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Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
3Perimeter Institute for Theoretical Physics,

31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Received 20 March 2023; accepted 2 June 2023; published 6 July 2023)

The weak-gravity bound has been discovered in several asymptotically safe gravity-matter systems.
It limits the strength of gravitational fluctuations that are compatible with an ultraviolet-complete matter
sector and results from the collision of two partial fixed points of the matter system as a function of the
strength of the gravitational interactions. In this paper, we will investigate this mechanism in detail for a
shift-symmetric scalar field. First, we will study the fixed point structure of the scalar system without
gravity. We find indications that the Gaussian fixed point is the only viable fixed point, suggesting that a
weak-gravity bound resulting from the collision of two partial fixed points is a truncation artifact. We will
then couple the scalar system to gravity and perform different expansions to track the Gaussian fixed point
as gravitational fluctuations become stronger. We also introduce a new notion of the weak-gravity bound
that is based on the number of relevant operators.
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I. MOTIVATION

The consistent quantization of the gravitational force is
one of the major open problems in theoretical physics.
General relativity, which describes gravity ranging from
submillimeter [1,2] through the Solar System [3,4] all the
way to cosmological scales [5–12], breaks down, e.g., in the
center of black holes. This breakdown occurs at the smallest
distance scales and indicates that new physics is required to
describe the gravitational interaction in that regime. The
most popular candidate for such new physics lies in quantum
gravity, which encodes quantum fluctuations of spacetime
itself. However, despite huge efforts, to date no fully
consistent and phenomenologically viable theory of quan-
tum gravity has been developed. One of the reasons for this
situation is that perturbative quantization, so successful for
the Standard Model of particle physics, fails in the case of
gravity due to the negative mass dimension of Newton’s
constant. This power counting argument was also confirmed
by the explicit computations of the one-loop [13–15] and

two-loop counterterms [16–18]. The failure of perturbative
quantization requires that new concepts have to be consid-
ered to develop a quantum theory of gravity, for example, by
resorting to genuinely nonperturbative scenarios, imposing
additional symmetries, or others. Crucially, since the char-
acteristic energy scale of quantum gravity, the Planck scale,
is extremely high, it is difficult to confront theories of
quantum gravity with direct observational tests. In that light,
internal consistency tests play an important role to exclude
candidate theories.
An important aspect in this conundrum is that a

quantization of gravity alone does not suffice: ultimately,
to describe our Universe, we have to find a consistent
quantum theory of all fundamental forces and particles.
This seemingly innocent and trivial statement has, however,
dramatic consequences: since gravity is expected not to be a
free theory at high energies, due to the power counting
argument, it dictates that some specific pure matter cou-
plings cannot vanish either. This expectation comes from
the fact that all matter gravitates, such that the interacting
nature of gravity directly percolates into the matter sector.
Already the kinetic energy of a free particle is coupled to
the metric, and thus, quantum gravity fluctuations invar-
iably induce higher order interaction terms consistent with
the symmetries of the kinetic term [19–31].
This observation potentially creates another problem:

if gravity is too strong, then the induced interactions
might prevent a description of the matter sector that holds
at arbitrary high energies and is also consistent with
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low-energy data. The idea of such a limit on the strength of
gravity was coined the weak-gravity bound (WGB)1 in the
literature [25].
While such a bound can, in principle, appear in any

approach to quantum gravity, in this work we will focus
on the WGB in asymptotically safe gravity [34]. The
basic premise of the latter is that gravity can be quantized
consistently as a quantum field theory (QFT) in a non-
perturbative fashion. The physical mechanism behind
this is quantum scale invariance at high energies, indicat-
ing a second-order phase transition in the language of
condensed matter physics. This corresponds to a fixed
point of the renormalization group flow. Encouraging
indications for the asymptotic safety scenario have been
found in the past decades [35–73], see also [31,74–83] for
introductions and reviews, and [23,25,84–105] for phe-
nomenological implications.
Within the asymptotic safety scenario, one mechanism

to observe the WGB is a collision of partial fixed points
of gravitationally induced interactions. For this, one starts
with a pure matter QFT without gravitational interactions
and then follows the fixed points of this system as one
includes, and increases the strength of, gravitational
interactions. If the partial fixed point that emanates from
the free fixed point of the pure matter system collides
with another partial fixed point at a critical value of the
gravitational interaction, then there is a WGB in this
system. This mechanism has been explored in a number
of works, coupling gravity to scalars [20,28,30], fermions
[19,25,106], and Abelian gauge fields [23,107,108].
This particular mechanism clearly crucially relies on the

fixed point structure of the pure matter QFT since generi-
cally fixed points are expected to only collide in pairs.
There is also the opposite possibility: a pair of complex-
conjugate partial fixed points can collide at a finite value of
the gravitational coupling and turn real, but once again, this
is generally expected to happen in pairs.
In this paper, we will focus on a shift-symmetric scalar

field coupled to gravity and extend previous studies of the
WGB in this system. In particular, we subsequently add
more induced interactions and investigate the fate of the
WGB under these extensions. We have two main motiva-
tions to investigate this theory.
First, it is believed that scalar field theories in four

dimensions are trivial, i.e., they do not admit an ultraviolet
(UV) completion that results in an interacting infrared (IR)
theory [109,110]. The arguments for this triviality rely on
the study of non-shift-symmetric ϕ4 theories. However, it is
conceivable that the renormalization group flow in a theory
space defined by shift symmetry can feature different
properties, possibly defining a new universality class for
scalar theories in four dimensions [111]. Here, we extend

previous work in [111] and explore this possibility, and we
present several arguments that lead us to conclude that the
existing candidates for nontrivial universality classes of
shift-symmetric scalar theories are likely spurious.
Second, shift-symmetric scalar theories coupled to

gravity are good working examples to understand the
WGB in asymptotically safe gravity. The mechanism
for the WGB previously studied in the literature
[19,20,23,25,28,30,31,106–108] involves the collision of
two fixed points that are already present at the pure matter
level. Our arguments concerning the spurious nature of the
existing candidates for nontrivial universality classes in
shift-symmetric scalar theories imply that the WGB (based
on the mechanism of a partial fixed point collision) is not
present. Still, we can see a partial fixed point collision as an
indicator of the breakdown of certain expansion schemes in
functional renormalization group calculations. Thus, we
also explore which expansion schemes automatically avoid
this collision. We will also introduce a modified notion of
the WGB related to a different mechanism: instead of
defining the strong gravity regime by the absence of a fixed
point, we define it by the existence of additional relevant
operators compared to the free theory. Our system pos-
sesses such a refined WGB.
This paper is structured as follows: in Sec. II, we

introduce the method that our investigation relies on, the
functional renormalization group (FRG). Furthermore, we
use a simple toy model to illustrate how gravitational
fluctuations induce matter self-interactions and how they
can spoil an UV completion in the matter sector. In Sec. III,
we will discuss a single shift-symmetric scalar field, whose
action is described by a function of the kinetic term. We
will investigate the fixed point structure of this system upon
expansion of the function in powers of the kinetic term. In
particular, we will search for viable interacting fixed points
of this pure scalar system. In Sec. IV, we will couple the
shift-symmetric scalar field to gravity and investigate
how the free fixed point of the pure matter system changes
when turning on gravitational fluctuations. We will employ
different expansions of the gravity-scalar system, in terms
of the kinetic term and the gravitational coupling, and
discuss the absence of the partial fixed point collision, but
the presence of the new notion of WGB, in the system.
Finally, in Sec. V we summarize our results and conclude.

II. METHODOLOGICAL INTRODUCTION

In this section, we introduce the necessary ingredients
for our study and the notation that we will use throughout
the paper. First, we will introduce the FRG and define the
gravity-scalar system that we aim to study in Sec. II A.
Furthermore, we will review the mechanism with which
gravitational fluctuations induce interactions in the matter
sector in Sec. II B. There, we will also review the
emergence of the WGB as it has been discussed in the
literature.

1This is not to be confused with the weak gravity conjecture
[32,33] that is generally not related to the WGB.
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A. Setup

To explore the fixed point structure of the scalar system
with and without the impact of gravitational fluctuations,
we employ the FRG [112–115]. It is based on the flow
equation for the scale-dependent effective action Γk,
which reads

k∂kΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1k∂kRk�; ð1Þ

where Γð2Þ
k is the second functional derivative of Γk with

respect to all fields of the system, and where Rk is the so-
called regulator functional. The functional trace indicates a
sum over discrete and an integral over continuous variables.
The regulator functional Rk acts like a scale-dependent
mass term and therefore ensures finiteness in the IR.
Together with its scale derivative k∂kRk that ensures UV
finiteness, it implements the Wilsonian idea of integrating
out quantum fluctuations according to their momentum
shell. Therefore, the scale-dependent action Γk interpolates
between Γk→∞, where no quantum fluctuations are inte-
grated out, corresponding roughly to a bare action,2 and the
full quantum effective action Γk→0, where all quantum
fluctuations are integrated out. The scale dependence of
couplings and operators can be extracted from the flow
equation (1) by projecting onto the corresponding tensor
structure.
The flow equation is not limited to the perturbative

regime but allows to extract the scale dependence of
couplings in nonperturbative settings. Besides asymptoti-
cally safe gravity, it has been successfully employed,
for example, to condensed matter physics and the strong
nuclear force, see, e.g., [119] for an up-to-date review.
For a general theory, it is extremely difficult to solve (1)

exactly, and as a consequence one has to introduce
approximations (so-called truncations). In the following,
we describe the systematic approximation that we will
employ to investigate the effect of gravitational fluctuations
on a shift-symmetric scalar field.
We approximate the dynamics of our system by the

scale-dependent effective action

Γk ¼ Γgrav
k þ Γscal

k : ð2Þ

Since our focus lies on the scalar sector, we employ the
simplest approximation in the gravitational sector, the
Einstein-Hilbert action,

Γgrav
k ¼ 1

16πGk

Z
d4x

ffiffiffi
g

p ½−Rþ 2Λk� þ Γgf ; ð3Þ

that contains the standard gauge-fixing term

Γgf ¼
1

32πGkαh

Z
d4x

ffiffiffī
g

p
ḡμνF μF ν; ð4Þ

where

F μ ¼
�
δðαμ D̄βÞ −

1þ βh
4

ḡαβD̄μ

�
hαβ ð5Þ

is the gauge-fixing condition. Here, we have introduced the
two gauge-fixing parameters αh and βh. In the following we
will always employ the Landau limit αh → 0, since it is a
fixed point of both gauge-fixing parameters [120,121], and
we keep βh arbitrary. The gauge-fixing term also gives rise
to Faddeev-Popov ghosts. Since we will, however, neglect
induced scalar-ghost interactions [21], the ghost sector will
not contribute to the scale dependence of the scalar sector in
our approximation.
In the following investigation, we will restrict ourselves

to a linear parametrization of gravitational fluctuations,

gμν ¼ ḡμν þ hμν; ð6Þ

and we will choose a flat background, i.e., ḡμν ¼ δμν.
3

We will approximate the dynamics of the scalar sector in
terms of the kinetic operator for the scalar field Φ,

X ¼ 1

2
ðDμΦÞðDμΦÞ; ð7Þ

and consider a function of X , i.e.,

Γscal
k ¼

Z
d4x

ffiffiffi
g

p
KkðXÞ; ð8Þ

where the dimensionful functional Kk satisfies the boun-
dary conditions

Kkð0Þ ¼ 0; K0
kð0Þ ¼ Z: ð9Þ

The first equation ensures that Kk does not contain
X -independent terms, that is a contribution to the cosmo-
logical constant, while the second equation ensures that Kk
contains the standard kinetic term of a scalar field. We have
introduced the wave function renormalization of the scalar
field Z, which gives rise to an anomalous dimension via

ηΦ ¼ −
k∂kZ
Z

: ð10Þ

To uniquely project on the scale dependence of Kk, we
choose a background for the scalar field where

X ¼ const: ð11Þ

2The precise relation between Γk→∞ and the bare action S is
known as the reconstruction problem, see, e.g., Refs. [116–118].

3In Appendix A 2 we also discuss results obtained with the
exponential parametrization of metric fluctuations.
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On this background, X is the only shift-symmetric and
Z2-invariant quantity that can be built with the scalar field
Φ and covariant derivatives. On more general backgrounds
for the scalar field, further invariants involving the scalar
field and covariant derivatives can be constructed.
Finally, we will use the regulator

Rkðp2Þ ¼ k2

p2
Rk

�
p2

k2

�
Γð2Þ
k jΛk¼0;hμν¼0;Φ¼0; ð12Þ

which ensures that no masslike contributions enter the
regulator [40,122–124]. In the following, where reason-
able, we will keep the regulator Rk unspecified and express
results in terms of general threshold functions. When
quoting numerical values such as fixed point values or
critical exponents, we either employ a Litim [125] or an
exponential [126] regulator,

Litim∶ RkðzÞ ¼ ð1 − zÞΘð1 − zÞ; ð13Þ

Exp∶ RkðzÞ ¼
z

ez − 1
: ð14Þ

Since the condition of scale invariance is best expressed
in terms of dimensionless quantities, we introduce the
dimensionless counterparts of all dimensionful quantities.
In particular, we introduce the dimensionless versions g and
λ of the Newton coupling and the cosmological constant,
respectively, via

g ¼ k2Gk; λ ¼ k−2Λk; ð15Þ

as well as dimensionless versions ϕ, X, and K of the scalar
field, the kinetic operator, and the function in the kinetic
operator,

ϕ ¼
ffiffiffiffi
Z

p
k−1Φ; X ¼ Zk−4X ; KðXÞ ¼ k−4KkðXÞ:

ð16Þ

A fixed point of the renormalization group (RG) flow is
realized when the scale dependence of the dimensionless
versions of all couplings vanishes.
Critical exponents determine the universality class of a

fixed point. They are defined by

Θi ¼ −eig
�
∂βgi
∂gj

�����
gn¼gn;�

; ð17Þ

where gi are all couplings of the system. With this
definition Θi > 0 corresponds to a relevant (IR repulsive)
direction, while Θi < 0 corresponds to an irrelevant (IR
attractive) direction.
To compute the scale dependence of K, we used the

Mathematica package suite xAct [127–130] and the
FormTracer [131].

B. Induced interactions and the weak-gravity bound

Within asymptotically safe quantum gravity and absent
implausible cancellations, it is clear that gravitational fluc-
tuations necessarily induce specific matter self-interactions,
see [31] for an overview. On a diagrammatic level, this can
be understood by considering the kinetic term of a scalar
field, i.e., (8) with KðXÞ ¼ X. Expanding it in terms of
metric fluctuations gives rise to an infinite series of inter-
actions containing two scalar fields (contained in X) and n
powers of the metric fluctuation hμν. Focussing, e.g., on the
second-order term, we have a vertex with two scalar fields
and two metric fluctuations hμν. Using only graviton
propagators, two of such vertices can then be combined
to a diagram that contributes to the scale dependence of an
interaction containing four scalar fields. Hence, once gravi-
tational fluctuations are present, interactions of the form
K2X2 will be induced.
More specifically, the scale dependence of the induced

coupling K2 can be schematically written as

βK2
¼ C0 þ C1K2 þ C2K2

2; ð18Þ

where C0 and C1 are functions of the gravitational
couplings g and λ, C2 is a regulator-dependent number,
and we neglected the anomalous dimension. In particular,
C0ðg → 0Þ ¼ 0. Hence, in the absence of gravitational
fluctuations, and neglecting higher-order contributions,
there are two fixed points, namely

K2;� ¼ 0; and K2;� ¼ −
C1

C2

; for g ¼ 0; ð19Þ

see also the solid blue line in Fig. 1. The first fixed point is
the standard GFP, where K2 can be consistently set to zero
in the absence of gravity. Since the coupling corresponds to
an irrelevant direction at this fixed point, the theory will
remain noninteracting at all scales. At the second fixed
point, the pure scalar theory would be interacting, see
also [111].
When gravitational fluctuations are present,C0 no longer

vanishes. In this case, the two fixed point solutions of (18)
are given by

K2;� ¼ −
1

2C2

�
C1ðgÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1ðgÞ − 4C0ðgÞC2

q �
: ð20Þ

Assuming that the square root is real, both fixed point
values for K2;� are now nonzero. Hence, the scalar coupling
K2 cannot consistently be set to zero. Instead, the GFP is
shifted by gravity, becoming a so-called SGFP, see also the
dashed orange line in Fig. 1. This indicates that the scalar
sector cannot be noninteracting in the presence of gravi-
tational fluctuations. Since C0 is a continuous function in g,
the SGFP is a continuous deformation of the GFP for
sufficiently small g. This general idea has been confirmed
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by explicit computations in the context of asymptotically
safe quantum gravity for different matter systems,
see [19,20,22,23,25,27–30,108,132].
Depending on the exact form of the coefficients Ci

in (18), the solutions given in (20) can either approach or
move away from each other as functions of the gravitational
couplings g and λ. In the former case, the partial fixed
points collide at a critical strength of the gravitational
interaction and move into the complex plane, see the dotted
green line in Fig. 1. In this region, the system does not
admit a real partial fixed point anymore, such that the scalar
sector does not admit an UV completion via the SGFP.
The critical coupling at which the partial fixed points

collide is what defines theWGB [25]. It separates the viable

weak gravity regime from the excluded strong gravity
regime in this toy model. The WGB corresponds to the line
in the ðλ; gÞ-plane, where the two fixed point solutions (20)
coincide.
The WGB is typically found to be described by a line

gcritðλÞ in this plane. Therefore, in the following we will
restrict our analysis to λ ¼ 0. Accordingly, the presence
and location of the WGB is determined by gcritðλ ¼ 0Þ.
Let us also emphasize that the general argument that we
will present below is independent of the inclusion of
a finite cosmological constant as it relies solely on the
fixed point structure of the pure scalar system.
This notion of the WGB restricts gravity to be weak

at the asymptotically safe fixed point. It resonates with
other results in the asymptotic safety literature, which
indicate that quantum gravity is near perturbative in the
UV regime. These indications are based on (i) the near-
canonical scaling behavior of higher-order curvature oper-
ators [42,63] and (ii) on symmetry identities between pure
gravity and gravity-matter interactions, which are near
trivial at the fixed point [59,61].

III. PURE SCALAR SYSTEM

As we just saw, the analysis within a simple truncation
involving a quartic shift-symmetric scalar self-interaction
indicates the existence of an interacting fixed point
[20,28–30,111]. In this section, we explore whether the
pure scalar sector features a suitable interacting fixed point
beyond the quadratic truncation in X that was employed in
[20,28–30]. We extend recent studies [111] and search the
pure scalar system for fixed points that converge under
extensions of the truncation and that feature desired
regularity and normalizability properties.
For the pure scalar system, the flow equation for the

dimensionless functional K reads

k∂kKðXÞ þ 4KðXÞ − Xð4þ ηΦÞK0ðXÞ ¼ 1

16π3

Z
∞

0

dz z
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p �ð2 − ηΦÞRkðzÞ − 2zR0
kðzÞ

zþ RkðzÞ þ zfðX; x2Þ − ðf → 0Þ
�
; ð21Þ

where we have defined z ¼ q2=k2, fðX; x2Þ ¼
−1þ ðK0ðXÞ þ 2x2XK00ðXÞÞ, and the variable x as the
cosine of the angle between Dμϕ and the loop momentum
qμ. The additional terms on the left-hand side in (21) arise
from switching to dimensionless quantities and represent
the explicit and implicit mass dimensions of Kk and X . See
also [111] for different representations of the flow equation.
The flow equation (21) is the starting point for the
investigation of interacting scalar fixed points that are
defined by k∂kKðXÞ ¼ 0.

It is clear that (21) admits the scaling solution
K�ðXÞ ¼ X, ηΦ ¼ 0 that corresponds to the GFP since
only the kinetic term is nonvanishing.
The situation is more complicated beyond the GFP since

(21) still has the radial and angular parts of the integration
over the loop momentum. The extra dependence on the
angle arises as a consequence of nonvanishing derivatives
of K that enter the scalar two-point function. While the
angular integration can, in principle, be done analytically,
in practice, this is of little use due to the complexity of the

FIG. 1. Beta function of the induced four-scalar interaction K2,
cf. (18). In the absence of gravitational fluctuations (blue solid
line), βK2

features two fixed points, the Gaussian fixed point
(GFP) and an interacting fixed point. In the presence of weak
gravitational fluctuations (orange dashed line), the GFP has been
shifted to the interacting shifted GFP (SGFP). Beyond the weak-
gravity regime (green dotted line), βK2

does not feature any real
zeroes. This indicates that the scalar sector does not admit an UV
completion via the SGFP.
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primitive function. Due to the nonlinear structure of the
differential equation, it is difficult to find exact analytical
solutions. It is thus more practical to employ an approxi-
mation first and then to carry out the integrations.

A. Expansion in X

To search analytically for interacting fixed points, and to
make contact to previous work, we will first proceed by
performing a polynomial expansion of KðXÞ in X around
X ¼ 0, i.e.,

KðXÞ ≈ X þ
XNmax

n¼2

KnXn; ð22Þ

with Nmax denoting the maximal order of our truncation,
and where we have introduced the dimensionless and

scale dependent couplings Kn. In general, we can com-
pute the beta function of a coupling Kn by taking n
derivatives with respect to X on both sides of the flow
equation (21) and projecting the result to X ¼ 0. Upon
expansion, all angular integrations can be carried out
analytically, and we obtain analytical flow equations
for the couplings Kn in terms of threshold functions.
This expansion has been previously explored to order
Nmax ¼ 14 (and Nmax ¼ 20 when the scalar anomalous
dimension was neglected) in [111].
To extract the scale dependence of the couplings Kn, we

employ Faà di Bruno’s formula [133] for derivatives of the
right-hand side of (21). This procedure is efficient since
fð0; x2Þ ¼ 0 by our normalization conditions (9).
Consequently, we find for n > 1,

βKn
¼ ð4ðn − 1Þ þ nηΦÞKn þ

1

ð2πÞ3
Xn
l¼1

ð−1Þl l!
n!

�
Qlþ1 −

ηΦ
2
Q̃lþ1

�Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Yn;lðξ1ðxÞ;…; ξn−lþ1ðxÞÞ; ð23Þ

where Yn;l denotes the Bell polynomials, and where we
introduced ξjðxÞ ¼ ðjþ 1Þ!ð1þ 2jx2ÞKjþ1, as well as the
threshold functions,

Qn ¼
Z

∞

0

dz

�
z

zþ RkðzÞ
�

n
ðRkðzÞ − zR0

kðzÞÞ; ð24Þ

Q̃n ¼
Z

∞

0

dz

�
z

zþ RkðzÞ
�

n
RkðzÞ: ð25Þ

For the Litim regulator (13), these integrals read

Qn ¼
1

nþ 1
; Q̃n ¼

1

ðnþ 1Þðnþ 2Þ ; ð26Þ

whereas for the exponential regulator (14) we find

Qn ¼
1

n − 1

�
π2

6
þ ðγ þ ψðnÞÞ2 − ψ 0ðnÞ

�
;

Q̃n ¼
1

n
Hn: ð27Þ

Here, ψðnÞ ¼ Γ0ðnÞ=ΓðnÞ is the polygamma function, γ is
the Euler-Mascheroni constant, and Hn is the nth harmonic

number. Note that for the exponential regulator and n ¼ 1
we have to take a limit that evaluates to

Q1 ¼ 2ζð3Þ: ð28Þ
The fixed point value of the anomalous dimension

computed from the polynomial expansion (22) reads

ηΦ;� ¼
6K2;�Q2

32π2 þ 3K2;�Q̃2

: ð29Þ

This expression is also valid beyond polynomial trunca-
tions with the replacement K2;� ↦ K00�ð0Þ=2.

1. Fixed point structure

Structurally, βKn
is linear in Knþ1. Specifically, the only

Bell polynomial in βKn
that depends on Knþ1 is that with

l ¼ 1, for which we have

Yn;1ðξ1ðxÞ;…; ξnðxÞÞ ¼ ξnðxÞ
¼ ðnþ 1Þ!ð1þ 2nx2ÞKnþ1: ð30Þ

We can thus solve βKn
¼ 0 explicitly for Knþ1 in terms of

all lower Ki:

Knþ1;� ¼
32π2

ðnþ 1Þðnþ 2Þ
ð−1Þn

Q2 −
ηΦ;�
2
Q̃2

�
ð4ðn − 1Þ þ nηΦ;�ÞKn;�

þ 1

ð2πÞ3
Xn
l¼2

ð−1Þl l!
n!

�
Qlþ1 −

ηΦ;�
2

Q̃lþ1

�Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Yn;lðξ1ðxÞ;…; ξn−lþ1ðxÞÞ

�
: ð31Þ
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Therefore, the set of beta functions βKj
for j < Nmax can

be easily solved inductively for the couplings Kl with
2 < l ≤ Nmax. Note that all Kn;�, n > 2 depend polyno-
mially onK2;�. To see this, first note the following relations:

1

Q2 −
ηΦ;�
2
Q̃2

¼ 1þ 3
32π2

Q̃2K2;�
Q2

;

ηΦ;�
Q2 −

ηΦ;�
2
Q̃2

¼ 3

16π2
K2;�: ð32Þ

From this it follows that Knþ1;� only depends polynomially
on all Kl;�, 2 ≤ l ≤ n. By induction, it follows then that all
Kn;�, n > 2 depend polynomially on K2;�. For illustration,
the first few couplings are

K3;� ¼
1

Q2 −
ηΦ;�
2
Q̃2

�
32π2

3

�
1þ ηΦ;�

2

�
K2;�

þ 5

3

�
Q3 −

ηΦ;�
2

Q̃3

�
K2

2;�

�
; ð33Þ

K4;� ¼
1

Q2 −
ηΦ;�
2
Q̃2

�
64π2

5

�
1þ 3

8
ηΦ;�

�
K3;�

þ 21

5

�
Q3 −

ηΦ;�
2

Q̃3

�
K2;�K3;�

−
37

10

�
Q4 −

ηΦ;�
2

Q̃4

�
K3

2;�

�
; ð34Þ

K5;� ¼
1

Q2 −
ηΦ;�
2
Q̃2

�
64π2

5

�
1þ 1

3
ηΦ;�

�
K4;�

þ 24

5

�
Q3 −

ηΦ;�
2

Q̃3

�
K2;�K4;�

þ 3

�
Q3 −

ηΦ;�
2

Q̃3

�
K2

3;�

−
81

5

�
Q4 −

ηΦ;�
2

Q̃4

�
K2

2;�K3;�

þ 10

�
Q5 −

ηΦ;�
2

Q̃5

�
K5

2;�

�
: ð35Þ

Here, we did not insert the expression for ηΦ;� to make it
more readable.
To close the system, the fixed point solutions for K2;�

are then found by setting KNmaxþ1;� ¼ 0.4 Hence, we can
distinguish all fixed points of the full system by the
fixed point value of K2;�. In the following, we will thus
investigate the system by studying the different fixed point

values K2;� as a function of Nmax. The functional depend-
ence of the fixed point values Kn≤72;� on K2;� can be found
in the Supplemental Material [136].
In Fig. 2 we show the fixed point structure of the pure

scalar system as a function of Nmax, up to Nmax ¼ 72, and
with the Litim regulator (13). The black markers indicate
the fixed point values K2;� at each order in the polynomial
expansion. The colored lines indicate how the fixed point
values changewhenNmax is increased. For this, fixed points
with a fixed number of relevant directions are connected.
For example, the interacting fixed point for Nmax ¼ 2
features one relevant direction and is connected by the
dashed line to the fixed point at Nmax ¼ 3 (Nmax ¼ 4,
Nmax ¼ 5;…) that features one relevant and one (two,
three,…) irrelevant direction(s). Figure 3 shows K2;3;4;� for
the first interacting fixed point as a function of the
truncation order. We find an exponential falloff of K2;�,
and, as a consequence of the above analysis, also for all
higher order couplings.
Besides the fixed points shown in Fig. 2, there is one

additional fixed point K2;�, as discussed in [111], that only
appears for even Nmax. This fixed point is generated as a
consequence of the analytic structure of the equation that
determines the anomalous dimension, (29). The fixed point
is located at a negative value forK2;�, beyond the pole in the
anomalous dimension ηΦ, see (29). In particular, ηΦ is
positive and large at this fixed point, such that some of the
regulator properties might be violated [55]. Furthermore,
since it is separated from the other fixed points by a pole
in the anomalous dimension, it cannot collide with one of
those fixed points as a function of g, or connect to a low-
energy regime with small K2. We will not discuss this fixed
point further in the following.
As can be seen in Fig. 4, the fixed point values K2;�

approach zero exponentially quickly as a function of
Nmax, see also [111]. This is not only true for the first
but also for the other interacting fixed points. As we
discuss in Appendix A 1, this fixed point structure of the
system is also found with an exponential regulator. In
particular, the exponential falloff of fixed point values
K2;�ðNmaxÞ agrees on a quantitative level between both
regulators.

2. Critical exponents and eigenvectors

Fixed point values are not universal quantities and can be
changed by, e.g., rescalings of the couplings. By contrast,
critical exponents are universal and determine the univer-
sality class of a fixed point. In the following, we focus on
the least strongly interacting fixed point that only has one
relevant direction, i.e., the fixed point that appears already
at order Nmax ¼ 2. We will discuss the structure of critical
exponents first and then comment on the eigenvectors
corresponding to certain critical exponents.
In Fig. 5 we show the set of critical exponents for this

interacting fixed point. There are three different sets of

4We have also checked the boundary conditions KNmaxþ1;� ¼
f�1;�10;�102;�103g, and we found that the results for fixed
points and critical exponents agree quantitatively. See [134,135]
for discussions on boundary conditions.
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critical exponents: one positive, i.e., relevant critical expo-
nent, a set of real-valued negative critical exponents, and a
set of complex-conjugate pairs of critical exponents with
negative real parts.
The relevant direction is already present at the lowest

order in the expansion, i.e., Nmax ¼ 2, see [20,28–30,111].
At this level, it arises simply as a consequence of the
quadratic form of βK2

. When increasing Nmax, the positive
critical exponent converges quickly to Θ1 ¼ 4 and agrees

exactly with this value (up to 18 digits precision)
at Nmax ¼ 71.
The negative critical exponents are approximately

bounded from below by the canonical mass dimension
of the highest order operator in a given truncation. Indeed,
above Nmax ¼ 7 the most irrelevant critical exponent does
not deviate from the canonical mass dimension of the
highest order operator by more than 3%, see the diagonal
dashed magenta line in Fig. 5. When increasing Nmax,

FIG. 3. Fixed point values for the couplings K2 (blue circles),
K3 (orange boxes), and K4 (green diamonds) as a function of
Nmax for the first interacting fixed point. The solid (dotted,
dashed) black line indicates an exponential fit to the last 30 data
points. The fitted exponential falloff agrees for the three different
fixed point values.

FIG. 4. Fixed point values K2;� for the first (orange circles),
second (green boxes), and eighth (purple diamonds) interacting
fixed point as a function of Nmax. The solid (dotted, dashed) black
line indicates an exponential fit to the last 30 data points. The
falloff remains exponential but becomes slower for the more
interacting fixed points.

FIG. 2. Fixed point structure of the pure scalar system for the Litim regulator as a function of the maximal order of the polynomial
expansion Nmax, see (22), up to Nmax ¼ 72. The black markers indicate the real fixed point values K2;� for a given truncation. The
dashed lines indicate the evolution of a given fixed point when increasing Nmax, based on the number of relevant directions.
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the negative critical exponents increase and seem to con-
verge from below to integer values spaced by δΘ ¼ −4,
which corresponds to the spacing of canonical mass dimen-
sions. In particular, at Nmax ¼ 71, the first ten real and
negative critical exponents deviate less than one percent
from the canonical mass dimension of the ten lowest order
couplings K2;…; K11, and the pattern continues with less
precision to more negative critical exponents.
The complex-conjugate pairs are denoted by open mark-

ers in Fig. 5. They do not show convergence up to the
explored order Nmax ¼ 71. Indeed, the real part of the least
irrelevant complex-conjugate pair still changes its value at
this order in the truncation. Furthermore, it approaches
ReðΘÞ ¼ 0, such that at larger Nmax, new relevant directions
might arise. We were, however, not able to increase Nmax far
enough to investigate whether the pair of critical exponents
actually moves to positive real parts.
We also investigated the critical exponents obtained with

the exponential regulator (14). For Nmax ¼ 2, the critical
exponent obtained with the latter deviates by about 4%
from the value obtained with the Litim regulator. When
increasing Nmax, the deviation of all critical exponents
between both regulators decreases. At Nmax ¼ 70, all
critical exponents deviate less than 5 × 10−9 between the
two regulators, including the most irrelevant critical expo-
nent. In Appendix A 1 we present a more detailed com-
parison between the results obtained with the Litim and the
exponential regulator.

We will now discuss the eigenvectors of the relevant
direction, the first irrelevant direction, and one complex-
conjugate pair of critical exponents. Eigenvectors are
nonuniversal quantities and can therefore be changed by
rescalings of the couplings. Nevertheless, they indicate the
couplings overlapping most with relevant or irrelevant
directions. For a converged and controlled approximation
scheme, we require that the critical exponents appearing at
low orders in the truncation only overlap with some of the
lower order couplings and almost not at all with the higher
order ones.
When computing the eigenvectors of a system, it can

happen that each eigenvector is dominated by the same
component. To interpret the system of eigenvectors better,
we employ the rescaling of couplings proposed in [63]. It
ensures that each coupling contributes equally to the system
of eigenvectors. Accordingly, both rows and columns of the
matrix of eigenvectors are normalized to one. After this
rescaling, we can directly compare the eigenvectors and
conclude which operator is the most important for a given
critical exponent. We emphasize that the normalization
procedure is only a rescaling of the couplings and does not
involve linear combinations of different couplings.
In Fig. 6, we show the absolute values of all components

of the eigenvector vRel corresponding to the relevant
direction, after the rescaling procedure. The component

vðlÞRel points in the direction of Klþ1. We can see that, except
for small Nmax, vRel always points most dominantly in the

FIG. 5. Critical exponents of the first interacting pure scalar fixed point as a function of the truncation order Nmax. Open markers
indicate a complex-conjugate pair of critical exponents. The horizontal lines indicate the spacing of −4 between critical exponents,
which is expected at the GFP. Furthermore, the magenta dashed line is given by y ¼ 4 − 4Nmax and indicates the canonical mass
dimension of the canonically most irrelevant coupling added in a given truncation.
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FIG. 6. Components of the eigenvector corresponding to the relevant direction of the first interacting scalar fixed point for different
truncations, on a linear (upper panel) and a logarithmic (lower panel) scale. The highest retained operator is almost always the most
dominant one, but the contribution of all operators decreases when increasing Nmax.
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direction of KNmax
. Furthermore, the overlap with couplings

Kl for l < Nmax decreases rapidly when increasing Nmax.
Hence, the canonically most irrelevant coupling has the
largest overlap with the only relevant direction. This
indicates that the fixed point, if it exists, is highly non-
perturbative, despite the exponentially decreasing fixed
point values. Furthermore, since in every truncation the
canonically most irrelevant coupling dominates the relevant
eigendirection, it is questionable how reliably the poly-
nomial expansion of KðXÞ can describe such a fixed point.
In Fig. 7 we show the absolute values of all components

of the eigenvector vIrrel corresponding to the first irrelevant
direction, i.e., the eigenvector corresponding to the critical
exponent converging to ΘIrrel ¼ −4. We can see that for
Nmax ≥ 3, the component l ¼ 1, which points in the
direction of K2, dominates vIrrel. Furthermore, this con-
tribution increases when increasing Nmax, while the total
contribution of all components with l ≠ 1 to vIrrel
decreases. In particular, all contributions to higher l
decrease rapidly when further increasing Nmax. This indi-
cates that the irrelevant direction with ΘIrrel ≈ −4 exactly
corresponds to the direction of K2 in theory space. This is
not surprising since this critical exponent corresponds to
the canonical mass dimension of K2, together with the fact
that K2;� is falling off exponentially as a function of Nmax.
A similar behavior is present for the eigendirections
corresponding to the critical exponent that approach
ΘIrrel ¼ −4n, which at large Nmax are dominated by the
component pointing into the direction of Knþ1.
For the eigenvector corresponding to the least irrelevant

complex-conjugate pair of critical exponents, we see a
similar behavior as for the relevant direction: the overlap

with the canonically most relevant couplings decreases
quickly when increasing Nmax. Furthermore, the eigenvec-
tor is dominated by the component pointing in the direction
of the canonically most irrelevant coupling. Hence, this
complex-conjugate pair of eigenvectors constitutes another
example for an eigendirection that appears for relatively
small Nmax but seems to be dominated by the canonically
most irrelevant operator of the system.

3. Expansion around K2 = 0

We have seen that the value of K2;� at the interacting
fixed points decreases exponentially when increasing Nmax
and that all higher order couplings are determined in terms
of K2;�. As a consequence, for sufficiently large Nmax, it is
enough to keep the term linear in K2;� in these expressions
to accurately represent the full fixed point function K�. For
example, at Nmax ¼ 72, for the first interacting fixed point
and with the Litim regulator, the linearized fixed point
solutions of Kn;� up to n ¼ 66 deviate less than 1% from
the full result.
It turns out that we can actually find a closed form

expression for the linear part with the help of the
Mathematica function FindSequenceFunction. This pro-
cedure leads to the relation

Kn;� ¼ 3K2;�
27n−12π2n−4

nðn − 1ÞΓðnþ 2ÞðQ2Þn−2
þOðK2

2;�Þ: ð36Þ

We can then resum the Taylor expansion (22) to linear order
in K2;�. We find

K�ðXÞ ¼ X −
3K2;�
X

�
Q2

128π2

�
3
�
2 − 2e

128π2

Q2
X
�
1 −

128π2

Q2

X

�
− 5

�
128π2

Q2

X

�
2

þ 2
128π2

Q2

X

�
2 −

128π2

Q2

X

��
Ei

�
128π2

Q2

X

�
− ln

�
128π2

Q2

X

�
− γ

��
þOðK2

2;�Þ: ð37Þ

Here Ei is the exponential integral function. For large X,
this function grows exponentially,

K�ðXÞ ∼
12K2;�
X3

�
Q2

128π2

�
5

e
128π2

Q2
X þOðK2

2;�Þ: ð38Þ

This behavior is rather dubious since it is fundamentally
inconsistent with the flow equation (21): if the solution
were to grow exponentially, the right-hand side would fall
off exponentially quickly, but the left-hand side would still
grow exponentially. On the other hand, K2;� tends to zero,
so there are competing effects for large X. For this reason,
we shall investigate this limit subsequently in more depth.

B. Perturbations about the GFP

We have observed that for all interacting fixed points,
K2;� → 0 exponentially quickly when increasing Nmax.
This motivates investigating the linearized flow about
the GFP in more detail to gain analytical insights into
its critical exponents and eigenvectors. To this end, we start
from the flow equation (21) for KðXÞ and expand it around
the GFP, i.e.,

KðXÞ ¼ X þ ϵe−ΘtδKðXÞ;
ηΦ ¼ 0þ ϵe−ΘtδηΦ; ð39Þ

where t ¼ ln k=k0, k0 is some reference scale, and Θ is the
critical exponent corresponding to an eigenperturbation

ON THE WEAK-GRAVITY BOUND FOR A SHIFT-SYMMETRIC … PHYS. REV. D 108, 026004 (2023)

026004-11



FIG. 7. Components of the eigenvector corresponding to the first irrelevant direction of the first interacting scalar fixed point for
different truncations, on a linear (upper panel) and a logarithmic (lower panel) scale. One can clearly see the dominant overlap with the
operator X2, which converges to unity, whereas the overlap with all other operators goes to zero.
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fδKðXÞ; δηΦg. Expanding the resulting perturbed flow
equation up to linear order in ϵ, the zeroth order vanishes
by construction. To order ϵ, the angular integration can be
performed analytically, and the flow equation (21) with
perturbations (39) results in

ð4 − ΘÞδKðXÞ − 4XδK0ðXÞ − XδηΦ

¼ −
2δK0ðXÞ þ XδK00ðXÞ

32π2
Q2: ð40Þ

Note that Q2 is always positive. To simplify the analysis, it
is convenient to rescale the variable X and the perturbations
such that

X¼ Q2

128π2
y; δKðXÞ¼δK̂ðyÞ; δηΦ¼128π2

Q2

δη̂Φ: ð41Þ

With these redefinitions, (40) reads

ð4 − ΘÞδK̂ðyÞ − 4yδK̂0ðyÞ − yδη̂Φ

¼ −4ð2δK̂0ðyÞ þ yδK̂00ðyÞÞ: ð42Þ

We can see that all regulator dependence is absorbed in the
rescaling of the field, hence the critical exponents will be
regulator independent.
Mathematically, (42) is a linear second-order differential

equation for the perturbation δK̂, where the term including
δη̂Φ is the inhomogeneous part. We can eliminate this
inhomogeneous part by shifting

δK̂ðyÞ ¼ δK̃ðyÞ − δη̂Φ
Θ

�
8

Θ − 4
þ y

�
: ð43Þ

For this to be well defined, we have to assume that
Θ ∉ f0; 4g. These two cases will be discussed separately
below. With this shift, (42) reads

−4yδK̃00ðyÞ þ 4ðy − 2ÞδK̃0ðyÞ þ ðΘ − 4ÞδK̃ðyÞ ¼ 0: ð44Þ

This equation can be brought into Sturm-Liouville form,
which makes it easy to formulate conditions so that the
resulting spectrum of critical exponents is discrete. We can
write this equation as

∂y½pðyÞδK̃0ðyÞ� ¼ −λwðyÞδK̃ðyÞ; ð45Þ

where

pðyÞ¼y2e−y≥0; wðyÞ¼ye−y≥0; λ¼1−
Θ
4
: ð46Þ

By standard Sturm-Liouville theory, we can thus expect a
discrete spectrum for λ that is bounded from below, each

with a unique normalizable eigenfunction with n zeroes. In
particular, the set of eigenfunctions forms an orthonormal
basis for the Hilbert space L ¼ L2ð½0;∞Þ; wðyÞdyÞ.
Incidentally, we can write down the exact general solution
to (45). It reads

δK̃ðyÞ ¼ c11F1

�
Θ
4
− 1; 2jy

�
þ c2G

2;0
1;2

�
y

���� 2 − Θ
4

−1; 0

�
; ð47Þ

where c1;2 are constants, 1F1 is a hypergeometric function,
and G is the Meijer G function. To achieve regularity at
y ¼ 0, we have to set c2 ¼ 0. Moreover, to achieve
normalizability with respect to the measure wðyÞ, we have
to investigate the asymptotic behavior of the hypergeo-
metric function. Generically, the leading term reads

1F1

�
Θ
4
− 1; 2jy

�
∼

1

ΓðΘ
4
− 1Þ y

Θ
4
−3ey; y → ∞: ð48Þ

This indicates that generally these functions are not normal-
izable on L, except if the critical exponent is quantized as

Θ ¼ 4 − 4n; n ∈ N and n > 1: ð49Þ

In this case, the hypergeometric function is just a poly-
nomial, however, recall that for the moment we have to
exclude n ¼ 0, 1 since in these cases the shift in (43) is
singular. Let us stress again that it is the physical condition
of having a discrete spectrum of critical exponents that
selects the correct set of eigenfunctions and transforms
the equation into a regular Sturm-Liouville problem. This
automatically excludes any exponentially growing pertur-
bations. To completely fix the perturbations δK̂, we still
have to impose our boundary conditions, namely

δK̂ð0Þ ¼ δK̂0ð0Þ ¼ 0: ð50Þ

This uniquely and consistently fixes δη̂Φ to be

δη̂Φ ¼ ΘðΘ − 4Þ
8

c1: ð51Þ

As it must be, we are still left with the overall multiplying
constant c1 that can be used to normalize the eigenfunc-
tions. Note also that this specific form cancels the diver-
gencies for Θ ¼ 0, 4 in the rescaling (43), however, the
corresponding eigenfunctions then vanish identically for
these two cases, so we still have to treat these two cases
more carefully. We will do this next.
Let us first discuss the case Θ ¼ 4. For this, we imple-

ment the shift

δK̂ðyÞ ¼ δK̃ðyÞ − δη̂Φ
4

�
−
2

y
þ yþ 2 ln y

�
: ð52Þ
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This yields the differential equation

yδK̃00ðyÞ þ ð2 − yÞδK̃0ðyÞ ¼ 0: ð53Þ

This has the simple general solution

δK̃ðyÞ ¼ c2 þ c1

�
−
1

y
ey þ EiðyÞ

�
: ð54Þ

Imposing regularity and boundary conditions, we can fix

δη̂Φ ¼ 2c1; c2 ¼ ð1 − γÞc1: ð55Þ

This perturbation is not normalizable in L due to the
asymptotic behavior,

δK̂ðyÞ ∼ c1
y2

ey; y → ∞: ð56Þ

We can finally discuss the last case, Θ ¼ 0. In this case
we have to introduce the shift

δK̂ðyÞ ¼ δK̃ðyÞ − δη̂Φ
4

�
1 − 5y

y
− ð2 − yÞ ln y

�
: ð57Þ

With this shift, we arrive at

yδK̃00ðyÞ þ ð2 − yÞδK̃0ðyÞ þ δK̃ðyÞ ¼ 0: ð58Þ

The general solution for this equation reads

δK̃ðyÞ¼c1ðy−2Þþ c2
2y

ðð1−yÞeyþyðy−2ÞEiðyÞÞ: ð59Þ

Once again we have to impose regularity and boundary
conditions at vanishing field. This fixes

δη̂Φ ¼ 2c2 ¼
8

5 − 2γ
c1: ð60Þ

Imposing these conditions, the resulting perturbation is not
normalizable in L since it grows exponentially,

δK̂ðyÞ ∼ 4c1
ð5 − 2γÞy3 e

y; y → ∞: ð61Þ

It thus has to be discarded.
From this analysis we conclude that, if we restrict

perturbations to lie in the Hilbert space L while also
imposing the boundary conditions (50), then we find the
expected spectrum

Θn ¼ −4n; n ∈ N; n ≥ 1: ð62Þ

Summarizing the two special cases, we conclude that the
two eigenperturbations corresponding to Θ ¼ 0, 4 are not

polynomials, and they grow exponentially for large y.
Hence, these eigenperturbations are not part of the Hilbert
space L.

C. Summary and discussion of the pure scalar system

Before coupling the system to gravity, let us briefly
summarize and discuss our findings in the pure scalar
system.
As a first step towards computing the scale dependence

of the function KðXÞ, we employed the polynomial
expansion (22) to different orders Nmax in X. Due to
the structure of the scale dependence of the expansion
coefficients Kn, we were able to characterize all fixed
point solutions of the full system in terms of the fixed
point value of K2;�. The fixed point values of all other
couplings are then polynomials in K2;�, see, e.g., (33).
To order Nmax, we find that the system admits Nmax fixed
points, see Fig. 2. The fixed point values K2;�, and
therefore also those of the higher-order couplings, of
all fixed points decreases exponentially fast when increas-
ing Nmax, see Figs. 3 and 4.
Focussing on the first interacting fixed point, we find

that it features one relevant direction, whose critical
exponent approaches Θ1 ¼ 4. This eigenvalue has the
largest overlap with the operator corresponding to the
coupling KNmax

, i.e., the canonically most irrelevant
operator of the system. The negative critical exponents
of the first interacting fixed point approach Θ2 ≈ −4,
Θ3 ≈ −8;…, at least for the first ten negative critical
exponents. These critical exponents overlap most domi-
nantly with the operators corresponding to the couplings
K2; K3;…, and they approximate their respective canoni-
cal mass dimension. Furthermore, the fixed point features
complex-conjugate pairs of critical exponents whose
real part does not show convergence up to Nmax ¼ 71.
A similar pattern is found for the other interacting fixed
points with more relevant directions.
Motivated by the finding that K2;�, and therefore

K�ðXÞ − X, approaches zero exponentially fast, we linear-
ized the fixed point equations for all Kn with n ≥ 3 in K2;�.
In this approximation, we can find a closed form of
the fixed point value for any Kn;�, see (36). Crucially, this
allows us to resum the expansion in X, which gives (37).
However, the resulting approximate fixed point solution
K�ðXÞ grows exponentially in X, which leads to incon-
sistencies in the flow equation.
To investigate this behavior further, we explored the

eigenperturbations of the system about the GFP by expand-
ing the flow equation to linear order in perturbations. For
critical exponents Θ ∉ f0; 4g, the differential equation for
the perturbations can be brought into Sturm-Liouville form,
see (45), which immediately defines an integral measure
with respect to which viable eigenperturbations have to be
square integrable. This leads to a quantization of critical
exponents as Θ ¼ 4 − 4n with n ∈ N. Furthermore,
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an explicit analysis of the cases Θ ∈ f0; 4g shows that both
corresponding eigenperturbations are not square integrable
with respect to the Sturm-Liouville measure. They hence
need to be discarded.
At this point, we can finally make the connection

between the linear analysis about the GFP and the fixed
points found in the previous subsection. All of the latter
approach the GFP for increasing Nmax, and the leading
order Taylor series coefficients are (36). On the other hand,
it is clear that these linearized coefficients sum up to the
eigenfunction of the GFP corresponding to Θ ¼ 0. From
the above analysis, we thus conclude that these fixed points
do not lie in the space spanned by the perturbations of the
GFP that are in the Hilbert space L. As a matter of fact, the
situation is very similar to that of the well-known Halpern-
Huang interactions [137–139]. If one were to include such
interactions, many of the well-known properties of the
RG flow would not hold anymore. For example, as we
discussed above, critical exponents might not be quantized
anymore. Subsequently, we thus follow [140–142] and
discard these fixed points.
This leads us to one of the main results of our inves-

tigation: at least in the truncation that we investigated, there
cannot be a WGB in the gravity-scalar system induced by a
collision of partial fixed points. The reason is that the
potential collision partners for the SGFP seem to be
spurious, that is, they are artifacts of finite order trunca-
tions. Of course, this does not exclude the general existence
of a WGB due to other mechanisms, or the nonexistence of
a combined gravity-scalar UV completion. As a matter of
fact, in the next section we will introduce a new notion of a
WGB that separates the weak from the strong gravity
regime in terms of the number of relevant operators. Within
this notion, in the strong gravity regime there is still an UV
completion via the SGFP, but it has more relevant directions
than the free theory.

IV. GRAVITY-SCALAR SYSTEM

We will now move on to discuss the full gravity-scalar
system described by the action (2), extending previous
work on shift-symmetric scalar fields by investigating the
fixed point structure for the function KðXÞ. In this analysis,
following the WGB literature [25,28,108], we will keep g
as a free parameter. As mentioned in the last section, any
collision of the SGFP with one of the interacting pure scalar
fixed points at finite g is likely fiducial and should be
treated as a truncation artifact, at least within our truncation
of the action. In this sense, we argue that the system in this
truncation does not display a WGB via a fixed point
collision. In the following, we will thus mainly focus on the
SGFP. A key aspect of our analysis will correspondingly be
how one can avoid such spurious collisions in different
truncations.
The full fixed point equation for the gravity-scalar

system has the form

4K�ðXÞ − Xð4þ ηΦ;�ÞK0�ðXÞ ¼ F ½X; ηΦ;�; K�; K0�; K00�; g�;
ð63Þ

where

F ¼ 1

16π3

Z
∞

0

dz z
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
F: ð64Þ

The function F ¼ Fðz; x;X; ηΦ; K; K0; K00; gÞ is a generali-
zation of the integrand appearing on the right-hand side
of (21). We include the full expression for F in the
Supplemental Material [136].
Similarly to the pure scalar case, it is not possible to

analytically solve the flow equation for the function KðXÞ.
Hence, also for the gravity-scalar system, we will resort to
different systematic expansions of KðXÞ and then analyze
the partial fixed point structure within these expansions as a
function of the external parameter g.
For the gravity-scalar system there are two obvious

expansions: an expansion in X and an expansion in the
Newton coupling g. We will, hence, first employ the
expansion of KðXÞ in X and explore the impact of
gravitational fluctuations on the expansion we have studied
in Sec. III. This allows us to investigate the precise pattern
of spurious collisions as a function of g. Furthermore, this
is the expansion that has been studied in the literature
before [20,28–30], so that we can easily connect our results
to previous studies.
The expansion in g allows us to track the SGFP as a

function of g while taking the full dependence on X into
account at each order. This expansion therefore is, at least in
principle, an orthogonal expansion to study the fate of the
SGFP for increasing strength of the gravitational interaction.
From this analysis,wewill finally find amore refined partially
resummed expansion that will turn out to indicate the
limitations of the expansion about an off-shell background.

A. Expansion in X

Our starting point is again the polynomial expansion (22)
of the function KðXÞ in powers of the kinetic term of the
scalar field X. The only difference to the setup in Sec. III
is the fact that the scale dependence, and therefore also
the fixed point values of the expansion coefficients Kn,
additionally depend on g. In the following we will mostly
focus on the SGFP, i.e., the extension of the GFP to g > 0,
which is then shifted to become interacting in the
presence of gravitational fluctuations. If not stated other-
wise, the quoted results were obtained using the linear
parametrization, a Litim regulator (13), and with the
gauge choice βh ¼ 1.
As a first step towards understanding the impact of

gravitational fluctuations on the pure scalar system, we
compute all real-valued (spurious) fixed points for fixed
Nmax and explore their fate when turning on g. In Fig. 8,
we show the fixed point structure for Nmax ∈ f2; 3; 4; 5g,
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where we only show those fixed points that are real valued
for g ¼ 0. Furthermore, we continue to neglect the addi-
tional fixed point that is located beyond a pole in the
anomalous dimension ηΦ. It is therefore disconnected from
the other fixed points and cannot collide with any of them.
We can see that for all displayed orders Nmax, the most

interacting fixed point collides with the second-most
interacting fixed point when increasing g. Since for even
Nmax there is an even number of fixed points, also the SGFP
collides with another fixed point and vanishes into the
complex plane at some finite value of g. For odd Nmax,
however, the SGFP remains as the only real-valued fixed
point. Therefore, the WGB that has been discussed in the
literature [20,28–30] and that results from the collision of
the SGFP with another fixed point is only present in
truncations with an even Nmax. This is another indication
for the spurious nature of these collisions of partial fixed
points. We can further observe that the first interacting

fixed point begins to approach the SGFP as a function of g
when increasing Nmax.
Since even and odd values of Nmax show a different

qualitative behavior, we will study the SGFP for both cases
separately in the following.
The left panel of Fig. 9 shows the SGFP for evenNmax as

a function of g and up to the point where it collides with
another partial fixed point and vanishes into the complex
plane. We can see that the critical value of the Newton
coupling, where the partial fixed point collision occurs,
shifts to lower values. Furthermore, forNmax ≥ 4, the SGFP
is numerically stable when increasing Nmax, up to the
critical value for g. To quantify this numerical stability
further, in the left panel of Fig. 10 we show the relative
difference of K2;� at a given even Nmax and at Nmax − 2. We
see that for Nmax > 4 the SGFP is stable and deviates by
less than 5% from the previous even Nmax, for g ≤ 1, or
until the point where it vanishes into the complex plane.

FIG. 8. Partial fixed point structure of the gravity-scalar system as a function of g and for different ordersNmax ¼ 2, 3, 4, 5 (from left to
right and top to bottom) in the polynomial expansion (22) of the function KðXÞ, with βh ¼ 1 and the Litim regulator. Solid lines
represent real-valued partial fixed points, while dashed lines indicate the real part of a complex-conjugate pair of partial fixed points. We
only show the continuation for finite g of those partial fixed points that are real at g ¼ 0. Furthermore, we do not show one additional
partial fixed point since it lies beyond a pole in the anomalous dimension and therefore cannot collide with any of the shown partial fixed
points. We can see that in all cases the most interacting partial fixed point that is shown collides with the second-most interacting partial
fixed point when increasing g. Therefore, in truncations with an evenNmax, where an even number of real-valued partial fixed points can
collide with each other, the SGFP eventually vanishes into the complex plane. This does not happen in truncations with odd Nmax since
the SGFP remains as the single real-valued partial fixed point.
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The right panel of Fig. 9 shows the SGFP for oddNmax as
a function of g. We can observe that the SGFP follows a
similar trajectory as for even Nmax. However, instead of
colliding with another partial fixed point, the value of K2;�
at the SGFP eventually increases and becomes positive
once g is larger than some value around 2.5. We can also
see that for large g, K2;� at the SGFP seems to grow linearly
in g, and the slope approaches a fixed finite value when
increasing Nmax. The right panel of Fig. 10 shows the
relative difference between K2;� at a given odd Nmax and at
Nmax − 2. As in the case for even Nmax, the SGFP is stable,
with deviations well below 5% up to g ¼ 1, see the right
panel of Fig. 10. Furthermore, for Nmax > 6, the deviation
up to g ¼ 1 is below the per-mille level.
In summary, the SGFP is stable up to the point of

collision for evenNmax, or up to at least g ¼ 1 for oddNmax.
Therefore, we find further indications that the shift-
symmetric scalar sector is genuinely interacting in the
presence of gravitational fluctuations.
To further explore the stability of this picture, we will

study the behavior under changes of the gauge choice βh

and the regulator, again treating even and odd orders of the
truncation separately. For even Nmax, we study the critical
value of the Newton coupling gcrit, where the SGFP
vanishes into the complex plane. The left panel of
Fig. 11 shows gcrit as a function of Nmax for different
choices of the gauge fixing parameter βh and both regulator
functions (13) and (14). The boxes (circles, triangles)
indicate how gcrit changes when increasing Nmax for the
most common gauge choices βh ¼ 1 (βh ¼ 0, βh ¼ −1) for
the Litim regulator (full markers) and the exponential
regulator (open markers), respectively.
For odd Nmax, we study the value for g where the fixed

point value K2;� of the SGFP is zero. This value is not
expected to be a universal quantity, but its behavior as a
function of Nmax entails qualitative features of the system
that nevertheless are expected to be robust. The right panel
of Fig. 11 shows this quantity for the three most common
gauge choices. It clearly indicates that the system only
mildly depends on the gauge for this range of gauge
parameters for each of the two regulators. In fact, the
relative evolution of the quantities in both panels of Fig. 11

FIG. 10. Relative deviations of the SGFP as a function of g, when increasing the truncation from a given even (odd) Nmax to
the next even (odd) Nmax. We see that generically the relative deviation increases when increasing g and that it overall decreases when
increasing Nmax.

FIG. 9. SGFP for even (left panel) and odd (right panel) values of Nmax. We can see that for even Nmax the SGFP is numerically stable
until the fixed point collision. For oddNmax the SGFP is numerically very stable up to about g ≈ 1, from where on convergence is slower.
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is in quantitative agreement across the shown values for βh
and the two regulators. We will discuss the dependence on
unphysical choices such as the gauge and regulator in more
detail in Appendix A 2.
Applying Aitken’s delta squared method [143] to esti-

mate the limit of the sequence shown in the right panel of
Fig. 11 gives a convergent result for all shown choices of βh
and both regulators. For the example of βh ¼ 1 and the
Litim regulator, we estimate

gðK2;� ¼ 0; Nmax → ∞Þ
gðK2;� ¼ 0; Nmax ¼ 3Þ ¼ 0.5: ð65Þ

This indeed indicates that the SGFP is convergent at least to
the point where K2;� crosses zero. Applying the same
method to the left panel of Fig. 11, however, does not
indicate a convergent behavior; the estimate for the limit
value when applying the method once, twice, or three times
varies strongly. This indicates that while the SGFP itself is
convergent for a range of values for g, the value for gcrit is not
converged within our truncation. This is yet another piece of
evidence for the fixed point collision being spurious.
We will now propose a new notion of the WGB that

separates the weak from the strong gravity regime: instead
of a partial fixed point collision and a related absence of an
UV completion, we define the WGB as the gravitational
interaction strength where the SGFP receives more relevant
operators. Below (above) this critical strength, we are in
the weak (strong) gravity regime. Since we treat g as an
external parameter in our study, we do not have access to
the full set of critical exponents of the gravity-scalar
system. Instead, we define the pseudocritical exponents,

ϑiðgÞ ¼ −eig
�
∂βKi

∂Kj

�����
Kn¼Kn;�

; ð66Þ

and assume that they capture this information approxi-
mately. We, furthermore, define ϑ1ðgÞ as the pseudocritical
exponent that is continuously connected (as a function of g)
to the most relevant one at g ¼ 0, i.e., ϑ1ð0Þ ¼ −4.
We thus propose to define the WGB as the value of g

where the scalar (or, in general, any matter) system acquires
an additional relevant direction. In our system this can
happen for odd values of Nmax since ϑ1 and ϑ2 form a
complex-conjugate pair for some value of g. This complex-
conjugate pair can then become relevant for larger values of
g without a partial fixed point collision, as the imaginary part
stays finite through this transition. The WGB defined by
g̃crit ¼ gðReðϑ1Þ ¼ 0Þ therefore separates the regime where
the UV-complete scalar sector does not feature additional
relevant directions (g < g̃crit), i.e., a weak gravity regime,
from the regime where at least two more relevant directions
are present (g > g̃crit), i.e., a strong gravity regime.
We focus on ϑ1 since it is the pseudocritical exponent

that is numerically most controlled and that is likely to be
most insensitive to the higher order operators that were
neglected in our truncation. We add that the more irrelevant
pseudocritical exponents, at high enough Nmax, become
more relevant than ϑ1 already at g < g̃crit, but they are
expected to receive larger corrections from operators that
we have neglected.5 This is due to the approximately
triangular structure of the FRG equation, where the flow
of the n-point function is driven by correlation functions of
order ≤ ðnþ 2Þ only. We leave a more complete inves-
tigation of these aspects for future work.
In Fig. 12 we show g̃critðNmaxÞ for the Litim regulator

and for βh ¼ 1 (blue squares), βh ¼ 0 (orange circles),
and βh ¼ −1 (green triangles). We see that it features

FIG. 11. Aspects of gauge and regulator dependencies of the SGFP. Left panel: (normalized) critical value of the Newton coupling gcrit
as a function of Nmax for different choices of the gauge parameter βh and the regulator. For all displayed choices, a fixed point collision
of the SGFP is only present for even Nmax. Furthermore, the behavior of gcrit as a function of Nmax agrees for all displayed choices on a
quantitative level. Right panel: value of the Newton coupling where the partial fixed point value K2;� at the SGFP crosses zero,
normalized to the case Nmax ¼ 3. We see that the qualitative behavior agrees for all displayed choices of gauge fixing and regulator.

5If this behavior would be stable, then it would constitute a
violation of the bootstrap hypothesis [42].
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a qualitatively similar behavior as gðK2;� ¼ 0;NmaxÞ: it
decreases quickly for small Nmax and flattens out for larger
Nmax. Applying Aitken’s delta squared method to
g̃critðNmaxÞ for the three investigated values of βh gives a
convergent result in all three cases, which are summarized
in Table I.
This indicates that our new definition of a WGB via g̃crit

is indeed stable and convergent.
In summary we find a qualitatively different behavior for

even and odd orders in the truncation. For truncations with
an odd Nmax, the value of g > 0 where K2;� ¼ 0 converges
to a finite value for each displayed choice of βh and the
regulator. In this case, the SGFP shows a very stable
behavior up to relatively large values of g, where additional
relevant directions in the scalar sector appear, giving rise to
a new notion of the WGB. For even values Nmax, the
location of the partial fixed point collision seems not to
converge within the truncations that we have studied. This
is in line with our observations in Sec. III where we have
shown that the interacting partial fixed point in the pure
scalar system that gives rise to the collision is only a
truncation artifact and not part of the desired function
space. Hence, we expect the SGFP to be controlled and
convergent, while the collision with a truncation artifact is
not expected to show any convergent behavior.

B. Expansion in g

We will now investigate the SGFP in a systematic
expansion in powers of the (dimensionless) Newton’s
constant g. This means that we expand the kinetic
function as

KðXÞ ≈ X þ
�

1

16π

�
2XNmax

n¼1

�
g

16π

�
n
LnðX̃Þ; ð67Þ

and the scalar anomalous dimension as

ηΦ ¼
XNmax

n¼1

�
g

16π

�
n
ηn: ð68Þ

Here, we introduced factors of 16π in convenient places,
as well as

X̃ ¼ 3

2
ð16πÞ2X: ð69Þ

This expansion is, in principle, orthogonal to the poly-
nomial expansion (22) in X and allows keeping the full
dependence on X at each order in g. From the boundary
conditions (9), we get Lnð0Þ ¼ L0

nð0Þ ¼ 0 for all n. We will
again use βh ¼ 1 and the Litim regulator (13) to illustrate
the resulting structure.
We will now systematically expand the fixed point

equation in powers of g. Generically, this expansion leads
to the following structure:

4Ln;�ðX̃Þ − 4X̃L0
n;�ðX̃Þ −

2

3
ηn;�X̃

¼ F nðX̃; fηj;�gj≤n−1; fLj;�; L0
j;�; L

00
j;�gj≤nÞ; ð70Þ

where F n has a polynomial dependence on all of its
arguments. This structure allows us to find analytical
solutions for Ln;�ðX̃Þ in an iterative way.
For n ¼ 1, we find the differential equation

4L1;�ðX̃Þ − 4X̃L0
1;�ðX̃Þ −

2

3
η1;�X̃

¼ −4ð2L0
1;�ðX̃Þ þ X̃L00

1;�ðX̃ÞÞ: ð71Þ
Since this is a second-order differential equation, the
general solution has two free parameters that we call c1
and c2. This general solution reads

L1;�ðX̃Þ ¼ ðX̃ − 2Þc1 þ
ð1 − X̃ÞeX̃ þ X̃ðX̃ − 2ÞEiðX̃Þ

2X̃
c2

−
2 − 5X̃2 þ 2X̃ðX̃ − 2Þ ln X̃

12X̃
η1;�: ð72Þ

To fix the parameters c1;2, we look at the behavior about
X ¼ 0. Demanding that no divergencies occur at X ¼ 0 as
well as imposing (9), we find

FIG. 12. Value of g where the pseudo critical exponent ϑ1, see
(66), becomes relevant, as a function of Nmax, representing our
new definition of the WGB that does not rely on the collision of
partial fixed points: for g > g̃crit, the UV completion of the scalar
sector requires the presence of additional relevant directions.

TABLE I. Estimates for the location of the WGB based on the
new definition relying on the number of relevant directions. The
estimates are obtained by applying Aitken’s delta squared method
to the data points displayed in Fig. 12, which leads to a stable and
convergent result for each of the three investigated values of βh.

βh
g̃critðNmax→∞Þ
g̃critðNmax¼3Þ g̃critðNmax → ∞Þ

1 0.81 3.5
0 0.63 4.5
−1 0.56 5.2
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c1 ¼ −
γ

6
η1;�; c2 ¼

1

3
η1;�: ð73Þ

To fix η1;�, we have to consider the behavior of L1;�ðX̃Þ at
large X̃. We note that L1;�ðX̃Þ grows exponentially for
large X̃. Such behavior is undesirable as discussed previously.
To remove the exponentially growing terms, we thus have to
set η1;� ¼ 0. Therefore, to first order in g, we find

L1;�ðX̃Þ ¼ 0; η1;� ¼ 0: ð74Þ

Note that for other gauge choices, we instead find a non-
vanishing η1;�, but L1;� still vanishes.
Moving on to the second order in g, we find the

differential equation

4L2;�ðX̃Þ − 4X̃L0
2;�ðX̃Þ −

2

3
η2;�X̃

¼ 128

9
X̃2 − 4ð2L0

2;�ðX̃Þ þ X̃L00
2;�ðX̃ÞÞ: ð75Þ

Notably, there is now an inhomogeneous term quadratic in
X̃ that will allow for a nontrivial solution. Once again, we
fix one integration constant by removing divergent terms
at X ¼ 0 and imposing the boundary conditions (9).
Furthermore, we can fix η2;� by demanding that the solution
does not grow exponentially for large X̃. This gives the
unique solution

L2;�ðX̃Þ ¼ −
32

9
X̃2; η2;� ¼ −128: ð76Þ

This procedure can be continued order by order in g.
Generally, we find that Ln;� is a polynomial in X̃ of order n,

Ln;�ðX̃Þ ¼
Xn
i¼2

ln;iX̃i; ð77Þ

and we include the coefficients ln;i and ηn;� up to
Nmax ¼ 28 in the Supplemental Material [136].
This result is remarkable, for the following reasons. First,

by requiring that the solution is in the Hilbert space L, we
eliminated all integration constants. This entails that the
free parameterK2;� that we had to choose in the polynomial
expansion of the last section by an additional condition can
be computed order by order in g. Second, the expansion
coefficient of the term X̃n starts at gn. This means, on the
one hand, that we have found another way to compute K2;�
order by order in g from the general polynomial expansion
of Sec. IVA. On the other hand, this suggests a different
partially resummed expansion of the form

KðXÞ ≈ X þ
�

1

16π

�
2XNmax

n¼0

MnðX̂Þ
�

g
16π

�
n
; ð78Þ

where

X̂ ¼ 16πgX: ð79Þ
This is an expansion that retains global information in X. It
works by combining first the terms in the Ln with the largest
exponent into M0 and then subsequently combines all the
smaller exponent terms. It also suggests that the natural
variable is actually the combination gX. As a matter of fact,
this combination precisely appears in the nontrivial interaction
between gravity and the scalar field in the two-point function.
We will consider this expansion in the next subsection.
Before moving on, let us remark that, due to the

relatively large value of g̃crit indicating the new WGB as
obtained in the X expansion, we refrain from a similar
analysis within the g expansion.

C. Combined expansion

In the combined expansion we expand the functionKðXÞ
according to (78). The anomalous dimension is indepen-
dent of X by definition, and therefore, it is expanded in
powers of g as in the previous section. In fact, we can use
the coefficients ηi;� that we computed previously.
Structurally, the combined expansion leads to first-order
differential equations for the coefficients Mn, namely,

X̂M0
n;�ðX̂Þ −Mn;�ðX̂Þ
¼ F comb

n ðX̂; fηj;�gj≤nþ1; fMj;�;M0
j;�;M

00
j;�gj<nÞ: ð80Þ

This is a consequence of the fact that the right-hand side of
the flow equation is one order higher in g, such that at each
order in the expansion it only provides an inhomogeneous
part for the differential equation.
Formally, the fixed point solutions to all orders in the

combined expansion read

Mn;�ðX̂Þ ¼ X̂

�Z
X̂
dX̂0F

comb
n

ðX̂0Þ2 þ Cn

�
; ð81Þ

where Cn is an integration constant that we can fix by
demanding M0

n;�ð0Þ ¼ 0. However, due to the involved
form of F comb

n , we were only able to analytically perform
the integral for n ¼ 0 and n ¼ 1. For this reason, we will
again not investigate our new notion for the WGB.
To zeroth order in g and with η1 ¼ 0, we find

F comb
0 ¼ −

4

X̂

 
2 − X̂

1 − X̂
− 3X̂ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X̂

1þ X̂

s !
; ð82Þ

which leads to

M0;�ðX̂Þ ¼
4

X̂
ð1 − 2X̂Þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X̂2

p 	

þ 2X̂

�
2 ln

�
2

1 − X̂

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X̂2

p
�
− 1

�
: ð83Þ
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Here, we have already fixed the constant of integration. In
Fig. 13 we plotM0;�ðX̂Þ. In addition, we also showM1;�ðX̂Þ
that we obtained analytically and M2;�ðX̂Þ obtained from
numerical integration.
As we can see in Fig. 13, the functions M0;�ðX̂Þ,

M1;�ðX̂Þ, and M2;�ðX̂Þ diverge at X̂ ¼ 1, putting a hard
limit on the validity of this expansion. From (83), we see
that M0;�ðX̂Þ diverges logarithmically for X̂ ¼ 1. The
divergence of M1;�ðX̂Þ at X̂ ¼ 1 is a pole of order 3=2.
Beyond that order, we were not able to solve the differential
equations (80) in a closed form. However, we can still
extract the leading pole by analyzing the fixed point
equation about X̂ ¼ 1. In general, the leading order con-
tribution to F comb

n about X̂ ¼ 1 comes from terms propor-
tional to ½M00

0ðX̂Þ�n. Keeping only the relevant terms to
extract the leading order divergence, we can integrate (80)
order by order in n, which we have done explicitly up to
n ¼ 48. With the help of FindSequenceFunction, we find
(for n ≥ 1)

Mpole
n;� ðX̂Þ ∼

ffiffiffi
2

p ð−6Þnþ1Bn

ð1 − X̂Þ3ðn−1Þþ3=2
ð84Þ

with coefficients Bn satisfying the recursive relation,

Bn ¼ −
16ðn − 2Þð2n − 5Þð2n − 3Þð4nþ 5Þ

3nð4nþ 1Þð1 − 2nÞ2 Bn−2

þ ð3 − 2nÞ2ð448n3 − 976n2 − 412nþ 805Þ
12nð2n − 5Þð4nþ 1Þð1 − 2nÞ2 Bn−1;

ð85Þ

with initial conditions B1 ¼ 1=6 and B2 ¼ 113=3888.

Unfortunately, we were not able to solve the
recursion (85) to obtain more information on the pole
structure of the combined expansion. One might entertain
the hope that all the poles of the different orders sum up to
yield a finite result at X̂ ¼ 1, so that a global fixed point
solution could be found. While we can neither confirm nor
deny this idea, in Sec. IV D we present some arguments
why we find this scenario unlikely.

D. Off-shell origin of the pole at X̂ = 1

As we have seen in Sec. IV C, the functions Mn;� in the
combined expansion feature a pole at X̂ ¼ 1. While we
were able to extract the general structure of the leading-
order divergent behavior for each expansion coefficient
Mn;�, see (84), we could not determine whether or not the
poles cancel under resummation of the Mn;�.
To understand the origin of this pole, we study the right-

hand side of the fixed point equation for the gravity-scalar
system (63) before integrating over loop momenta and
before performing any expansion, i.e., we focus on the
function F in (64). In particular, we will investigate the
integrand for large X. Assuming that ηΦ;� > −4, a scaling

analysis fixes K�ðXÞ ∼ AX
4

4þηΦ;� . To have an action bounded
from below, we further need A > 0. We will now inves-
tigate F in this regime and find that parts of its denominator
change sign, indicating a pole.
Generally speaking, the function F of the gravity-scalar

system consists of two parts: one contribution involving the
propagator of the scalar field and one from the propagator
of metric fluctuations. We will focus on the scalar con-
tribution in the following for simplicity and denote the
denominator of this contribution as DenðFΦÞ.
Inserting the asymptotic scaling, let us first consider

z ¼ 0 and x ¼ 0. With a Litim regulator, we find

DenðFΦÞjz¼x¼0 ∝
�
1þ 256π2A2g2ðη3Φ;� þ 64ÞX 8

ηΦ;�þ4

ðηΦ;� þ 4Þ3

−
32πAgðηΦ;�ðηΦ;� þ 2Þ − 16ÞX 4

ηΦ;�þ4

ðηΦ;� þ 4Þ2
�
:

ð86Þ

For ηΦ;� > −4, the second term is the dominant contribu-
tion for large X. Hence, for z ¼ 0 and x ¼ 0, the denom-
inator is strictly positive in this limit. By contrast, let us
now consider z ¼ 0 and x ¼ 1=

ffiffiffi
2

p
. At this point, the

denominator reads

DenðFΦÞjz¼0;x¼1=
ffiffi
2

p ∝
�
1þ 256π2A2g2ηΦðη2Φ þ 16ÞX 8

ηΦþ4

ðηΦ þ 4Þ3

−
32πAgηΦðηΦ þ 2ÞX 4

ηΦþ4

ðηΦ þ 4Þ2
�
; ð87Þ

FIG. 13. FunctionsMn;�ðX̂Þ for n ¼ 0, 1, 2. For convenience of
the plot, we divide theMn;�ðX̂Þ by a factor ð16πÞn. As we see, the
curves vary slowly for X̂ < 0.5, but they approach a singularity at
X̂ ¼ 1. Such a singularity sets an upper bound on the validity of
the combined expansion.
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where again the second term is dominant for large X. For
g ≤ 2.5, we found in Sec. IVA that ηΦ;� < 0, see also
Fig. 9. In that regime, the dominant term in the denominator
of F for z ¼ 0 and x ¼ 1=

ffiffiffi
2

p
is thus negative, and hence,

DenðFΦÞ will be negative for large enough X for these
values.
The change of sign of DenðFΦÞ as a function of x

indicates that the angular integration over x gives rise to a
pole. Such a pole is typically related to the fact that the
chosen background does not satisfy the equations of motion.
In fact, the standard pole of the graviton propagator about a
flat background at λ ¼ 1=2 has a similar origin: an integral
over the flat regularized propagator in this case reads

Z
∞

0

dz
PðzÞ

zþ RðzÞ − 2λ
; ð88Þ

for some integral kernel P. For noncompact regulators that
are normalized to unity at z ¼ 0, and for λ > 1=2, we find
that for small z the denominator is negative, while for large
enough z, it is positive.
Therefore, the pole at X̂ ¼ 1 that we discovered in the

combined expansion is most likely an off-shell pole. To
corroborate this conclusion, we will analyze the classical
equations of motion of the system. Its action is

S ¼ −
1

16πGN

Z
d4x

ffiffiffi
g

p ½R − 2Λ� þ
Z

d4x
ffiffiffi
g

p
X ; ð89Þ

giving rise to the classical equations of motion,

Rμν −
1

4
Rgμν ¼ 16πGN

�
1

2
DμΦDνΦ −

1

4
gμνX

�
; ð90Þ

R − 4Λ ¼ 16π GN X; ð91Þ

DμDμΦ ¼ 0: ð92Þ

The first and second lines are the traceless and trace part
of the gravitational field equations, respectively, and the
third line is the equation of motion for the scalar field.
Contracting (90) with two factors of DΦ leads to

RμνDμΦDνΦ −
1

2
RX ¼ 24πGN X 2: ð93Þ

We see that a metric with vanishing curvature is only
on-shell whenever X ¼ 0 (or GN ¼ 0). Conversely, any
configuration with nonvanishing X , and hence also non-
vanishing X, will be off-shell in a flat spacetime.
In this spirit, the expansions of K in X or g, as we

employed in Secs. IVA and IV B, are expansions about an
on-shell background. By contrast, the combined expansion
of Sec. IV C beyond Nmax ¼ 0 is clearly an off-shell
expansion. Divergences in this expansion are thus likely

to be caused by the choice of an off-shell background.
From this reasoning, we do not expect the divergences at
gX ¼ 1=16π in the combined expansion to cancel when
resumming the coefficients Mn;�.

E. Analysis of the truncation error

We have presented approximations to the SGFP for the
gravity-scalar system based on three different expansion
schemes. A natural question to ask is about the quality of
the different approximation schemes and the respective
truncation error in lack of a global solution. In this section,
we study the relative error between the left-hand and the
right-hand side of the fixed point Eq. (63) obtained in the
three expansion schemes.
We define the relative error as

ΔðX; gÞ ¼
���� 4KðXÞ − Xð4þ ηΦÞK0ðXÞ − F

4KðXÞ − Xð4þ ηΦÞK0ðXÞ
����; ð94Þ

where we insert a given approximation for K and ηΦ at the
SGFP. For an exact fixed point solution satisfying (63) the
relative error ΔðX; gÞ vanishes for all values of X and g. For
approximate fixed point solutions obtained by one of the
expansion schemes discussed above, the relative error
ΔðX; gÞ will be nonvanishing. Thus, we can probe the
quality of a given approximation by evaluating ΔðX; gÞ in
the ðg; XÞ-plane. In the following, we use the notation
ΔXðX; gÞ, ΔgðX; gÞ, and ΔgXðX; gÞ to denote the relative
error associated to the expansion in X, g and the combined
expansion, respectively.
Before commenting on the results, let us briefly discuss

the evaluation of the relative error ΔðX; gÞ. From the
definition of ΔðX; gÞ, we need to evaluate F on the
approximate fixed point solution obtained by the different
expansion schemes. From (64), we can see that the
evaluation of F involves two integrals. With the Litim
regulator, we can perform the radial integral analytically.
However, we can only perform the angular integral numeri-
cally. Thus, to evaluate the relative error ΔðX; gÞ in the
ðg; XÞ-plane, we first need to fix numerical values for X and
g and then compute F for a given approximate partial fixed
point solution. We repeated this procedure for values of X
and g between 0 and 1=2, with grid size δX ¼ δg ¼ 10−3.
In Fig. 14, we plot contour lines where ΔðX; gÞ ¼ 10−3

(0.1% error) for the X expansion (left panel) and the g
expansion (right panel), for different values of Nmax. Each
contour line defines an upper bound to the region where
ΔðX; gÞ ≤ 10−3. Comparing the two panels in Fig. 14, we
can see that the overall qualitative picture is relatively
similar for both expansion schemes. As we see, some of the
contour lines exhibit a few spikes. By increasing the
numerical precision, we have checked that these are not
numerical instabilities but rather features of the given
truncation. In particular, they are caused by near cancella-
tions in the numerator of (94). In both expansion schemes,

DE BRITO, KNORR, and SCHIFFER PHYS. REV. D 108, 026004 (2023)

026004-22



the main result is that the quality of the truncation gets
better when increasing Nmax and when reducing the value
of the product gX. Apart from the spikes, each contour line
can be approximated by a hyperbola of the type g ∝ X−1,
where the proportionality coefficient depends on Nmax and
on the values of the relative error.
Furthermore, we note that all contour lines shown in

Fig. 14 satisfy the inequality 16πgX < 1. For values of X
and g such that 16πgX > 1, our numerical checks lead to
ΔðX; gÞ ≥ 1, indicating that the approximations obtained
in the X and g expansions are not reliable in that region.
This result is in line with the combined expansion studied
in Sec. IV C, where the functions Mn;� display a pole at
X̂ ¼ 16πgX ¼ 1 and the general on-shell assessment in
Sec. IV D.
Now, we evaluate the quality of the combined expansion

discussed in Sec. IV C. In Fig. 15, we show contour
plots representing the relative error ΔgXðX; gÞ for
Nmax ∈ f0; 1; 2g. The different colors correspond to

different upper bounds on ΔgXðX; gÞ. We focus on the
region defined by 16πgX < 1.
From Fig. 15, we note that the region in red, where the

relative error is smaller than 0.1%, gets larger when we
increase Nmax. This is an indication that the quality of the
combined expansion gets better with increasing Nmax. This
result is in accordance with the previous expansion schemes.
However, comparing Figs. 14 and 15 we see a different
pattern in the way that the boundary of the regions with a
relative error smaller than 0.1% evolves with respect toNmax.
To have a quantitative measure on how the relative error

changes as a function of Nmax, we introduce the following
quantity:

CiðNmax;ΔÞ ¼ 16πg2Δ; ð95Þ

where we define gΔ as the smallest value for which
ΔðX ¼ gΔ; gΔÞ ¼ Δ, and where the subscript i indicates
the expansion scheme of K.

FIG. 15. Regions corresponding to different upper bounds on the relative error ΔgX for the combined expansion. From left to right,
we show the results for Nmax ¼ 0, 1, 2. The dashed purple line indicates the position of the pole X̂ ¼ 16πgX ¼ 1.

FIG. 14. Contour lines in the ðg; XÞ-plane where the relative error associated with the approximate fixed point solutions obtained via
an expansion in X (left panel) and g (right panel) is 0.1% (i.e., Δ ¼ 10−3). In both panels we plot contour lines associated with various
values of Nmax. Below each of the contour lines, the value of the relative error for the corresponding truncation decreases. The contour
lines exhibit some spikes that we attribute to features of the truncation and not numerical instabilities. For visual reference, we also plot a
dashed magenta line corresponding to X̂ ¼ 16πgX ¼ 1. For all values of Nmax, we have verified that the relative error exceeds Δ ¼ 1
above the line 16πgX ¼ 1.

ON THE WEAK-GRAVITY BOUND FOR A SHIFT-SYMMETRIC … PHYS. REV. D 108, 026004 (2023)

026004-23



In Fig. 16, we plot CiðNmax;Δ ¼ 10−3Þ as a function of
Nmax, for the three expansion schemes used in this work.
Comparing the data corresponding to the expansions in X
and g, we note that both truncation schemes share the same
qualitative behavior: the distance to the line where the error
exceeds Δ increases, but eventually saturates with Ci < 1.
On the quantitative level, the most important difference
is that Cg grows larger than CX. This indicates that the
g expansion has a larger radius of convergence than the
X expansion.
Concerning the oscillation of the points in Fig. 16, we

attribute this behavior as a consequence of the same type of
truncation fluctuations that generate the spikes in Fig. 14.
For example, for Nmax ¼ 27 (in the g expansion) the point
XΔ ¼ gΔ lies partially within one of the spikes in the
corresponding contour line shown in Fig. 14. This some-
times leads to larger values for CgðNmax;Δ ¼ 10−3Þ.
Finally, in Fig. 16 we also included points corresponding

to the combined expansion for Nmax ∈ f0; 1; 2g. In this
case, we note that for Nmax ¼ 2, CgX already exceeds CX for
all Nmax ≤ 29 and reaches approximately the same level as
the Cg with the highest value of Nmax. This remarkable
feature indicates the superiority of the combined expansion
compared with the other expansion schemes explored in
this paper.

F. Summary and discussion of the gravity-scalar system

In this section, we studied the shift-symmetric scalar
system when minimally coupled to gravity. As a first step,
we explored the same expansion of K in powers of X as in
Sec. III, which is the only expansion that has been studied
in the literature so far. We discovered a qualitatively
different behavior of the SGFP for even and odd Nmax:
while the SGFP vanishes into the complex plane due to the
collision with a spurious partial fixed point for even Nmax,

the SGFP remains real and numerically stable for values
of g of at least g ≈ 2 for odd Nmax, see Fig. 9. Therefore,
within our truncation, the presence of a partial fixed point
collision can be easily circumvented by restricting to an
odd Nmax. We have also introduced a new notion of the
WGB related to the number of relevant operators at
the SGFP.
Investigating different choices for the gauge parameter

βh and two different regulators revealed that the location
of the partial fixed point collision for even Nmax is not
numerically stable, see the left panel of Fig. 11. This
finding is not surprising in light of the results of Sec. III:
there, we already concluded that only the GFP of the pure
scalar system is a stable fixed point. Accordingly, a WGB
that results from a collision of the SGFP with another fixed
point can only be a truncation artifact since all other fixed
points of the scalar system are truncation artifacts.
Conversely, for odd Nmax the SGFP is numerically

stable, also under changes of the gauge parameter βh
and the two choices for the regulator, see the right panel
of Fig. 11.
We then studied the SGFP within an expansion in powers

of g. After fixing the constants of integration by demanding
regularity atX ¼ 0 and normalizability forX → ∞, the fixed
point solution for the expansion coefficients in this expan-
sion are polynomials in X. This means that the expansion
of K in g and in X are not independent expansions. The
expansion also fixes all integration constants order by order
in g, complementing the expansion in X.
Furthermore, the expansion in g shows that a combined

expansion of the form (78) is better suited to retain global
information in X. Indeed, the expansion coefficients in this
combined expansion at the fixed point are nonpolynomial
in gX, see (83). However, this expansion also features a
divergence at gX ¼ 1=16π, which puts a strict limit on the
region of validity of this expansion.
In Sec. IV D we have studied the origin of the pole at

gX ¼ 1=16π. We found two independent indications that
this pole is an off-shell pole similar to the well-known
one at λ ¼ 1=2 in the gravitational propagator on a flat
background: first, by studying the scalar contribution to the
flow equation, we were able to show that its denominator
changes sign as a function of the angular variable x. Upon
integration over x this will lead to a pole. Second, by
studying the classical equations of motion of the gravity-
scalar system, we concluded that only a vanishing X or g
can be on shell on a flat background. Therefore, the
expansions in X and g employed in this section are on
shell. Conversely, the combined expansion, which exhibits
the pole at gX ¼ 1=16π, is an expansion about an off-shell
background.
Finally, in Sec. IV E we studied in which region in the

ðg; XÞ-plane our truncation is reliable. For this purpose we
evaluated the left- and right-hand side of the flow equation
at a truncated fixed point and investigated for which values

FIG. 16. CiðNmax;Δ ¼ 10−3Þ as a function of Nmax, for the
three expansion schemes discussed in Sec. IV. In both the X
expansion and the g expansion, Ci saturates at a value lower than
unity. The combined expansion shows overall a much smaller
error and correspondingly a much quicker convergence.
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of X and g the relative difference between both sides is
small. For all employed expansions, we find that the viable
region generally grows when increasing Nmax, see Figs. 14
and 15. Comparing the different expansions, we further-
more find that the combined expansion (to order Nmax ¼ 2)
outperforms the expansion in X (to order Nmax ¼ 29) and
performs similarly well as the expansion in g (to order
Nmax ¼ 29), see Fig. 16.

V. SUMMARY AND CONCLUSIONS

In this paper, we have investigated a system of a shift-
symmetric scalar field with and without the inclusion
of gravitational fluctuations. In particular, we considered
the flow equation for a function of the kinetic term of the
scalar field. The goal of our study was to investigate the
WGB that separates the theory space into a weak and a
strong gravity regime.
The WGB, as discussed in the literature

[19,20,23,25,28,30,31,106], results from the collision of
two partial fixed points that are already present in the
absence of gravity. Thus, to better understand this version
of the WGB, in Sec. III we performed a broad analysis
of the fixed point structure of a shift-symmetric scalar
theory, extending previous work in [111]. We found robust
indications that the only reliable fixed point in a shift-
symmetric scalar theory is the GFP. We interpret the
interacting fixed point candidates that appear in polynomial
truncations as being truncation artifacts. This conclusion is
based on the findings discussed in Sec. III:

(i) The kinetic function of the potential interacting fixed
points approachesK�ðXÞ ¼ X exponentially quickly
when increasing the truncation order Nmax.

(ii) The analysis of perturbations of the GFP shows that
the interacting fixed point candidates are related to
eigenperturbations that are not normalizable within
the Hilbert space L that defines the discrete spec-
trum of critical exponents.

With this interpretation in mind, the partial fixed point
collision that causes the WGB is likely to be a truncation
artifact in our system.
In Sec. IV, we studied the shift-symmetric scalar field

minimally coupled to gravity. With the understanding that
the partial fixed point collision is a truncation artifact, it is
important to search for approximation schemes that can
avoid such a spurious behavior. We started by performing
a detailed investigation of the fixed point structure
obtained via polynomial truncations, extending previous
analyses by including higher order terms in the scalar
sector. We find that the partial fixed point collision seems
to be a general artifact of truncations characterized by
an even Nmax. For odd Nmax, the SGFP remains under
control for large values of g. We also introduced a new
notion of the WGB relying on the observation that the
SGFP receives additional relevant operators in the strong
gravity regime. This new notion thus distinguishes the

weak from the strong gravity regime, not by the presence
or absence of an UV completion via the SGFP, but rather
by a comparison with the spectrum of the GFP. An UV
completion that happens to be in the strong gravity
regime is thus less predictive than if it would be in the
weak gravity regime.
To get further insight into the nature and stability of

the SGFP, we studied two other expansion schemes.
Expanding KðXÞ in powers of g, we find fixed point
solutions K�ðXÞ that are also polynomial in X. Thus, the
truncation scheme based on an expansion in g does not
capture global information of K�ðXÞ. Inspired by this
result, we investigated a combined expansion scheme
where the fixed point solution retains global information
on the product gX. This expansion scheme shows a
divergence at gX ¼ 1=16π, indicating a hard limit of the
region where the expansion is applicable. This pole is a
consequence of the fact that the combined expansion is
about an off-shell background. To test the quality of the
truncation schemes employed in this work, we performed
an analysis of the relative error of our fixed point solutions.
The combined expansion seems to be more efficient than
the expansions in X and g.
In conclusion, we find evidence that the pure scalar

system only features one stable fixed point, namely the
GFP. Coupling the system to gravity, a partial fixed point
collision appears in an expansion of the system only to even
powers in the kinetic term. However, for odd powers,
and also for expansions in different variables, the SGFP
remains stable. Hence, we find indications that the WGB as
discussed in the literature seems to be a truncation artifact,
but there is nevertheless a way to separate the weak from
the strong gravity regime.
As a disclaimer, let us point out that our ansatz for the

action for the scalar field is not based on a systematic
expansion in derivatives or the classical mass dimension.
Instead, it consists of a very specific cut in theory space,
similar to the fðRÞ truncation in quantum gravity. As a
consequence, at a given order in the expansion, there are
several additional tensor structures of lower canonical mass
dimension that we neglected in this study and that are likely
more important than higher order terms that we have
retained. These might give rise to a stable nontrivial fixed
point in the pure matter sector that eventually could give
rise to a WGB induced by a partial fixed point collision of
the SGFP.
The WGB based on such a partial fixed point collision

has also been found for Abelian gauge fields [23,108]. It
would be interesting to understand if the induced gauge
interactions feature a similar structure as the induced scalar
interactions discussed here. The universality for different
matter fields discovered in [111] might suggest this.
However, a careful study of the coupled gravity-photon
system is necessary to investigate this further. We plan to
report on this elsewhere.
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APPENDIX: REGULATOR, GAUGE, AND
PARAMETRIZATION DEPENDENCIES

Off-shell quantities like beta functions or fixed point
values, but within truncations of the flow equation even
physical quantities like critical exponents, depend on
unphysical choices like that of the gauge parameters and
the regulator. Such dependencies can be interpreted as a
quantifier of the robustness of the truncation: results that
are qualitatively or even quantitatively independent of
unphysical choices are likely to be physical and not

artifacts of the truncation. Conversely, if results depend
on these unphysical choices on a qualitative level, then one
has to critically assess the quality of the truncation. In this
appendix, we discuss gauge, regulator, and parametrization
dependencies of the gravity-scalar theory studied in the
main part.

1. Pure scalar system

We start with the pure scalar system, where the only
spurious dependence is related to the regulator choice. The
results presented in Sec. III were obtained with the Litim
regulator (13). In the following, we supplement our analysis
with results obtained with the exponential regulator (14).
In Fig. 17, we show the values of K2;� for the different

fixed point solutions of the pure scalar system. The fixed
point structure obtained with the exponential regulator
shares the same qualitative behavior as the fixed point
structure obtained with Litim regulator (cf. Fig. 2). In
particular, all fixed point values K2;� show an exponential
falloff as a function of Nmax.
On the quantitative level, the values of K2;� for the Litim

regulator are approximately 7 times the corresponding
values obtained with the exponential regulator. Such a
difference on numerical values is not surprising given that
fixed point values are, in general, nonuniversal quantities.
Nevertheless, it is remarkable that the ratio between
K2;�jLitim and K2;�jexp is approximately the same for all
fixed points and for all values of Nmax. Furthermore,

FIG. 17. Fixed point structure of the pure scalar system for the exponential regulator as a function of the maximal order of the
polynomial expansion Nmax, up to Nmax ¼ 70. The black markers indicate the real fixed point values K2;� for a given truncation. The
dashed lines indicate the evolution of a given fixed point when increasing Nmax.
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the deviation of the exponential falloff of the first, second,
and eighth interacting fixed point (the ones displayed in
Fig. 4) between the Litim and the exponential regulator is
on the level of 0.2%, 0.3%, and 0.1%, respectively.
The critical exponents associated with the first pure

scalar interacting fixed point (cf. Fig. 18) agree quantita-
tively between both regulators. For the simplest truncation
(Nmax ¼ 2), the critical exponents computed with the Litim
and the exponential regulator deviate by approximately 4%.

The agreement improves significantly for larger Nmax: for
each Nmax we compute the relative difference between the
critical exponents for both regulators. In Fig. 19 we show
the maximal relative difference over all exponents for each
Nmax. It decreases monotonically for increasing Nmax,
down to 5 × 10−9 for Nmax ¼ 70.
Besides the critical exponents, also the eigenvectors agree

on a quantitative level. Also with the exponential regulator,
we find that: The coupling with the largest overlap with the
relevant direction of the first interacting fixed point is
the canonically most irrelevant coupling for each Nmax;
The same is true for the complex-conjugate pairs of critical
exponents; For the irrelevant directions, the largest overlap is
with the couplings of the canonical mass dimension closest
to the critical exponent. For Nmax ≥ 35, the maximum
relative deviation of a component of any of the eigenvectors
does not exceed 0.5% between the eigenvectors obtained
using a Litim or an exponential regulator.
In summary, crucial properties of the pure scalar system,

like the exponential falloff of fixed point values, critical
exponents, and eigenvectors, agree on a qualitative, and for
large enough Nmax even on a quantitative level. This is an
indication that these properties of the system are robust and
trustworthy and not induced by the regulator choice.

2. Gravity-scalar system

When coupling the pure scalar system to gravity, addi-
tional spurious dependencies are introduced. Besides the

FIG. 18. Critical exponents of the first interacting pure scalar fixed point computed with exponential regulator as a function of the
truncation order Nmax. The horizontal lines indicate the spacing of −4 between critical exponents that is expected at the Gaussian fixed
point. Furthermore, the magenta dashed line is given by y ¼ 4 − 4Nmax and indicates the canonical mass dimension of the canonically
most irrelevant coupling added in a given truncation.

FIG. 19. Maximum relative difference of critical exponents of
the pure scalar system between the Litim (13) and the exponential
regulator (14). While the critical exponents show a deviation of
few percent for Nmax ¼ 2, the maximal deviation decreases with
Nmax to ∼5 × 10−9 at Nmax ¼ 70.
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choice of the regulator discussed for the pure scalar case,
the choice of the gauge parameter βh, as well as the
parametrization of metric fluctuations, can influence the
results in truncations.
We again consider the Litim and the exponential regu-

lator introduced in (13) and (14), respectively. Regarding
the dependence on the gauge parameter βh, we focus on the
choices that are the most common in the Asymptotic Safety
literature, namely βh ∈ f−1; 0; 1g, and the limit βh → −∞.
We do not consider choices for the gauge parameter αh
other than the Landau limit, αh → 0. This choice is well
motivated as it corresponds to a fixed point for both gauge
parameters [120,121].
Concerning parametrization dependence, besides the

linear split (6) used in the main text, we also explore the
exponential parametrization defined as

gμν ¼ ḡμαðeh· ·Þαν: ðA1Þ
In contrast to the linear parametrization, the exponential
parametrization is an example of a bijective and signature-
preserving map between the space of metric fluctuations
and the space of Euclidean metrics [144–146].6
On a more technical level, together with the exponential

parametrization and in order to reduce the computational
complexity, we employ an additional approximation
regarding the anomalous dimension ηΦ. Specifically, we
consider a perturbative treatment for the scalar anomalous
dimension ηΦ, corresponding to neglecting its contributions
due to the regulator insertion k∂kRkðp2Þ.

In the following, for definiteness we focus on the
regulator, gauge, and parametrization dependencies of
specific quantities in the polynomial expansion in X,
see (22). As in Sec. IVA, we separate our analysis for
even and odd values for Nmax. For even Nmax, we focus on
the critical value gcrit defined by the collision between the
SGFP and the first interacting fixed point. For oddNmax, we
focus on gðK2;� ¼ 0Þ, i.e., the value of g for which the fixed
point value of K2;� (associated with the SGFP) is zero.
For the exponential parametrization, we show these two

quantities for different choices of the regulator and the
gauge in Fig. 20. Furthermore, the same quantities, but
obtained within a linear parametrization of metric fluctua-
tions, are shown in Fig. 11. Overall, the qualitative picture
for the exponential parametrization is very similar to that
obtained with the linear parametrization. Except for a small
bump for small values of Nmax, our results show that gcrit
and gðK2;� ¼ 0Þ decrease for increasing values of Nmax.
Comparing Figs. 11 and 20, for the linear parametrization
the regulator dependence is smaller than the gauge depend-
ence, while for the exponential parametrization the regu-
lator dependence is dominant over the gauge dependence.
Also with an exponential parametrization the fiducial
partial fixed point collision can be circumvented by
restricting to odd values of Nmax.
Now, we turn to the gauge choice βh → −∞, both for the

linear and the exponential parametrization. The results
obtained with this gauge choice show some qualitative
differences in comparison with the previous cases.
For the exponential parametrization and the Limit

regulator, we obtain results that are qualitatively similar
to the cases with βh ∈ f−1; 0; 1g, cf. Figs. 20 and 21.
For the exponential regulator, we observe a qualitative
difference. In this case, the SGFP features a fixed point

FIG. 20. Aspects of gauge and regulator dependencies of the SGFP, obtained with the exponential parametrization. Left panel: we
show the (normalized) critical value of the Newton coupling gcrit as a function of Nmax for different choices of the gauge parameter βh
and the regulator. For all displayed choices, the fixed point collision of the SGFP that gives rise to gcrit is only present for even Nmax.
Right panel: we show the value of the Newton coupling where the partial fixed point value K2;� at the SGFP crosses zero, normalized to
the Nmax ¼ 3 case. We see that the qualitative behavior agrees for all displayed choices of gauge fixing and regulator. Furthermore, we
note that the results obtained with the exponential parametrization are qualitatively similar to the results obtained with the linear
parametrization (cf. Fig. 11).

6The exponential parametrization is also particularly conven-
ient in the context of unimodular quantum gravity since it allows
us to express the unimodularity condition detðgμνÞ ¼ 1 as a
tracelessness condition hμμ ¼ 0 [97,147–152].
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collision for most values of Nmax, including odd values.
However, for some specific odd values (Nmax ¼ 5, 7, 9), the
SGFP remains real for all values of g within the range of
investigation.
In Fig. 22, we show our results for the linear para-

metrization. Here, we see that the SGFP features a partial
fixed point collision for all investigated values of Nmax.
This is a significant difference with respect to the cases
βh ∈ f−1; 0; 1g, where we observed partial fixed point
collisions involving the SGFP only for even values of Nmax.
Furthermore, the pattern for the critical value of g for
βh → −∞ is much more irregular than what we observe for
the other explored gauge choices. Such an irregular pattern
is realized both for the Litim and the exponential regulator.

To better understand the behavior for βh → −∞, we
perform a more detailed analysis of the gauge dependence
of the quantities gcrit and gðK2;� ¼ 0Þ. For simplicity, we
focus only on results obtained with the Litim regulator
and the linear metric parametrization. We have checked that
for odd values of Nmax, there is a critical value βcrit that
separates two regimes: (i) for βh > βcrit we observe a
pattern similar to Fig. 11, where there is no partial fixed
point collision involving the SGFP for odd Nmax, and
(ii) for βh < βcrit, the pattern of partial fixed point collisions
becomes more irregular (similar to Fig. 22), and we observe
collisions involving the SGFP for all values of Nmax.
In Fig. 23, we plot βcrit as a function of Nmax. As we see,
the value of βcrit increases for small values of Nmax and
seems to stabilize around a value of about −5 for large
values of Nmax.

FIG. 22. Normalized value of gcrit as a function of Nmax for the
gauge choice βh → −∞ and linear metric parametrization for
both the Litim and the exponential regulator. Different from the
gauge choices depicted in Fig. 11, here we observe partial fixed
point collision for even and odd values of Nmax. Furthermore, the
pattern of the partial fixed point collision is much more irregular
than what we observed for βh ∈ f−1; 0; 1g.

FIG. 21. Aspects of the SGFP obtained with the exponential parametrization and the gauge choice βh → −∞, with both the Litim and
the exponential regulator. Left panel: we show the normalized value of gcrit as a function of Nmax. Right panel: we show the value of the
Newton coupling where the partial fixed point value K2;� at the SGFP crosses zero. We normalize the results with respect to Nmax ¼ 3

(Litim regulator) or Nmax ¼ 5 (exponential regulator). For the Litim regulator, the results shown in this plot are qualitatively similar to
the other gauge choices depicted in Fig. 20. For the exponential regulator, we see a more irregular pattern. In this case, we observe partial
fixed point collision for all values of Nmax, except for Nmax ¼ 5, 7, 9.

FIG. 23. βcrit as a function of Nmax. This result corresponds to
calculations done with the Litim regulator and the linear metric
parametrization. The value of βcrit seems to stabilize around a
value of −5 for large Nmax.
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