cannot be understood from
within an Einstein-Hilbert approximation. We conclude
that the Riemann fixed point displays two dS solutions in
the UV scaling regime. Further dS or AdS solutions may
exist for larger positive or negative curvature, beyond the
range studied here.

D. Residuals and absence of poles

So far, we have considered the stability of couplings as
well as the resulting effective action and de Sitter solutions
of the Riemann fixed point FP4s. Now, we want to test the
convergence of the fixed point as a polynomial solution of
the flow equation.
Firstly, in Fig. 7 we show the residuals of the flow

equation (18) with (30), see also (34), at the Riemann fixed
point,

ResðrÞ ¼ 4f þ 2zr −
2

3
r2ðf0 þ rzÞ − 1

c
I0½f; z�: ð45Þ

It can be seen that the residuals shrink when more operators
are included in the truncation, confirming the convergence
of the fixed point solution. Further, the radius of con-
vergence can be estimated to be rc ≈ 1.8. Note that the flow
equation in (18) has fixed singularities at rþf ≈ 2.00648 and
r−f ≈ −9.99855 coming from the zeros of PS3

0 . As we have
discussed already, the fact that the radius of convergence of
the polynomial solution is smaller than these fixed singu-
larities suggests that it is not maximal.
Apart from that, we observe small dips in the residuals of

Fig. 7 at rþ0 ≈ 0.932 and r−0 ≈ −0.204. These features

FIG. 6. Quantum equation of motion (40) at the Riemann fixed
point using various polynomial approximation up to order N ≤
144 (color coded in the legend) and numerical integration (black
line). Results from Padé approximants coincide with those from
numerical integration (not shown).

FIG. 7. Shown are the residuals (45) of the flow equation in
(18) with (30) for the solution FP4s. Different approximation
orders N are distinguished through different colors as shown in
the legend. For illustrative reasons, only every tenth order is
shown. The gray lines indicate the point beyond which the
polynomial solution stops converging. We can read off a radius of
convergence of rc ≈ 1.8.
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originate from removable singularities of the flow at the
Riemann fixed point: At these points the denominator
DTðrÞ defined in Eq. (C4) changes sign and has a zero.
However, at the same time the corresponding numerator
PT
0 ðrÞ has a sign change and goes to zero as well, leaving

the flow term I0½f; z� finite, (C3). In numerical approx-
imations, however, these zeros are not at the exact same
position. This leads to a spurious singularity responsible
for the dips in Fig. 7. However, Fig. 8 shows that the
differences between the zeros of the numerator PT

0 ðrÞ and
the denominator DTðrÞ decrease strongly order by order at
both points, rþ0 and r−0 . This supports the view that the zeros
of PT

0 and DT are at the same position in the exact solution
of the Riemann fixed point. This alone does not yet tell us
that the singularity at those points is removable. However,
we note that the derivative of the denominator converges to
DT 0ðrþ0 Þ ≈ −42.6 and DT 0ðr−0 Þ ≈ −19.5 at higher orders.
Thus, we expect the derivative of the denominator to be
nonvanishing at both rþ0 and r−0 from which we conclude
that the singularities are removable. Hence, we expect the
full nonpolynomial solution of the Riemann fixed point to
be free of dips such as those in Fig. 7 and to be well defined
in the entire regime jrj ≤ rþf .
Finally, we use numerical integration to see whether the

radius of convergence of the polynomial solution can be
enhanced. To perform the numerical integration, we seek
two differential equations for the highest derivatives of
fðr2=6Þ and zðr2=6Þ. Starting from the flow equation, these
can be obtained by splitting the flow into even and odd
parts (in r) [90]. In this way, we deduce a system of two
coupled third order differential equations,

f000ðxÞ ¼ If½f; z�ðxÞ;
z000ðxÞ ¼ Izðf; z�ðxÞ; ð46Þ

with x ¼ r2=6. The functions If and Iz are rational
functions depending only on f and z as well as their
derivatives up to second order and explicit dependencies
on x.
In the form (46), we can integrate the fixed point

equation and find the fixed point solution of fðxÞ and
zðxÞ. As a consequence of the presence of spurious
singularities for FP4s, however, this must be performed
in patches. Otherwise, numerical uncertainties might lead
to the numerical solution developing an artificial pole
coming from a removable singularity. In practice, it is
easiest to use the polynomial solution until we are beyond
the removable singularity. This can also be motivated by the
very small residuals of the polynomial solution for small r,
which are hard to achieve relying solely on a numerical
integration. All in all, we use the polynomial expansion to
provide (i) the fixed point solution in the range jrj < ri, and
further use these as initial conditions for the numerical
integration starting at jrj ¼ ri, with ri within ðrþ0 ; rcÞ.

In this manner, we obtain a reliable fixed point solution
over the maximal domain jrj < rþf .
As an alternative method, we have also used Padé

resummation to extend the polynomial solution.
However, similar to Fig. 7 the residuals of Padé approx-
imants can give rise to spikes. Such spikes originate
from the removable singularities found in the polynomial
approximation. As discussed above, we expect these
singularities to be removable in the full solution. Within
numerical precision, the result obtained from Padé resum-
mation is in full agreement with the numerical integration
and gives the maximal radius of convergence as seen in
Figs. 5 and 6.

IV. UNIVERSALITY AND CRITICAL SURFACE

In this section, we report our results for universal scaling
exponents, the dimension of the UV critical surface, the set
of fundamentally free parameters, and the bootstrap test for
the Riemann fixed point. We also discuss the large order
behavior of scaling dimensions and signatures for weak
coupling.

A. Scaling exponents and infinite N limit

Universal scaling exponents describe how renormaliza-
tion group trajectories scale towards or away from inter-
acting fixed points. In practice, they are deduced as the
eigenvalues of the stability matrix Mij ¼ ∂βi=∂gjj�. For
each and every order of the approximation, we have
computed the set of universal scaling exponents

fθlðNÞ;l ¼ 0;…; N − 1g; ð47Þ

FIG. 8. We show the absolute value of the differences of the
zeros of PT

0 ðrÞ and DTðrÞ at the poles rþ0 (red) and r−0 (blue) at
different orders N. Even though the difference decreases much
faster at r−0 with increasing N, we observe a strong decrease for
this quantity at both poles. This suggests that the poles coincide in
an exact solution.
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with eigenvalues sorted according to magnitude, and up to
the maximal order Nmax ¼ 144. With increasing N, we find
that eigenvalues converge rapidly to their asymptotic
values. This is illustrated in Fig. 9, which displays (minus)
the number of relevant digits of scaling exponents that
agree with the scaling exponents at the highest approxi-
mation order Nmax ¼ 144. By and large, the convergence
is exponential with increasing N. Roughly, enhancing
approximation orders by ΔN ≈ 2.8 leads to an additional
significant digit in any of the scaling exponents.
Using our results at the highest order Nmax ¼ 144 and

taking an average over the preceding ten approximation
orders we find an infinite N estimate for the first seven
scaling exponents

hθ0i ≈ −4.96188;

hθ1i ≈ −3.00645 − 1.45800i;

hθ2i ≈ −3.00645þ 1.45800i;

hθ3i ≈ −1.32993;

hθ4i ≈ 2.98723;

hθ5i ≈ 4.41530 − 2.85549i;

hθ6i ≈ 4.41530þ 2.85549i: ð48Þ

We have determined the leading 46 relevant digits of these
eigenvalues which have become independent of the
approximation order, though for practical purposes, we
only show the first six relevant digits. Hence, the errors of
the calculated values are of order 10−46. Note that the error
reflects the accuracy of the numerically determined fixed
point solution. It does neither reflect truncation errors nor
systematic errors. For strategies to access truncation and
systematic errors within the functional RG framework, we
refer to [29,105,115,116]. As such, however, the values
(48) can be viewed as the infinite-N limits for the various

fixed point couplings. Note also that the canonical values of
the four relevant eigenvalues are ϑ0 ¼ −4, ϑ1 ¼ −2,
ϑ2 ¼ 0, and ϑ3 ¼ 2, see (26). Hence, the quantum correc-
tions shift the real parts of the relevant eigenvalues by an
amount of ≈ − 2.1 on average, pointing into the relevant
direction for all of these eigenvalues (see also Sec. VI B).
We should also compare findings at the Riemann fixed

point with those in the Einstein-Hilbert approximation,
where the scaling exponents are

θ0 ¼ −2.41i − 1.95i;

θ1 ¼ −2.41iþ 1.95i: ð49Þ

For the first two scaling exponents, the real part of
eigenvalues differ from classical values by þ1.6 and
−0.4, respectively. Instead, the leading two exponents at
the Riemann fixed points (48) differ from classical values
by roughly one unit, −:96 and −1.0, respectively. Most
notably, the exponent θ0 receives shifts into opposite
directions. On the other hand, the exponent θ1 becomes
more relevant due to quantum corrections in both cases. We
conclude that quantum effects due to Riemann curvature
invariants have a noticeable effect on the scaling exponents,
both in view of classical or Einstein-Hilbert exponents.
It is worth pointing out that the vast majority of

eigenvalues are real rather than complex conjugate pairs.
This is in contrast to fðRÞ approximations where about half
of the eigenvalues are complex [77,84], or fðR;Ric2Þ-type
approximations where most eigenvalues come in complex
conjugate pairs [90]. In the present case, only the second
and third, and fifth and sixth most relevant eigenvalues
turn out to be complex conjugate pairs while all other
eigenvalues are real.
Next, we discuss the improved convergence of scaling

exponents due to improved boundary conditions (see
Sec. II E). It has been shown previously that improved
boundary conditions lead to an enhanced convergence of
scaling exponents, in particular at low orders [77]. Setting
the boundary conditions according to the highest order
fixed point couplings, fixed points will take the coordinates
dictated by the highest order approximation, for all
approximation orders, and the initial fluctuations as seen
in Table II are avoided. Eigenvalues, however, change
nontrivially under this choice of boundary conditions.
Results for eigenvalues are shown in Fig. 10 where we

also compare standard and improved boundary conditions.
In either case eigenvalues converge rapidly after N ≈ 6.
With standard boundary conditions (left panel) and smaller
N, couplings fluctuate strongly and large relevant eigen-
values arise. The appearance of spurious large negative
eigenvalues at low orders has already been seen in earlier
works [33,90,91] at N ¼ 3. In contrast, with improved
boundary conditions (right panel) the magnitudes of
the large negative eigenvalues are substantially smaller.
A quantitative comparison of eigenvalues is given in

FIG. 9. Convergence of eigenvalues at the Riemann fixed point
with increasing approximation order N. A decimal place of
accuracy is gained for any ΔN ≈ 2.8 in the approach towards
Nmax ¼ 144. For better visualization, we only show the con-
vergence for every 10th eigenvalue.
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Tables III and IV. In Table III the first six eigenvalues of the
Riemann fixed point are shownbased on standard (upper) and
improved (lower panel) boundary conditions. Values set in
bold indicate if scaling exponents deviate by more than a
factor of 2 from their asymptotic values. This affects many of
the leading critical exponents from the standard boundary
condition including θ0ðN ¼ 2; 3; 4; 5; 6Þ, θ1ðN ¼ 4; 5; 6Þ,
θ2ðN ¼ 5Þ, θ3ðN ¼ 4; 5; 6Þ, and θ4ðN ¼ 5Þ. In contrast,
readjusting the underlying fixed point couplings to their
asymptotic values via improved boundary conditions, we

find that only the exponents θ0ðN ¼ 4; 5Þ are off by a factor
of 2–3. For example, the largest relevant eigenvalue atN ¼ 6
is reduced inmagnitude from the unreliably largevalue−45.0
down to −4.7 by using improved boundary conditions. Most
notably, the improved result atN ¼ 6 comes out very close to
the exact result in the infinite-N limit. Another feature of
improved boundary conditions is that we now find a four-
dimensional UV critical surface at N ¼ 5, in accord with the
result (48). In contrast, standard boundary conditions spuri-
ously lead to a five dimensional UV critical surface.

FIG. 10. Scaling exponents at the Riemann fixed point from standard (left panel) and improved boundary conditions (right panel).
Real (complex) eigenvalues are visualized as filled diamonds (empty circles).

TABLE III. The first six eigenvalues of the Riemann fixed point based on standard (upper panel) and improved boundary conditions
(lower panel). Values set in bold indicate that scaling exponents deviate by more than a factor of two from asymptotic values. We observe
four relevant eigendirections at the UV critical point.

N θ0 θ1 θ2 θ3 θ4 θ5

2 −2.41−1.95I −2.41þ 1.95I Standard boundary conditions
3 −17.6 −2.00 − 2.09I −2.00þ 2.09I
4 −23.0−16.4I −23.0þ16.4I −2.78 − 0.750I −2.78þ0.750I
5 −38.1 −22.3−5.26I −22.3þ5.26I −2.77−0.705I −2.77þ0.705I
6 −45.0 −6.95 −2.74 − 1.15I −2.74þ1.15I 3.74 − 1.36I 3.74þ 1.36I
7 −5.19 −3.05 − 1.07I −3.05þ 1.07I −1.78 3.04 4.62 − 2.29I
8 −4.52 −3.07 − 1.44I −3.07þ 1.44I −1.24 2.97 4.95 − 2.90I
9 −4.50 −3.04 − 1.43I −3.04þ 1.43I −0.990 2.97 4.57 − 2.90I
10 −4.96 −3.00 − 1.45I −3.00þ 1.45I −1.34 2.98 4.29 − 2.79I
11 −4.96 −3.01 − 1.46I −3.01þ 1.46I −1.33 2.99 4.37 − 2.82I
17 −4.96 −3.01 − 1.46I −3.01þ 1.46I −1.33 2.99 4.42 − 2.86I

N θ0 θ1 θ2 θ3 θ4 θ5

2 −7.51 −1.88 Improved boundary conditions
3 −4.28 − 0.217I −4.28þ 0.217I −1.86
4 −9.19 −4.13 − 1.35I −4.13þ 1.35I −1.21
5 −16.5 −5.00 −2.29 − 1.17I −2.29þ 1.17I 1.59
6 −4.97 −3.02 − 1.48I −3.02þ 1.48I −1.55 2.55 4.96
7 −5.12 −3.01 − 1.33I −3.01þ 1.33I −1.66 3.04 4.41 − 1.79I
8 −5.01 −3.03 − 1.48I −3.03þ 1.48I −1.52 3.03 4.55 − 2.83I
9 −4.98 −2.99 − 1.48I −2.99þ 1.48I −1.37 3.02 4.18 − 2.77I
10 −4.97 −3.00 − 1.45I −3.00þ 1.45I −1.34 2.98 4.29 − 2.80I
11 −4.97 −3.01 − 1.46I −3.01þ 1.46I −1.34 2.99 4.36 − 2.83I
17 −4.96 −3.01 − 1.46I −3.01þ 1.46I −1.33 2.99 4.42 − 2.86I
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We conclude that the large fluctuations in the eigenvalue
spectrum found with standard boundary conditions at low
orders are significantly reduced using improved boundary
conditions. At higher orders, starting at N ¼ 6, eigenvalues
from improved boundary conditions are already close to
their asymptotic values (48), and only differ mildly from
standard boundary conditions. Starting at N ¼ 17, the
significant digits in Table III no longer change with
increasing N and the differences in the boundary condition
become irrelevant (Table IV).

B. Dimensionality of UV critical surface

Another novel feature of the Riemann fixed point is its
four-dimensional UV-critical surface. As can be seen in
Fig. 10, the fixed point has four negative and therefore
relevant eigenvalues, one of which is a complex conjugate

pair. The gravitational action (1) with (2) and (30) only
includes two canonically relevant and one canonically
marginal operator. Thus, we are led to the conclusion that
quantum effects have turned a classically marginal and a
classically irrelevant operator into relevant directions at the
UV fixed point.
The UV critical surface is further illustrated in Fig. 11

where we show the seven most relevant eigenvalues for
different approximation orders. We observe that eigenval-
ues (thin black lines) convergence rapidly to asymptotic
values (red thick line), four of which settle at negative
values. Of particular interest is the gap in the eigenvalue
spectrum, corresponding to the difference between the
largest relevant and the smallest irrelevant scaling expo-
nents. In the free theory, this gap is Δfree ¼ 2. At the
interacting fixed point, the most irrelevant of the relevant
eigenvalues is θ3 and the most relevant of the irrelevant
eigenvalues is θ4. Their gap ΔRiem is given by

ΔRiem ¼ θ4 − θ3 ≈ 4.32: ð50Þ

We observe that the gap is larger than the classical gap.
However, it is smaller than the gap ΔR ≈ 5.5 in fðRÞ
theories [77,91] and smaller than the gap ΔRic ≈ 5.98 in
theories with Ricci tensor interactions [90]. The difference
originates from the fact that the quantum effects make the
first classically irrelevant eigenvalue more relevant quan-
tum mechanically in the present case, leading to a smaller
gap and to the ordering 0 < Δfree < ΔRiem < ΔRic < ΔR.

C. Fundamentally free parameters

It is interesting to discuss the set of fundamentally free
parameters Nfree from the viewpoint of the full quantum
theory of gravity [91]. The family of quantum gravity
models (1), (2) always contains the Einstein-Hilbert inter-
action terms ∼ ffiffiffi

g
p

and ∼ ffiffiffi
g

p
R. For both of these classically

relevant interactions, the corresponding couplings are

TABLE IV. Convergence of eigenvalues at the Riemann fixed point with approximation order N.

N θ0 θ1, θ�2 θ3 θ4 θ5, θ�6
7 −5.19405 −3.05354 − 1.06701I −1.77830 3.03790 4.62121 − 2.28727I
8 −4.52166 −3.07089 − 1.43645I −1.23942 2.97158 4.95260 − 2.89518I
9 −4.49733 −3.04415 − 1.42823I −0.989626 2.97152 4.57428 − 2.89885I
10 −4.95655 −3.00452 − 1.45296I −1.33724 2.98371 4.29308 − 2.79177I
11 −4.95839 −3.00709 − 1.45810I −1.33429 2.98873 4.37013 − 2.81807I
12 −4.95392 −3.00832 − 1.45856I −1.33398 2.98684 4.41313 − 2.85557I
13 −4.94871 −3.00794 − 1.45668I −1.32518 2.98684 4.41988 − 2.85881I
14 −4.95832 −3.00670 − 1.45791I −1.32851 2.98704 4.41527 − 2.85517I
15 −4.96096 −3.00644 − 1.45814I −1.32929 2.98722 4.41468 − 2.85469I
16 −4.96189 −3.00641 − 1.45813I −1.32984 2.98723 4.41496 − 2.85522I
17 −4.96197 −3.00643 − 1.45803I −1.32996 2.98723 4.41520 − 2.85547I
18 −4.96190 −3.00645 − 1.45800I −1.32994 2.98723 4.41529 − 2.85550I
19 −4.96188 −3.00645 − 1.45800I −1.32994 2.98723 4.41530 − 2.85549I
144 −4.96188 −3.00645 − 1.45800I −1.32993 2.98723 4.41530 − 2.85549I

FIG. 11. UV critical surface and gap. Shown are the converged
results for the seven most relevant eigenvalues θl at the Riemann
fixed point at N ¼ Nmax. We observe a four-dimensional UV
critical surface. The gap in the eigenvalue spectrum between the
largest relevant and the smallest irrelevant eigenvalue is indicated
by an arrow.
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found to be relevant in the quantum theory, giving the
Reuter fixed point [27,30,34]. On the level of fourth order
interactions, our models retain any one of the invariants

ffiffiffi
g

p
R2;

ffiffiffi
g

p
RμνRμν;

ffiffiffi
g

p
RρσμνRρσμν; ð51Þ

or a linear combination thereof. We recall that the invariants
(51) cannot be distinguished within projections on max-
imally symmetric spaces (adopted here). Nevertheless, for
either of these classically marginal interactions, it is found
that the corresponding coupling becomes relevant in the
quantum theory [23,77,90]. This is in accord with the
lower bound

Nfree ≥ 3 ð52Þ

on the number of fundamentally free parameters [91].
Based on fourth order extensions of gravity, and neglecting
the potential impact of higher order curvature invariants,
similar conclusion have been reached in [65,69,93]. An
important new observation of this work arises for dim-6
invariants. Of these, our models (1), (2) can retain any one
of the invariants

ffiffiffi
g

p
R3;

ffiffiffi
g

p
RRμνRμν;

ffiffiffi
g

p
RRρσμνRρσμν; ð53Þ

or any linear combination thereof. In models which retain
the term with Ricci scalar or Ricci tensor interactions,
no new relevant direction is created and we are left
with (52). In contrast, for models with Riemann inter-
actions, (31), (32), a new relevant eigendirection can be
found. In other words, the dynamics of Riemann tensor
interactions displays qualitative differences from Ricci
scalar or Ricci tensor interactions starting at dim-6. A
discussion of the corresponding eigenperturbations is
relegated to Sec. VI C below.
A conservative interpretation of this result for the full

theory of quantum gravity is that at least one of the
canonically irrelevant dim-6 invariants (see Table I for
an overview) becomes a relevant operator due to quantum
fluctuations. This does require quantum corrections to
scaling dimensions to be of order unity, which has
previously been observed in many asymptotically safe
models. What is new here is that the quantum corrections
make the dim-6 interaction more relevant rather than more
irrelevant. In consequence, it indicates that the UV theory
of pure quantum gravity has at least

Nfree ≥ 4 ð54Þ

fundamentally free parameters. In order to further clarify
the number of free parameters, it will be important to
investigate other dim-6 invariants in future works (Table I)
including the Goroff-Sagnotti term [7,8,86] while also

retaining sufficiently many higher dimensional interaction
terms for eigenvalue spectra to become reliable.

D. Bootstrap and large order behavior

The bootstrap approach to quantum gravity is a system-
atic way of testing whether a fixed point candidate is viable
or otherwise [23]. The fundamental assumption is that
canonical power counting remains to be a good ordering
principle for operators even at an interacting fixed point,
which is known to hold true for fixed points observed in
nature. A virtue of the bootstrap hypothesis is that it can
be confirmed a posteriori. Specifically, starting at some
approximation with N different operators, the eigenvalue
introduced by a new operator of higher mass dimension
should turn out to be more irrelevant than other eigenval-
ues. Further, the eigenvalues already included in the
truncation before should only change by small fluctuations.
In particular, from a sufficiently high order onwards, new
relevant eigenvalues should not be created. To test this
conjecture for the Riemann fixed point, we take a look at
the quantity

DlðNÞ ¼ θN−lðNÞ; ð55Þ

This quantity gives the lth largest eigenvalue in the
eigenvalue spectrum at approximation order N. For the
bootstrap to be viable, we expect that the functions DlðNÞ
are growing with increasing N, which manifests that the
addition of a new high-order invariant in the step fromN →
N þ 1 leads to a new eigenvalue which is less relevant than
those identified in previous approximations. This pattern
also ensures that no new relevant eigenvalues are created
when higher operators are included. In Fig. 12 we see that

FIG. 12. Bootstrap test for asymptotic safety and canonical
power counting, with lines of scaling exponentsDlðNÞ defined in
(55). From the left to the right, each line Dl, as a function of the
approximation order N, shows the lth largest eigenvalue, con-
nected by a line, against N þ 2l (l fixed). The linear growth of
all curves establishes that canonical mass dimension (gray line) is
a viable ordering principle.
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this is clearly the case for the Riemann fixed point as soon
as N ≈ 6 or larger, in agreement with the bootstrap
conjecture, which verifies our working hypothesis.
Having seen that the bootstrap approach is fulfilled for

the Riemann fixed point we want to further investigate the
eigenvalue spectrum. In particular we are interested to ask
how far away the observed eigenvalues are from Gaussian
scaling. For that purpose, Fig. 13 shows the eigenvalues
θlðNÞ obtained at different orders N in comparison with
their Gaussian values (26),

ϑl ¼ 2l − 4; ð56Þ

indicated by a gray line. As can be seen, eigenvalues are
close to their Gaussian values with small deviations due to
quantum corrections. This is in accordance with other
works [64,77,90,91] where eigenvalues are observed to
be “as Gaussian as it gets.” A difference to these works is
that quantum corrections are strictly shifting eigenvalues
towards relevant directions, leading to, among others, the
observed four-dimensional UV critical surface. It is also
worth noting that the largest corrections towards relevant
directions are received by the eigenvalues with l ¼ 2; 3,
and 6 as seen by the dips in Fig. 13. The largest correction,
at l ¼ 6, is given by

θ6ðNmaxÞ − ϑ6 ≈ −3.6: ð57Þ

We further investigate the deviations from Gaussian
scaling in Fig. 14 where the difference between the real
part of the eigenvalues θlðNÞ and their canonical counter-
parts in (56) at different orders N is shown. As we see, the
quantum corrections to scaling are of the order of 1–3 for
all eigenvalues, which substantiates the observation that,
except for the leading few, most of the quantum gravita-
tional scaling dimensions are near-Gaussian with only
small relative deviations.
More precisely, the first ten eigenvalues follow rather

stochastic fluctuations around Gaussian scaling while
higher eigenvalues show very systematic deviations: eigen-
values θlðNÞ with l > 10 enter relatively close to Gaussian
scaling when they are included for the first time and then
drift away to their final value when the truncation order is
increased and more operators are included. Furthermore,
the line of final values for the deviation is bent in Fig. 14,
showing that higher eigenvalues are getting closer to
Gaussian scaling.
The mean deviation of the first ten eigenvalues from

Gaussian scaling at order N ¼ 144, σN¼144
10 , is given by

jσN¼144
10 j ¼ 2.3� 1.0; ð58Þ

and points into the relevant direction. This deviation is of
the order of three within one standard deviation. Returning
to our assumption that only eigenvalues corresponding to
operators from Table I should become relevant in the UV,
we see that the observed shift can indeed be big enough to
do so. The Riemann fixed point FP4s is a particular example
for this to happen.
Moreover, we note that within our setup a shift of 4 in the

relevant direction for the low eigenvalues is only 2σ away.

FIG. 13. Shown are the real parts of the eigenvalues θlðNÞ at
different approximation orders N up to Nmax ¼ 35 using standard
boundary conditions. Different orders can be distinguished using
different symbols and color coding as explained in the legend.
The first orders up to N ¼ 6 have been excluded due to their
previously found inconsistencies with standard boundary con-
ditions. Hence, the plot shown starts at N ¼ 7. The gray line
indicates the eigenvalues of a Gaussian fixed point following
from the mass dimension of included operators, see (56).

FIG. 14. Shown are the differences Δθl between the real part of
the converged universal eigenvalues θlðNÞ and their canonical
counterpart ϑl at the highest approximation order (N ¼ 144).
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Hence, our observations in the eigenvalue spectrum do not
rule out the possibility of rendering an eigenvalue corre-
sponding to a dim-8 operator relevant. How likely it is for
an eigenvalue of a dim-8 operator to become relevant is
hard to estimate from our analysis, since the offset from
Gaussian scaling and its standard deviation changes
between settings and approximations. However, it is clear
that we should not rule out the possibility of eigenvalues
corresponding to dim-8 operator becoming relevant at an
interacting fixed point for gravity.
The pattern in the deviations of higher eigenvalues from

Gaussian scaling in Fig. 14 suggests that there might be a
simple linear relation between these higher eigenvalues.
Therefore, we use the results obtained at different orders
and fit a linear function to the eigenvalue spectrum. Since
the last eigenvalues of every approximation need a few
more orders to settle to their final values, we exclude the
last ten eigenvalues of each order from the fit. Then, fitting
the linear function

θfitl ¼ a · l − b; ð59Þ

we obtain the results shown in Fig. 15 for different
approximations N starting from N ¼ 20 up to N ¼ 144.
At the highest approximation, we find

ajRiemann ≈ 2.0046� 0.0006;

bjRiemann ≈ 6.41� 0.05: ð60Þ

According to (56) the Gaussian values for these parameters
are given by

acl ¼ 2; bcl ¼ 4: ð61Þ

Hence, the fitted slope of the Riemann fixed point is very
close to Gaussian scaling. The y intercept (l ¼ 0), on the
other hand, is shifted away from its Gaussian value by an
amount of b − bcl ¼ 2.41. This is roughly the same amount

as the observed average shift in the first ten eigenvalues of
the spectrum (58).
To summarize, we find that the eigenvalues of the

Riemann fixed point follow near-Gaussian scaling with
quantum induced shifts. These shifts in effective mass
dimension are such that operators invariably become more
relevant. The magnitude of shifts is of the order of 1–3.
Note that this is different from what has been found in fðRÞ
models of gravity where quantum corrections mostly shift
eigenvalues into irrelevant directions. Hence, we come to
the conclusion that the dynamics induced by the Riemann
tensor interactions included in settings of the form (32) are
distinct from those found for a fðRÞ-type models, or of
models involving Ricci tensor interactions such as (1) with
(2) and ða; b; cÞ ¼ ð0; 1; 0Þ. In particular, this manifests
itself in generating a four-dimensional UV critical surface
for the Riemann fixed point.

E. Signatures of weak coupling

The near-Gaussian behavior as observed above can be
further discussed. For that purpose, we define the quantity
vl that measures the relative deviation of scaling dimen-
sions from classical values,

vl ¼
����1 − ReðθlðNÞÞ

ϑl

����: ð62Þ

Here ϑl denotes classical eigenvalues and θlðNÞ are
observed eigenvalues at different approximation orders
N. Figure 16 shows this quantity in a double logarithmic
plot for orders up to N ¼ 70 and eigenvalues θlðNÞ up to
l ¼ 50. As we see, the plot shows a linear relation between
the quantities logðvlÞ and logðlÞ. This suggests a func-
tional relation of the form

v̄l ¼ v · lle : ð63Þ

Fitting this function to the observed eigenvalues at highest
order N ¼ 144 with the last ten eigenvalues being excluded

FIG. 15. Shown are the quantum-induced shifts in the scaling exponents, expressed in terms of the slope parameter aðNÞ (left panel)
and the offset parameter bðNÞ (right panel) using the fit (59) and (60), and in comparison to classical values (61). The blue lines show the
1σ band.
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gives v ≈ 2.690 and ke ≈ −1.221. Figure 16 shows that this
relationship with these values is fulfilled to a good
approximation. This can also be confirmed to higher orders
which are not shown here for illustrative reasons. If this
functional dependence remains to be true at higher orders
the quantity vk will approach zero for high eigenvalues.
This means that higher eigenvalues are getting closer and
closer to their canonical values and eventually end up there.
Thus, the induced quantum corrections to scaling expo-
nents become smaller for higher eigenvalues which gives
another notion of the term “as Gaussian as it gets.”
Moreover, it can be interpreted as a signature of a hidden
weak coupling controlling Gaussian scaling of higher
operators.
It is worth pointing out that the approach to Gaussian

values is algebraic, and much slower than the approach
observed in truncations involving Ricci scalar or Ricci
tensor interactions. Specifically, for fðRÞ actions or actions
of the form X ¼ RμνRμν the Gaussian approach has been
found out to be exponential and therefore faster than the
observed power law behavior in the X ¼ RρσμνRρσμν

truncation. However, in the case of X ¼ RμνRμν only 20
different approximation orders have been taken into
account. Also, fðRÞ approximations tend to have stronger

fluctuations in couplings and eigenvalues. Thus, our results
are somewhat more precise in that matter.

V. WEAKLY INTERACTING
RIEMANN FIXED POINTS

In Fig. 2, we have pointed out that our fixed point search
gives rise to three candidates that pass the viability tests and
that do not suffer from unnaturally large relevant/irrelevant
eigenvalues or strong instabilities in eigenvalues. In this
section, we discuss our results for the two secondary,
weakly interacting Riemann fixed points FP4 and FP3
(magenta dots in Fig. 2). FP4 should not be confused with
the primary Riemann fixed point (FP4s) of the previous
sections.

A. Fixed point coordinates

Within the polynomial expansion, the coordinates of the
secondary fixed points FP4 and FP3 fluctuate at low orders
but stabilize thereafter. This is not unexpected, and very
similar to what has been observed for the primary Riemann
fixed point. The fixed point coordinates of FP3 stabilize
around the order N ≈ 9. We notice that its couplings are
very close to those of FP4. In this light, we may interpret
this as the fixed point FP4 splitting up into two fixed points
FP4 and FP3 starting from orderN ≈ 9 onwards. After these
orders both fixed points are stable and arise consistently at
each and every order, up to the highest orders.
Quantitatively, the first couplings of the fixed point

effective action (32) at FP4 are

λ0 ¼ 0.26914;

λ1 ¼ −0.90665;

FP4∶ λ2 ¼ 0.24452;

λ3 ¼ 0.061344;

λ4 ¼ 1.3278: ð64Þ
To achieve these, we have used a polynomial expansion of
the action (1) with (31) and using (33) up to the order
N ¼ 144. In terms of the couplings (27) we have

g�jFP4 ¼ 1.103; λ�jFP4 ¼ 0.148; λ�g�jFP4 ¼ 0.164: ð65Þ

Clearly, the values (65) are close to those of the Einstein-
Hilbert approximation (38), see Fig. 2. These data should
be compared with the first few couplings of FP3, for which
we find

λ0 ¼ 0.27059;

λ1 ¼ −0.97217;

FP3∶ λ2 ¼ 0.23082;

λ3 ¼ 0.15913;

λ4 ¼ 1.8557: ð66Þ

FIG. 16. Signatures of weak coupling at the Riemann fixed
point. Shown are the parameters vl as defined in (62) that
measure the differences between eigenvalues θlðNÞ and their
Gaussian values ϑl. Different approximation orders N can be
distinguished using different symbols and color codings as
explained in the legend. The dashed black line corresponds to
a fit of v̄l ¼ v · lle with v ≈ 2.690 and le ≈ −1.221. For
visualization purposes only data up to l ¼ 50 and N ¼ 70 is
shown. However, we note that this picture continues up to highest
order N ¼ 144 and corresponding l ¼ 143. The fit was done
with data from N ¼ 144 with the ten highest eigenvalues of this
order being excluded.
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To achieve these, we have used a polynomial expansion of
the action (1) with (31) and using (33) up to the order
N ¼ 72. We notice that the first three couplings at FP3 (66)
are close to those at FP4 (64). The first coupling which
differs substantially is λ3. In terms of the couplings (27)
we find

g�jFP3 ¼ 1.029; λ�jFP3 ¼ 0.139; λ�g�jFP3 ¼ 0.143; ð67Þ
which, again, comes out quite close to the Einstein-Hilbert
result (38). The vicinity of (65) and (67) to (38) allows us to
interpret these fixed points as higher order extensions of the
Reuter fixed point.

B. Scaling exponents and critical surface

For both FP4 and FP3 we have computed scaling
exponents up to very high order in the polynomial
expansion. In either case, we found that the scaling
exponents satisfy the bootstrap test as performed for the
Riemann fixed point in Sec. IV D. Moreover, we have
also confirmed that large order scaling exponents for FP4
and FP3 become near Gaussian, in full analogy with the
Riemann fixed point and earlier findings for fðRÞ and
fðR;Ric2Þ type theories. Quantitatively, the first few
scaling exponents at FP4 read (see Fig. 17)

θ0 ¼ −3.0191;

θ1 ¼ −2.9332 − 2.0659i;

FP4∶ θ2 ¼ −2.9332þ 2.0659i;

θ3 ¼ −1.1590;

θ4 ¼ 3.2157: ð68Þ

Several comments are in order. First, we notice that the
critical surface is four dimensional, similar to what has
been found at the Riemann fixed point (48). Quantitatively,
three of the four relevant exponents are close to those at
the Riemann fixed point, with θijRiemann − θijFP4 ≈ −0.1
(i ¼ 1; 2; 3), except the leading one which differs more
substantially, θ0jRiemann − θ0jFP4 ≈ −1.9. On the other hand,
the gap in the eigenvalue spectrum (68) is given by

ΔFP4 ¼ θ4 − θ3 ≈ 4.37 ð69Þ

and is very close to, if mildly larger than, the Riemann gap
(50). In comparison with the Einstein-Hilbert approximation
(49), the two leading exponents in (68) are more relevant,
with θijFP4 − θijEH ≈ −0.5 (i ¼ 0; 1). We conclude that
quantum effects due to Riemann curvature invariants make
the FP4 fixed point more relevant compared to the Einstein-
Hilbert approximation, and this is despite the fact that the two
leading couplings remain essentially unchanged.
Comparing the scaling exponents of FP4 with classical

values, we find that the real part of the first two scaling

exponents differ from classical ones by þ1.0 and −0.9,
respectively. This can be compared with the shifts of þ1.6
and −0.4 induced by the Einstein-Hilbert approximation
alone. In both cases, the leading exponent receives shifts
towards positive values, while the second most relevant
exponent receives negative quantum corrections. Moreover,
all higher order Riemann tensor interactions together make
the leading scaling exponents θ0 and θ1 more relevant by
−0.6 and −0.5 units compared to the Einstein-Hilbert ones.
Let us now discuss the large-order behavior of universal

eigenvalues fθng in more detail by performing a linear fit as
in (59). Overall, we find a pattern similar to the one
observed in Fig. 15 for the Riemann fixed point. Due to a
slowed-down convergence of eigenvalues (to be discussed
in Sec. V D) we take the average of values for the slope and
the offset parameter over the ten highest approximation
orders ðN ¼ 134–143Þ to find

ajFP4 ≈ 2.0055� 0.0007;

bjFP4 ≈ 4.78� 0.05: ð70Þ

Similar to what is found at the Riemann fixed point (60),
the slope is very close to its Gaussian value (61). The shift
b − bcl ≈ 0.78 in the offset is pushing the eigenvalues into
the relevant direction and comes out much smaller than at
the Riemann fixed point (Fig. 15).
It is well known that the Einstein-Hilbert fixed point and

fðRÞ fixed points are connected with the Gaussian fixed
point of classical general relativity (GR) by well-defined
RG trajectories. Given that FP4 is numerically close to the
Einstein-Hilbert and fðRÞ values of the leading two fixed
point couplings, it is conceivable that RG trajectories
should exist which flow from FP4 in the UV to classical
GR in the infrared (see Sec. II C). Indeed, we have checked
by numerical integration that a weakly coupled low energy
regime with (29) and the emergence of general relativity is
realized from the UV fixed point.
For the FP3 fixed point, we find the scaling exponents

(see Fig. 18)

θ0 ¼ −2.7283;

θ1 ¼ −2.6562 − 1.9498i;

FP3∶ θ2 ¼ −2.6562þ 1.9498i;

θ3 ¼ 2.5133 − 0.9150i;

θ4 ¼ 2.5133þ 0.9150i: ð71Þ

The critical surface is three dimensional, similar to what has
previously been found at the fðRÞ and fðR;Ric2Þ fixed
points. Quantitatively, the three relevant exponents are
close to the leading three exponents at the FP4 fixed point,
and less relevant with θijFP4 − θijFP3 ≈ −0.3 (i ¼ 0; 1; 2).
On the other hand, the gap in the eigenvalue spectrum (71)
is given by
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ΔFP3 ¼ θ3 − θ2 ≈ 5.17 ð72Þ

and is larger than the Riemann gap (50), and larger than the
gap at the FP4 fixed point (69). We also notice that the gap
is much closer to the gap ΔfðRÞ ≈ 5.48 observed in fðRÞ
theories, yet still much smaller than ΔRic ≈ 5.98 found for
fðR;Ric2Þ theories with three relevant couplings.
Let us now compare exponents with classical and

Einstein-Hilbert values. For the first two scaling exponents
θ0 and θ1, the real part of eigenvalues differ from classical
values by þ1.3 and −0.6, respectively. This should be
compared with the shifts by þ1.6 and −0.4 in the EH
approximation, (49). Hence, not only are the fixed point
couplings at FP3 very close to those of the EH approxi-
mation, but the quantum corrections of the two leading
exponents are similarly close to those already induced
when only the two leading operators are retained. In other
words, at FP3 the quantum effects due to all curvature
invariants with canonical mass dimension four and higher
(all invariants beyond the cosmological constant and the
Ricci scalar) only contribute the shift −0.3 and −0.2 to the
two leading exponents, which furthermore is half as large
as the shifts at FP4. Once more, Riemann tensor inter-
actions make the scaling exponents more relevant, albeit
mildly. It is in this sense that FP3 is as close as it gets to the
Reuter fixed point.
Turning to the large-order behavior of universal eigen-

values we perform a linear fit as in (59). We again find a
pattern similar to the one observed in Fig. 15 for the
Riemann fixed point. Taking the average of values for the
slope and the offset over the ten highest approximation
orders ðN ¼ 62–72Þ we find the estimates

ajFP3 ≈ 1.991� 0.002;

bjFP3 ≈ 4.15� 0.08: ð73Þ

We notice that the slope parameter is essentially classical
with a − acl ≈ 0 in accord with the approach to near-
Gaussian scaling. Also, the shift b − bcl is smaller then
what is found at FP4 (70) and at the Riemann fixed point
(60). These findings further underline that this fixed point is
as close to the Reuter fixed point as it gets.

C. Effective action and de Sitter solutions

Next, we discuss the curvature dependence of the weakly
interacting Riemann fixed points. In Fig. 19 we show the
fixed point functional at the fixed point FP4 for different
orders N as a function of dimensionless curvature
r ¼ R=k2. We observe that the polynomial approximation
shows an alternating-sign convergence on the negative real
axis and a same-sign convergence on the positive real axis.
The latter is often indicative for the presence of a pole. We
confirm this view by a full numerical integration of (19) at
the fixed point, which is unproblematic due to the absence

of removable singularities. Hence, it appears that the fixed
point solution does not extend beyond dimensionless
background curvatures of order unity in the present
approximation.5 It is interesting to note that this pole is
not generated by a pole in the differential equation. Instead,
it is of the Landau type and generated dynamically
similarly to Landau poles in perturbative β functions,

FIG. 17. Shown are the converged results for the seven most
relevant eigenvalues θl at the FP4s fixed point at N ¼ 144. We
observe a four-dimensional UV critical surface. The gap in the
eigenvalue spectrum between the largest relevant and the smallest
irrelevant eigenvalue is indicated by an arrow.

FIG. 18. Shown are the converged results for the seven most
relevant eigenvalues θl at the FP3 fixed point at N ¼ 144. We
observe a three-dimensional UV critical surface. The gap in the
eigenvalue spectrum between the largest relevant and the smallest
irrelevant eigenvalue is indicated by an arrow.

5Due to this divergence we cannot continue the integration on
either the negative or on the positive side in Fig. 19. This is due to
how the differential equations are integrated using two functions
f and z depending on the square of the Ricci scalar curvature.
Each function on its own is independent of the sign of the scalar
curvature and takes the same value for positive and negative
curvature. Only the sum of them that enters the effective action
may differ on the positive and the negative side.
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e.g., QED. Since we expect the fixed point functional to be
well behaved for all dimensionless Ricci scalar, this result
suggests that possibly new effects must arise due to further
curvature invariants which ensure that the effective action
extends to larger curvature (recall that our study employs
the heat kernel expansion that is well suited for small
curvature). Similar results and conclusions apply for the
fixed point FP3.
Next, we search for de Sitter solutions in the deep UV.

With increasing curvature, the fixed point functionals
essentially behave linearly up to the end of the radius of
convergence, see Fig. 19. This behavior, together with the
proximity of the fixed point couplings to EH values,
suggests that the equations of motion will have de Sitter
solutions similar to those of the Einstein-Hilbert approxi-
mation. Quantitatively, we find one de Sitter solution for
each of the fixed points FP4 and FP3. Their numerical
values are given by

rdSjFP4 ≈ 0.573; rdSjFP3 ≈ 0.534; ð74Þ

respectively. Both are larger than the EH result (42), and all
three are larger than the de Sitter solution (41) of the
strongly interacting Riemann fixed point. Retaining only
the cosmological constant and the Ricci scalar terms of the
fixed point action, the result would have come out as
rdSjFP4 ≈ 0.58 and rdSjFP3 ≈ 0.56. Here we used (65), (67),
and the fact that rdS ¼ 4λ in any Einstein-Hilbert theory.
The result strengthens the view that the FP4 and FP3 fixed
points are weakly coupled, and only differ mildly from the
Reuter fixed point.

D. Convergence

In Fig. 20, we show the convergence of eigenvalues
towards their values at approximation order Nmax ¼ 144.
For the Riemann fixed point, all eigenvalues converge
algebraically fast (Fig. 9). However, this is not observed for
FP4. Rather, a fast and constant rate of convergence is
observed for the first 20 orders in the expansion, reaching
up to six significant digits in the exponents. With increasing
order, however, the rate begins to flatten and the accuracy
stops increasing around the orderN ≈ 60–100. Specifically,
the findings show that the scaling exponent θ0 cannot be
determined beyond an accuracy of 10−8, and increasingly
less so for the higher order eigenvalues. A similar behavior
is found for the fixed point couplings of the weakly
Riemann fixed points FP4 and FP3, and for the scaling
exponents of the fixed point FP3.
The slight deterioration of convergence towards the

highest orders is further corroborated in Fig. 21, where
we show the difference of the real part of the eigenvalues
and their classical scaling at different orders N. This should
be compared with the result at the Riemann fixed point (see
Fig. 14). Overall, eigenvalues approach Gaussian values
with small deviations, as seen for the Riemann fixed point.
However, in contrast to Fig. 14, this plot shows that the
convergence of increasingly irrelevant eigenvalues slowly
deteriorates. While up to l ¼ 30 an apparent convergence
of eigenvalues can be seen, higher eigenvalues continue to
strongly fluctuate within a belt around Gaussian scaling,
another consequence of the lack of convergence at highest
orders (see Fig. 20). Similar results are found for FP3. In
summary, we are lead to the conclusion that a full
determination of the fixed point and its scaling exponents
cannot be achieved beyond a limiting accuracy within the
local curvature expansion of the effective action performed
here. However, since the effect is numerically small, and
most likely below systematic errors due to approximations,
it may be neglected for the present purposes.
It is conceivable that the slight lack of convergence is a

technical artifact, which can be overcome by an extended
study using different momentum cutoffs, or by using
spectral sums instead of heat kernel expansions. In func-
tional RG studies of critical phenomena it has been noted

FIG. 19. Shown is the effective fixed point action for the
secondary fixed point FP4 and the convergence with increasing
approximation orders N. A similar result is found for FP3
(not shown).

FIG. 20. The accuracy of (the real part of) eigenvalues of FP4 at
different orders N, in comparison to their values at Nmax ¼ 144.
For better visualization we only show the convergence of every
10th eigenvalue. Unlike FP4s (Fig. 9) the accuracy ceases to
improve and exponents do not converge beyond a certain order.
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that certain technical choices may hamper the accurate
determination of scaling exponents due to convergence-
limiting poles in the complex plane [117]. Still, the
apparent lack of convergence can be overcome by taking
constant field backgrounds [118,119] by using more
suitable cutoffs [120] or by dropping the polynomial
approximation in the first place [117]. These extensions,
albeit interesting, are beyond the scope of the present work.

VI. EIGENVECTORS AND EQUAL
WEIGHT CONDITION

In this section, we summarize results for eigenvectors
and eigenperturbations. As a main novelty we put forward
an “equal weight” condition that allows the identification of
eigenperturbations irrespective of overall parametrization
ambiguities of couplings in the effective action.

A. Eigenvectors

The goal of analyzing eigenvectors is to clarify which
invariants in the effective action relate to which eigenval-
ues, and to understand which interaction monomials
dominate the relevant eigendirections. We expect that
there will not be a one-to-one correspondence between
an eigenvector and monomials in the effective action.
Rather, different operators in the effective action mix,
and as a result eigenvectors often do not point into the
direction of an individual monomial only.
To begin with, we define the eigensystem fðθl; vðlÞÞ;

l ¼ 0;…; N − 1g of eigenvalues θl and eigenvectors vðlÞ
at approximation order N via the stability matrix at the
fixed point, Mij ¼ ∂βi=∂gjj�,

X
j

Mijv
ðlÞ
j ¼ θlv

ðlÞ
i ; ð75Þ

where we use l to label different eigenvalues θl and their
corresponding eigenvectors vðlÞ. Having calculated this
eigensystem for the Riemann fixed point at different
orders, we plot the absolute values of the components i
for eigenvectors vðlÞ at N ¼ 21 and N ¼ Nmax ¼ 144 in
Fig. 22. Starting with a discussion of the eigenvectors at
N ¼ 21, we observe that all eigenvectors appear to be
dominated by classically irrelevant interactions: The largest
components of all eigenvectors point into the directions
of the five highest included operators in the truncation.
In contrast to this, other directions corresponding to
operators with smaller mass dimension are suppressed in
all eigenvectors. However, taking a closer look we see that
the components corresponding to operators of small mass
dimension are significantly enhanced in the relevant
eigenvectors. Moreover, the most irrelevant eigenvectors
only get significant contributions from the classically most
irrelevant eigenvectors in the truncation.
Qualitatively similar features can be seen in the eigens-

pectrum at N ¼ 144 as well. Again, the whole eigenspec-
trum appears to be dominated by the classically most
irrelevant directions included in the truncation. In particu-
lar, relevant eigenvectors are dominated by the highest
operators included in the truncation and classically relevant
directions contribute significantly more to relevant eigen-
vectors than irrelevant ones. However, note that the
quantitative values have changed drastically by going from
N ¼ 21 to N ¼ 144. While the classically relevant direc-
tions had contributions of the order of 0.1 in the first case,

FIG. 21. The difference between the real part of the universal eigenvalues θlðNÞ of FP4 and their canonical values ϑl is shown. In the
left plot, we show every second order N up to N ¼ 144, using different symbols and color coding to distinguish different orders. We
observe that higher order eigenvalues do not converge but fluctuate within a belt around their canonical values. This is further clarified in
the plot on the right-hand side that shows averaged values for the eigenvalues of the last 10 orders together with a band of 1σ standard
deviation resulting from the averaging.
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these contributions are suppressed to orders of 10−16 in the
latter. Further, all operators which are included at N ¼ 21
turn out to be strongly suppressed by higher operators
which are additionally included at N ¼ 144.
Some of the features seen in Fig. 22 are reasonable

(e.g., the fact that classically relevant directions con-
tribute significantly more into the directions of relevant
eigenvectors) but others are clearly not (e.g., the fact that all
eigenvectors seem to be dominated by the classically most
irrelevant operators). Moreover, the findings do not reflect
the order-by-order stability of fixed point couplings and
eigenvalues.

B. Equal weight condition

Weare nowgoing tomake the case that the eigenvectors in
Fig. 22donot displayuniversal features of the theory,while a
suitably modified version of them does. To appreciate this
point we note that eigenvectors, unlike eigenvalues, are not
universal quantities in the sense that they change under a
redefinition or rescaling of the underlying fields or cou-
plings. For example, if we rescale polynomial couplings as
λi → λ̄i ¼ ζi · λi (no sum), the corresponding β functions are
given by β̄iðλ̄jÞ ¼ ζi · βiðλ̄j=ζjÞ. It then follows that the
elements of the stability matrix of the rescaled system are
given by

M̄ij ¼ ζi ·Mij · ðζjÞ−1: ð76Þ

While eigenvalues remain unchanged, eigenvectors do
change, as can be seen from the relationship between
eigenvectors before and after rescaling,

v̄ðlÞi ¼ ζiv
ðlÞ
i : ð77Þ

In general, the normalization of an eigenvector changes
under rescaling of couplings, andwemay introduce rescaled
eigenvectors, normalized to unity, as

ω̄ðlÞ
i ¼ v̄ðlÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N−1
j¼0 jv̄ðlÞj j2

q ¼ ζiv
ðlÞ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N−1
j¼0 jζjvðlÞj j2

q : ð78Þ

A remnant of this “rescaling ambiguity” is visible in Fig. 22,
where the entire eigenspectrum appears to be dominated by
the highest operators retained in the approximation. As is
evident from (77) with suitable choices for the rescaling
parametersζi anyoperator canbemade to appeardominating
the eigenspectrum.
To remedy this ambiguity, we lay out a simple procedure

to find eigenvectors which are best qualified to describe
the physical eigenperturbations without any rescaling
ambiguities. Since we are only interested in the physical
information of the eigensystem, we fix the rescaling
ambiguity such that all operators contribute with “equal
weight” to the entire eigensystem. This idea ensures that no
operator is dominating artificially in the spectrum and
should leave us directly with the physical information
stored in the eigenvectors. On a quantitative level, this
amounts to the “equal weight” condition for the rescaling
parameters ζi,

XN−1

l¼0

jω̄ðlÞ
i j2 ¼ 1 ∀ i: ð79Þ

FIG. 22. Shown are the first 21 ad hoc eigenvectors vðlÞ (l ¼ 0;…; 20) at the Riemann fixed point (absolute values of their
components), normalized to equal length (80), also comparing polynomial approximations at order N ¼ 21 (left panel) with N ¼
Nmax ¼ 144 (right panel). The components (i ¼ 0;…; N − 1) of eigenvectors representing the cosmological constant (i ¼ 0), the Ricci
scalar (i ¼ 1), Riem2 (i ¼ 2), and higher order interaction monomials (i ≥ 2) are indicated by different symbols and colors according to
the legend. Gray-shaded areas indicate the set of relevant eigenvectors. The right panel also contains symbols corresponding to
invariants higher than those indicated in the legend, represented by additional light blue symbols. The ad hoc eigenvectors are spuriously
dominated by the highest interaction monomials in any approximation which makes them unreliable.
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Note that this equation sums over different vectors ω̄ðlÞ
with the components i held fixed. In physical terms, the
condition (79) imposes that the absolute-value-squared
contributions of any operator to all eigenvectors adds up
to unity. In this manner, it is guaranteed that the contri-
butions to eigenvectors of all operators retained in the
approximation are weighted equally.

In addition, recall that the ω̄ðlÞ
i are defined such that they

also fulfil the conventional “unit length” normalization
condition for eigenvectors,

XN−1

i¼0

jω̄ðlÞ
i j2 ¼ 1 ∀l; ð80Þ

which sums over different components i. Thus, considering
the matrix of eigenvectors,

ω̄ ¼

0
BBBBBB@

ω̄ð0Þ
0 ω̄ð1Þ

0 … ω̄ðN−1Þ
0

ω̄ð0Þ
1 ω̄ð1Þ

1 … ω̄ðN−1Þ
1

..

. ..
. . .

. ..
.

ω̄ð0Þ
N−1 … … ω̄ðN−1Þ

N−1

1
CCCCCCA
; ð81Þ

the normalization conditions (79) and (80) correspond to
normalizing the absolute-value-squared sum of each row
and each column to unity.
Next, we show that the equal weight (79) and unit length

condition (80) for the matrix (81) can always be achieved.
The condition (80) follows trivially from the normaliz-
ability of eigenvectors. The condition (79), on the other
hand, requires a special choice for the rescaling parameters
ζi, which can always be achieved. To see this, we write (79)
in terms of (78) to get

XN−1

l¼0

jω̄ðlÞ
i j2 ¼

XN−1

l¼0

������ζi
vðlÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N−1
j¼0 jζjvðlÞj j2

q
������
2

¼ 1 ∀ i: ð82Þ

Notice that due to the normalization of eigenvectors, an
overall rescaling factor,

ζi → const:ζi; ð83Þ

drops out of (82) leaving us with only N − 1 open
parameters. Due to the irrelevancy of this overall factor,
we can always choose the rescaling factors to be of the form

ζ ¼

0
BBBBBBBB@

1

ζ1

ζ2

..

.

ζN−1

1
CCCCCCCCA
: ð84Þ

With this choice, we can use the N − 1 open parameters of
(84) to fulfil (82) for all i > 0. Doing so in the matrix of
eigenvectors (81) corresponds to having all columns and all
rows except for the first row normalized to 1. From this it
follows, however, that

XN−1

l¼0

jω̄ðlÞ
0 j2 ¼

XN−1

l¼0

�
1−

XN−1

i¼1

jω̄ðlÞ
i j2

�
¼N −

XN−1

i¼1

1¼ 1: ð85Þ

Thus, fulfilling (82) for i > 0 and normalizing all eigen-
vectors automatically ensures that (82) is fulfilled for i ¼ 0
as well. It is, therefore, always possible to rescale the

FIG. 23. Shown are the first 21 eigenvectors at the Riemann fixed point FP4s at approximation order N ¼ 21 (left panel) and
N ¼ Nmax ¼ 144 (right panel), normalized according to the equal weight and unit length conditions (79), (80). Unlike in Fig. 22,
normalized eigenvectors only change mildly under extensions of approximations, in accord with the stability and convergence of
approximations (Fig. 4), and the near-Gaussianity of scaling exponents (Figs. 12 and 13). Gray-shaded areas indicate the set of relevant
eigenvectors. The leading eigenvectors (l≲ 6) are dominated by mixtures of the relevant interaction monomials while increasingly
irrelevant eigenvectors vðlÞ (l≳ 7) are dominated by the component i ¼ l.
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eigenvectors such that the naturalness condition (79) is
fulfilled.

C. Eigenvectors from Riemann interactions

In Fig. 23, we apply our procedure to the theory at
hand and show eigenvectors rescaled according to (79)
and (80), and for different truncation orders N ¼ 21 and
N ¼ Nmax ¼ 144. We emphasize that our procedure has
been applied to the full eigenspectrum at order N ¼ 21 and
N ¼ 144, even though only the first 21 eigenvectors are
shown in either case. The results in Fig. 23 should now be
compared with Fig. 22, where several points are worth
noting. First, with the equal weight normalization, eigen-
vectors are now seen to be stable from order to order in the
approximation, including up to the highest order. This is
consistent with the order-by-order stability of fixed points
and eigenvalues, but it is quite unlike the pattern observed
in Fig. 22. Second, we observe that eigenvectors associated
to the relevant eigenvalues are dominated by linear combi-
nations of the leading few operators with small mass
dimensions. The result reflects the fact that interactions
induce strong correlations amongst the leading few inter-
action terms, implying that linear combinations of them
scale with identical exponents (see, e.g., Table III). Third,
we also observe that increasingly irrelevant eigenvalues θl
become dominated by a single interaction monomial with
canonical mass dimension 2l − 4, with other monomials
only providing subleading corrections. This result reflects
the near-Gaussian scaling of operators with increasing mass
dimension observed in the previous section (Sec. IV D). We
conclude that key features of the eigensystem have become
visible thanks to a suitable normalization of eigenvectors.
We may now take a closer look at Fig. 23 to understand

which interaction terms are responsible for the four-
dimensionality of the UV critical surface. To that end,
we divide the set of eigenvectors into subsets of strongly
and weakly correlated eigenvectors. The set of weakly
correlated eigenvectors contains those where each eigen-
vector is approximately dominated by a single operator in
the effective action. If so, then it means that quantum
corrections are small, only introducing mild mixing, and a
rough correspondence between eigenvectors and field
monomials can be established. On the other hand, the
set of strongly correlated eigenvectors are those that show a
strong mixing between interaction monomials. Here, quan-
tum effects are strong, and an association of an eigendir-
ection with a unique interaction monomial is no longer
possible.
In Fig. 23, the first subset contains the eigenvectors vðlÞ

with l ≤ 6 while the second one consists of those with
l > 6. Specifically, the vacuum energy contribution to the
most relevant eigenvector vð0Þ is suppressed, despite of
being the operator of lowest canonical mass dimension in
the effective action. Rather, the eigenvector vð0Þ is domi-
nated by the classically marginal operator

R ffiffiffi
g

p
Riem2,

modulo corrections from other leading interaction terms.
Similarly, the complex conjugate pair of eigenvalues
corresponding to vð1Þ and vð2Þ have leading contributions
from the vacuum energy and the

R ffiffiffi
g

p
R · Riem2 interac-

tion, while vð4Þ gets its largest contribution from theR ffiffiffi
g

p
R · Riem4 interaction which, classically, is irrelevant

with eigenvalue ϑ5;cl: ¼ 6. Hence, the naive expectation
that the four most relevant eigenvectors correspond to the
four classically most relevant operators does not hold true.
Rather, all eigenvectors in the first part of the plot (all
eigenvectors with l ≤ 6) get contributions due to mixing,
which, moreover, can be large quantitatively. We conclude
that the interaction terms responsible for the four-dimen-
sional UV critical surface are not only the four classically
most relevant operators. Rather, the mixing between
operators up to and including

R ffiffiffi
g

p
Riem6 is responsible

for the four relevant eigenvalues. This matches the obser-
vation that the fixed point converges poorly (with standard
boundary conditions) at low approximation orders up
to and including N ¼ 6 (see Table III), which is now
understood as a remnant of strong correlations amongst
eigenperturbations.
The same analysis of eigenvectors can now be done for

the secondary fixed points FP4 and FP3. Without using the
equal weight condition, the resulting plots show qualita-
tively the same picture as Fig. 22 for the primary fixed
point: The ad hoc eigenvectors spuriously appear to be
dominated by the canonically most irrelevant operators in
the spectrum with the canonically most relevant operators
being enhanced in the relevant directions.
Using the equal weight condition, on the other hand, a

stable and transparent picture becomes visible. Our results
are shown in Fig. 24 where the first 21 eigenvectors
calculated at the highest approximation order (Nmax ¼
72 for FP3, and Nmax ¼ 144 for FP4) are shown. In either
case, the relevant eigenvectors (gray shaded area) are domi-
nated by leading operators of small mass dimension—the
cosmological constant, the Ricci scalar, and the Riem2

interaction. For FP4, we also notice that the operator
R ffiffiffi

g
p

R ·
Riem2 contributes sizeably to the relevant eigenvectors. In
turn, irrelevant eigenvectors are dominated by canonically
irrelevant operators. In comparison with the primary fixed
points in Fig. 23 we note that the mixing between different
operators in relevantdirections is smaller.This isbalancedbya
stronger mixing of operators in the irrelevant eigenvectors.
The one-to-one correspondence observed earlier is much
weaker and there is a shift between irrelevant eigenvectors and
their corresponding operators. Due to the weaker mixing in
relevant directions, the correspondence between relevant
directions and operators is clearer and we expect that the
relevant directions are created by the operators up to and
including

R ffiffiffi
g

p
Riem4. In comparison with the primary fixed

point, the canonically marginal interaction ∼Riem2 now
contributes much less to the leading eigenvalue. The three
most relevant directions have eigenvalues of roughly the same
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magnitude and arise from linear combinations of the cosmo-
logical constant, the Ricci scalar and the Riem2 interactions.
For all three of these fixedpoints, it can be seen that the second
and third most relevant eigenvectors get substantially large
contributions from the cosmological constant.
We also observe from Fig. 24 that the increasingly

irrelevant eigenvectors vðlÞ are approximately dominated
by the interaction monomial ∼ðRiem2Þi=2 for even i and by
terms ∼R · ðRiem2Þði−1Þ=2 for odd i, with i ≈ lþ 2 in the
range covered by Fig. 24. The shift l − i increases further
with increasing i beyond i ¼ 21. This observation applies
to both FP4 and FP3, with other monomials only adding
subleading corrections. The result indicates, once more,
that the UV scaling of higher curvature interactions is
nonclassical despite of being near Gaussian.

VII. DISCUSSION

In this section, we compare our results from Riemann
tensor interactions with earlier higher order studies involv-
ing Ricci scalar and Ricci tensor interactions. We also

discuss the impact of higher order curvature invariants
on fixed point couplings and a scale invariant notion for
the interaction strength, and on vacuum solutions to the
quantum equations of motion.

A. Ricci vs Riemann interactions

We begin with a comparison of results of fðR;Riem2Þ-
type actions studied in this work with results from
fðR;Ric2Þ and fðRÞ actions, summarized in Table V. A
first important joint feature is the near Gaussianity of high
order eigenvalues in all three settings. Even though other
aspects differ from each other, the near-Gaussian scaling
of the eigenvalues seems to be hardwired in all of them.
This can be seen as an indication that the gravitational fixed
point shows signatures of weak couplings as the classical
eigenvalues are only corrected by small quantum correc-
tions, especially regarding high eigenvalues. Since this
feature is present in all three settings we have reason to
believe that only a finite number of eigenvalues will
become relevant at an interacting gravitational fixed point
as the quantum corrections are not expected to be big

FIG. 24. Shown are the components of first 21 eigenvectors vðlÞ of the secondary Riemann fixed points FP3 (left panel) and FP4 (right
panel) normalized according to the equal weight and unit length condition, (79) and (80). Gray-shaded areas indicate the set of relevant
eigenvectors.

TABLE V. Comparison of results with fðRÞ quantum gravity [23,77,91] (second column) and fðR;Ric2Þ-type quantum gravity [90]
(third column) and fðR;Riem2Þ-type quantum gravity (this work, fourth column) in an otherwise identical setup (same gauge fixing,
momentum cutoffs, and heat kernels).

Action fðRÞ fðR;Ric2Þ fðR;Riem2Þ
Parameter ða; b; cÞ (1,0,0) (0,1,0) (0,0,1)
Bootstrap test Yes Yes Yes
Critical surface Three-dimensional Three-dimensional Ffour-dimensional

fΛ; R; R2g fΛ; R;Ric2g fΛ; R;Riem2; R · Riem2g
Near-Gaussianity Yes Yes Yes
Radius Moderate Maximal Large

ðRc=Rmax ≈ 0.41…0.45Þ ðRc=Rmax ¼ 1Þ ðRc=Rmax ≈ 0.90…0.95Þ
Convergence Slow Fast Fast
Recursive relations Yes (level 2) [23,77] Yes (level 3) Yes (level 3)
de Sitter No [84] Yes [91] Yes [90] Yes
AdS Yes [84] Yes No
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enough to render arbitrary classically irrelevant eigenvalues
relevant.
Apart from this feature, the fðR;Riem2Þ and fðR;Ric2Þ

fixed points show further similarities. After initial fluctua-
tions at low approximation orders both truncations show a
fast convergence in the fixed point couplings and eigen-
values. The radius of polynomial convergence is maximal
in the Ric2 case and almost maximal for the polynomial
solution of Riem2. In the latter setting, however, it becomes
maximal using Padé resummation or numerical integration.
Further, both settings have two de Sitter solutions. The AdS
solution apparent in Ric2 is, however, missing in Riem2. In
contrast, fðRÞ-type theories are different in these aspects.
The polynomial radius of convergence is only half of the
maximal possible radius, and the convergence of couplings
and eigenvalues is rather slow. dS and AdS solutions can
both be found in fðRÞ quantum gravity.
Further differences appear in the spectra of eigenpertur-

bations. Most notably, we have indications that operators
including the square of the Riemann tensor induce a
relevant fourth direction to the UV critical surface. This
is a very important novelty, hinting at the relevancy of
Riemann tensor interactions. Moreover, we also observe
that only two pairs of eigenvalues in fðR;Riem2Þ-type
theories arise as complex conjugates (Fig. 10). This is quite
different from fðRÞ and fðR;Ric2Þ-type models where
complex conjugate pairs continue to arise with increasing
approximation orders. In general, complex scaling expo-
nents indicate a degeneracy [77], meaning that the RG
scaling of two sets of eigenoperators has become identical
up to a phase. Including more interaction terms should lift
the degeneracy, and eigenvalues in the full physical theory
are expected to be real. It is noteworthy that the Riemann
tensor interactions lift the hitherto observed degeneracy
nearly entirely, accept for a pair each of relevant and
irrelevant eigenperturbations (48).
Algebraic differences between models arise at the level

of recursive relations for couplings. For fðRÞ theories,
these lead to explicit expressions for couplings in terms of
two unknowns which must be determined by other means
(level 2) [23,77]. For fðR;Ric2Þ- and fðR;Riem2Þ-type
theories, the presence of propagating fourth order degrees
of freedom leads to recursive relations involving three
unknown parameters (level 3). For comparison, in non-
gravitational quantum field theories, recursive relations for
fixed point couplings of functional RG flows involve
genuinely two unknown parameters (level 2) [121], except
in specific limits such as infinitely many matter fields, or
for suitably chosen expansion points in field space, where
the recursive relations reduce to one (level 1) or even
no (level 0) free parameter; see [117,120,122–124] for
examples.
We conclude that different choices for the parameters

ða; b; cÞ share important universal properties. A key nov-
elty has arisen from Riemann interactions in that their

dynamics generate a new fundamentally free parameter for
the UV critical surface.

B. Cosmological constant and Newton’s coupling

Next, we discuss more specifically the impact of higher
dimensional curvature interactions on the fixed points for
Newton’s coupling and the cosmological constant. To that
end, Fig. 25 enlarges Fig. 2 to show the values for the fixed
point couplings ðλ�; g�Þ at the Riemann fixed points, and in
comparison to other models and approximations.
The color coding in Fig. 25 (blue squares vs red dots)

distinguishes underlying technical choices. Results indi-
cated by blue squares use the heat kernel expansion
alongside optimized cutoff functions [29,34], and gauge
fixing parameters identical to those first adopted by
Codello, Percacci, and Rahmede [62] for polynomial
fðRÞ models. The same technical setting has been used
for high order fðRÞ models in [23,77]. Subsequently, new
flow equations have been derived for fðR;Ric2Þ models,
again using the same technical choices [90]; see Fig. 1.
Results indicated by red dots use the heat kernel

expansion with optimized cutoff functions [29,34], and
the same gauge fixing parameters as in [62], except that
ghost fields are now treated differently to ensure that

FIG. 25. Shown are the values for the cosmological constant λ�
and Newton’s coupling g�, comparing the Riemann fixed points
(this work) with the Einstein-Hilbert fixed point, the fðRÞ fixed
point [23,77,91], and the Ricci fixed point [90]. With all key
technical parameters (cutoff scheme, gauge fixing, heat kernels)
the same, minor differences due to the treatment of ghost fields
[91] are indicated by red circles (blue squares). We observe that
Ricci and Riemann tensor interactions shift fixed point couplings
away from the Einstein-Hilbert results, and substantially so for
the primary Riemann fixed point. In contrast, higher order Ricci
scalar interactions only add mild modifications. See also Fig. 1.
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unphysical, convergence-limiting poles of the flow are
removed from the outset [91]. The new treatment of ghosts
leads to quantitative, and also qualitative differences. Most
notably, fðRÞ models with improved ghosts display real de
Sitter solutions [91]. Without improved ghosts, de Sitter
solutions disappear narrowly into the complex field
plane [84].
A few points are worth emphasizing in Fig. 25. We note

that fðRÞ results for fixed point couplings are very close to
those for the EH approximation. Higher order interactions
lead to a small reduction of λ� while leaving g� mostly
unchanged. This pattern is neatly visible irrespective of the
presence or absence of ghost-induced poles. The small
quantitative differences are entirely due to the additional
fðRÞ type interactions beyond the Einstein-Hilbert terms.
Turning now to the models with Ricci and Riemann tensor
interactions, we notice that the inclusion of Ricci tensors,
leads to a more substantial increase of the cosmological
constant λ�, alongside a moderate increase in g�. The same
holds true at the secondary Riemann fixed points, which
also show a moderate increase in g� over the Einstein-
Hilbert result. On the other hand, the primary Riemann
fixed point shows a substantial increase of g� and a decrease
in λ� over findings in the EH and fðRÞ approximations.
Incidentally, the strong shift in the value for g� is also at the
root for the slow convergence of the polynomial expansion
at the first few orders observed previously (see Table II).
We conclude from Fig. 25 that theories with Ricci and
Riemann tensor interactions lead to more substantial
alterations of the fixed point couplings λ� and g� over
the Einstein-Hilbert and fðRÞ approximations. Hence, the
pattern of alterations is quite sensitive to whether the
interactions involve Ricci scalars, tensors, or Riemann
tensors.

C. Interaction strength and perturbativity

The gravitational couplings by themselves are not
universal quantities at a fixed point. Still, some universal
quantities of interest are given by products of couplings that
remain invariant under a rescaling of the metric field

gμν → lgμν: ð86Þ

In our conventions, the gravitational couplings (33) trans-
form as λn → l4−2nλn under the rescaling (86) in four
dimensions. Clearly, many scale invariant products can be
formed out of the fixed point couplings [77]. Kawai and
Ninomiya [125] have explained that the scale-invariant
product of the lowest-order couplings λ0=ð2λ21Þ is of
particular interest in that it serves as an indicator for
the effective gravitational coupling strength. It will then
be useful to compare different fixed point theories from the
viewpoint of their effective coupling strength.
In our settings, the effective coupling strength is given

by the product λ�g� in terms of the dimensionless

cosmological constant and Newton’s coupling, see (27).
In Fig. 26, we show our results for the scale-invariant
product at the fixed point, comparing different approxima-
tions and using the same color coding as in Fig. 25. In the
Einstein-Hilbert approximation, we find

ðλ�g�ÞjEH ≈ 0.11 − 0.13: ð87Þ

Here, the range indicates the small variations due to
different treatment of ghosts. Moreover, it is also well
known that this product is rather stable under alterations of
the RG scheme, the shape of the Wilsonian momentum
cutoff, and under changes of gauge fixing parameters
[33,36,49]. The smallness of the result may be taken as
an indicator for the weakness of gravitational interactions at
an asymptotically safe UV fixed point. Within fðRÞmodels
for quantum gravity, findings for the effective coupling
strength are in the range of

ðλ�g�ÞjfðRÞ ≈ 0.10 − 0.12: ð88Þ

The rather small decrease of the effective coupling strength
over (87) is due to the combined small decrease in λ� and
g�. This is in accord with the picture laid out above, in
particular Fig. 25. We conclude that the presence of higher
order Ricci scalar interactions has only a very mild impact
on this universal parameter. This result also confirms the
view that the fixed point in fðRÞ type models of quantum
gravity can be interpreted as the extension of the fixed point
already observed in the much simpler Einstein-Hilbert
approximation.
We now turn to models with Ricci tensor or Riemann

tensor interactions. Unlike in models with Ricci scalar
interactions only, these models also feature fourth order
propagating degrees of freedom. In comparison with (87),
(88), we observe that the scale-invariant product of cou-
plings is larger by a factor of two for fðR;Ric2Þ models
studied in [90],

FIG. 26. Shown is the effective coupling strength at ultraviolet
fixed points, comparing the Riemann fixed points with the
Einstein-Hilbert ones, the fðRÞ and the fðR;Ric2Þ fixed points;
same color coding as in Fig. 25. Notice the enhancement due to
Ricci or Riemann tensor interactions.
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ðλ�g�ÞjfðR;Ric2Þ ≈ 0.24: ð89Þ

This is due to a strong increase in λ� and a small increase in
g�, as can be seen from Fig. 25. In combination, these
alterations make the effective coupling strength twice as
large as in models with Ricci scalar interactions. Finally, for
fðR;Riem2Þ models studied in this work, we have

ðλ�g�ÞjRiemann ≈ 0.22; ð90Þ

which once more is larger than (87), (88) by a factor of 2.
Here, the enhancement is due to a substantial increase in g�
in combination with a small decrease in λ�, see Fig. 25. It is
quite intriguing that fixed point theories from Ricci tensor
or Riemann tensor interactions both lead to very similar
values for the scale-invariant interaction strength (Fig. 26).
Finally, for the secondary Riemann fixed points we have

ðλ�g�ÞjFP3−FP4 ≈ 0.14 − 0.17; ð91Þ

see (65) and (67). Quantitatively, this is closer to the EH
result (87) than to (90), owing to the fact that the fixed point
coordinates only differ mildly from the EH result. Still, for
either of these the additional Riemann interactions increase
the scale-invariant product of couplings over the Einstein-
Hilbert values, much unlike in fðRÞ models (88).
The comparison of results in Fig. 26 shows that Ricci and

Riemann tensor interactions increase, while Ricci scalar
decrease the quantity λ�g�. This indicates that the additional
degrees of freedom in theories with Ricci tensor or Riemann
tensor interactions make the theory more strongly coupled,
roughly by up to a factor of 2, and irrespective of the finer
details for the higher dimensional interaction terms. In this
light, the closeness of (89) and (90) can be seen as an
indication for universality. At the same time, the quantitative
smallness of (89) and (90), albeit twice as large as (87), (88),
and the near-Gaussianity of scaling exponents with increas-
ing mass dimension (see Sec. IV E) still indicates that the
fixed point theory is largely weakly coupled. All in all, this
further substantiates the view that quantum gravity remains
“as Gaussian as it gets” to accommodate nonperturbative
renormalizability [23,77,90,91].

D. Quantum vacuum

Finally, we compare solutions to the quantum equations
of motion EðRvacÞ ¼ 0, the “vacuum” solutions, which in
our models correspond to field configurations of constant
Ricci scalar curvature. In our study, vacuum solutions have
been found both at the primary Riemann fixed point (41),
(44), and at the secondary ones (74), in accord with
expectations [76].
We compare the vacuum solutions with those from the

Einstein-Hilbert approximation (42), and the fðRÞ [91] and
fðR;Ric2Þ fixed point [90], shown in Fig. 27, with RdS
denoting the background Ricci scalar curvature in units of

the RG scale. We use once more the same color coding as in
Fig. 25. Taking the Einstein-Hilbert approximation with the
Reuter fixed point as a point of reference, we see that the
treatment of ghost only makes a minor difference, with
roughly RdSjEH ≈ 0.5 for either of the settings.
For the Riemann fixed points, we see that the secondary

ones have nearby vacuum solutions with RdS ≈ 0.55. This
is in accord with the view that these fixed points can be
considered as natural extensions of the Reuter fixed point.
The vacuum solution for the primary Riemann fixed point
is much smaller, around RdS ≈ 0.32. This effect is entirely
due to the coupling g� being much larger and λ� much
smaller than their EH counterparts. Moreover, all three
Riemann fixed points share the feature that their vacuum
solutions are controlled by the cosmological constant λ�,
and by Newton’s coupling g� and the Ricci scalar term in
the action. Consequently, all higher order Riemann inter-
action terms only add a small subleading contribution to
RdS. Turning to fðRÞ and fðR;Ric2Þ models, we note that
both have vacuum solutions in the range of RdS ≈ 1.0–1.1,
roughly twice as large as those at the Reuter fixed point.
Here, the enhancement is entirely due to higher order
interaction terms in the effective action, rather than to a
softening of g� or an enhancement of λ�. Also, for fðRÞ
models the improved treatment of ghosts (red dot) makes
an important difference [91]. Without it, the vacuum
solution has a small complex component [84] as indicated
by brackets around the corresponding data point (blue
square) in Fig. 27.
We conclude that higher order Ricci scalar, Ricci tensor,

or Riemann tensor interactions affect the location of
vacuum solutions in vastly different manners. One may
speculate that those vacuum solutions related to models
with a larger UV critical surface are more likely to be

FIG. 27. Shown are the vacuum solutions RdS of the quantum
equations of motion at different gravitational UV fixed points.
Data is provided for Riemann fixed points (this work), the
Einstein-Hilbert fixed point, and the fðRÞ and fðR;Ric2Þ fixed
points; same color coding as in Fig. 25. Taking the EH results as a
point of reference, we note a strong enhancement (decrease) of
RdS due to Ricci (Riemann) interactions, while de Sitter solutions
of the secondary Riemann fixed points are only mildly enhanced.
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realized in the full (unapproximated) theory of asymptoti-
cally safe quantum gravity. However, this remains to be
clarified in future works.

VIII. SUMMARY AND CONCLUSIONS

Starting from gravitational actions involving Ricci sca-
lars, tensors, and Riemann tensors, we have derived a new
family of functional renormalization group equations for
the running gravitational couplings. This completes a line
of work initiated in [77,90,91] and allows systematic
studies of quantum gravity including a large variety of
higher order curvature invariants. Different parameter
choices correspond to different rays in the space of
gravitational actions after projection onto the sphere, much
in the spirit of a local potential approximation [72]. The
setting is versatile and, together with the known heat kernel
coefficients [107], can be used to explore quantum effects
for higher curvature extensions of general relativity [94–97]
or holography [98], the role of higher order curvature
interactions for the asymptotic safety conjecture as done
here, and the inclusion of matter, or more general gauge
fixing conditions and cutoff profiles.
We have applied the formalism to models of quantum

gravity with Riemann interactions. Using polynomial
expansions of the action to high order a primary
Riemann fixed point has been found satisfying all standard
tests including a fast convergence of couplings (Fig. 4) and
scaling exponents (Fig. 9), the bootstrap test (Fig. 12), near-
Gaussian behavior at large orders (Fig. 13), and a maximal
radius of convergence (Figs. 5 and 6). High order poly-
nomial expansions of the action up to 144 powers in
curvature have been used to establish convergence and
stability. Together with numerical integration, they have
also been used to obtain solutions beyond any polynomial
order. Findings differ noticeably from those in Einstein-
Hilbert and fðRÞ approximations (Fig. 25) and come out
more strongly coupled (Fig. 26). We have also found a
stable pair of weakly coupled Riemann fixed points
including de Sitter solutions and well-defined UV-IR
connecting RG trajectories with general relativity at low
energies. For these, the leading couplings and scaling
exponents are close to those of the Einstein-Hilbert fixed
point (Fig. 2) with elsewise mild quantum corrections. For
these reasons, they can be viewed as higher curvature
extensions of the Reuter fixed point.
An important novelty is the dimensionality of the critical

surface, which is found to be four (Figs. 11 and 17). This is
rather different from models without Riemann tensor
interactions, where the critical surface—with all other
technical choices the same—comes out as three dimen-
sional. Our study highlights that quantum-induced shifts in
the scaling dimensions of the order of a few (Fig. 15) may

well turn canonically irrelevant dim-6 operators into
relevant ones. The smallness of the scale-invariant product
of couplings λ�g� and the near-Gaussianity of high order
scaling dimensions further substantiates the view that
quantum gravity remains “as Gaussian as it gets.” Future
work should investigate the relevancy of other dim-6
curvature invariants (Table I), and other technical choices,
to further substantiate the number of fundamentally free
parameters of quantum gravity.
Another novelty of this work is the detailed study of

eigenvectors and eigenperturbations in the ultraviolet.
Eigenvectors are nonuniversal quantities which change
under rescalings of couplings (Fig. 22). We have shown
that a simple equal weight condition leads to order-by-order
stable eigenvectors which represent the relevant physics
correctly (Figs. 23, 24). Results further substantiate that
relevant eigenperturbations are linear combinations of the
leading handful of interaction terms, with irrelevant ones
dominated by subleading interactions. Anomalous dimen-
sions are found to be of order unity, having the largest
impact on interaction monomials with low mass dimension.
Eigenvectors are seen to align accordingly. It will be
interesting to exploit these ideas for other theories at
criticality, with or without gravity.
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APPENDIX A: FIRST AND
SECOND VARIATIONS

In the appendices, we summarize some of the technical
expressions and formulas required in the main text,
including first and second variations of the basic field
monomials in the action (Appendix A), the Hessians of the
effective action (Appendix B), and the general form of the
functional flow equations (Appendix C).
In the main text, we require the first two variations of

X ¼ aR2 þ bRic2 þ cRiem2 ðA1Þ

subject to the linear split (10) in general dimension. The
first variation is given by

δðXÞ ¼
�
aþ b

d
þ 2c
ðd − 1Þd

��
−
2R2

d
hþ 2R∇μ∇νhμν − 2R∇2h

�
; ðA2Þ
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while the second variation gives

δð2ÞðXÞ ¼ R2hμν

��
b
2
þ 2c

�
∇4 þ

�
aþ d − 3

ðd − 1Þd b −
2

d − 1
c

�
R∇2

þ
�
2ðd − 2Þ
ðd − 1Þd aþ 2ðd − 3Þdþ 6

ðd − 1Þ2d2 bþ 4ð2d − 3Þ
ðd − 1Þ2d2 c

�
R2

�
hμν

þ h

��
2aþ b

2

�
∇4 þ

�
dþ 4

d
aþ 1þ 3d

2dðd − 1Þ bþ 6

ðd − 1Þd c
�
R∇2

þ
�

4d − 2

ðd − 1Þd2 aþ 4d − 6

ðd − 1Þ2d2 bþ 4

ðd − 1Þ2d2 c
�
R2

�
h

þ h

�
ð−4a − bÞ∇2 þ

�
−
4a
d

þ 8c
ðd − 1Þd

�
R

�
∇μ∇νhμν

þ hμρ∇ρ

��
−2a −

3

d
b −

12

dðd − 1Þ c
�
R − ðbþ 4cÞ∇2

�
∇νhμν

þ ð2aþ bþ 2cÞhμν∇μ∇ν∇ρ∇σhρσ: ðA3Þ

APPENDIX B: HESSIANS

The Hessians of hTμνhTμν and hh for actions (1) in general dimension with X as defined in (2) are required for the
derivation of the flow equation. We find

δ2Γ̄k

δhTμνδhTρσ

����
ϕi¼0

¼
�
gμðρgσÞν −

1

d
gμνgρσ

��
ðF0

k þ RZ0
kÞ
��

1

2
bþ 2c

�
∇4

þ
�
aþ d − 3

dðd − 1Þ b −
2

d − 1
c

�
R∇2

þ 2

� ðd − 2Þ
ðd − 1Þd aþ d2 − 3dþ 3

ðd − 1Þ2d2 bþ 4d − 6

ðd − 1Þ2d2 c
�
R2

�

þ Zk

�
1

2
∇2 −

d2 − 3dþ 4

2ðd − 1Þd R

�
−
Fk

2

	
; ðB1Þ

and

δ2Γ̄k

δhδh

����
ϕi¼0

¼ 4ðF00
k þ RZ00

kÞR2

�
d − 1

d
aþ d − 1

d2
bþ 2

d2
c

�
2
�
∇4 þ 2R

d − 1
∇2 þ R2

ðd − 1Þ2
�

þ F0
k

�
d − 1

d

�
2ðd − 1Þ

d
aþ 1

2
bþ 2

d
c

�
∇4 −

�ðd − 6Þðd − 1Þ
d2

aþ ððd − 10Þdþ 8Þ
2d3

b −
8

d3
c

�
R∇2

þ R2
d − 3

d2

�
−2a −

2

d
b −

4

ðd − 1Þd c
��

þ RZ0
k

�
d − 1

d2

�
6ðd − 1Þaþ d2 þ 8d − 8

2d
bþ 2ðdþ 4Þ

d
c

�
∇4

−
�ðd − 14Þðd − 1Þ

d2
aþ ðd − 26Þdþ 24

2d3
b −

24

d3
c

�
R∇2 þ d − 5

d2

�
−2a −

2

d
b −

4

ðd − 1Þd c
�
R2

�

þ Zk
d − 2

d2

�
−
d − 1

2
∇2 þ d − 4

4
R

�
þ Fk

d − 2

4d
: ðB2Þ

FIXED POINTS OF QUANTUM GRAVITY AND THE … PHYS. REV. D 108, 026005 (2023)

026005-33



APPENDIX C: FLOW EQUATION AND
FLUCTUATION INTEGRALS

The central flow equation (14) of this work arises from
(1) with (2), (13). Adopting the cutoff (16) and evaluating
all operator traces, the explicit flow takes the form

4f þ 2rzþ ∂tðf þ rzÞ − 12aþ 3bþ 2c
3

r2ðf0 þ rz0Þ

¼ 1

κ
I½f; z; a; b; c�ðrÞ; ðC1Þ

with κ ¼ 24π. Here, we specify the fluctuation-induced
terms contained in the fluctuation integrals I½f; z; a; b; c� on
the rhs. Adopting conventions and notation of [77,90],
we find

I½f; z�ðrÞ ¼ I0½f; z�ðrÞ þ I1½f; z�ðrÞ · ∂tzþ I2½f; z�ðrÞ · ∂tf0
þ I3½f; z�ðrÞ · ∂tz0 þ I4½f; z�ðrÞ · ð∂tf00 þ r∂tz00Þ;

ðC2Þ

where we recall that the flow terms arise due to couplings
introduced via the regularization. All five terms Ii½f; z�ðrÞ
(i ¼ 0;…; 4) arise from tracing over the fluctuations
of the metric field for which we have adopted a trans-
verse traceless decomposition. They do not contain any
renormalization scale derivative. The term I0½f; z� also

receives f- and z-independent contributions from the
ghosts and from the Jacobians originating from the split
of the metric fluctuations into tensor, vector, and scalar
parts. To indicate the origin of the various contributions
in the expressions below, we use superscipts T, V, and S
to refer to the transverse traceless tensorial, vectorial, and
scalar origins. The specific form of the functions Ii½f; z�
also depends on the choice of gauge fixing and the
details for the regulator function. In our setting, they are
given by

I0½f; z�ðrÞ ¼ PV þ PS þ PT
0

DT þ PS
0

DS ;

I1½f; z�ðrÞ ¼
PT
1

DT þ PS
1

DS ;

I2½f; z�ðrÞ ¼
PT
2

DT þ PS
2

DS ;

I3½f; z�ðrÞ ¼
PT
3

DT þ PS
3

DS ;

I4½f; z�ðrÞ ¼
PS
4

DS : ðC3Þ

The denominators DT and DS in (C3) arise from the
tensorial (T) and scalar (S) metric fluctuations, and are
defined as

DT ¼ ½24aðr − 3Þrþ bðrð7r − 6Þ þ 36Þ þ 2cðrð5rþ 24Þ þ 72Þ�ðf0 þ rz0Þ − 36f − 12ð2rþ 3Þz; ðC4Þ

DS ¼ rðrðr − 3Þ2ð12aþ 3bþ 2cÞ2ðf00 þ rz00Þ þ 6z0ð12aððr − 15Þrþ 27Þ þ 3bððr − 16Þrþ 30Þ
þ 2cððr − 18Þrþ 36ÞÞÞ − 6f0ð12aðrðrþ 3Þ − 9Þ þ ðrþ 6Þð3bðr − 2Þ þ 2crÞ − 36cÞ
þ 72f þ 108z: ðC5Þ

The various terms P in (C3) are polynomials in curvature.
Specifically, the terms PV and PS are given by

PS ¼ 271

90
r2 − 12r − 12; ðC6Þ

PV ¼ 191

30
r2 − 24r − 36: ðC7Þ

The numerators P0 appearing in (C3) can be written as

PT
0 ¼ PTz0

0 zþ PTf1
0 f0 þ PTz1

0 z0 þ PT2
0 ðf00 þ rz00Þ; ðC8Þ

PS
0 ¼ PSz0

0 zþ PSf1
0 f0 þ PSz1

0 z0 þ PSf2
0 f00 þ PSz2

0 z00

þ PS3
0 ðfð3Þ þ rzð3ÞÞ; ðC9Þ

with coefficient functions

PTz0
0 ¼ −

311

63
r3 þ 4r2 þ 1080r − 2880; ðC10Þ

PTf1
0 ¼1

3
ðrðrþ360Þ−1080Þð12arþbðr−12Þ−8cðrþ6ÞÞ;

ðC11Þ

PTz1
0 ¼ 14928aþ 2597b − 3296c

756
r5 −

12aþ 3bþ 2c
3

r4

− 120ð12aþ 7ðbþ 2cÞÞr2
− 2ð61bþ 304cÞr3 þ 3240ðbþ 4cÞr; ðC12Þ
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PT2
0 ¼ ð12aþ 3bþ 2cÞ

�
7464aþ 731b − 4540c

4536
r6 þ −12a − bþ 8c

18
r5

þ −360a − 29bþ 244c
3

r4 þ ð240aþ 100bþ 160cÞr3 þ ð−180b − 720cÞr2
�
; ðC13Þ

PSz0
0 ¼ 37

21
r3 þ 348

5
r2 þ 648rþ 1728; ðC14Þ

PSf1
0 ¼ −

4ð3aþ bþ cÞ
5

ð29r3 þ 186r2 − 1080r − 6480Þ; ðC15Þ

PSz1
0 ¼ 20442aþ 5555bþ 4296c

1260
r5 −

29

5
ð12aþ 3bþ 2cÞr4 − 6

5
ð1638aþ 425bþ 304cÞr3

þ 72ð12aþ 5bþ 6cÞr2 þ 1944ð18aþ 5bþ 4cÞr; ðC16Þ

PSf2
0 ¼ ð12aþ 3bþ 2cÞ

�
24882aþ 6665bþ 5036c

7560
r6 þ 29ð18aþ 5bþ 4cÞ

15
r5

þ 62ð3aþ bþ cÞ
5

r4 þ r3ð−144a − 48b − 48cÞ þ r2ð648aþ 108bÞ
�
; ðC17Þ

PSz2
0 ¼ ð12aþ 3bþ 2cÞ

�
108408aþ 27991bþ 19846c

15120
r7 þ 58ð27aþ 7bþ 5cÞ

15
r6

þ 3648aþ 943bþ 670c
10

r5 − ð144aþ 48bþ 48cÞr4 − ð1296aþ 378bþ 324cÞr3
�
; ðC18Þ

PS3
0 ¼ ð12aþ 3bþ 2cÞ3

�
181

10080
r8 þ 29

90
r7 þ 91

60
r6 − 9r4

�
: ðC19Þ

The numerators P1;2;3;4 appearing in (C3) take the form

PT
1 ¼ −

311

126
r3 þ r2 þ 180r − 360;

PS
1 ¼

37

42
r3 þ 87

5
r2 þ 108rþ 216; ðC20Þ

PT
2 ¼ −

7464aþ 731b − 4540c
1512

r4 þ 12aþ b − 8c
6

r3 þ ð360aþ 29b − 244cÞr2

− 60ð12aþ 5bþ 8cÞrþ 540ðbþ 4cÞ;

PS
2 ¼ −ð3aþ bþ cÞ

�
127

180
r4 þ 58

5
r3 þ 186

5
r2 − 144r − 648

�
; ðC21Þ

PT
3 ¼ −

7464aþ 731b − 4540c
1512

r5 þ 12aþ b − 8c
6

r4 þ ð360aþ 29b − 244cÞr3

− 60ð12aþ 5bþ 8cÞr2 þ 540ðbþ 4cÞr;

PS
3 ¼ −

24882aþ 6665bþ 5036c
2520

r5 −
58ð15aþ 4bþ 3cÞ

5
r4 −

3ð1278aþ 335bþ 244cÞ
5

r3

þ 144ð3aþ bþ cÞr2 þ 324ð18aþ 5bþ 4cÞr; ðC22Þ

PS
4 ¼ ð12aþ 3bþ 2cÞ2

�
181r6

3360
þ 29r5

30
þ 91r4

20
− 27r2

�
: ðC23Þ
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