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In this work, we show that the two proposals associated with the mutual information of matter fields can
be given for an eternal Schwarzschild black hole in de Sitter spacetime. These proposals also depict the
status of associated entanglement wedges and their role-play in obtaining the correct Page curve of
radiation. The first proposal has been given for the before Page time scenario, which shows that the mutual
information IðRþ

H∶R−
HÞ vanishes at a certain value of the observer’s time tbH ¼ tH (where tH ≪ βH). We

claim that this is the Hartman-Maldacena time at which the entanglement wedge associated with Rþ
H ∪ R−

H

gets disconnected and the fine-grained radiation entropy has the form SðRHÞ ∼ logðβHÞ. The second
proposal depicts the fact that just after the Page time, when the replica wormholes are the dominating saddle
points, the mutual information IðBþ

H∶B−
HÞ vanishes as soon as the time difference taH − tbH equals the

scrambling time. Holographically, this reflects that the entanglement wedge associated with Bþ
H ∪ B−

H

jumps to the disconnected phase at this particular timescale. Furthermore, these two proposals lead us to the
correct time evolution of the fine-grained entropy of radiation as portrayed by the Page curve. We
have also shown that similar observations can be obtained for the radiation associated with the
cosmological horizon.

DOI: 10.1103/PhysRevD.108.026003

I. INTRODUCTION

Hawking radiation is one of the most fascinating and
mysterious phenomena in theoretical physics, and it is
caused by pair formation that takes place in the black hole’s
near-horizon area [1]. This phenomenon has drawn a lot of
attention in the context of modern theoretical physics. This
is because, as a quantum mechanical radiation, its presence
provides a clear indication of the microscopic physics
underlying the general relativity theory. This has motivated
us to probe its quantum mechanical components, such as
the von Neumann entropy [2]. However, the investigation
of the von Neumann entropy of the Hawking radiation has
in turn provided us with a paradox. The paradox can be
described in the following way. It has been noted that the
creation of a black hole, which results from the gravita-
tional collapse of a massive shell, is associated with a pure
state. This implies that the corresponding von Neumann
entropy is zero. Additionally, according to the theory of
unitary evolution, the final state at the end of the evapo-
ration process must likewise be a pure state, meaning that
the von Neumann entropy once again must vanish at the

end of the evaporation process. Hawking’s semiclassical
analysis, however, demonstrated that for an evaporating
black hole, the von Neumann entropy of Hawking radiation
is an ever-increasing quantity with regard to the observer’s
time [3], and it does not disappear even if the black hole has
completely evaporated.
There is another way to understand this current scenario

that is more suitable for the case of an eternal black hole.
The von Neumann entropy of radiation is a well-known
example of the fine-grained type of entropy1 and on the
other hand, the thermodynamic entropy of the black hole is
a perfect example of the coarse-grained type of entropy
[4–6]). Further, as the state corresponding to the whole
system (radiation subsystem Rþ black hole subsystem Rc)
is a pure state, the fine-grained entropy of radiation is equal to
the fine-grained entropy of the black hole subsystem, that
is, SvNðRÞ ¼ SvNðRcÞ. This observation together with
Hawking’s semiclassical analysis implies that after a certain
amount of time, the fine-grained entropy of the black hole
subsystem will be greater than the coarse-grained entropy
of the black hole [SvNðRÞ > SBH]. This fact is self-
contradictory as the basic definition of coarse-grained
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1It is also to be noted that the entanglement entropy of the
radiation is identified as the von Neumann entropy of matter
fields located on the region R outside the black hole.

PHYSICAL REVIEW D 108, 026003 (2023)

2470-0010=2023=108(2)=026003(18) 026003-1 © 2023 American Physical Society

https://orcid.org/0000-0001-6478-1035
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.026003&domain=pdf&date_stamp=2023-07-06
https://doi.org/10.1103/PhysRevD.108.026003
https://doi.org/10.1103/PhysRevD.108.026003
https://doi.org/10.1103/PhysRevD.108.026003
https://doi.org/10.1103/PhysRevD.108.026003


entropy is associated with the fact that it is obtained by
maximizing the fine-grained entropy over all possible states.
The above-mentioned observation provides us an entropic
way to understand the paradoxical situation.
So a natural question arises regarding the correct time

evolution of the von Neumann entropy of Hawking
radiation. This was efficiently addressed by the so-called
Page curve. The Page curve suggested that in order to
satisfy the unitarity condition, the von Neumann entropy of
the radiation shall start from zero and monotonically
increase up to the Page time and then again drop down
to zero, signifying the end of the evaporation process [7,8].
The contradiction only emerges after the Page time as after
this particular time one usually gets SvNðRÞ > SBH.
Numerous intriguing methods have been developed to
handle this problem while taking into account the unitarity
evolution of radiation [9–12]. Recently, the idea of entan-
glement wedge reconstruction from Hawking radiation has
proposed that certain regions in the interior of a black hole
may be responsible for the fine-grained entropy of that
radiation [13–16]. These auxiliary areas are known as
islands, and the surfaces at their ends are known as quantum
extremal surfaces (QES) [17–20]. It is to be mentioned that
the quantum extremal surfaces are the quantum corrected
classical extremal surfaces [21,22]. The fine-grained entropy
of the Hawking radiation in the presence of the island in the
black hole interior is provided by

SðRÞ ¼ min ext
I

�
Areað∂IÞ
4GN

þ SvNðI ∪ RÞ
�
: ð1Þ

From a semiclassical perspective, the islands come from the
replica wormhole saddle points (with the appropriate boun-
dary conditions) of the gravitational path integral, which
occur as a result of the use of the replicamethod in dynamical
gravitational background [23–26]. Because of this remark-
able observation, the island formulation has emerged as an
important prescription to be studied [27–50].
It is important to note that while the majority of the

above-mentioned studies are restricted to the black holes in
asymptotically flat or anti–de Sitter (AdS) spacetimes, the
most recent finding indicates that our universe is of de Sitter
nature. Therefore, it makes sense to investigate the effect of
the positive cosmological constant in the context of the
information paradox problem. Keeping this in mind, we
will consider the eternal Schwarzschild–de Sitter (SdS)
spacetime as the black hole spacetime in this paper. Given
that these black holes are formed during the early infla-
tionary stage of our universe, the information paradox
problem for the Schwarzschild–de Sitter black holes is
crucial. It also offers an ideal toy model for global
structures of isolated black holes in our universe, keeping
in mind the current phase of our universe’s accelerated
expansion. There are also causally disconnected areas in de
Sitter space, which is similar to the situation with black

holes. Therefore, an observer may only access the regions
of the universe that are enclosed by their own horizon.
Furthermore, the cosmological event horizons emit and
take in radiation similar to the black hole (Gibbons-
Hawking radiation). In general, the entropy creation of
the cosmological horizon is an observer-dependent feature
in contrast to the black hole. It is caused by a lack of
knowledge about what exists outside of the cosmic horizon.
In this work, we will try to obtain the correct Page curve for
the black hole horizon of the SdS black hole and the Page-
like curve for the cosmological horizon of the same black
hole. We shall do this by keeping in mind the island
formulation. It is also to be mentioned that apart from the
approach (gravitational setup) that we have followed in this
work, there is another way (gravitational setup) to address
this entropic paradox. This is known as the doubly holo-
graphic setup [51–59]. Some very interesting works in this
setup can be found in [14,28,50,60–66].
In [67,68] it was shown that the mutual information of

various subsystems plays a crucial role in obtaining the
correct Page curve of Hawking radiation. To be precise, in
[67] it was shown that just after the Page time the mutual
information of matter fields localized onRþ andR− intervals
vanishes, which eventually leads to a time-independent
profile of fine-grained entropy SðRÞ. Furthermore, in [68]
the previous observation was exploited in detail and two
proposals were given regarding the saturation of mutual
information (of various subsystems) for two different time
domains (before and after the Page time). However, these
works were only restricted to the eternal black holes in AdS
and asymptotically flat spacetime. In this work, we shall see
whether these proposals hold for eternal black holes in de
Sitter spacetime or not. We would like to mention that our
work does not take into account certain subtleties in gravi-
tational theories, for example diffeomorphism invariance,
which enables an arbitrary definition of a subregion. A
discussion on this aspect can be found in [69–71] which
shows that it can have important implications to quantum
gravity.

II. BRIEF DISCUSSION ON THE
KOTTLER SPACETIME

The SdS spacetime metric is the unique solution of
Einstein’s vacuum field equation with positive cosmologi-
cal constant in (3þ 1)-spacetime dimensions. This solution
is sometimes also denoted as the Kottler solution. The
metric of the SdS solution has the following form [72]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
; ð2Þ

where M is the mass parameter and Λ is the cosmological
constant. The above given lapse function in terms of the
AdS radius can be recast as

CHOWDHURY, SAHA, and GANGOPADHYAY PHYS. REV. D 108, 026003 (2023)

026003-2



fðrÞ ¼ 1 −
2M
r

−
r2

L2
AdS

: ð3Þ

We can recover the asymptotically flat Schwarzschild
spacetime in the limit Λ → 0 (or LAdS → ∞).
We shall now discuss the horizon structure of the Kottler

metric. One can show that the horizon structure depends on
the value of the cosmological constant (Λ) as there exists a
critical value of Λ ¼ Λcrit ¼ 1

9M2 above which the event
horizon does not exist and the corresponding solution is
then denoted as the naked singularity. However, in the
range 0 < Λ < Λcrit (or m

LAdS
< 1

3
ffiffi
3

p ), there are three sol-

utions for fðrÞ ¼ 0. Out of these three solutions only two
are physical solutions [72,73], one is known as the black
hole horizon ðrHÞ and the other one is known as the
cosmological horizon ðrcÞ, rc > rH. Furthermore, in the
limit Λ → Λcrit there is a degenerate horizon [72]. In this
work, we will only consider the range 0 < Λ < Λcrit along
with the following form of the lapse function [74]:

fðrÞ ¼ 1

L2
AdSr

ðrH − rÞðr − rcÞðrþ rH þ rcÞ: ð4Þ

The expressions for the rH and rc (in terms of the mass
parameter and the cosmological constant) are obtained to
be [73,75,76]

rH ¼ 2ffiffiffiffi
Λ

p cos

�
π

3
þ arccosð3M ffiffiffiffi

Λ
p Þ

3

�
;

rc ¼
2ffiffiffiffi
Λ

p cos

�
π

3
−
arccosð3M ffiffiffiffi

Λ
p Þ

3

�
: ð5Þ

To proceed further, we shall now rewrite the metric in the
Kruskal coordinates. As there are two different choices
available for the horizons, there exist two different sets of
Kruskal coordinates. This is due to the reason that the
Kruskal coordinate transformations contain surface gravity
in the expressionwhich has different values corresponding to
the different event horizons. Thiswedenote as κH (associated
with the black hole horizon rH) and κc (associated with the
cosmological horizon rc). Keeping this in mind, one can
show two alternative forms of the metric in terms of the two
different Kruskal coordinates. This can be represented as
black horizon representation of the metric and the cosmo-
logical horizon description of the metric.
To obtain the form of the metric in the Kruskal

coordinates, we first introduce the tortoise coordinate that
satisfies the following transformation:

u ¼ t − r�ðrÞ; v ¼ tþ r�ðrÞ; ð6Þ

where r�ðrÞ is the tortoise coordinate, given as

r�ðrÞ ¼ αH lnðjrH − rjÞ − αc lnðjr − rcjÞ
þ α0 lnðrþ rH þ rcÞ: ð7Þ

The expressions of αH, αc, and α0 read

αH ¼ L2
AdSrH

ðrc − rHÞð2rH þ rcÞ
;

αc ¼
L2
AdSrc

ðrc − rHÞð2rc þ rHÞ
;

α0 ¼ L2
AdSðrH þ rcÞ

ð2rc þ rHÞð2rH þ rcÞ
: ð8Þ

We first introduce the black hole horizon description of the
metric. For the right wedge of the black hole horizon, the
Kruskal coordinates read

UH ¼ −e−κHðt−r�ðrÞÞ;

VH ¼ eκHðtþr�ðrÞÞ; ð9Þ

and for the left wedge it reads

UH ¼ eκHðtþr�ðrÞÞ;

VH ¼ −e−κHðt−r�ðrÞÞ; ð10Þ

where κH is the surface gravity associated with the black
hole horizon

κH ¼ ðrc − rHÞð2rH þ rcÞ
2L2

AdSrH
: ð11Þ

Further, one can obtain the following form of the Hawking
temperature associated with the black hole horizon:

TH ¼ κH
2π

¼ ðrc − rHÞð2rH þ rcÞ
4πL2

AdSrH
¼ 1

βH
: ð12Þ

In terms of the cosmological constant and the mass
parameter, the surface gravity ðκHÞ and Hawking temper-
ature associated with the black hole horizon read [76]

κH ¼
ffiffiffiffi
Λ

p
2
64 1

4 cos
�
1
3
arccosð3M ffiffiffiffi

Λ
p Þ þ π

3

� − cos

�
1

3
arccosð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�375; ð13Þ
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TH ¼
ffiffiffiffi
Λ

p

2π

2
64 1

4 cos
�
1
3
arccosð3M ffiffiffiffi

Λ
p Þ þ π

3

� − cos

�
1

3
arccosð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�375: ð14Þ

On the other hand, the Bekenstein-Hawking entropy for the black hole horizon is given by SBH ¼ πr2H
GN
. Finally, the black

horizon description of the metric in terms of the Kruskal coordinate reads

ds2 ¼ −F2ðrÞdUHdVH þ r2Ω2
2; F2ðrÞ ¼ fðrÞ

κ2H
e−2κHr

�ðrÞ; ð15Þ

where the detailed expression of FðrÞ has the following form:

FðrÞ ¼ 2LAdSrHffiffiffi
r

p jr − rcj
1
2

�
1þ rc

rH

�
2rHþrc
2rcþrH

��
ðrþ rc þ rHÞ

1
2

�
1−

r2c−r
2
H

rHð2rcþrH Þ

�
ð2rH þ rcÞðrc − rHÞ

: ð16Þ

We now move on to describe the metric in terms of the cosmological horizon. The Kruskal coordinates for the right
wedge of the cosmological horizon read

Uc ¼ −e−κcðt−r�ðrÞÞ;

Vc ¼ eκcðtþr�ðrÞÞ; ð17Þ

and for the left wedge, it reads

Uc ¼ eκcðtþr�ðrÞÞ;

Vc ¼ −e−κcðt−r�ðrÞÞ: ð18Þ

The surface gravity ðκcÞ and the Hawking temperature associated with the cosmological horizon have the following
respective forms:

κc ¼
ðrc − rHÞð2rc þ rHÞ

2L2
AdSrc

; ð19Þ

Tc ¼
κc
2π

¼ ðrc − rHÞð2rc þ rHÞ
4πL2

AdSrc
¼ 1

βc
: ð20Þ

The forms of κc and Tc in terms of the cosmological constant and mass parameter are given as [76]

κc ¼
ffiffiffiffi
Λ

p
2
64 1

4 cos
�
1
3
arccosð3M ffiffiffiffi

Λ
p Þ − π

3

� − cos

�
1

3
arccosð3M

ffiffiffiffi
Λ

p
Þ − π

3

�375; ð21Þ

Tc ¼
ffiffiffiffi
Λ

p

2π

2
64 1

4 cos
�
1
3
arccosð3M ffiffiffiffi

Λ
p Þ − π

3

� − cos

�
1

3
arccosð3M

ffiffiffiffi
Λ

p
Þ − π

3

�375: ð22Þ

Therefore the cosmological horizon description of the metric in terms of the Kruskal coordinates can be written
down as

ds2 ¼ −G2ðrÞdUcdVc þ r2dΩ2
2; G2ðrÞ ¼ fðrÞ

κ2c
e−2κcr

�ðrÞ; ð23Þ
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where the conformal factor GðrÞ has the following form:

GðrÞ ¼ 2LAdSrcffiffiffi
r

p jrH − rj
1
2

�
1−rH

rc

rHþ2rc
rcþ2rH

�
ðrþ rc þ rHÞ

1
2

�
1þ r2c−r

2
H

rcð2rHþrcÞ

�
ðrc − rHÞð2rc þ rHÞ

: ð24Þ

The above-mentioned two alternative descriptions of the
SdS metric can be understood in terms of the Penrose-
Carter diagrams. This we provide in Fig. 1 where two
physical horizons have been pointed out either of which can
be used to describe the spacetime equivalently. In this work,
our aim is to study the Page curve of radiation associated
with both Hawking radiation and Gibbons-Hawking radi-
ation. This can be done by isolating different patches of the
spacetime by introducing the thermal opaque membrane
[77–82]. These patches have been denoted as the black hole
patch and the cosmological patch in the literature. We
have shown this in Fig. 2. The principal reason behind

introducing this thermal opaque membrane lies in the fact
that we do not have any Kruskal coordinates which can
remove the coordinate singularities simultaneously from
both the black hole horizon and the cosmological horizon.
On the other hand, for the Schwarzschild–de Sitter space-
time the two horizons, namely the back hole horizon and
the cosmological horizon, can be thought of as two
different thermodynamic systems with different temper-
atures. Therefore they are not in the thermal equilibrium.
For a nonequilibrium system it is very difficult to study its
thermodynamic properties. Therefore, to make the analysis
simpler one has to ensure that the system (either the black
hole horizon or the cosmological horizon) is in thermal
equilibrium. The thermal opaque membrane does this job
[77–82]. In a multihorizon spacetime one can use a thermal
opaquemembrane to analyze one horizon by taking the other
one as a boundary. One can understand this thermal opaque
membrane by following the approach given in [76,81].
Let us consider the radial part of the Klein-Gordon

equation in SdS spacetime, which is found to be [76,81]

�
−

∂
2

∂t2
þ ∂

2

∂r�2

�
ψðrÞ þ VeffðrÞψðrÞ ¼ 0: ð25Þ

The explicit form of the effective potential ðVeffÞ can be
obtained by using the lapse function given in Eq. (2). This
reads [76,81]

Veff ¼
�
1 −

2M
r

−
Λr2

3

��
lðlþ 1Þ

r2
þ 2M

r3
−
Λ
3

�
:

FIG. 1. Penrose-Carter diagram of Schwarzschild–de Sitter spacetime. In the above, r ¼ rH represents the black hole event horizon
and r ¼ rc is the cosmological event horizon.

FIG. 2. SAdS spacetime with thermal opaque membrane.
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One can show that the above expression vanishes for both
the black hole horizon and the cosmological horizon. In
[76,81] it was shown that this effective potential can be
treated as the partition between the black hole and
cosmological horizons. To understand this in the Penrose
diagram one can introduce the Kruskal timelike and
spacelike coordinates for the black hole patch as

UH ¼ TH − RH; VH ¼ TH þ RH; ð26Þ

and similarly for the cosmological patch

Uc ¼ Tc − Rc; Vc ¼ Tc þ Rc: ð27Þ

By using the above Kruskal timelike and spacelike coor-
dinates, one can obtain the following [76];

−UHVH ¼ R2
H − T2

H ¼ e2κHr
�ðrÞ; ð28Þ

−UcVc ¼ R2
c − T2

c ¼ e2κcr
�ðrÞ: ð29Þ

The above results suggest that for r ¼ const, a hyperbola
(membrane) in the RHðcÞ − THðcÞ plane can be realized in
both the black hole and the cosmological patch.
On the other hand, it has been suggested that the analog

of “defect” in wedge holography is nothing but the
“thermal opaque membrane” in the Schwarzschild–de
Sitter eternal black hole. Gravity may be considered to
be sufficiently weak at these membranes because the
membrane in question is far from the black hole/de
Sitter patch. We now proceed to investigate the role of
mutual information of various subsystems in the Page curve
associated with a multievent horizon black hole spacetime.

III. ANALYSIS FOR THE BLACK HOLE PATCH

We now proceed to study the Page curve of Hawking
radiation for the SdS eternal black hole in 3þ 1 dimen-
sions. As we have mentioned already, in order to probe the

Hawking radiation we need to restrict ourselves to the black
hole patch by introducing the thermal opaque membrane to
freeze the cosmological horizon. We shall work with the
form of the metric given in Eq. (15) which corresponds to
the black hole horizon description of the SdS solution. On
the other hand, we assume that the whole spacetime is filled
with conformal matter of central charge c. To be more
precise, we will consider the matter to be a free conformal
field theory (CFT). We will incorporate the s-wave approxi-
mation in the conformalmatter sector [29,83,84]. The reason
behind this is that the process of the Hawking radiation is
dominated by the s-wave modes. Under this approximation
we can neglect the angular part of the metric. So we can
compute the entanglement entropy of the Hawking radiation
by using the 2d CFT formula [85,86]. Further, the s-wave
approximation in the matter sector also implies that we can
neglect themassivemodes of thematter fields.We can ignore
these massive modes of the matter fields because the
entangling regions are very far apart from each other, and
therefore the theory of the conformal matter fields reduces to
the 2d conformal field theory.
In this work, our motivation is to check whether the

proposals given in [67,68] (where the analysis is restricted
only to the eternal black holes in asymptotically AdS and flat
spacetime or else) hold for a spacetime geometry with the
positive cosmological constant. Particularly, in this section
we study the black hole patch of the Schwarzschild–de Sitter
spacetime and check whether the results reported in [67,68]
hold or not.
As mentioned earlier, the black hole patch is equivalent

to the Penrose diagram of the flat Schwarzschild black hole
embedded in the de Sitter spacetime with cosmological
horizons in both sides. We will focus on two scenarios here.
First, we will discuss what happens before the Page time
ðtPageH Þ, and then we will proceed to probe the after Page
time scenario. In the before the Page time scenario, we
intend to discuss the role of mutual information between
Rþ
H and R−

H (shown in the Penrose diagram Fig. 3) on the
Page curve, as there is no island contribution in the entropy

FIG. 3. Penrose diagram of Schwarzschild–de Sitter black hole with thermal opaque membrane covering the cosmological patch. The
R�
H regions are shown by the green curve with b�H ¼ ð�tbH ; bHÞ. The blue line indicates the complementary region of RH ¼ Rþ

H ∪ R−
H.
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of the Hawking radiation in this time domain. However, in
the after Page time scenario one has to consider the
contribution from the island region, which resides in the
black hole interior.

A. Before Page time scenario: The role of IðR+
H∶R−

H Þ
In the scenario before the Page time scenario, that is, for

tobs < tPageH , the entanglement entropy of the Hawking
radiation can be computed by calculating the von
Neumann entropy of the matter fields on two disjoint
intervals Rþ

H and R−
H. This gives us SðRHÞ ¼

SvNðRþ
H ∪ R−

HÞ, where RH ¼ Rþ
H ∪ R−

H (where the � signi-
fies the right and left wedges of the Pensrose-Carter
diagram Fig. 3).
The end points of the disjoint regions R�

H are ½e�H∶b�H�.
As R�

H regions are extended to spatial infinity (up to the
thermal opaque membrane) from the inner boundary
b�H ¼ ð�tbH ; bHÞ, we introduce the point e�H in order to
regularize it, that is, e�H ¼ ð0; eHÞ. We will eventually take
the limit eH → ∞. In this setup, the fine-grained entropy of
radiation reads

SvNðRHÞ ¼ SvNðRþ
H ∪ R−

HÞ; RH ¼ SvNðRc
HÞ; ð30Þ

where Rc
H is the complement region of RH ¼ Rþ

H ∪ R−
H. In

the above, we have assumed that the state on the full Cauchy
slice is a pure state. As mentioned before we consider the
matter fields to be 2d free conformal matter which can be
obtained by incorporating s-wave approximation.
So to compute the fine-grained entropy of the Hawking

radiation we will use the following expression:

SvNðRc
HÞ ¼

�
c
3

�
log dðbþH; b−HÞ: ð31Þ

The distance dðbþH; b−HÞ, given in the above expression,
can be computed explicitly from the metric given in
Eq. (15). This reads

dðbþH; b−HÞ ¼ 2FðbHÞeκHr�ðbHÞ coshðκHtbHÞ: ð32Þ

Now using the above expression in Eq. (31), the entangle-
ment entropy of Hawking radiation is found to be

SðRHÞ ¼ SvNðRþ
H ∪ R−

HÞ

¼
�
c
3

�
log

	�
βH
π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðbHÞ

p
cosh

�
2πtbH
βH

�

: ð33Þ

From the above result we can observe that in the early
time domain, that is, for tbH ≪ βH, the fine-grained entropy
of Hawking radiation reduces to the following form:

SðRHÞ ≈
�
c
3

�
log

	�
βH
π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðbHÞ

p 

þ
�
c
6

��
2πtbH
βH

�
2

:

ð34Þ

However, at late times (tbH ≫ βH), we obtain the following
form of the entropy of the Hawking radiation:

SðRHÞ ≈
�
c
3

�
log

	�
βH
π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðbHÞ

p 

þ
�
c
3

��
2πtbH
βH

�
:

ð35Þ

From the above analysiswe observe that as long as there is no
island contribution, the entanglement entropy of the
Hawking radiation increases with respect to the observer’s
time. However, the nature of this time evolution of SvNðRHÞ
is strikingly different for these two different time domains. To
be precise, in the early time SvNðRHÞ shows quadratic
behavior with time, that is, SvNðRHÞ ∼ t2bH , and in the late
time domain it grows linearly in time, that is, SvNðRHÞ ∼ tbH .
This observation firmly agrees with the one shown in [87].
One can also compute the entanglement entropy of the

matter fields localized on the individual regions Rþ
H and

R−
H. This can be written down as

SvNðR�
HÞ ¼

�
c
3

�
logdðb�H; e�HÞ: ð36Þ

We can compute the above given distances by using the
black hole metric given in Eq. (15). The expressions of
dðbþH; eþHÞ and dðb−H; e−HÞ read

dðbþH; eþHÞ ¼
	
2FðbHÞFðeHÞeκHr�ðbHÞðcoshðκHr�ðbHÞÞ − coshðκHtbHÞÞ


1
2 ¼ dðb−H; e−HÞ: ð37Þ

In the above result we assume that Limite→∞r�ðeÞ ¼ 0. By substituting the above expression in Eq. (36), we get the
following results:

SvNðRþ
HÞ ¼ SvNðR−

HÞ ¼
�
c
6

�
log

	
2

�
βH
2π

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðbHÞfðeHÞ
p ����� cosh

�
2πr�ðbHÞ

βH

�
− cosh

�
2πtbH
βH

�����
�


: ð38Þ

Now with the computed results [given in Eqs. (33) and (38)] in hand one can obtain the expression for the mutual
information (MI) between the matter fields localized on the region Rþ

H and R−
H. This is obtained to be
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IðRþ
H∶R−

HÞ ¼ SvNðRþ
HÞ þ SvNðR−

HÞ − SvNðRþ
H ∪ R−

HÞ

¼
�
c
3

�
log

"�
βH
2π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p (j cosh
�
2πr�ðbHÞ

βH

�
− cosh

�
2πtbH
βH

�
j

cosh
�
2πtbH
βH

�
)#

: ð39Þ

To understand the behavior of MI thoroughly (for both early and late time scenarios), we compute its form by considering the
justified limits. In the early time domain ðtbH ≪ βHÞ, the expression of mutual information reduces to the following form:

IðRþ
H∶R−

HÞ ≈
�
c
3

�	
log

	�
βH
2π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p
cosh

�
2πr�ðbHÞ

βH

�

− sech

�
2πr�ðbHÞ

βH

�
−
�
2π2

β2H

��
1þ sech

�
2πr�ðbHÞ

βH

��
t2bH



:

ð40Þ

The above expression suggests that at the early time domain IðRþ
H∶R−

HÞ decreases with the time-scaling ∼t2bH . On the other
hand, at the late times (tbH ≫ βH), we obtain the following form of the mutual information:

IðRþ
H∶R−

HÞ ≈
�
c
3

�	
log

	�
βH
2π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p 

− 2 cosh

�
2πr�ðbHÞ

βH

�
e
−
�

2πtbH
βH

�

: ð41Þ

This in turnmeans that at late times (tbH ≫ βH), IðRþ
H∶R−

HÞ
increaseswith respect to the observer’s time tbH . Interestingly,
one cannote by lookingat Eqs. (40) and (41) that there exists a
particular value of tbH at which themutual informationwill be
zero and the entanglement wedge corresponding toRþ

H ∪ R−
H

will be in its disconnected phase.2 This observation supports
the following proposal given in [68]:
Proposal I: For an eternal black hole in de Sitter

spacetime, starting from a finite, nonzero value (at
tbH ¼ 0), the mutual information between Rþ

H and Rþ
H

vanishes at a particular value of the observer’s time
(tbH ¼ tH).
Now we will compute the expression of the timescale tH

at which the mutual information between Rþ
H and R−

H
vanishes. To do this we will use the expression given in
Eq. (39) along with the above given proposal. This reads

IðRþ
H∶R−

HÞjtbH¼tH ¼ 0: ð42Þ

One can solve the above equation to obtain the value of tH.
This is found to be

tH¼
�
βH
2π

�
cosh−1

�� βH
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p
1þβH

2π

ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p �
cosh

�
2πr�ðbHÞ

βH

��
:

ð43Þ

The above expression suggests that the timescale tH is
much smaller than tbH ¼ βH, that is, tH ≪ βH. Therefore
the timescale tH lies in the early time domain. The
expression of SvNðRþ

H ∪ R−
HÞ at this particular time

(tbH ¼ tH) reads

S
tbH¼tH
vN ðRþ

H ∪R−
HÞ¼

c
3
log

2
64
�
βH

ffiffiffiffiffiffiffiffiffi
fðeHÞ

p
2π

�2

1þ βH
ffiffiffiffiffiffiffiffiffi
fðeHÞ

p
2π

cosh

�
2πr�ðbHÞ

βH

�375
≈
c
3
log

	
βH
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p 

þc
6

�
rH
bH

�
2

: ð44Þ

Our proposal suggests that themutual correlation between
Rþ
H andR−

H is nonzero for the time interval 0 ≤ tbH < tH. The
value of IðRþ∶R−Þ is maximum at tbH ¼ 0, and then it
decreases for the range tbH ≤ tH and vanishes exactly at
tbH ¼ tH. Further, it also depicts the fact that the associated
entanglement wedge of Rþ

H ∪ R−
H is in a connected phase

initially. Then, at tbH ¼ tH, the mutual information between
Rþ
H andR−

H vanishes and the entanglement wedge associated
with Rþ

H ∪ R−
H makes the transition to the disconnected

phase. Once again we would like to mention that tH ≪ βH.
These observations strongly indicate that this time tH is
nothing but the Hartman-Maldacena time tHM, as reported in
our previous work [68]. Furthermore, the expression of
mutual information, IðRþ

H∶R−
HÞ at tbH ¼ βH is obtained to be

IðRþ
H∶R−

HÞ ¼
�
c
3

�
log

	�
βH
2π

� ffiffiffiffiffiffiffiffiffiffiffiffi
fðeHÞ

p
cosh

�
2πr�ðbHÞ

βH

�

:

ð45Þ

2As we know mutual information between two subsystems,
namely, A and B, satisfies the non-negative property, that is,
IðA∶BÞ ≥ 0. This means zero is the lowest possible value mutual
information can have where the correlation between A and B
vanishes.
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The above result tells us that after the Hartman-
Maldacena time, the mutual correlation between Rþ

H and
R−
H [IðRþ∶R−Þ] starts to increase with respect to the

observer’s time tbH .

B. After Page time scenario:
Probing the role of IðB+

H∶B−
H Þ

We now proceed to discuss the after Page time scenario
tbH ≥ tPageH . Just after the Page time tPageH , the island starts to
contribute. This in turn means that one has to generalize the
concept of entanglement entropy by introducing the concept

of fine-grained entropy. This generalization incorporates the
area term in the formula given in Eq. (1) alongwith the island
contribution. One can observe that the term SvNðIH ∪ RHÞ
satisfies the identitySvNðIH ∪ Rþ

H ∪ R−
HÞ ¼ SvNðBþ

H ∪ B−
HÞ.

The regions of B�
H can be specified as ðb�H → a�HÞ where

a�H ¼ ð�taH ; aHÞ are the end points of the island. This can be
understood by the Penrose diagram, given in Fig. 4. Now as
we have mentioned earlier, in this work we are considering
2d free CFT as the matter sector. This in turn means that the
expression associated with SvNðBþ

H ∪ B−
HÞ can be evaluated

by using the following formula [85]:

SvNðBþ
H ∪ B−

HÞ ¼
�
c
3

�
log

	
dðaþH; a−HÞdðbþH; bþHÞdðaþH; bþHÞdða−H; b−HÞ

dðaþH; b−HÞdða−H; bþHÞ


: ð46Þ

Now, in order to compute the explicit form of the
entanglement entropy of the matter fields, we have to
substitute the distances in Eq. (46). This can be calculated
from the black hole metric given in Eq. (15). In recent
works in this direction, it has been suggested that at the late
times (taH ; tbH ≫ βH), one can make the following approxi-
mation [29,88]:

SvNðBþ
H ∪ B−

HÞ ≈ SvNðBþ
HÞ þ SvNðB−

HÞ; ð47Þ
where

SvNðB�
HÞ ¼

�
c
3

�
log dðb�H; a�HÞ: ð48Þ

By using the above-mentioned approximation in Eq. (1)
along with the correct area term and upon extremization
one can show that the final expression for SðRHÞ is nothing
but SðRHÞ, that is, SðRHÞ ¼ 2SBH þ � � �. This has already
been shown in [36,76]. In [67,68] it was shown that the
approximation given in Eq. (47) corresponds to the fact that

one has to ignore the terms ∼e−
2πtbH
βH . This in turn means that

the approximation e−
2πtbH
βH ≈ 0 is associated with the vanish-

ing of mutual information ðIðBþ
H∶B−

HÞ ¼ SvNðBþ
HÞþ

SvNðB−
HÞ − SvNðBþ

H ∪ B−
HÞ ≈ 0Þ, only at the leading order.

However, if the contribution from the terms ∼e−
2πtbH
βH are

kept, then it will eventually give us a time-dependent
expression of SðRÞ. This issue was addressed in our
previous works [67,68]. We now extend our previous study
for the de Sitter spacetime by proposing the following:
Proposal II: For an eternal black hole in de Sitter

spacetime, the mutual information between the black hole
subsystems Bþ

H and B−
H vanishes just after the Page time

when the island starts to contribute.
Holographically the above proposal implies that just

after the Page time, when the replica wormhole saddle
points start to dominate, the entanglement wedge of Bþ

H ∪
B−
H makes the transition from a connected to a disconnected

phase [89–91], and this results in IðBþ
H∶B−

HÞ ¼ 0. Now,
according to the above given proposal, we need to compute
the following:

FIG. 4. Penrose diagram of the black hole patch (with thermal opaque membrane covering the cosmological patch) indicating the
island region (in red) with end points a�H ¼ ð�taH ; aHÞ. The radiation regions are shown by the green line.
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IðBþ
H∶B−

HÞ ¼ 0;

SvNðBþ
HÞ þ SvNðB−

HÞ ¼ SvNðBþ
H ∪ B−

HÞ: ð49Þ

By substituting the explicit expressions from Eqs. (48) and
(46), one obtains the following equality:

dðaþH; b−HÞða−H; bþHÞ ¼ dðaþH; a−HÞdðbþH; b−HÞ: ð50Þ

Substituting this equality in SvNðBþ
H ∪ R−

HÞ [given in
Eq. (46)], we obtain

SvNðBþ
H ∪ B−

HÞ ¼
c
3
log ðdðaþH; bþHÞdða−H; b−HÞÞ: ð51Þ

By using the metric of the black hole patch given in
Eq. (15), one can compute the explicit expressions corre-
sponding to the mentioned various distances.
This reads

dða�H; b�HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FðaHÞFðbHÞeκHðr�ðbHÞþr�ðaHÞÞ

q h
cosh½κHðr�ðaHÞ − r�ðbHÞÞ� − cosh½κHðtaH − tbHÞ�

i1
2; ð52Þ

dða�H; b∓HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FðaHÞFðbHÞeκHðr�ðbHÞþr�ðaHÞÞ

q h
cosh½κHðr�ðaHÞ − r�ðbHÞÞ� þ cosh½κðtaH þ tbHÞ�

i1
2; ð53Þ

dðbþH; b−HÞ ¼ 2FðbHÞeκHr�ðbHÞ coshðκHtbHÞ; ð54Þ

dðaþH; a−HÞ ¼ 2FðaHÞeκHr�ðaHÞ coshðκHtaHÞ: ð55Þ

These above expressions of distances suggest that

dðaþH; bþHÞ ¼ dða−H; b−HÞ;
dðaþH; b−HÞ ¼ dða−H; bþHÞ: ð56Þ

This in turn means that we can recast the expression of
SvNðBþ

H ∪ B−
HÞ [given in Eq. (51)] in the following form:

SvNðBþ
H ∪ B−

HÞ ¼
2c
3
log dðaþH; bþHÞ: ð57Þ

On the other hand, substituting these expressions of
distances in Eq. (50) along with the fact given in
Eq. (56), we obtain the following condition:

taH − tbH ¼ jr�ðaHÞ − r�ðbHÞj: ð58Þ

The above obtained condition is very interesting as it
enables us to express taH in terms of the other quantities. By
using this mentioned property in Eq. (57), we obtain the
entanglement entropy of the conformal matter fields

SvNðBþ
H ∪ B−

HÞ ¼
c
3
log

�
2

κ2H

�
þ c
6
log½fðaHÞfðbHÞÞ�: ð59Þ

The importance of the above result lies in the fact that it is
independent of time. Now if we substitute the above
expression in Eq. (1) together with the area term, that

is, Areað∂IHÞ
4GN

¼ 2 × 4πa2H
4GN

, the fine-grained entropy of the
Hawking radiation reads

SðRHÞ ¼ 2 ×
4πa2H
4GN

þ c
3
log

�
2

κ2H

�
þ c
6
log½fðaHÞfðbHÞ�:

ð60Þ

We now need to find the value of the island parameter “aH.”
This we obtain by performing the extremization of the
above result. This leads to the following value:

aH ¼ rH −
�
cGN

24π

�
1

rH
þ � � � : ð61Þ

The above results show that the quantum extremal surfaces
are located inside the black hole event horizon [74,76].
However, in the case of eternal black holes in AdS, it has
been noted that the quantum extremal surfaces reside just
outside the event horizon [67,68]. So, the position of the
island end points are different for dS and AdS spacetime.
Substitution of the above extremized value of aH in
Eq. (60) leads to the following expression of fine-grained
entropy of Hawking radiation:

SðRHÞ ¼ 2SBH þ c
3
logðSBHÞ −

ðc
2
Þ2

2SBH
þ � � � : ð62Þ

It can be noted from the above expression that it is time
independent and contains logarithmic and inverse power
law correction terms [67,68]. Revisiting the condition
IðBþ∶B−Þ ¼ 0 [given in Eq. (58)] with the obtained value
of aH [given in Eq. (62)], we get

taH − tbH ¼
�
βH
8π

�
logðSBHÞ ¼ tScrH ; ð63Þ

where tScrH is the scrambling time [92,93] for the black hole
patch. The remarkable observation made above in turn tells
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that just after the Page time tPH, the replica wormhole saddle
points start to dominate and the emergence of the island in
the black hole interior leads to the disconnected phase of
the entanglement wedge Bþ

H ∪ B−
H, characterized by the

condition given in Eq. (63). On the other hand, the explicit
expression of the Page time is found to be

tPageH ¼
�
3βH
πc

�
SBH −

�
βH
π

�
logðSBHÞ � � � : ð64Þ

In the above expression, the leading piece is the familiar
form of the Page time, where the rest represent the
subleading corrections to it.

IV. ANALYSIS FOR THE COSMOLOGICAL
PATCH

In this part, we will study the Page curve corresponding
to the entanglement entropy of Gibbons-Hawking radia-
tion. This we do by restricting ourselves in the cosmologi-
cal patch and treating the black holes on each side as frozen
(for the same reason as in the previous section, we again
add two thermal opaque membranes on either side of the
black hole patch). For the area of interest, the correspond-
ing metric is given in Eq. (23). It has been noted that studies
in this direction are often restricted to the black holes in
asymptotically flat or AdS spacetimes; however, the most
recent data show that the universe is expanding faster with
de Sitter–like characteristics. In this context, the cosmo-
logical event horizons emit and absorb radiation similar to
the black hole event horizon, and this radiation has been
denoted as the Gibbons-Hawking radiation. In general, the
entropy creation of the cosmic horizon is an observer-
dependent feature in contrast to the black hole. It develops
as a result of ignorance regarding what exists beyond the
cosmological horizon.
Now, in order to study the cosmological patch we have to

freeze the black hole patch by the thermal opaque mem-
branes on both sides. Once again, we will discuss two
scenarios here, namely, the before cosmological Page time

ðtPagec Þ scenario and the after cosmological Page time
scenario.

A. Before cosmological Page time scenario:
The role of IðR+

c ∶R−
c Þ

Similar to the previous scenario, this time domain
corresponds to the facts that the observer’s time is less
than the cosmological Page time, that is, tc ≪ tPagec . As
mentioned earlier, in this time domain there is no cosmo-
logical island contribution. Therefore the entanglement
entropy of the Gibbons-Hawking (GH) radiation [SðRcÞ]
is given by the von Neumann entropy of the matter fields on
Rc ¼ Rþ

c ∪ R−
c , that is, SðRcÞ ¼ SvNðRcÞ. It is to be noted

that the end points of the disjoint regions R�
c are ½e�c ∶b�c �.

As R�
c regions are extended to spatial infinity (up to the

thermal opaque) from the inner boundary b�c ¼ ð�tbc ; bcÞ,
we introduce the point e�c in order to regularize it, that is,
e�c ¼ ð0; ecÞ. This can be visualized in the Penrose diagram
given in Fig. 5. We will eventually take the limit ec → ∞.
Now, we need to compute the following in order to obtain
the desired result:

SvNðRcÞ ¼ SvNðRþ
c ∪ R−

c Þ; Rc ¼ Rþ
c ∪ R−

c : ð65Þ

Once again we assume that the state on the full Cauchy
slice is a pure state; therefore, the entanglement entropy of
the GH radiation reads

SvNðRþ
c ∪ R−

c Þ ¼ SvNðRc
cÞ: ð66Þ

Now, keeping in mind the s-wave approximation in the
matter sector, we use the 2d conformal field theory formula.
This reads

SvNðRc
cÞ ¼

�
c
3

�
logdðbþc ; b−c Þ: ð67Þ

To compute the distance dðbþc ; b−c Þ, in the cosmological
patch we will use the metric given in Eq. (23). The in turn
gives us

FIG. 5. Penrose diagram of cosmological patch of SdS spacetime with thermal opaque. The regions R�
c are indicated by the green line.

The complementary region of Rc ¼ Rþ
c ∪ R−

c , that is, Rc
c, is shown in the figure by the blue line.
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dðbþc ; b−c Þ ¼ 2GðbcÞeκcr�ðbcÞ coshðκctbcÞ; ð68Þ

where κc (surface gravity of the cosmological patch) is
given in Eq. (19). The above given result and Eq. (67) lead
us to the following result for entanglement entropy of the
GH radiation:

SðRcÞ ¼ SvNðRþ
c ∪ R−

c Þ

¼
�
c
3

�
log

	�
βc
π

� ffiffiffiffiffiffiffiffiffiffiffi
fðbcÞ

p
cosh

�
2πtbc
βc

�

: ð69Þ

We now follow the footsteps shown in the previous section
and compute the form of SðRcÞ for both early and late time
domains. In the early time domain (tbc ≪ βc), SðRcÞ
reduces to the following form:

SðRcÞ≈
�
c
3

�
log

	�
βc
π

� ffiffiffiffiffiffiffiffiffiffiffi
fðbcÞ

p 

þ
�
c
6

��
2πtbc
βc

�
2

: ð70Þ

On the other hand, in the late time domain
(tPagec > tbc ≫ βc), it reads

SðRcÞ ≈
�
c
3

�
log

	�
βc
π

� ffiffiffiffiffiffiffiffiffiffiffi
fðbcÞ

p 

þ
�
c
3

��
2πtbc
βc

�
: ð71Þ

Once again we note that, in the absence of the island
contribution, SðRcÞ exhibits quadratic behavior over time in
the early time domain SðRcÞ ∼ t2bc and linearly with time for
the late time domain SvNðRcÞ ∼ tbc . Further, the entangle-
ment entropy of the matter fields localized on the individual
areas Rþ

c and R−
c are obtained to be

SvNðR�
c Þ ¼

c
3
log dðb�c ; e�c Þ: ð72Þ

Using the metric on the cosmological patch provided in
Eq. (23), we can calculate the distances. The expressions of
dðbþc ; eþc Þ and dðb−c ; e−c Þ read

dðbþc ; eþc Þ ¼
	
2GðbcÞGðecÞeκcr�ðbcÞðcoshðκcr�ðbcÞÞ − coshðκctbcÞÞ


1
2 ¼ dðb−c ; e−c Þ: ð73Þ

In the above expression we are using the fact that, in the limit ec → ∞, r�ðeÞ vanishes. By replacing the aforementioned
formula in Eq. (72), we get the following results:

SvNðRþ
c Þ ¼ SvNðR−

c Þ ¼
�
c
6

�
log

	
2

�
βc
2π

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðbcÞfðecÞ
p ����� cosh

�
2πr�ðbcÞ

βc

�
− cosh

�
2πtbc
βc

�����
�


: ð74Þ

Now, by using the expressions provided in Eqs. (69) and (74), we once again compute the mutual information between Rþ
c

and R−
c . This reads

IðRþ
c ∶R−

c Þ ¼ SvNðRþ
c Þ þ SvNðR−

c Þ − SvNðRþ
c ∪ R−

c Þ

¼
�
c
3

�
log

2
64�βc

2π

� ffiffiffiffiffiffiffiffiffiffiffi
fðecÞ

p 8<
:
��� cosh�2πr�ðbcÞ

βc

�
− cosh

�
2πtbc
βc

����
cosh

�
2πtbc
βc

�
9=
;
3
75: ð75Þ

Similar to the black hole patch analysis, one can show
that in the early time domain IðRþ

c ∶R−
c Þ decreases with the

time scaling ∼t2bc , and for the late time domain (tbc ≫ βc),
IðRþ

c ∶R−
c Þ increases with respect to the observer’s time tbc .

This once again points out the fact that there exists a time tc
at which mutual information between Rþ

c and R−
c vanishes

and the entanglement wedge associated with Rþ
c ∪ R−

c gets
disconnected. Keeping this in mind, it can be said that the
following proposal is valid also for the cosmological patch:
Proposal I: For an eternal black hole in de Sitter

spacetime, starting from a finite, nonzero value (at

tbc ¼ 0), the mutual information between Rþ
c and Rþ

c

vanishes at a particular valueof the observer’s time (tbc ¼ tc).
In this case, the value of the timescale tc is obtained to be

tc ¼
�
βc
2π

�
cosh−1

�� βc
2π

ffiffiffiffiffiffiffiffiffiffiffi
fðecÞ

p
1þ βc

2π

ffiffiffiffiffiffiffiffiffiffiffi
fðecÞ

p �
cosh

�
2πr�ðbcÞ

βc

��
:

ð76Þ

Once again we note that the timescale tc is substantially
lower than tbc ¼ βc, that is, tc ≪ βc. As a result, the
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timescale tc belongs to the early time domain. Furthermore,
the expression of SvNðRþ

c ∪ R−
c Þ at this particular time

reads

S
tbc¼tc
vN ðRþ

c ∪ R−
c Þ ¼

c
3
log

2
64
�
βc

ffiffiffiffiffiffiffiffi
fðecÞ

p
2π

�2

1þ βc
ffiffiffiffiffiffiffiffi
fðecÞ

p
2π

cosh

�
2πr�ðbcÞ

βc

�375
≈
c
3
log

	
βc
2π

ffiffiffiffiffiffiffiffiffiffiffi
fðecÞ

p 

þ c
6

�
rc
bc

�
2

: ð77Þ

This in turn means that for the cosmological patch also
the mutual correlation between Rþ

c and R−
c is nonzero for

the time period 0 ≤ tbc < tc, and it reaches its maximum
value at tbc ¼ 0. After that IðRþ

c ∶R−
c Þ decreases for the

range tbc ≤ tc and finally disappears at tbc ¼ tc. This also
reflects the fact that the connected phase of the correspond-
ing entanglement wedge of Rþ

c ∪ R−
c gets disconnected at

tbc ¼ tc. These findings once again clearly suggest that tc is
the Hartman-Maldacena time for the cosmological patch.
After this time (Hartman-Maldacena time) the mutual

information between Rþ
c and R−

c increases with respect
to the observer’s time.

B. After cosmological Page time scenario:
The role of IðB+

c ∶B−
c Þ

Now, once again we proceed to probe the after cosmo-
logical Page time scenario. As we have mentioned earlier,
just after the cosmological Page time (tPagec ) the island starts
to contribute to the fine-grained entropy of Gibbons-
Hawking radiation.
Using the fact that the matter part of Eq. (1) satisfies the

property SvNðIc ∪Rþ
c ∪R−

c Þ¼ SvNðBþ
c ∪B−

c Þ. The regions
of B�

c can be specified as ðb�c → a�c Þ, where the island end
points are pointed out as a�c ¼ ð�tac ; acÞ. The Penrose
diagram given in Fig. 6 helps us to visualize this. We now
follow the steps shown in the black hole patch scenario. As
we have already stated, the matter sector in this work is the
2d free CFT.
As a result, the expression of SvNðBþ

c ∪ B−
c Þ can be

evaluated using the following formula [85]:

SvNðBþ
c ∪ B−

c Þ ¼
�
c
3

�
log

	
dðaþc ; a−c Þdðbþc ; b−c Þdðaþc ; bþc Þdða−c ; b−c Þ

dðaþc ; b−c Þdða−c ; bþc Þ


: ð78Þ

The distances that may be derived from the metric provided
in Eq. (23) must be replaced in the above expression in
order to obtain the explicit form of the entanglement
entropy of the matter field. The entropy of the matter field
on the individual regions can be computed by the following
expression:

SvNðB�
c Þ ¼

�
c
3

�
log dðb�c ; a�c Þ: ð79Þ

Now, as we have already mentioned for the black hole
patch analysis, one can compute SvNðBþ

c ∪ B−
c Þ for late

time by using the following approximation:

SvNðBþ
c ∪ B−

c Þ ∼ SvNðBþ
c Þ þ SvNðB−

c Þ: ð80Þ

The above-mentioned approximation is once again
associated with the fact that one has to neglect the terms

∼e−
2πtbc
βc which provide the indication of vanishing mutual

correlation (only in the leading order) between Bþ
c and B−

c .
This observation is similar to the one we have already noted
for the black hole patch scenario which in turn means that
the following proposal should also hold for the cosmo-
logical patch:
Proposal II: For an eternal black hole in de Sitter

spacetime, the mutual information between the matter

FIG. 6. The Penrose diagram shows the cosmological patch with the thermal opaque membrane. The red line indicates the
cosmological island surface with end points a�c ¼ ½�tac ; ac�. The green lines indicate the radiation regions.
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fields localized on Bþ
c and B−

c vanishes just after the
cosmological Page time.
By following the same procedure we have already shown

for the black hole patch, one can obtain the time-indepen-
dent form of fine-grained entropy of GH radiation by using
the above given proposal. This reads

SðRcÞ ¼ 2×
4πa2c
4GN

þ c
3
log

�
2

κ2c

�
þ c
6
log½fðacÞfðbcÞ�: ð81Þ

Extremizing the above result with respect to the cosmo-
logical island parameter “ac,” we get

ac ¼ rc −
�
cGN

24π

�
1

rc
þ � � � : ð82Þ

The above result indicates that the cosmological island end
points (quantum extremal surfaces) are located inside the
cosmological horizon [76]. By using the result given in
Eq. (82), we obtain the desired result of fine-grained
entropy of Gibbons-Hawking radiation

SðRcÞ ¼ 2SGH þ c
3
logðSGHÞ −

ðc
2
Þ2

2SGH
þ � � � : ð83Þ

Furthermore, the extremized value of the cosmological
island parameter simplifies the condition of vanishing
mutual information to the following form:

tac − tbc ¼
�
βc
8π

�
logðSGHÞ ¼ tScrc ; ð84Þ

where tScrc is the scrambling time for the cosmological
patch. Further the expression of the cosmological Page time
is obtained to be [76]

tPc ≈
�
3βc
πc

�
SGH: ð85Þ

V. CONCLUSIONS

We now provide a summary of our findings. In this work,
we have tried to check whether our previously reported
proposals [67,68] hold for eternal black holes in de Sitter
spacetime or not. The said proposals were originally given
for eternal black holes in AdS spacetime, and in this work
we have observed that the mentioned proposals also hold
for eternal black holes in de Sitter spacetime. The moti-
vation to consider an eternal black hole solution in de Sitter
spacetime is associated with the subtle structure of the
event horizon for this spacetime. We have briefly inves-
tigated the role of mutual information of various subsys-
tems in the Page curve for both Hawking radiation and
Gibbons-Hawking radiation, by keeping in mind the recent
developments of the island formulation. To study the Page

curve of the above-mentioned two different radiations, we
have introduced the notion of a thermal opaque membrane.
This membrane allows us to study the two different
radiations individually as it divides the whole system into
two patches (equivalent descriptions), namely, the black
hole patch and the cosmological patch. Further, the findings
from the study of mutual information have motivated
us to give two proposals for both the black hole patch
and the cosmological patch of the Schwarzschild–de Sitter
spacetime.
The first proposal deals with the time domain where the

observer’s time is less than the Page time. First, we will
discuss the importance of this proposal for the black hole
patch. In this time domain the entanglement entropy of
Hawking radiation does not include the island contribution.
The entropy of the radiation is identified as the von
Neumann entropy of the conformal matter fields on
Rþ
H ∪ R−

H. We have incorporated the formula of 2d CFT
in order to calculate the mentioned von Neumann entropy
SvNðRHÞ ¼ SvNðRþ

H ∪ R−
HÞ as we have stated that we are

only considering the s-wave contribution of the conformal
matter. In the early time domain, that is, for tbH ≪ βH, we
note that SðRHÞ shows quadratic growth [SðRHÞ ∼ t2bH ], and
in the late time domain (tbH ≫ βH), SðRHÞ increases linearly
with respect to the observer’s time [SðRHÞ ∼ tbH ]. The
mutual information IðRþ

H∶R−
HÞ between Rþ

H and R−
H is then

computed by obtaining the explicit expressions of SvNðRþ
HÞ

and SvNðR−
HÞ. With the general expression of IðRþ

H∶R−
HÞ in

hand, we then proceed to investigate its behavior in both the
early and late timedomains. In the early timedomain, starting
from the maximum value at tbH ¼ 0, IðRþ

H∶R−
HÞ starts

decreasing with the time scaling ∼t2bH , and in the late time
domain we find that IðRþ

H∶R−
HÞ increases with respect to tbH .

This kind behavior of the mutual information motivates us to
give our first proposal which tells us that there exists a time,
tbH ¼ tH (0 < tH < βH) at which the mutual correlation
between Rþ

H and R−
H disappears. This in turn implies that the

associated entanglement wedge Rþ
H ∪ R−

H becomes discon-
nected. Further, at tbH ¼ tH, the entropy of Hawking
radiation is proportional to the logarithm of the inverse
temperature of the black hole, that is, SðRHÞjtbH¼tH ∼ log βH.

These observations indicate that this particular timescale tH
is nothingbut theHartman-Maldacena time for theblackhole
patch. After tbH ¼ tH, IðRþ

H∶R−
HÞ starts to increase, which in

turn means that the associated entanglement wedge is once
again in its connected phase. In the case of a cosmological
patch also we have observed a similar kind of phenomena
before the cosmological “Page time” tPagec , and the Hartman-
Maldacena time for the cosmological patch is denoted as tc.
The explicit expressions corresponding toboth tH and tc have
also been computed.
Now we will discuss our second proposal. This proposal

is associated with the time domain where the observer’s
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time is greater than the Page time. In case of the black hole
patch, after the Page time ðtPageH Þ, the entropy of Hawking
radiation includes the island contribution. This inclusion of
the island contribution provides an appropriate Page curve
which portrays the time evolution of the entropy of the
Hawking radiation. Following the works in this direction, it
has been noted that to obtain the correct Page curve we have
to use the late time approximation SvNðBþ

H ∪ B−
HÞ ≈

SvNðBþ
HÞ þ SvNðB−

HÞ [29], which can also be understood
as IðBþ

H∶B−
HÞ but only at the leading order. This approxi-

mation is associated with the fact that one has to ignore

terms ∼e−
2πtbH
βH . This creates a dilemma as the core issue in

this context is regarding time dependency. However, if
these terms are incorporated, one gets a time-dependent
form of SðRÞ in the after Page time scenario. We address
this crucial issue by demanding that the inclusion of an
island (replica wormhole saddle-point contributions) leads
to the disconnected phase of the entanglement wedge
associated with Bþ

H ∪ B−
H. This in turn means that just

after the Page time ðtPHÞ, the island in turn gifts us the
vanishing mutual information between Bþ

H and B−
H. This

condition of vanishing mutual information, that is,
IðBþ

H∶B−
HÞ ¼ 0, leads to the remarkable result taH − tbH ¼

tScrH where tScrH is the scrambling time [92,93]. Using the
subadditivity condition of von Neumann entropy we can
reforge our observation in the following way. The entan-
glement wedge associated with Bþ

H ∪ Bþ
H is in a connected

phase as long as taH − tbH < tScrH , and when this time

difference equals the scrambling time tScrH , the entanglement
wedge associated with Bþ

H ∪ Bþ
H jumps to the disconnected

phase. Most importantly this condition of the vanishing
mutual information condition gives us the time-independent
expression of the entropy of the Hawking radiation. Our
proposals and observations related to mutual information
gives a strong realization of the concept given in [94,95]. For
the cosmological patch also our second proposal implies that
after the cosmological Page timewhen the island contributes
the entanglement wedge associated withBþ

c ∪ B−
c , it is in the

disconnected phase. Our proposal also implies that for
the cosmological patch we have tac − tbc ¼ tScrc , with tScrc

is the scrambling time for the cosmological patch. Similar to
the black hole patch scenario, we also obtain a time
independent result of the entropy of the Gibbons-Hawking
entropy by imposing the condition of vanishing mutual
information between Bþ

c and B−
c . Another interesting fact to

point out is that in both of the cases the quantum extremal
surfaces lie inside the respective horizons. This behavior is
opposite to the one we observe for the eternal black hole in
AdS spacetime.
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