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We study fixed points of scalar fields that transform in the bifundamental representation of OðNÞ ×
OðMÞ in 3 − ϵ dimensions, generalizing the classic tricritical sextic vector model. In the limit where N is
large butM is finite, we determine the complete beta function to order 1=N for arbitrary M. We find a rich
collection of large-N fixed points in d ¼ 3, as well as fixed points in d ¼ 3 − ϵ, that can be studied to all
orders in the parameter ϵ̂ ¼ Nϵ. With the goal of defining a large-N nonsupersymmetric conformal field
theory dominated by a web of planar diagrams, we also study fixed points in the “bifundamental” large-N
limit, in whichM andN are both large but the ratioM=N is held fixed. We find a unique infrared fixed point
in d ¼ 3 − ϵ, which we determine to order ϵ2. When M=N ≪ 1, we also find an ultraviolet fixed point in
d ¼ 3 and d ¼ 3 − ϵ that merges with the infrared fixed point at ϵ ∼OðM=NÞ. We expect at least one of
two candidate fixed points in integer dimensions—the infrared fixed point in d ¼ 2 and the ultraviolet fixed
point in d ¼ 3—to survive for finite values of M=N.

DOI: 10.1103/PhysRevD.108.026002

I. INTRODUCTION

In this paper, we study multiscalar fixed points in 3 − ϵ
dimensions with OðNÞ ×OðMÞ=Z2 symmetry. Our pri-
mary motivation for studying large-N fixed points with
bifundamental matter originates from string theory and the
AdS/CFT correspondence, which we describe below,
although we believe such fixed points could be of more
general interest in other contexts as well.
The N ¼ 6 supersymmetric UðNÞk ×UðMÞ−k Chern-

Simons theory with matter in the bifundamental representa-
tion known as Aharony-Bergman-Jafferis (ABJ) theory [1]
plays an important and unique role in our understanding of
the AdS/CFT correspondence, as first observed in Ref. [2].
When N is large, butM ≪ N, the theory is a large-N vector
model [3] and, as per general expectations in Ref. [4], is a
dual to a higher-spin gauge theory [5–10], where the gauge
fields are dressed with Chan-Paton factors transforming
under UðMÞ. When N ¼ M, the theory becomes the
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [11],
whose large-N limit consists of awebof planar diagramsdual
to type IIA string theory on AdS4 × CP3 when λ ¼ N

k is held

fixed. The dual reduces to type IIA supergravity when λ is
taken to strong coupling. In the language of the higher-gauge
theory, the parameter M=N plays the role of a gravitational
’t Hooft coupling. When M=N is small, the theory contains
an infinite tower of higher-spin gauge fields, and as M=N
increases, the tower of higher-spin gauge fields somehow
coalesces to form strings. (See Refs. [12,13] for more
discussion.)
Does a similar phenomenon occur for other examples of

conformal field theories with higher-spin duals, with less
(see Ref. [14]) or no supersymmetry? For example, UðNÞk
Chern-Simons theory coupled to fundamental fermions (or
bosons) is believed to be dual to a one-parameter family of
party-violating higher-spin gauge theories [4,15]. One can
generalize these theories to UðNÞk ×UðMÞ−k or OðNÞk ×
OðMÞ−k Chern-Simons theories with bifundamental matter
[16,17]—when M=N is small, these theories would be
virtually identical to their vector model counterparts and
therefore dual to a higher-spin gauge theory, but when
M=N is order 1, the large-N limit of such theories, like the
ABJM theory, becomes a web of planar diagrams, sug-
gesting that they would be dual to some sort of string theory
[18]. If the behavior of these theories when α ¼ 1 and the
’t Hooft coupling λ ¼ N

k is large were similar to that of
ABJM, it is natural to conjecture that such theories could
conceivably be dual to simple nonsupersymmetric theories
of Einstein gravity in AdS4.
In an extension of the weak gravity conjecture [19] as

part of the swampland program, the authors of Ref. [20]
(see also Ref. [21]) conjecture that nonsupersymmetric
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anti-de Sitter AdS vacuua do not exist in a consistent
quantum theory of gravity. This translates into the state-
ment that a strongly interacting1 nonsupersymmetric con-
formal field theory (CFT) whose large-N limit consists of a
web of planar diagrams should not exist, or at least there
should be some reason for it to not have a simple holo-
graphic dual. Therefore, a simple way to test of the
conjecture of Ref. [20] is to construct examples of such
large-N CFT’s and attempt to demonstrate or rule out their
existence at strong coupling.
If the conjecture of Ref. [20] is correct, then it should be

impossible for the bifundamental Chern-Simons theories in
Refs. [16,17] to attain strong coupling. Unfortunately, it is
hard to say anything about nonsupersymmetric bifunda-
mental Chern-Simons theories in the limit whereM=N ¼ 1
and λ is large. But there are other simpler examples of
conformal field theories with higher-spin duals.
Specifically, one can ask if it is possible to generalize
the criticalOðNÞ vector model in three dimensions [22] to a
critical OðNÞ ×OðMÞ=Z2 model, with M and N both
large, and α≡ M

N held fixed. As α → 0, this theory would
reduce to the critical OðNÞ model, whose dual is conjec-
tured to be a higher-spin gauge theory [23–27], modified
slightly, as per the discussion in Ref. [2], to include Chan-
Paton factors transforming in OðMÞ. In the dual descrip-
tion, α ¼ M=N is again the ’t Hooft coupling for the
gravitational coupling 1=N (which evidently possesses a
sort of S-duality as our field theory is dual under inter-
change of M and N), and one can ask whether the higher-
spin gauge fields coalesce into stringlike objects as α
increased to 1.
In the context of phase transitions, OðNÞ ×OðMÞ=Z2

fixed points of multiscalar ϕ4 theory in 4 − ϵ dimensions
have been extensively studied in the literature using both
the epsilon expansion and bootstrap [28–38], as reviewed
in Refs. [35,38]. It turns out2 that a real bifundamental fixed
point, whose large-N limit is dominated by all planar
diagrams, only exists in the epsilon expansion [35] for

M=N < αcritical ¼ ð5 − 2
ffiffiffi
6

p
Þ þ

�
25

2
ffiffiffi
6

p − 5

�
ϵþOðϵ2Þ;

ð1:1Þ

or M=N > 1=αcritical. For 1=αcritical > α > αcritical, the fixed
point can still be studied formally, although it is no longer
unitary and some anomalous dimensions become complex.
The anomalous dimension of the elementary scalar field ϕij

remains real and is given by [35]

γϕ ¼ α2

8ðα2 þ 1Þ2 :

γϕ attains its maximum at α ¼ 1, confirming the expectation
that α ¼ 1 represents strong coupling for the theory. We
therefore conclude that, for this theory, the fixed point
becomes complex before strong coupling is attained, in
accordance with the conjecture of Ref. [20]. A physical
interpretation for complex fixed points was put forth in
Refs. [39,40], so formally, one could attempt to define a
holographic dual for the complexα ¼ 1 fixed point. This dual
might contain a very small number of massless fields
(possibly only the graviton) if a gap developswhen d ¼ 3 but
also a few fields with masses below the Breitenlohner-
Freedman bound, corresponding to primary operators of
complex dimension [41].
Similar questions can also be asked about the existence of

bifundamental multiscalar critical fixed points starting from
sextic interactions in d ¼ 3 − ϵ and cubic interactions in
d ¼ 6 − ϵ dimensions. In this paper, we focus our attention
on bifundamental ϕ6 fixed points in 3 − ϵ dimensions.
Is it possible to construct a strongly interacting con-

formal field theory whose large-N limit is dominated by a
web of planar diagrams, via a bifundamental multiscalar
theory in d ¼ 3 − ϵ? We have discovered two candidate
fixed points in integer dimensions—the infrared bifunda-
mental fixed point in d ¼ 3 − ϵ for ϵ ¼ 1 and the ultraviolet
bifundamental fixed point in d ¼ 3. Our calculations were
perturbative—we require ϵ ≪ 1 for the IR fixed point, and
in α ≪ 1 for the UV fixed point—so we are unable to
conclusively demonstrate the existence of a strong-cou-
pling limit. Nevertheless, we expect that, for any value of α,
at least one of these two candidate fixed points exists.
The IR fixed point always exists for d sufficiently close

to 3. For α ≪ 1, the UV fixed point also exists in and near
d ¼ 3 and merges with the IR fixed point at a critical value
of d� ¼ 3 − 9

2π2
αþOðα2Þ from Eq. (3.24). Therefore,

at small α, the IR fixed point does not extend to d ¼ 2,
but the UV bifundamental fixed point exists in d ¼ 3. Our
arguments for the existence of the UV fixed point require
α ≪ 1 (or α ≫ 1)—therefore the UV bifundamental fixed
point may or may not exist d ¼ 3 at any finite value of α.
However, if the UV fixed point does not exist for some
finite value of α, then the IR fixed point almost certainly
survives until d ¼ 2 because there is no other candidate
fixed point for it to merge with at finite ϵ.

A. Brief review of the sextic OðNÞ vector model

The large-N limit of the sextic OðNÞ vector model in
3 − ϵ dimensions is quite different from the large-N limit of
the quarticOðNÞ vector model in 4 − ϵ dimensions. Classic
references include, e.g., Refs. [42–51]. In particular,
Pisarski [46] showed that it is possible to demonstrate
the existence of a large-N interacting ultraviolet fixed point

1By “strongly interacting,” we essentially mean that the theory
satisfies the gap condition—i.e., anomalous dimensions of all but
a finite number of primary operators diverge.

2S. P. thanks Simone Giombi, Igor Klebanov, Fedor Popov,
and Gregory Tarnopolsky for discussions on this point a few
years ago.
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for the sexticOðNÞ vector model in d ¼ 3. The argument of
Ref. [46] leading to a fixed point in d ¼ 3 is essentially as
follows. In the large-N limit, the beta function for the sextic
triple-trace interaction vanishes to all orders in the ’t Hooft
coupling. Therefore, to determine large-N fixed points, one
must consider the first 1=N correction to the beta function.
A simple graph theoretic argument shows that the first 1=N
correction to the beta function also vanishes beyond four
loops [46]. Let us briefly review this argument. Consider a
OðNÞ symmetric scalar theory with sextic interaction vertex
∼gðϕiϕiÞ3. Note that, unlike for quartic scalar theories, an
L-loop correction to the interaction vertex is proportional to
gn where n ¼ L=2þ 1. Any such diagram contains exactly
eint ¼ 3ðn − 1Þ internal edges (i.e., propagators), as seen in
Fig. 1. The largest possible power of N for such a diagram
is the total number of disconnected cycles formed by the
internal edges, following OðNÞ index contractions. (For
example, in the four-loop diagram in Fig. 1, there are three
disconnected cycles.) Since our graph can contain no
tadpoles (or it would vanish), each such disconnected cycle
must contain at least two internal edges, so the diagram
is proportional to, at most, Nbeint=2c ¼ Nb3

2
ðn−1Þc. Using the

’t Hooft coupling λ ¼ gN2, we find each L-loop correction
to the vertex is proportional to gλL=2Nb−L=4c. Therefore, the
only contributions to the beta function at order 1=N come
from two-loop and four-loop diagrams. An analogous result
applies to the bifundamental OðNÞ ×OðMÞ theories we
will study in this paper, in the limit M ≪ N.
For sextic theories at finite N, the four-loop beta function

is cubic in the coupling constants and therefore only allows
one to determine next-to-leading-order corrections [i.e.,
Oðϵ2Þ] in the epsilon expansion. However, in the vector
model large-N limit, the four-loop beta function is the

complete beta function, to first nontrivial order in 1=N. Any
higher-order corrections to the beta function are propor-
tional to 1=N2 and can be made arbitrarily small by making
N sufficiently large—so any interacting fixed point (with
no marginal directions) of the Oð1=NÞ four-loop beta
function will be reliable in the large-N limit, even those
that do not become free when d ¼ 3. Extending this
analysis to d ¼ 3 − ϵ, it is easy to see that the four-loop
beta function allows one to determine fixed points valid to
all orders in the “rescaled” epsilon parameter ϵ̂ ¼ Nϵ.
Reference [46] finds two fixed points in d ¼ 3 − ϵ—an

IR fixed point which becomes free in d ¼ 3 and an UV
fixed point which is not free when d ¼ 3. These two merge
into a complex fixed point at a critical value of ϵ̂,
ϵ̂C ¼ 36π2 þOð1=NÞ, and there is no real fixed point
for ϵ < ϵ̂C=N. Therefore, at least whenN is large, the sextic
OðNÞ fixed point does not extend to a CFT in two
dimensions. The UV fixed point, however, appears to be
an example of an ultraviolet-stable large-N fixed point in
d ¼ 3, that may survive for N sufficiently large but finite.
An important aspect of sexticOðNÞmodel is the phenom-

ena of spontaneous breaking of conformal invariance
[48,51–53], and this continues to receive attention in the
literature; see, e.g.,Refs. [54–56].Wedonot provide a review
of this here. Let us also remark that more recent discussion
about the asymptotic safety and flows between this UV fixed
point, and the (quartic) Wilson Fisher fixed point in d ¼ 3
appears in Ref. [57]. Some operator product expansion
coefficients and anomalous dimensions in the UV fixed
point were computed more recently, using the background
fieldmethod, inRef. [58].A similar fixedpoint arising froma
triple-trace deformation to ABJM was studied in Ref. [59].
When we study the bifundamental OðNÞ ×OðMÞ=Z2

model below, we will use arguments similar to those of
Ref. [46] to determine interacting fixed points in d ¼ 3
whenN is large andM is finite. These arguments also apply
when M and N are both large, but the ratio M=N ≪ 1.
However, if M=N ∼Oð1Þ, higher-loop contributions to the
beta function are no longer suppressed by 1=N (or M=N),
and it is not possible to determine interacting fixed points in
d ¼ 3 from the four-loop beta function.

B. Summary of results

In this paper, we generalize the sextic OðNÞ vector
model in 3 − ϵ dimensions, to a bi-fundamental OðNÞ ×
OðMÞ=Z2 model. We study this theory in two natural large-
N limits. The first is a bifundamental large-N limit
motivated by ABJ theory in which both M and N are
large, and the ratio α ¼ M

N is held fixed. The second is the
conventional “vector model” large-N limit, where N is
large and M is held finite. We also briefly discuss fixed
points when M ¼ 2 and N is finite.
In the bifundamental limit, we find a unique, nontrivial

infrared fixed point in d ¼ 3 − ϵ for the appropriate

FIG. 1. Some Feynman diagrams for corrections to the vertex
are pictured above. Here, solid lines denote OðNÞ fundamental
index contractions, and OðMÞ index contractions are not pic-
tured. The interaction vertices can be chosen so that the two-loop
and four-loop diagrams in the top row are proportional to α in the
bifundamental large-N limit, or 1=N in the vector model large-N
limit. However, any diagram with six or more loops, such as the
diagram in the second row, is suppressed by at least α2 in the
bifundamental large-N limit or 1=N2 in the vector model large-N
limit.
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’t Hooft couplings in the ϵ expansion. We compute
anomalous dimensions of all the spin-0 sextic, quartic,
and quadratic operators that are invariant under OðNÞ ×
OðMÞ symmetry group at this fixed point. Unlike the
quartic theory in 4 − ϵ dimensions, the fixed point we study
here exists as a real fixed point for all finite values of α,
including α ¼ 1. However, as α → 0, the large-N beta
function vanishes in d ¼ 3 (as expected from Ref. [46]).
To better understand the α → 0 limit, we study the

bifundamental theory in the limit where α ≪ 1, to first
order in (M=N). Diagrammatically, this limit is very similar
to the vector model large-N limit. All our sextic couplings
are exactly marginal when α ¼ 0, and the four-loop beta
function is the complete beta function for the theory to first
order in α but all orders in the sextic ’t Hooft couplings. In
this limit, we are therefore able to determine an interacting
ultraviolet fixed point in d ¼ 3 − ϵ, which remains non-
interacting in d ¼ 3, in addition to the infrared fixed point
which becomes free when d ¼ 3. Both fixed points can be
determined to all orders in the parameter ϵ̃ ¼ ϵ=α, For
d < 3, the ultraviolet fixed point is ultraviolet stable and
may be used to provide an asymptotically safe definition of
the theory. For d ¼ 3, however, one of the couplings is
marginal, so higher-order corrections are needed to deter-
mine its existence. Finite M calculations indicate that the
ultraviolet fixed point does exist when d ¼ 3. It would be
interesting to know whether or not the d ¼ 3 ultraviolet
fixed point survives at small but finite α, or when α ¼ 1. If
so, it might constitute an interacting on-supersymmetric
large-N CFT in three dimensions, with a potentially simple
gravitational dual.
Does the infrared bifundamental fixed point in d ¼ 3 − ϵ

extend to d ¼ 2? Using the results from studying the theory
at small α, we show that the infrared fixed point merges
with the ultraviolet fixed point and becomes complex at
ϵC ¼ 9

2π2
αþOðα2Þ. For small α, we can therefore conclude

that the fixed point does not extend to d ¼ 2. But unlike the
ϕ4 theory, the range of ϵ for which the fixed point is real
increases with α. It is therefore conceivable, but not at all
certain, that the fixed point could extend to d ¼ 2 for α ¼ 1.
It may be possible to calculate the order α2 term in ϵC with
higher loop calculations, which could perhaps shed more
light on this question. Of course, a merger is only possible
if the ultraviolet fixed point exists in d ¼ 3. Therefore, we
expect that, at any value of α, either the UV fixed point
exists in d ¼ 3 or the IR fixed point survives until d ¼ 2.
Of course, our computations are perturbative in nature, and
it remains to be seen whether either of these fixed points is
strongly interacting at α ¼ 1.
We then study the theory in the more familiar vector

model large-N limit, in which N is large while M is held
finite. Again, as in Ref. [46], the large-N beta function is
exactly computable to first nontrivial order in 1=N, and we
are able to use it to determine large-N interacting fixed
points in d ¼ 3 for any finite value of M. For sufficiently

large values of M, we find a total of six nontrivial
interacting fixed points in d ¼ 3, including two ultra-
violet-stable fixed points that may provide asymptotically
safe definitions of the theory when N is large. We can
extend these fixed points to d ¼ 3 − ϵ to all orders in the
parameter ϵ̂ ¼ Nϵ and thereby determine the range of ϵ for
which the fixed points exist in the large-N limit. We find a
rich collection of infrared and ultraviolet fixed points,
generalizing the fixed points of Ref. [46], that generically
merge into complex fixed points at various finite values of
ϵ̂. However, unlike the case of M ¼ 1 in Ref. [46], we also
find that there also exist two (four, in the case of M ¼ 3)
real fixed points that persist for arbitrarily large values of ϵ̂
and therefore could conceivably extend to d ¼ 2.
While the primary focus of this paper is on large-N fixed

points, we also study perturbative fixed points for M ¼ 2
and N finite in Sec. V.
Let us mention some closely related work. For the

special case of M ¼ N, the theory we study was recently
also studied perturbatively in Ref. [60], in which the
focus was on generating nonconventional fixed points by
studying the theory at noninteger values of N, and a
closely related supersymmetric model was recently studied
in Ref. [61]. OðNÞ ×OðMÞ fixed points can also be
considered in the larger context of tensor models, e.g.,
Refs. [41,62–66], and in particular, fixed points of OðNÞ3
tensor models with sextic interactions were discussed in
Refs. [67–71]. The theory we consider can also be coupled
to a Chern-Simons gauge field in d ¼ 3—some two-loop
computations in the resulting theory appear in Ref. [72].
Let us also remark that the analysis ofRefs. [73–75], which

study the sextic OðNÞ theory in 3 − ϵ using functional
renormalization group techniques, suggests certain subtleties
in theN → ∞ limit of the sexticOðNÞmodel. Such subtleties
could also be present in the N → ∞ limit of the OðNÞ ×
OðMÞ models when M is finite, although the analysis of
Refs. [73–75] would need to be redone in this case.
This work can also be understood as part of the larger

program of determining fixed points of general multiscalar
theories, which has attracted considerable attention in
recent years, e.g., Refs. [35–38,76–83], and in particular,
our paper heavily relies on the very useful general results
for multiscalar theories presented in Ref. [35].

II. OðNÞ × OðMÞ=Z2 INVARIANT
MULTISCALAR THEORY

We study a theory that contains MN real scalar fields,
denoted as ϕab where a ¼ 1; 2;…; N and b ¼ 1; 2;…;M,
that is invariant under the symmetry group
OðNÞ ×OðMÞ=Z2. We can write the action for a scalar
theory in 3 − ϵ dimensions with this symmetry group as

Z
d3−ϵx

�
1

2
ð∂ϕabÞð∂ϕabÞ þ VðϕÞ

�
: ð2:1Þ
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Near d ¼ 3, the most general renormalizable potential can be
written as a sum of sextic, quadratic, and quartic terms:
VðϕÞ ¼ Vð6ÞðϕÞ þ Vð4ÞðϕÞ þ Vð2ÞðϕÞ. The most general
classicallymarginal sextic interactionVð6ÞðϕÞ that is invariant
underOðNÞ ×OðMÞ=Z2 is a sum of three sextic operators,3

Vð6Þ ¼ g1
6!

Oð6Þ
1 þ g2

6!
Oð6Þ

2 þ g3
6!

Oð6Þ
3 ; ð2:2Þ

a single-trace operator,

Oð6Þ
1 ¼ ðϕa1b1ϕa1b2ϕa2b2ϕa2b3ϕa3b3ϕa3b1Þ; ð2:3Þ

a double-trace operator,

Oð6Þ
2 ¼ ðϕa1b1ϕa1b1Þðϕa2b2ϕa2b3ϕa3b3ϕa3b2Þ; ð2:4Þ

and a triple-trace operator,

Oð6Þ
3 ¼ ðϕabϕabÞ3: ð2:5Þ

The most general quartic interaction invariant under
OðNÞ ×OðMÞ=Z2 is the sum of two quartic operators,

Vð4Þ ¼ ν1O
ð4Þ
1 þ ν2O

ð4Þ
2 ; ð2:6Þ

a single-trace quartic operator, Oð4Þ
1 ¼ ðϕa1b1ϕa1b2ϕa2b2

ϕa2b1Þ, and a double-trace quartic operator, Oð4Þ
2 ¼

ðϕa1b1ϕa1b1Þ2.
The only quadratic operator invariant under our sym-

metry group is the usual, single-trace, mass term:

Vð2Þ ¼ m2ϕabϕab: ð2:7Þ
At any fixed point, the two relevant quartic couplings and
the mass term must be tuned to zero, in addition to any
sextic couplings which turn out to be relevant when
quantum corrections are taken into account.
Using the results for a general sextic multiscalar model in

Ref. [35], we can obtain the four-loop beta function for this
theory for finite N and M. These expressions, which are
rather long, are presented in Appendix A. The results of
Ref. [35] also allow us to obtain expressions for the

anomalous dimensions for the field ϕab, ϕ2, Oð4Þ
1 , and

Oð4Þ
2 . These expressions are presented in Appendix B.
In this paper, we are primarily interested in determining

fixed-point solutions to these beta functions in the limit

when N is large. We consider two natural large-N limits: a
bifundamental large-N limit, in which both M and N are
large, and a vector-model large-N limit, in which N is large
but M is finite. Results for the bifundamental large-N limit
are presented in Sec. III. Results for the vector-model large-
N limit are presented in Sec. IV. For completeness, we also
study the perturbative fixed points of our model for M ¼ 2
and N finite in Sec. V.
Note that, for a sextic theory, a two-loop beta function

allows one to determine fixed points up to order ϵ, and a
four-loop beta function allows one to determine fixed
points up to order ϵ2. However, as we will see below, in
the limit where N is large and M is finite, or when
M=N ≪ 1, the four loop beta function is the complete
beta function to first nontrivial order in 1=N and M=N.

III. FIXED POINTS IN THE BIFUNDAMENTAL
LARGE-N LIMIT

A. Unique fixed point for M
N finite

In analogy with Ref. [2], we define the bifundamental
large-N limit of the theory as follows. We take the limit
N → ∞, keeping the ratio α ¼ M=N fixed. We will always
assume that N > M.
In this large-N limit, the following ’t Hooft couplings for

the single-trace, double-trace, and triple-trace interactions
are held fixed:

λ1 ≡ g1
ð8πÞ2N

2; λ2 ≡ g2
ð8πÞ2N

2M; λ3 ≡ g3
ð8πÞ2N

2M2:

ð3:1Þ

These definitions follow from a standard graph-theoretical
analysis of the leading contribution to free energy graphs,
as in, e.g., Refs. [84,63]. Alternatively, the definitions in
(3.1) can be obtained by imposing the requirement that
two-loop corrections to the scalar propagator remain finite
in our large-N limit. The factors of ð8πÞ2 are chosen for
convenience.
This choice of ’t Hooft couplings does not preserve the

symmetry between N and M. An alternative choice of
couplings which preserves the symmetry between N andM
is given by λ̄1 ¼ αλ1, λ̄2 ¼

ffiffiffi
α

p
λ2, and λ̄3 ¼ λ3. In the

regime where α ∼Oð1Þ, the difference between λ̄i and λi
is simply a matter of notation. However, in the regime
where α ≪ 1, these two choices of ’t Hooft couplings may
define different large-N limits. The large-N limit defined by
holding λi fixed is clearly nonsingular for all α < 1 and
reduces to the familiar vector model large-N limit when α is
very small, so it appears most suitable for our present
discussion.
To two loops, the beta functions in this large-N limit are

β2 loop
λ1

¼ −2λ1ϵþ
αλ21
10

ð3:2Þ

3In Eq. (2.2), each coupling constant is divided by 6!, which is
a convenient choice for our purposes. An alternative convention
would have been to instead divide each coupling by the size
of the automorphism symmetry group of each operator, i.e., g1
by jD6j ¼ 12, g2 by jD2jjD4j ¼ 2 × 8 ¼ 16, and g3 by
jS3jjD2j3 ¼ 3!23. Here, S3 is the group of permutations, and
Dn is the dihedral group on n elements.
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β2 loop
λ2

¼ −2λ2ϵþ
α

30
λ1ð9ðαþ 1Þλ1 þ 4λ2Þ ð3:3Þ

β2 loop
λ3

¼ −2λ3ϵþ
α

90
ð21αλ21 þ 12ðαþ 1Þλ2λ1 þ 4λ22Þ:

ð3:4Þ

The system of equations βλi ¼ 0 possess a unique
nonzero solution, which is

λ1 →
20

α
ϵ; λ2 → −

180ðαþ 1Þ
α

ϵ;

λ3 →
20ð72α2 þ 151αþ 72Þ

3α
ϵ: ð3:5Þ

We have also computed four-loop and 1=N corrections to
this fixed point in Appendix C. In particular, we will make
use of the four-loop corrections presented in Appendix C 1
in the next subsection, when presenting anomalous dimen-
sions at this fixed point.

1. Stability and anomalous dimensions

In the large-N limit, at the four-loop level, the anomalous
dimension for the field and the mass operator at the fixed
point are independent of α:

γϕ ¼ α2λ1
2

10800
¼ ϵ2

27
; γϕ2 ¼ 2α2λ1

2

675
¼ 32ϵ2

27
: ð3:6Þ

The quartic single-trace and double-trace operators given in
(2.6) do not mix at this order and have the following
anomalous dimensions:

γν1 ¼
2αλ1
15

−
ð3π2α3 þ ð106þ 3π2Þα2 þ 3π2αÞλ21

5400

¼ 8ϵ

3
−
2ðπ2 þ 38αþ 3π2αþ π2α2Þϵ2

27α
þOðϵ3Þ

γν2 ¼
4α2λ21
675

¼ 64ϵ2

27
þOðϵ3Þ: ð3:7Þ

The anomalous dimension of the double-trace quartic
operator is just twice that of ðϕabÞ2, as expected in the
large-N limit, while the single-trace quartic operator
acquires a nontrivial anomalous dimension.
The stability matrix for the sextic couplings at the fixed

point is given by

Mab ≡ ∂βaðλÞ
∂λb

����
λ⃗⋆

: ð3:8Þ

To four loops, the eigenvectors of the matrix in (3.8) are

0
BBBBB@

3þð−306π2α4−1003π2α3þ252α3−1293π2α2þ492α2−1003π2αþ252α−306π2Þϵ
4αð72α2þ151αþ72Þ

−27ðαþ1Þþ3ð774π2α5þ3409π2α4þ108α4þ6075π2α3þ444α3þ6075π2α2þ444α2þ3409π2αþ108αþ774π2Þϵ
4αð72α2þ151αþ72Þ

72α2þ151αþ72

1
CCCCCA;

ð3:9Þ

0
B@

0

−1þ ð20π2α2 þ 27π2α− 28αþ 20π2Þϵ
60α

5ðαþ 1Þ

1
CA and

0
B@

0

0

1

1
CA;

ð3:10Þ

with the eigenvalues

2ϵ −
ðπ2α2 þ 34αþ π2Þϵ2

9α
;

2ϵ

3
−
2ðπ2α2 þ 3π2αþ 22αþ π2Þϵ2

27α
and − 2ϵþ 32ϵ2

9
;

ð3:11Þ

respectively. So, the fixed point (3.5) is stable in two
directions and unstable in one direction.
The scaling dimension Δðϕ6ÞðiÞ of a sextic operator ðϕ6ÞðiÞ

is related to the corresponding eigenvalue of the stability
matrix ð∂λβλÞðiÞ, via

Δðϕ6ÞðiÞ ¼ dþ ð∂λβÞðiÞ: ð3:12Þ

The scaling dimensions of quartic and quadratic operators
ϕn
i are related to their anomalous dimensions via

ΔðϕnÞðiÞ ¼ nðd − 2Þ=2þ γðϕnÞðiÞ : ð3:13Þ

We thus see that the scaling dimensions of the double-trace
and triple-trace operators satisfy Δðλ2Þ ¼ Δν1 þ Δϕ2 and
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Δðλ3Þ ¼ 3Δϕ2 , in the large-N limit, as expected. We have
calculated Oð1=NÞ corrections to the stability matrix and
anomalous dimensions in Appendix C.
Let us briefly discuss the anomalous dimensions of the

unprotected single-trace operators. Although γϕ and γϕ2 are
independent of α to the order we were able to compute, we
expect that subsequent higher-order corrections would
depend on α in a nontrivial way. Anomalous dimensions
of the quartic and sextic single-trace operators do show
explicit dependence on α and are plotted in Fig. 2. As
expected, both are symmetric under interchange of α and
α−1, and the anomalous dimensions attain their maximum
value at α ¼ 1. This result is consistent with the expectation
that α acts as a measure of the strength of interactions and
that anomalous dimensions of generic unprotected oper-
ators could diverge when α → 1 and ϵ → 1, as required for
a simple gravitational dual description.
We also observe that the ϵ2 terms in the anomalous

dimensions of Oð4Þ
1 and Oð6Þ

1 are negative. If we fix ϵ and
allow α ¼ M=N to become arbitrarily small (or large),
these anomalous dimensions can become negative, and
arbitrarily large in magnitude, leading to a violation of
unitarity. This suggests that, at least in the limit α ≪ 1 (or
α ≫ 1), our fixed point only exists up to some critical value
of ϵ, which we denote as ϵCðαÞ, that vanishes as α → 0.
This is consistent with our expectations—when α → 0, our
model reduces to the classic tricritical vector model studied
in Ref. [46]. In the large-N limit, Ref. [46] shows that the
tricritical vector model fixed point only exists for ϵ < 36π2

N ,
which tends to 0 as N → ∞.

B. M
N → 0 limit

In this subsection, we study our theory in the limit of N
large and α ≪ 1 in more detail and compute the critical
value of ϵCðαÞ to first order in α. Of course, the results of
this section also determine ϵC to leading order in α−1, since
our theory has a symmetry α ↔ 1

α.
Observe that the large-N beta-functions in (3.2)–(3.4)

vanish when α → 0, as expected from Refs. [46,35]. Let us

now understand this limit better by keeping only those
terms linear in α in the four-loop large-N beta function:

βλ1 ¼ −2λ1ϵþ α

�
λ21
10

−
π2λ31
3600

�
þOðα2Þ ð3:14Þ

βλ2 ¼ −2λ2ϵþ α

�
3λ21
10

þ 2λ1λ2
15

−
π2λ31
1200

−
π2λ21λ2
1800

�
þOðα2Þ

ð3:15Þ

βλ3 ¼ −2λ3ϵþ α

�
2λ1λ2
15

þ 2λ22
45

−
π2λ21λ2
1800

−
π2λ1λ

2
2

2700
−

π2λ32
24300

�
þOðα2Þ: ð3:16Þ

The complete beta function of our theory can be expanded
as a power series in α and λi. We now argue that the four-
loop beta function given in Eqs. (3.14)–(3.16) is actually
the complete beta function, valid to all orders in λi but only
to first order in α.
Recall that an expansion in powers of α ¼ M=N, near

α ¼ 0 for a bifundamental theory, is closely related to an
expansion in powers of 1=N for the vector model obtained
by setting M ¼ 1. In Ref. [46], it was argued that the only
contributions to the 1=N terms in the beta function for the
vector model come from diagrams with four loops or fewer.
Applying the discussion in Ref. [46] regarding the 1=N
terms in the sextic vector model to our bifundamental
model, we observe that the diagrams which contribute to
the beta function at order αp in the bifundamental model are
a proper subset of the diagrams that contribute to a vector
model at order 1=Np, i.e., those diagrams which are also
proportional toMp and therefore planar in the usual graph-
theoretic sense. It therefore follows that the only terms in
the beta function proportional to α originate from two-loop
and four-loop diagrams. So, the four-loop beta function
given in Eqs. (3.14)–(3.16) is actually the complete beta
function, valid to all orders in λi but only to first order in α.
Because this is beta function contains all terms linear in

α, we can use it to compute fixed points that are valid to all

1 2 3 4 5

1.96

1.97

1.98

1.99

2.00

0 1 2 3 4 5

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

FIG. 2. Plots of the scaling dimensions Δν1 and Δλ1 of the single-trace quartic and sextic operators, for ϵ ¼ 0.1, as a function of
α ¼ M=N. The maximum is attained at M=N ¼ 1.
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orders in the parameter ϵ̃≡ ϵ=α. Moreover, we can also use
the beta function to determine interacting fixed points in
d ¼ 3, since any higher-loop corrections to the beta
function can be made arbitrarily small by reducing α.
Higher-loop contributions to the beta function will there-
fore only give rise to corrections to these fixed points that
are suppressed by powers of α, unless a fixed point has a
marginal direction, in which case it may or may not survive
higher-order corrections. Higher-loop corrections could
also lead to new fixed points, at sufficiently strong
coupling.
Let us now look for zeros of the beta function. For any

fixed point, λ2 and λ3 are uniquely determined from the
value of λ1 via Eqs. (3.15) and (3.16), which depend
linearly on λ2 and λ3, respectively:

λ�2¼−
3λ21ðπ2λ1−360Þ

2ðπ2λ21−240λ1þ3600ϵ̃Þ

λ�3¼−
ð2π2λ32þ18π2λ1λ

2
2−2160λ22þ27π2λ21λ2−6480λ1λ2Þ

97200ϵ̃
:

ð3:17Þ

Any fixed point lies on the one-dimensional “critical
curve,” determined by the solutions to these two equations.

For ϵ̃ < 4=π2, there are two poles at λ�1 ¼ 60ð2�
ffiffiffiffiffiffiffiffiffi
4−π2 ϵ̃

p
Þ

π2
, so

this critical curve consists of three disconnected compo-
nents, while for ϵ̃ > 4=π2, it consists of a single connected
component, as can be seen from the plot of λ�2 in Fig. 3.
As in Ref. [46], we find two solutions. The first is a

generalization of the conventional “IR” fixed point of
Ref. [46], given by

λIR1 ¼ 60ð3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p
Þ

π2
þOðαÞ

≈ 20ϵ̃þ 10π2

9
ϵ̃2 þOðϵ̃3Þ þOðαÞ; ð3:18Þ

using which we can determine λ2 and λ3 from Eq. (3.17)
to be

λIR2 ¼ −
360ϵ̃

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p þOðαÞ

≈ −180ϵ̃ − 30π2ϵ̃2 þOðϵ̃3Þ þOðαÞ; ð3:19Þ

λIR3 ≈ 480ϵ̃þ 620π2

3
ϵ̃2 þOðϵ̃3Þ þOðαÞ: ð3:20Þ

If we truncate this solution to order ϵ2, we recover the small
α limit of the fixed point in the previous subsection, but
because we know the complete beta function in this limit,
the solutions are valid to all orders in ϵ̃.
The second solution is a generalization of the UV point

of Ref. [46] and is given by

λUV1 ¼ 60ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p
Þ

π2
þOðαÞ

≈
360

π2
− 20ϵ̃ −

10π2ϵ̃2

9
þOðϵ̃3Þ þOðαÞ; ð3:21Þ

using which we can determine λ2 and λ3 from Eq. (3.17)
to be

λUV2 ¼ 360ϵ̃

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p þOðαÞ

≈ 90ϵ̃þ 15π2

2
ϵ̃2 þOðϵ̃3Þ þOðαÞ ð3:22Þ

λUV3 ≈−
1080

π2
−210ϵ̃−

205π2

6
ϵ̃2þOðϵ̃3ÞþOðαÞ: ð3:23Þ

Ordinarily, one would regard the UV fixed point as an
artifact of perturbation theory that would not survive
higher-loop corrections, but because we know the complete
beta function to first order in α, this solution is physically
meaningful. Notice that this solution is only valid when
ϵ̃ ≠ 0, because we had to divide by ϵ̃ in Eq. (3.17). We
discuss the case of d ¼ 3 in Sec. III B 1, in which case λ3 is
undetermined and marginal.
The beta function for λ1 is shown in Fig. 4 for various

values of ϵ=α. Figure 4 illustrates that, as in Ref. [46], we
find both the IR and UV fixed points merge and become
complex (i.e., cease to exist) for ϵ > ϵC, where

ϵC ¼ 9

2π2
αþOðα2Þ: ð3:24Þ

This implies that, for small α, the bifundamental fixed point
does not extend to d ¼ 2, much like the vector model.
If we possessed higher-order corrections in α to the beta

functions, we would be able to determine higher-order
corrections to the UV and IR fixed points above, and the
corresponding corrections to Eq. (3.24). For α ∼Oð1Þ, we

FIG. 3. A plot of λ�2ðλ1Þ determined using (3.17). For ϵ < 4
π2
α,

there are two poles, and the critical curve determined by (3.17)
consists of three disconnected components. For ϵ > 4

π2
α, there are

no poles, and the critical curve consists of a single component.
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therefore expect the bifundamental fixed point to remain
real up to some unknown function of α, ϵCðαÞ ∼OðαÞ.
If we use Eq. (3.24) (which is only valid to first order in

α) to obtain a crude estimate for the range of ϵ for which the
fixed point is real, we find that ϵC ≈ 0.45, when α ¼ 1.
However, because ϵCðαÞ must be symmetric in α ↔ α−1,
we can attempt to improve this estimate using a two-

sided Padé approximation of the form ϵC ¼ A0þA2αþA0α
2

B0þB1αþB0α
2.

Substituting the order α and order α2 results, we find

ϵCðαÞ ≈
9α

2π2ð1þ B1αþ α2Þ : ð3:25Þ

To determine B1 we would need to know ϵCðαÞ to order α2.
This requires, in principle, an eight-loop calculation. If we
simply set B1 ¼ 0, we find ϵC ≈ :2, as shown in Fig. 5. This
seems to suggest that the fixed point may not extend to
d ¼ 2, even for α ¼ 1.
Let us now discuss anomalous dimensions at this fixed

point. At the leading order in α and four-loop level, the
anomalous dimensions are

γϕ ¼ α2λ1
2

10800
; γϕ2 ¼ 2α2λ1

2

675
;

γν1 ¼
2αλ1
15

−
3π2αλ21
5400

; and γν2 ¼
4α2λ21
675

: ð3:26Þ

Diagrammatic arguments, similar to those given earlier
for the corrections to the vertex, imply that higher-loop
corrections to these anomalous dimensions are suppressed
by additional powers of α [46]. Hence, these expressions
are valid to all orders in the ’t Hooft couplings, but to
leading nontrivial order in α.
The anomalous dimensions for ϕ and ϕ2 at the IR fixed

point are given by

γϕ ¼ α2ðλIR1 Þ2
10800

≈
α2ϵ̃2

27
þ 1

243
π2α2ϵ̃3 þOðϵ̃4Þ þOðα3Þ;

ð3:27Þ

γϕ2 ¼ 32γϕ ð3:28Þ

The quartic single-trace and double-trace operators decou-
ple, with the anomalous dimensions

γν1 ¼
4αð−3þ π2ϵ̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p
Þ

π2
þOðα2Þ

≈ α

�
8ϵ̃

3
−
2π2

27
ϵ̃2 þOðϵ̃Þ3

�
þOðα2Þ ð3:29Þ

and

γν2 ¼ 2γϕ2 ¼ 4α2ðλIR1 Þ2
675

: ð3:30Þ

For the UV fixed point, the anomalous dimensions are

γϕ ¼ α2ðλUV1 Þ2
10800

≈
12α2

π4
−
4α2ϵ̃

3π2
−
α2ϵ̃2

27
−

1

243
ðπ2α2Þϵ̃3 þOðϵ̃4Þ þOðα3Þ

ð3:31Þ

γϕ2 ¼ 32γϕ; ð3:32Þ

γν1 ¼
4α
�
−3þ π2ϵ̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p �
π2

þOðα2Þ ð3:33Þ

FIG. 4. The beta function for λ1, given in Eq. (3.14), is plotted
for various values of ϵ=α. When 0 < ϵ < 9

2π2
α, the UV fixed point

flows to the IR fixed point. When ϵ > 9
2π2

, the fixed points
disappear.

FIG. 5. The bifundamental fixed point exists for ϵ < ϵCðαÞ,
which satisfies ϵCðαÞ ¼ ϵCðα−1Þ. Our results determine ϵCðαÞ to
first order in α and 1=α, shown as dashed black lines. With an α2

calculation, one could determine a Padé approximation that
interpolates between both of these curves, schematically shown
in red.
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≈α
�
−
24

π2
þ 16ϵ̃

3
þ 2π2ϵ̃2

27
þOðϵ̃3Þ

�
þOðα2Þ; ð3:34Þ

and γν2 ¼ 2γϕ2 .
Let us now discuss stability of the fixed points. The

eigenvalues of the stability matrix (3.8), which is lower
triangular, at the IR fixed point are

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p �
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p �
π2

;

α
�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p ��
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2π2ϵ̃

p �
π2

; and − 2αϵ̃;

ð3:35Þ
corresponding to λ1, λ2, and λ3 respectively. For

ϵ
α <

4
π2
, the

first two of these are positive. Hence, the IR fixed point has
two stable and one unstable directions. When ϵ

α >
4
π2
, the

second eigenvalue becomes negative, and there are two
unstable directions. Some of the matrix elements become
singular at ϵ

α ¼ 4
π2
because λ2 becomes singular, but eigen-

values of the stability matrix remain finite.
The eigenvalues of the stability matrix (3.8) at the UV

fixed point are

−
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9− 2π2ϵ̃

p �
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9− 2π2ϵ̃

p �
π2

;

−
α
�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9− 2π2ϵ̃

p ��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9− 2π2ϵ̃

p �
π2

; and − 2αϵ̃:

ð3:36Þ

All eigenvalues are negative when ϵ > 0, which seems to
suggest that the theory is asymptotically safe in this limit.
However, in exactly three dimensions, the triple-trace cou-
pling is marginal—higher-order corrections would be needed
to determinewhether the operator is stable or unstable or if the
fixed point ceases to exist, as discussed in Sec. III B 1.
Let us now discuss flows between these fixed points. In

Fig. 4, there is an apparent flow from the UV fixed-point to
the IR fixed point along the critical curve defined by (3.17),
which is stable with respect to deformations in λ1 if ϵ is
nonzero. For 9

2π2
> ϵ̃ > 4

π2
, the critical curve consists of a

single connected component, and the flow from the UV
fixed point to the IR fixed point implied by Fig. 4 does exist.
However, for ϵ̃ < 4

π2
, the critical curve actually consists of

three disconnected components, with the two fixed points on
different components, and the “apparent flow” along the
critical curve implied by Fig. 4 does not actually exist. In this
range of ϵ, which includes d ¼ 3, there do, however, exist
more complicated flows between the UVand IR fixed point,
which exit the critical curve of Eq. (3.17).

It is actually possible to solve for flows in the λ1 − λ2
plane exactly, even when ϵ̃ ≠ 0. We have

λ2ðλ1Þ ¼
λ1ðπ2ðλ1 þ 30ϵ̃Þ − 360Þ

10ð4 − π2ϵ̃Þ
þ Cλ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ð360 − π2λ1Þ − 7200ϵ̃

q

× exp

0
B@tan−1

�
π2λ1−180
60
ffiffiffiffiffiffiffiffiffiffiffi
2π2 ϵ̃−9

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2ϵ̃ − 9

p

1
CA: ð3:37Þ

When ϵ ¼ 0, this simplifies to

λ2ðλ1Þ ¼ −9λ1 þ
π2λ21
40

−
C

π1=3
λ4=31 ð360 − π2λ1Þ2=3: ð3:38Þ

Here, C an integration constant. For flows between the UV
fixed point and the IR fixed point, C should be taken to be
real, and the branch cut in the cube root in Eq. (3.38) should
be chosen appropriately. We assume λ3 is tuned to solve
βλ3 ¼ 0. Some flows between the UV and IR fixed points
for small ϵ̃ and for d ¼ 3 are presented in Figs. 6 and 7.
In the small-α limit, flows from the UV fixed point to the

IR fixed point may be affected by the spontaneous breaking
of conformal invariance, as discussed for the sextic vector
model in Refs. [48,52]. Investigation of this effect is left for
future work.

FIG. 6. Flows in the λ1 − λ2 plane from the UV fixed point
(blue) to the IR fixed point (red) in d ¼ 3 − α

π2
. The free fixed

point (black) also flows to the IR fixed point. λ3 is tuned so that
βλ3 vanishes along these flows.
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1. Ultraviolet fixed point in d = 3

Here, we discuss the fixed points to the beta
functions (3.18)–(3.20) when d ¼ 3 exactly.
When d ¼ 3, solving βλ1 ¼ 0, we have

λUV1 ¼ 360

π2
: ð3:39Þ

Then, βλ2 ¼ 0 implies

λUV2 ¼ 0: ð3:40Þ

This then implies that βλ3 vanishes identically for all λ3.
Because λ3 is marginal, we cannot be certain of the
existence of such a fixed point until higher-order correc-
tions in α or 1=N are included in the beta function.
Following the discussion in Ref. [46], an order-α2 calcu-
lation would require an eight-loop calculation. Notice that,
when ϵ > 0, it is possible to determine λUV3 , and using this
result, we obtain a finite value for λUV3 ¼ − 1080

π2
in the limit

ϵ → 0; however, as far as we can tell, this result is not
reliable in d ¼ 3 and would be modified when α2 or 1=N2

corrections to the beta function are included.
To leading order in the 1=N expansion, anomalous

dimensions do not depend on λ3, so they can be determined
for this putative fixed point. Their values when d ¼ 3 can
be read off from (3.31), (3.32), (3.34), and (3.35). In the
large-N limit, we know that Δλ3 ¼ 3Δϕ2 . Because Δϕ2 > 0,
we expect that in d ¼ 3 deformations to the UV fixed point
corresponding to λ3 become irrelevant when higher-order
corrections in α are taken into account.
Another nontrivial solution in exactly d ¼ 3 can be

obtained by

λ1 ¼ 0; λ2 ¼
1080

π2
; ð3:41Þ

with λ3 again marginal and undetermined.

Note also that we can also obtain a third class of
potentially nontrivial solutions by setting

λ1 ¼ λ2 ¼ 0; ð3:42Þ

which leaves λ3 marginal and undetermined to this order in α.
In the next section, we study fixed points of the theory

when N is large and M is finite. We are able to determine
several fixed points without marginal directions that
approach one of the possible forms above when
M → ∞. In particular, the d ¼ 3 fixed point ½Aþ� defined
in the next subsection approaches a fixed point of the form
given in Eq. (3.42), and the d ¼ 3 fixed points ½Dþ�, ½D−�,
½Bþ�. ½Eþ�, and ½E−� approach fixed points of the form
given in Eq. (3.39). The solution ½Eþ� appears to corre-
spond to the ultraviolet fixed point at finite ϵ, but it
develops a discontinuity in the solution for λ3 near ϵ ¼
0 as M → ∞. We did not find any solutions of the form
given in Eq. (3.41). These results correspond to the
inclusion of a particular combination of α and 1=N
corrections to the beta functions in Eqs. (3.18)–(3.20),
such that the four-loop beta function remains valid.
The finite-M results indicate that an ultraviolet bifunda-

mental fixed point in d ¼ 3 exists, but it would be nice to
confirm this by a higher-order calculation in α. Assuming
the fixed point does exist, we can then speculate about the
possibility of it extending to finite α. There would be no
in-principle obstacle to computing arbitrarily high-order
corrections in α, to the fixed point. The power series in α
obtained in this way approximates a function that inter-
polates between two large-N saddle points—hence, it is
rather different from the 1=N expansion, and one might
hope that it has a finite radius of convergence. Because the
theory has a symmetry in α ↔ α−1, we could use a few
terms of a power series in α to construct a two-sided Padé
approximation as in Fig. 5, which could be used to estimate
the radius of convergence, or to estimate various observ-
ables in the theory near α ¼ 1.

IV. FIXED POINTS FOR N LARGE AND M FINITE

In this section, we describe fixed points of the OðNÞ ×
OðMÞ=Z2 theory in the limit where N is large and M is
finite. This large-N limit is a conventional vector model
large-N limit, as the three interactions O1, O2, and O3 are
effectively triple-trace interactions with respect to OðNÞ
index contractions. Our results and analysis are therefore an
extension classic results for the tricritical vector model
presented in Ref. [46], which is a special case of our model
corresponding to M ¼ 1.
The natural ’t Hooft couplings in this limit remain those

given in the previous section. To zeroth order in the 1=N
expansion the beta function vanishes, as in Ref. [46],
essentially due to the fact that our interactions are all
effectively triple-trace in this limit. Keeping terms up to
first order 1=N, the beta functions in this limit are

FIG. 7. Flows from the UV fixed point to the IR fixed point in
d ¼ 3.
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βλ1 ¼ −2λ1ϵþ
96λ2λ1 þ 8λ22 þ 9λ21MðM þ 4Þ

90MN
−
π2λ1ð48λ2λ1 þ 8λ22 þ 3λ21MðM þ 4ÞÞ

10800MN

βλ2 ¼ −2λ2ϵþ
8λ2ð7λ2 þ 6λ3Þ þ 27λ21M

2 þ 12λ1ð12λ3 þ λ2MðM þ 2ÞÞ
90MN

−
π2ð24λ2λ1ð7λ2 þ 6λ3Þ þ 8λ22ð4λ2 þ 3λ3Þ þ 27λ31M

2 þ 18λ21ð12λ3 þ λ2MðM þ 2ÞÞÞ
32400MN

βλ3 ¼ −2λ3ϵþ
36λ23 þ 48λ2λ3 þ 6λ1λ2M2 þ 2λ22ðM þ 1ÞM

45MN

−
π2

48600MN
ð27λ2λ21M2 þ 2ð144λ3λ22 þ 162λ23λ2 þ 54λ33 þ λ32ðM2 þM þ 28ÞÞ

þ 18λ1ð24λ3λ2 þ 18λ23 þ λ22MðM þ 1ÞÞÞ: ð4:1Þ

Again, as argued in Ref. [46] and reviewed in the
Introduction, this four-loop beta function is actually the
full beta function to order 1=N. All higher-loop corrections
to this beta function are suppressed by 1=N2. Therefore, we
can use this beta function to determine interacting fixed
points in d ¼ 3 as well as fixed points that are valid to all
orders in the parameter ϵ̂ ¼ Nϵ.
These beta functions can be written as a gradient of a

potential βa ¼ Tab
∂U
∂λb
, given in Eq. (D3) in Appendix D,

with the inverse metric:

ðT−1Þab ¼

0
BB@

1
120

ðM3 þ 3M2 þ 4MÞ Mþ1
30

1
15M

Mþ1
30

M2þMþ4
90M

1
15M

1
15M

1
15M

1
15M

1
CCA:

ð4:2Þ

While we are mainly interested in integer values of M,
theories with OðMÞ symmetry for noninteger M may be of
interest in some contexts, as described in Ref. [85]. For
M ≤ 2, this metric is not positive definite. In particular,
theories with the OðMÞ symmetry group for noninteger M
may not be unitary and could display unusual renormal-
ization group (RG) behavior, such as limit cycles [60,61].
Because the beta functions are the gradient of a potential, it
appears that limit cycles should be impossible even for
noninteger values ofM. However, the metric in Eq. (4.2) is
only positive definite for M > 2. When M ¼ 2, the metric
possesses a zero eigenvalue, due to the fact that the three
interaction terms O1, O2, and O3 are not all independent.
When −3 < M < 2, the metric contains positive and
negative eigenvalues and therefore gives rise to nonunitary
flows, as in Ref. [60]. When M < −3, the metric is again
negative definite, so no unusual RG behavior is possible.
We briefly study fixed points in our model for noninteger
−3 < M < 2, in Appendix E, with a view to find uncon-
ventional fixed points similar to those in Refs. [60,61];
however, we find that our model does not give rise to limit
cycles.

When solving for the zeros of the beta function, we find
fixed points which become free in the limit ϵ → 0.
Following Ref. [46], we refer to these as IR fixed points.
There are also several fixed-point solutions of the beta
function that do not vanish as ϵ̂ → 0. Following Ref. [46],
we refer to these as UV fixed points. These correspond to
interacting fixed points in d ¼ 3.
We are able to study the existence of fixed points for all

values ofM ∼Oð1Þ and ϵ̃ ∼Oð1Þ, i.e., study fixed points in
the M-ϵ̃ plane. This analysis is reminiscent of the analysis
of Refs. [73–75], which studies fixed points of the sextic
OðNÞ model in the N-ϵ plane, via functional renormaliza-
tion. However, theOðNÞmodel is not solvable when N and
ϵ are both finite, and any conclusions about the dynamics of
the theory in that regime necessarily involve uncontrolled
approximations (which may still be self-consistent and
physically justified). In contrast, our analysis of fixed
points in theM-ϵ̃ plane is controlled by the small parameter
1=N, which can be made arbitrarily small. Interestingly, in
our results for the theory when N is large and M is finite,
we also find that the ϵ̃ → 0 limit and the M → ∞ limit do
not commute.
At finite ϵ̂, some of these fixed points merge—

for example, when M ¼ 1, there are exactly two non-
trivial fixed points which merge at ϵ̂� ¼ 36

π2
þOð1=NÞ. This

implies that the merger occurs at d� ¼ 3 − 36
π2N þOð1=N2Þ,

which is extremely close to d ¼ 3 for N large. Determining
the order-1=N2 correction to d� would require an eight-loop
calculation.4 Of course, the location of the merger at finite
N remains unknown. An interesting feature of the new
fixed points we determine below for M ≥ 2 not present in

4Note that interacting fixed points and mergers were also seen
in other theories, e.g., Ref. [86]. However, we emphasize that, in
our theory, we are able to obtain the complete beta function to
leading order in 1=N. Any changes in the location of mergers due
to higher-loop contributions to the beta function must be sup-
pressed by additional powers of 1=N and can only contribute to
the 1=N2 term in d�. This follows from the large-N arguments
given in Secs. III B and I A.
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the M ¼ 1 theory is that some fixed points persist for all
values of ϵ̂—these fixed points could conceivably survive
to d ¼ 2, although more work would be needed to
demonstrate this conclusively.
In Sec. IVA 1, we present two simple fixed points

that are valid for allM. These fixed points are a straightfor-
ward generalization of the fixed points of Ref. [46]. In
Sec. IVA 2, we present two additional solutions which are
valid for all M > 3, but we are only able to determine their
analytic form near d ¼ 3.
The remaining zeros of the beta functions in Eq. (4.1) are

rather complicated and depend onM in a nontrivial way. In
addition, this case must be treated separately. In Sec. IV B,
we discuss the fixed points of the theory forM ¼ 2, which,
as mentioned previously, must be treated separately as the
three operators O1, O2, and O3 are not independent. In
Sec. IV C, we discuss the fixed points of the theory for
M ¼ 3, and in Sec. IV D, we discuss the fixed points
for M > 3.

A. Some fixed points for arbitrary M

While we are forced to resort to numerics to determine
the fixed-point solutions of the beta functions (4.1), we are
able to determine some solutions analytically for arbitrary
M. These are presented in this section.

1. ½A+ � and ½A− �
There are two fixed points—a UV fixed point and an IR

fixed point—that are valid for arbitrary M and arbitrary ϵ̂.
These are fixed points for which λ1 ¼ λ2 ¼ 0, and λ3 is
given by one of

½A−�∶ λIR3 ¼
30
�
6 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
π2

þO
�

1

N2

�

≈
5Mϵ̂

2
þ 5

288
π2M2ϵ̂2 þOðϵ̂3Þ ð4:3Þ

½Aþ�∶ λUV3 ¼
30
�
6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36− π2Mϵ̂

p �
π2

þO

�
1

N

�
¼ 360

π2
− λIR3 :

ð4:4Þ

For M ¼ 1, these solutions are those given in
Refs. [46,35]. When M ¼ 1, there is only one independent
coupling, so g1 and g2 should be set to zero, and these are
the only fixed points, as discussed in Ref. [46]. Note that
when M is large the IR solution does not approach the
bifundamental fixed point (3.5); it corresponds to a new
fixed point that emerges when 1=N corrections are included
in the large-N bifundamental beta function, given
in Eq. (C18).
The beta function for λ3 in (4.1) is plotted in Fig. 8, for

various values of M, when λ1 ¼ λ2 ¼ 0. From Fig. 8, it is
easy to see that there is a flow from the UV fixed point to

the IR fixed point for which λ1 ¼ λ2 ¼ 0. (This flow,
however, could be affected by spontaneous breaking of
conformal invariance [48].) The UV and IR fixed points
cease to exist when ϵ > 36

π2MN.
For the IR fixed point, the anomalous dimension of ϕ is

γϕ¼
ðλIR3 Þ2

1350M2N2
≈

1

N2

�
ϵ̂2

216
þπ2Mϵ̂3

15552

�
þOðϵ̂4ÞþO

�
1

N3

�
:

ð4:5Þ

For the UV fixed point,

γϕ ¼ ðλUV3 Þ2
1350M2N2

≈
1

N2

�
96

π4M2
−

4ϵ̂

3π2M
−

ϵ̂2

216
−
π2Mϵ̂3

15552

�

þOðϵ̂4Þ þO
�

1

N3

�
ð4:6Þ

The quartic anomalous dimension matrix in this limit is

½γν1ν2 � ¼
240λ3 − π2λ23

450MN

�
0 0

1
M 1

�
ð4:7Þ

Thus, we obtain the following anomalous dimensions:

γIRν̂1 ¼
2
�
6 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p ��
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
π2MN

≈
1

N

�
4ϵ̂

3
−

1

216
π2Mϵ̂2

�
þOðϵ̂3Þ; γIRν̂2 ¼ 0 ð4:8Þ

γUVν̂1 ≈
1

N

�
−

96

π2M
þ8ϵ̂

3
þ 1

216
π2Mϵ̂2

�
þOðϵ̂3Þ; γUVν̂2 ¼0:

ð4:9Þ

FIG. 8. A plot of βλ3 in d ¼ 3 obtained from Eq. (4.1) for
various values of M, when λ1 ¼ λ2 ¼ 0. The zero at 360

π2
is a UV-

stable fixed point when M ¼ 1. For M > 1, there are two other
directions not shown in this plot.
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For small ϵ̂, the stability matrix ∂λbβa at the IR fixed point is

0
B@

− 2ϵ̂
N 0 0

4ϵ̂
N − 2ϵ̂

3N 0

0 8ϵ̂
3N

2ϵ̂
N

1
CAþOðϵ̂2Þ ð4:10Þ

This is stable in one direction and unstable in two directions
for small ϵ̂. For arbitrary ϵ̂, the eigenvalues of the stability
matrix are

−
2ϵ̂

N
; −

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36 − π2Mϵ̂
p

− 2
��

6 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
π2MN

and;
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
6 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
π2MN

: ð4:11Þ

We observe that at ϵ̂ ¼ 32
π2M the second eigenvalue changes

sign, so the IR fixed point becomes stable in two directions
and unstable in one direction.
For small ϵ̂, the stability matrix at the UV fixed point is

0
BBB@

− 2ϵ̂
N 0 0

576
π2MN − 4ϵ̂

N
192

π2MN − 10ϵ̂
3N 0

− 864
π2MN þ 12ϵ̂

N − 480
π2MN þ 28ϵ̂

3N − 288
π2MN þ 6ϵ̂

N

1
CCCAþOðϵ̂2Þ:

ð4:12Þ

Thus, the UV fixed point is unstable in two directions and
stable in one direction. (When ϵ̂ ¼ 0, one of the unstable
directions becomes the marginal direction, and higher-
order corrections in 1=N will be required to determine
stability.) For arbitrary ϵ̂, the eigenvalues of the stability
matrix are

−
2ϵ̂

N
;

2
�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p ��
6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p �
π2MN

;

and −
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p
ð6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 − π2Mϵ̂

p
Þ

π2MN
: ð4:13Þ

These do not change sign as ϵ̂ is varied from 0 to 36
π2M.

2. ½A+
2 � and ½B+ �

Here, we present two UV fixed points, denoted ½Aþ
2 � and

½Bþ�, which exist for all M ≥ 3. We present these solutions
as power series in ϵ̂.
The fixed point ½Aþ

2 � is given by

½Aþ
2 �∶ λ1 →

20Mϵ̂

M2 þ 4M − 24
þOðϵ̂2Þ ð4:14Þ

λ2 → −
60Mϵ̂

M2 þ 4M − 24
þOðϵ̂2Þ ð4:15Þ

λ3 →
360

π2
−
5MðM2 þ 4M − 40Þϵ̂
2ðM2 þ 4M − 24Þ þOðϵ̂2Þ; ð4:16Þ

The field anomalous dimension for ½Aþ
2 � is

γϕ ¼
1

N2

�
96

π4M2
−

4ϵ̂

3π2M

þ ð7M4 þ 16M3 − 32M2 þ 96M − 448Þϵ̂2
216ðM2 þ 4M − 24Þ2

�
þOðϵ̂3Þ:

ð4:17Þ

The quartic anomalous dimension matrix is

1

N

0
B@

8ðM2þ2M−8Þϵ̂
3ðM2þ4M−24Þ 0

− 96
π2M2þ 16ðM−8Þϵ̂

3MðM2þ4M−24Þ − 96
π2Mþ 8ϵ̂

3

1
CAþOðϵ̂2Þ ð4:18Þ

with the eigenvalues

γν1 ¼
8ðM2 þ 2M − 8Þϵ̂
3NðM2 þ 4M − 24Þ þOðϵ̂2Þ;

γν2 ¼ −
96

π2MN
þ 8ϵ̂

3N
þOðϵ̂2Þ: ð4:19Þ

The stability matrix is

1

N

0
BBBBBB@

2ðM2þ4M−8Þϵ̂
M2þ4M−24

32ϵ̂
3ðM2þ4M−24Þ 0

576
π2M− 32ðM−5Þϵ̂

M2þ4M−24
192
π2Mþ

�
4ðM2−16Þ

3ðM2þ4M−24Þ−2

�
ϵ̂ 0

− 864
π2Mþ 4ðM2þ12M−72Þϵ̂

M2þ4M−24 − 480
π2Mþ 4ð5M2þ24M−136Þϵ̂

3ðM2þ4M−24Þ − 288
π2Mþ6ϵ̂

1
CCCCCCA
þOðϵ̂2Þ ð4:20Þ
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with the eigenvalues

2ϵ̂

N
;

192

π2MN
−
2ðM2 þ 12M − 88Þϵ̂
3ðM2 þ 4M − 24ÞN ; −

288

π2MN
þ 6ϵ̂

N
:

ð4:21Þ

For small ϵ̂, we see ½Aþ
2 � is unstable in one direction and

stable in the other two directions.
The fixed point ½Bþ� is given by

½Bþ�∶ λ1 →
360

π2
−

20ϵ̂

M þ 4
þ 40π2ð5M þ 2Þϵ̂2

9ðM þ 4Þ3 þOðϵ̂3Þ

ð4:22Þ

λ2 → −
5π2ð7M2 þ 4MÞϵ̂2

8ðM þ 4Þ2 þOðϵ̂3Þ ð4:23Þ

λ3 →
15M2ϵ̂

2ðM þ 4Þ þ
5π2ð7M5 þ 46M4 − 64M3 þ 32M2Þϵ̂2

96ðM þ 4Þ3
þOðϵ̂3Þ: ð4:24Þ

The field anomalous dimension is

γϕ ¼ 1

N2

�
12ðM2 þ 3M þ 4Þ

π4
−
4ðM2 þ 3M þ 1Þϵ̂

3π2ðM þ 4Þ

þ ð127M3 þ 52M2 − 368M þ 64Þϵ̂2
216ðM þ 4Þ3

�
þOðϵ̂3Þ:

ð4:25Þ

The quartic anomalous dimension matrix is

1

N

0
B@−24ðMþ2Þ

π2
þ 16ðMþ2Þϵ̂

3ðMþ4Þ −96
π2
þ 64ϵ̂

3ðMþ4Þ
−24

π2
− 8ϵ̂

3ðMþ4Þ − 8Mϵ̂
ðMþ4Þ

1
CAþOðϵ̂2Þ ð4:26Þ

with the eigenvalues

−
12
�
M þ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4M þ 20

p �
π2N

þOðϵ̂Þ;

12
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 4M þ 20
p

− ðM þ 2Þ
�

π2N
þOðϵ̂Þ: ð4:27Þ

The stability matrix is

1

N

0
BBBBB@

− 36ðMþ4Þ
π2

þ 6ϵ̂ − 192
π2M þ 128ϵ̂

3MðMþ4Þ 0

− 108M
π2

− 24ðMþ2Þ
π2

−
�
8ðM−4Þ
3ðMþ4Þ þ 2

�
ϵ̂ − 288

π2M þ 64ϵ̂
MðMþ4Þ

0 − 24M
π2

− 32Mϵ̂
3ðMþ4Þ

�
− 24M

Mþ4
− 2
�
ϵ̂

1
CCCCCAþOðϵ̂2Þ: ð4:28Þ

For small ϵ̂, one can show that ½Bþ� is unstable in two
directions and stable in the other direction.
We had to resort to numerics to determine the behavior of

these solutions when ϵ̂ is finite, as discussed below for
various values of M.

B. M = 2

In this section, we present all the fixed points of the
theory when M ¼ 2. We must study this case separately
because, when M ¼ 2, the single-trace, double-trace, and
triple trace operators are not independent and obey the
relation

3ðϕa1b1ϕa1b1Þðϕa2b2ϕa2b3ϕa3b3ϕa3b2Þ
¼2ðϕa1b1ϕa1b2ϕa2b2ϕa2b3ϕa3b3ϕa3b1ÞþðϕabϕabÞ3: ð4:29Þ

We choose the following two independent ’t Hooft
couplings:

λ̃1 ¼ λ1 þ
λ2
3
; λ̃3 ¼ λ3 þ

2λ2
3

: ð4:30Þ

The beta functions for these redefined couplings reduce to

βλ̃1 ¼ −2λ̃1ϵþ
1

N

�
4

15
λ̃1ð3λ̃1 þ λ̃3Þ −

1

900
λ̃1ð2π2λ̃21 þ π2λ̃1λ̃3Þ

�
þO

�
1

N2

�

βλ̃3 ¼ −2λ̃3ϵþ
1

900N
ð−π2λ̃31 − 2π2λ̃21λ̃3 þ 360λ̃21 − 3π2λ̃1λ̃

2
3 þ 480λ̃1λ̃3 − π2λ̃33 þ 360λ̃23Þ þO

�
1

N2

�
: ð4:31Þ
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These beta functions can be written as the gradient of the
potential

U ¼ −
ϵ

30
ð7λ̃21 þ 2λ̃3λ̃1 þ λ̃23Þ þ

15λ̃31 þ 9λ̃3λ̃
2
1 þ 3λ̃23λ̃1 þ λ̃33

225N

−
π2ð15λ̃41 þ 12λ̃3λ̃

3
1 þ 6λ̃23λ̃

2
1 þ 4λ̃33λ̃1 þ λ̃43Þ

108000N
ð4:32Þ

with the inverse metric

ðT−1Þab ¼
 

7
30

1
30

1
30

1
30

!
: ð4:33Þ

In terms of the redefined ’t Hooft couplings, the
anomalous dimension of ϕ is given by

γϕ ¼ 7λ̃21 þ 2λ̃1λ̃3 þ λ̃23
5400N2

þO

�
1

N3

�
: ð4:34Þ

In the leading order, γϕ2 ¼ 32γϕ for all the fixed points. The
quartic anomalous dimension matrix is

½γν1ν2 � ¼
1

1800N

�
960λ̃1 − 4π2λ̃21 960λ̃1 − 4π2λ̃21

−π2ðλ̃1 þ λ̃3Þ2 þ 240ðλ̃1 þ λ̃3Þ −4π2λ̃1λ̃3 − 2π2λ̃23 þ 480λ̃3

�
þO

�
1

N2

�
: ð4:35Þ

Numerically, we find that the total number of distinct
fixed points nfixed of the beta function varies with ϵ̂ as
follows:

nfixed ¼

8>>>>>><
>>>>>>:

4 ϵ̂ ¼ 0

5 0 < ϵ̂ < 1.20

7 1.20 < ϵ̂ < 18
π2

5 18
π2
< ϵ̂ < 3.98

3 3.98 < ϵ̂

: ð4:36Þ

A schematic plot illustrating how the fixed points merge
and vary as a function of ϵ̂ is presented in Fig. 9.
In the next subsection, we discuss the behavior of these

fixed points near d ¼ 3. In Sec. IV B 2, we discuss the fixed
points which persist for ϵ̂ arbitrarily large, as these could
conceivably correspond to fixed points near d ¼ 2 or 4.
[However, our large-N limit is defined such that
ϵ̂ ¼ Nϵ ∼Oð1Þ, so our analysis does not apply to ϵ ∼Oð1Þ.]

1. Fixed points near d = 3

There are in total five fixed points for the case where ϵ̂ is
very small but nonzero. Apart from the free fixed point, two
of these are the IR and UV solutions ½A−� and ½Aþ� given in
(4.3) and (4.4).
The remaining two solutions are UV fixed points, given

by the following expressions near ϵ̂ ¼ 0:

½Bð2Þ�∶ λ̃1 →
360

π2
−
10ϵ̂

3
; λ̃3 → 5ϵ̂ ð4:37Þ

½Cþ
ð2Þ�∶ λ̃1 → 38.8118−1.01761ϵ̂; λ̃3→−12.511−7.6831ϵ̂:

ð4:38Þ

When d ¼ 3 exactly, there are only four fixed points,
because the fixed point ½A−� becomes free when ϵ ¼ 0. The

eigenvalues of the stability matrix and anomalous dimen-
sions of these fixed points are given in Table I. We observe
that the fixed point ½Bþ

ð2Þ� is unstable in all directions and

acts as a stable UV fixed point that may provide an
asymptotically safe definition of the theory in this
large-N limit. Numerically determined flows in d ¼ 3

FIG. 9. A schematic plot of the number of fixed points as a
function of ϵ̂, for M ¼ 2. The horizontal axis is schematic—for
any given value of ϵ̂, fixed points are arranged in order of
increasing U, so RG flow is only possible from right to left. The
color of each line specifies the stability of each fixed point: red,
orange, and green, respectively, denote fixed points with zero,
one, and two unstable directions. Black dots indicate mergers of
fixed points.
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between these fixed points in the λ̃1-λ̃3 plane are shown
in Fig. 10.
We were able to determine a formal analytic expression

for the flows in d ¼ 3, given by

C¼ logλ1 þ 4
X

xx3−6x2−xþ1¼0

2x log
�
λ1
λ3
− x
�
þ log

�
λ1
λ3
− x
�

3x2 − 12x− 1
;

ð4:39Þ

where the sum is over the three roots of the polynomial
x3 − 6x2 − xþ 1 ¼ 0 and C is an integration constant.

2. Fixed points at large ϵ̂

The fixed-point solutions ½Bþ
ð2Þ� and ½Cþ

ð2Þ� are presented
as power series in ϵ̂, but we also studied their behavior for
arbitrary ϵ̂ numerically, which is depicted schematically in
Fig. 9. The fixed point ½Bð2Þ� appears to only exist up to
ϵ̂ ¼ 3.98, while ½Cþ

ð2Þ� appears to survive for all ϵ̂. There is

another solution ½C−
ð2Þ� that emerges at finite ϵ̂ and exists for

arbitrarily large ϵ̂.
Here, we present the asymptotic form of the fixed points

that survive when ϵ̂ large. (But recall that we still require
ϵ̂ ≪ N for our beta functions to be valid). We find two
nontrivial fixed points with the following asymptotic
expressions when ϵ̂ ≫ 1:

½C∓
ð2Þ�∶ λ1 → ∓29.79

ffiffiffî
ϵ

p
λ3 → �65.69

ffiffiffî
ϵ

p
: ð4:40Þ

In the limit of large ϵ̂, both fixed points have the same
anomalous dimensions, which are

γϕ ¼ 1.22ϵ̂
N2

; γϕ2 ¼ 39.19ϵ̂
N2

: ð4:41Þ

The quartic anomalous dimension matrix is

½γν1ν2 � ¼
 
− 19.46ϵ̂

N − 19.46ϵ̂
N

− 7.07ϵ̂
N − 4.41ϵ̂

N

!
: ð4:42Þ

The eigenvalues of the quartic anomalous dimension matrix
are − 25.87ϵ̂

N and 2ϵ̂
N ,

½Mab� ¼
 
− 17.46ϵ̂

N − 9.73ϵ̂
N

− 85.34ϵ̂
N − 34.69ϵ̂

N

!
: ð4:43Þ

The eigenvalues of the stability matrix are − 56.15ϵ̂
N and 4ϵ̂

N , so
in this limit, the fixed points are stable in one direction and
unstable in the other. The value of the potential at either
fixed points approaches

U ¼ −
110.21ϵ̂2

N
ð4:44Þ

when ϵ̂ → ∞. Flows for large ϵ̂ are shown in Fig. 11.

C. M = 3

We next study the theory when M ¼ 3. Although the
same beta functions apply for M ¼ 3 and M > 3, the
structure of the solutions is slightly different for M ¼ 3, so
we present this case separately.
Numerically, forM ¼ 3, we find that the total number of

distinct solutions nfixed to the beta function varies with ϵ̂ as
follows:

TABLE I. Large N interacting OðNÞ ×Oð2Þ fixed points in d ¼ 3.

Fixed point ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½Aþ� − 144
π2

96
π2

− 48
π2

0 24
π4

51840
π6

≈ 53.92
½Cþ

ð2Þ� −31.26 6.01 −12.53 5.79 1.80 804.02

½Bþ
ð2Þ� 48ð−4− ffiffi7p Þ

π2
48ð−4þ ffiffi

7
p Þ

π2
48ð−1− ffiffi2p Þ

π2
48ð−1þ ffiffi

2
p Þ

π2
168
π4

777600
π6

≈ 808.83

FIG. 10. Flows in the λ̃1-λ̃3 plane in d ¼ 3 for the M ¼ 2
theory. The black dot is the free fixed point, the red dot is ½Aþ�,
the blue dot is ½Bþ

ð2Þ�, and the green dot is ½Cþ
ð2Þ�.
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nfixed ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

5 ϵ̂ ¼ 0

7 0 < ϵ̂ < 0.09

5 0.09 < ϵ̂ < 0.99

7 0.99 < ϵ̂ < 12
π2

5 12
π2
< ϵ̂ < 1.77

7 1.77 < ϵ̂ < 4.32

5 4.32 < ϵ̂

: ð4:45Þ

A schematic plot of these fixed points, according by
potential, as a function of epsilon is given in Fig. 12.

1. Fixed points near d = 3

There in total five fixed points for ϵ̂ ¼ 0, including the
free fixed point. Two of the fixed points can be determined
analytically. One of them is ½Aþ� (which branches into two
fixed points, ½Aþ� and ½Aþ

2 �, as ϵ̂ is increased.) The other is
½Bþ�, which has a closed-form series expression and exists
for all M, as described in Sec. IVA 2.
The remaining two UV solutions, which we determined

numerically, are given by

½Dþ�∶ λ1 ¼ −5.34þ 13.22ϵ̂;

λ2 ¼ 12.98 − 22.70ϵ̂;

λ3 ¼ 28.97þ 0.46ϵ̂ ð4:46Þ

½B−�∶ λ1 ¼ −16.78þ 1.85ϵ̂;

λ2 ¼ 103.57 − 16.33ϵ̂;

λ3 ¼ −37.95þ 9.01ϵ̂: ð4:47Þ

Fixed points ½Dþ� and ½Aþ
2 � exist only up to ϵ̂ ¼ 0.085.

Fixed point ½Dþ� is part of a larger family of fixed points
that exist for all M > 2. ½B−� and ½Bþ� are real for all ϵ̂ ≥ 0
when M ¼ 3.
The only IR fixed point when M ¼ 3 is ½A−�.
When d ¼ 3, we find the following anomalous

dimensions:

FIG. 11. Flows in the λ̃1-λ̃3 plane for asymptotically large ϵ̂.
The green dots denote ½C��.

FIG. 12. A schematic plot illustrating the number of fixed point
solutions as a function of ϵ̂ for M ¼ 3. The horizontal axis is
schematic—for any given value of ϵ̂, fixed points are arranged in
order of increasing U, so RG flow is only possible from right to
left. The color of each line specifies the stability of each fixed
point: red, orange, green, and violet respectively denote fixed
points with zero, one, two, and three unstable directions. Black
dots indicate mergers of fixed points. For ϵ̂ sufficiently large, all
fixed points become infrared fixed points relative to the free
theory.
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Fixed point ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½Aþ� −9.73 6.48 0 −3.24 0 0.11 23.97

½Dþ� −9.92 5.82 −0.76 −3.44 −2.07 0.13 24.32

½B−� −26.92 13.51 −11.74 −10.31 −6.42 0.79 230.59

½Bþ� −35.50 −8.32 6.13 −13.86 1.71 2.71 2042.29

ð4:48Þ

2. Fixed points at large ϵ̂

Four fixed points with M ¼ 3 survive when ϵ̂ large, as shown in Fig. 12. These are given by the following asymptotic
forms:

½B∓�∶ λ1 → ∓27.01
ffiffiffî
ϵ

p
; λ2 → �81.03

ffiffiffî
ϵ

p
; λ3 → ∓ 54.02

ffiffiffî
ϵ

p
ð4:49Þ

½F��∶ λ1 → 10.15; λ2 → � 64.36
ffiffiffî
ϵ

p
; λ3 → ∓ 98.57

ffiffiffî
ϵ

p
: ð4:50Þ

The anomalous dimensions and the value of the potential U for these solutions are

Fixed point ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½F�� 4ϵ̂ −12.10ϵ̂ −33.03ϵ̂ 2ϵ̂ −13.92ϵ̂ 0.66ϵ̂ −89.72ϵ̂2

½B��ðM¼3Þ 4ϵ̂ −11.33ϵ̂ −2ϵ̂ −9.33ϵ̂ 0 0.53ϵ̂ −70.92ϵ̂2
ð4:51Þ

The fixed point ½B−� exists only for M ¼ 3. When M > 3,
the fixed point ½Bþ� does not survive for large ϵ̂ and
instead merges with another fixed point ½E−� that exists for
M > 3. The solution ½F�� in (4.50) can be generalized to all
M ≥ 3.

D. M > 3

We now discuss solutions for M > 3.

1. Fixed points in d = 3

In d ¼ 3, the number of UV fixed points as a function of
M, which we treat as a continuous parameter, is depicted
schematically in Fig. 13. Figure 13 also depicts the stability
of each fixed point and arranges the fixed points in order of
increasing value of the potential, which indicates which
flows are possible.
For large values of M, there are six interacting fixed

points. We could determine two of these fixed points, ½Aþ�
and ½Bþ�, analytically for arbitrary M in d ¼ 3—these are
presented in Sec. IVA 2. In addition there are four fixed
points, ½Dþ�, ½D−�, ½Eþ�, and ½E−�, which we could only
determine numerically. ½E−� emerges as a fixed point
solution for M > 3.29. ½D−� and ½Eþ� emerge as solutions
when M > 11.8. We present the numerical values of
coupling constants and anomalous dimensions of
all the fixed points that exist when d ¼ 3 and M ¼ 4 in
Table II. A similar table for M ¼ 14 is given in Table III.
We also determined asymptotic expressions for these
fixed points in the limit of M ≫ 1, which are given in
Table IV.

2. Fixed points in d = 3− ϵ

Let us discuss the solutions when ϵ̂ is small but nonzero.
When first-order corrections in ϵ are included, we find the
free fixed point and the fixed point ½A−�, both of which
contained marginal directions in d ¼ 3, split into several IR
fixed points, depending on M, as shown in Fig. 14. The
other fixed points remain essentially unchanged.
For 10 ≥ M ≥ 4, there is only one nontrivial IR solution

½A−�, given by (4.3). When M ≥ 11, there are three real IR
fixed points. One of these solutions is ½A−� given by
Eq. (4.3). The other two solutions appear rather compli-
cated for finite M, so we present them numerically for
various values of M in Tables V and VI.
The fixed point in Table V, which we denote as ½A−

2 �, is
stable in all directions. For large M, the coupling constants
obey the following asymptotic form

λ1 ¼
20

M
ϵ̂; λ2 ¼ −

100

M
ϵ̂ and λ3 ¼

5Mϵ̂

2
; ð4:52Þ

with higher-order corrections in ϵ̂ and 1=M. The field
anomalous dimension approaches

γϕ ¼ ϵ̂2

24N2
ð4:53Þ

as M grows large. The quartic anomalous dimensions are

γν1 ¼
4

3N
ϵ̂; γν2 ¼

8

3N
ϵ̂; ð4:54Þ

and all three eigenvalues of the stability matrix approach
2ϵ̂
N þOð1=MÞ.
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The fixed point in Table VI, which we denote as ½A−
3 �,

approaches the bifundamental fixed point described in
Eq. (3.5). For large M, the coupling constants obey the
following asymptotic form:

λ1 ¼
20

M
ϵ̂; λ2 ¼ −

180

M
ϵ̂ and λ3 ¼

480

M
ϵ̂: ð4:55Þ

For M ≥ 11, this fixed point is stable in two directions
and unstable in one direction. The anomalous dimensions
approach those of (3.5) as M grows large, as expected.
The fixed points ½A−� and ½A−

2 � both have λ3 ∼ 5MNϵ
2

, as
M → ∞. They correspond to new zeros of the beta function

in the bifundamental large-N limit that appear when
Oð1=N2Þ and Oð1=N4Þ corrections are included, given
in (C18) and (C19), respectively, in Appendix C.

3. Fixed points at large ϵ̂

Figure 15 illustrates the number and stability of fixed
points as a function of ϵ̂ for M ¼ 14 and is somewhat
representative of the behavior of fixed points for any
generic M > 13.
Figure 15 shows that many of the fixed points merge at

finite values of ϵ̂. The structure of the mergers appears to be
similar for generic large values of M. Numerically, we
estimated the values of ϵ̂ at which the mergers occur vary
asymptotically with M when M is large. ½A−

3 � merges with
the fixed point ½Dþ� when ϵ̂ ∼ 9

2π2
M for large M. ½D−� also

merges with ½Eþ� at a value of epsilon that also scales as
ϵ̂ ∼ 9

2π2
M for largeM. ½A−

2 �merges with the fixed point ½Aþ
2 �

at ϵ̂ ∼ 3.6=M, ½A−� merges with ½Aþ� at another value of
ϵ̂ ∼ 3.5=M, and ½Bþ� merges with ½E−� at a value of
ϵ̂ ∼ 0.5=M. Notice that, for this reason, the limits M →
∞ and ϵ̂ → 0 do not commute.
Numerically, we find the solution ½Eþ� approaches the

ultraviolet fixed point of Sec. III, for finite ϵ. Near ϵ ¼ 0, a
discontinuity seems to emerge asM → ∞ in the solution for

λ3 in ½Eþ�, and it rapidly changes from− 1080
π2

to 360ð− ffiffi2p
−1Þ

π2
, as

ϵ approaches 0 from above. Both ½A−
3 � and ½Eþ� cease

to exist near ϵ̂ ∼ 9
2π2

M, in agreementwith the results reported
in III, although there appear to be some subtleties in the
details of the M → ∞ limits of the merger.
For anyM > 3, there are two nontrivial fixed points that

survive for large ϵ̂ which we denote by ½F��. Both are
unstable in two directions and stable in one direction. For
M ¼ 14, when ϵ̂ is large, these two fixed points have the
following asymptotic behavior:

½F��∶ λ1 ∼ 5.65; λ2 ∼ �57.6
ffiffiffî
ϵ

p
; λ3 ∼ ∓143.3

ffiffiffî
ϵ

p
:

ð4:56Þ

It is possible to generalize this large ϵ̂ asymptotic solution to
an analytic expression valid for arbitrary M ≥ 3, but the
expression is too unwieldy to reproduce here. For large M,
the fixed point solutions ½F�� have the following asymptotic
form:

TABLE II. Fixed points, stability and anomalous dimensions when M ¼ 4 and d ¼ 3. Eigenvalues of sextic and quartic anomalous
dimension matrices presented in an arbitrary order. Here, we find a UV-stable fixed point.

Fixed point λ1 λ2 λ3 ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½E−� 41.41 −30.20 41.55 −39.14 −23.49 −3.41 −18.07 −6.90 4.22 4281.38
½Bþ� 36.48 0 0 −38.73 −10.26 5.21 −16.06 1.47 3.94 4259.84
½Dþ� 11.01 −44.76 73.70 −10.87 10.76 −1.66 −3.93 3.11 0.30 25.88
½Aþ� 0 0 36.48 −7.30 4.86 0 −2.43 0 0.06 13.48

FIG. 13. The figure provides a schematic depiction of the large
N,OðNÞ ×OðMÞ sextic fixed-points in d ¼ 3 as a function ofM.
The horizontal axis is schematic—for any given value of ϵ̂, fixed
points are arranged in order of increasing U, so RG flow is only
possible from right to left. The color of each line specifies the
stability of each fixed point: red, orange, green, and violet
respectively denote fixed points with zero, one, two, and three
unstable directions. Dashed lines indicate the presence of
marginal directions. Black dots indicate mergers of fixed points.
For ϵ̂ sufficiently large, all fixed points become infrared fixed
points relative to the free theory.

SAMARTH KAPOOR and SHIROMAN PRAKASH PHYS. REV. D 108, 026002 (2023)

026002-20



λ1 ∼
360

ffiffiffi
23

p �
1
M

�
2=3

π2
þO

�
1

M4=3

�
ð4:57Þ

λ2=
ffiffiffî
ϵ

p
∼� 90

ffiffiffi
26

p ffiffiffiffiffi
M6

p

π
�
60

ffiffiffi
2

p ffiffiffiffi
1
M

q
π

∓
15

ffiffiffi
26

p �
1
M

�
5=6

π

þO

�
1

M7=6

�
ð4:58Þ

λ3=
ffiffiffî
ϵ

p
∼ ∓ 1525=6M5=6

π
∓ 100

ffiffiffi
26

p ffiffiffiffiffi
M6

p

π

∓ 5
ffiffiffiffi
1
M

6

q
ffiffiffi
26

p
π
∓ 80

ffiffiffi
2

p ffiffiffiffi
1
M

q
π

þO
�

1

M5=6

�
: ð4:59Þ

The anomalous dimensions for ½F�� whenM is large are
both given by the following expressions. The anomalous
dimension of ϕ is

γϕ=ϵ̂ ∼
ffiffiffi
23

p ffiffiffiffiffi
M3

p

π2N2
þ
522=3

ffiffiffiffi
1
M

3

q
3π2N2

þ
2
ffiffiffi
23

p �
1
M

�
2=3

3π2N2

þ 28

9π2MN2
þ
522=3

�
1
M

�
4=3

9π2N2
þO

�
1

M5=3

�
: ð4:60Þ

The anomalous dimensions of quartic operators are

γν1=ϵ̂ ∼ −
22=3M2=3

N
−

10

3N
þO

�
1

M1=3

�
; γν2=ϵ̂ ∼

2

N
;

ð4:61Þ

and the eigenvalues of the stability matrix are

Nð∂λβÞ1=ϵ̂ ∼ −2 − 6
ffiffiffi
2

3
p �

1

M

�
2=3

;

Nð∂λβÞ2=ϵ̂ ∼ −
ffiffiffiffiffiffiffiffi
108

3
p

M2=3; Nð∂λβÞ3=ϵ̂ ∼ 4: ð4:62Þ

TABLE IV. Fixed points, stability and anomalous dimensions for large M in d ¼ 3. Eigenvalues of sextic and quartic anomalous
dimension matrices presented in an arbitrary order.

Fixed point λ1 λ2 λ3 ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN
½Aþ� 0 0 360

π2
− 288

π2M
192
π2M

0
½Dþ� 360

π2 − 18021=6
ffiffi
3

p
M2=3

π2
3025=6

ffiffi
3

p
M4=3

π2
− 3622=3M5=3

π2
48M
π2

− 36M
π2

½D−� 360
π2

18021=6
ffiffi
3

p
M2=3

π2
− 3025=6

ffiffi
3

p
M4=3

π2
− 3622=3M5=3

π2
− 36M

π2
48M
π2

½Bþ� 360
π2

0 0 − 36M
π2

− 24M
π2

288
π2M

½E−� 360
π2

4320ð1− ffiffi2p Þ
π2M2

360ð−1þ ffiffi
2

p Þ
π2

− 36M
π2

− 24M
π2 − 576ð2− ffiffi2p Þ

π2M
½Eþ� 360

π2
4320ð1þ ffiffi

2
p Þ

π2M2

360ð−1− ffiffi2p Þ
π2

− 36M
π2

− 24M
π2 − 576ð2þ ffiffi

2
p Þ

π2M

Fixed point γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½Aþ� − 96
π2M

0 96
π2M2

207360
π6M2

½Dþ� − 1222=3M5=3

π2
1625=6

ffiffi
3

p
M1=3

π2
12M2

π4
3240M4

π6

½D−� − 1222=3M5=3

π2 − 1625=6
ffiffi
3

p
M1=3

π2
12M2

π4
3240M4

π6

½Bþ� − 24M
π2

96
π2M

12M2

π4
3240M4

π6

½E−� − 24M
π2 − 192ð2− ffiffi2p Þ

π2M
12M2

π4
3240M4

π6

½Eþ� − 24M
π2 − 192ð2þ ffiffi

2
p Þ

π2M
12M2

π4
3240M4

π6

TABLE III. Fixed points, stability and anomalous dimensions whenM ¼ 14 and d ¼ 3. Eigenvalues of sextic and quartic anomalous
dimension matrices presented in an arbitrary order.

Fixed point λ1 λ2 λ3 ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN γð1Þ
ϕ4 N γð2Þ

ϕ4 N γϕN2 UN

½Aþ� 0 0 36.48 −2.08 1.39 0 −0.69 0 .005 1.10
½Dþ� 27.48 −222.39 473.59 −355.43 66.36 −44.65 −134.07 10.47 18.89 88558
½D−� 34.54 62.16 −266.68 −170.33 −68.38 15.30 −71.10 −13.19 29.03 212852
½Bþ� 36.48 0 0 −72.24 −34.21 1.89 −39.51 0.60 29.81 214016
½E−� 36.49 −0.85 14.93 −72.35 −35.32 −2.16 −39.53 −0.82 29.82 214017
½Eþ� 36.29 8.23 −108.16 −72.49 −37.67 −9.65 −40.33 −6.10 29.76 214092
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V. OðNÞ × Oð2Þ=Z2 FIXED POINTS FOR FINITE N

In this section, we briefly study perturbative fixed points
of our theory for finiteM andN. FiniteN fixed points of the

form OðNÞ ×OðNÞ were studied extensively in Ref. [60].
We restrict attention toM ¼ 2, since this is presumably the
most physical example.
When M ¼ 2, the three couplings are not independent,

as discussed in Sec. IV B. We use the two independent
couplings g̃1 and g̃2 given by

ð8πÞ2g̃1 ¼ g1 þ
2g2
3

; ð8πÞ2g̃3 ¼ g3 þ
g2
3
: ð5:1Þ

The two-loop beta functions for these couplings when
M ¼ 2 for finite N are

βg̃1 ¼ −2g̃1ϵþ
4

15
g̃1ð3g̃1ðN þ 7Þ þ 4g̃3ðN þ 9ÞÞ; ð5:2Þ

βg̃3 ¼ −2g̃3ϵþ
1

30
ðg̃21ð3N þ 29Þ þ 16g̃1g̃3ðN þ 7Þ

þ 16g̃23ð3N þ 11ÞÞ: ð5:3Þ

It is possible to solve the zeros of this beta function
analytically, for arbitrary N. There are in general four fixed
points—the free fixed point and three interacting fixed
points that we denote by [a], ½bþ�, and ½b−�.
Fixed point [a] is given by

½a�∶ g̃1 ¼ 0; g̃3 ¼
15ϵ

12N þ 44
: ð5:4Þ

Fixed points ½b�� are given by

½b��∶ g̃1 ¼
15ð4N2 � ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−N2 þ 3N þ 126
p

N � 9
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N2 þ 3N þ 126

p
þ 16N − 84Þϵ

4ðN þ 6Þð9N2 þ 88N þ 159Þ

g̃3 ¼
15ð6N2 ∓ 3

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N2 þ 3N þ 126

p
N ∓ 21

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N2 þ 3N þ 126

p
þ 98N þ 408Þϵ

16ðN þ 6Þð9N2 þ 88N þ 159Þ : ð5:5Þ

The schematic behavior of these fixed points as a
function of N is shown in Fig. 16. When N → ∞, the
fixed point [a] approaches the fixed point ½A−� of Sec. IV.
Fixed points ½bþ� and ½b−� merge and become complex
when N ¼ N� ¼ 3

2
ð1þ ffiffiffiffiffi

57
p Þ ≈ 12.8.

The stability of these fixed points is also depicted in
Fig. 16. For all N < N�, ½bþ� is stable in one direction and
unstable in the other direction. For N < 7, fixed point [a] is
stable in two directions, while ½b−� is stable in one direction
and unstable in the other. When N ¼ 7, the fixed points
½b−� and [a] merge into a single fixed point with one
marginal and one stable direction. For N > 7, [a] has one
stable and one unstable direction, while ½b−� has two stable
directions (until it becomes complex at N�.)
We list anomalous dimensions for each of these fixed

points for N ¼ 3, N ¼ 7, and N ¼ 12 in Tables VII–IX.

We also depict flows between the various fixed points for
N ¼ 3 in Fig. 17.

VI. DISCUSSION

It would be interesting to explore whether bootstrap
techniques, as described in Ref. [38] and references therein,
could shed more light on the existence or nonexistence of
these CFTs for α ¼ 1. It may also be interesting to study the
small α limit, or the finiteM, large-M fixed points in greater
detail using analytic bootstrap [87–91,38].
For the infrared fixed point, we found that the anomalous

dimensions of the unprotected single-trace quartic and
sextic operators attained their maximum at α ¼ 1. This
is consistent with the general expectation that scaling
dimensions of unprotected operators become large when

FIG. 14. This plot illustrates the fixed points as a function ofM
for 0 < ϵ̂ ≪ 1=M. Some fixed points which were marginal when
ϵ̂ ¼ 0 split into several fixed points, while the other fixed points
remain unchanged. For any finite ϵ̂, several solutions merge for
sufficiently large M, as indicated from the mergers for M ¼ 14
shown in Fig. 15. Numerical values of M in this plot are
determined using ϵ̂ ¼ 0.01.
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one approaches the matrixlike large-N limit from the vector
model. The scaling dimensions of ϕ and ϕ2 were inde-
pendent of α at this order, but we suspect that higher-order
corrections would display similar α dependence as the
quartic and sextic single-trace operators. It should be
possible to confirm this by computing six-loop corrections
to the large-N anomalous dimensions following Ref. [92].
It would also be of interest to compute the spectrum of
higher-spin operators, to four or six loops, of the theory. To
determine the order-α2 correction to Eq. (3.24), which
would allow a Padè approximation of the critical dimen-
sion, an eight-loop calculation is required.
It is worth mentioning the nonsupersymmetric sextic

tensor model of Ref. [67] in d ¼ 3 − ϵ also ceased to exist
at a finite value of ϵ. There, a real melonic fixed point with
was found to exist perturbatively in d ¼ 3 − ϵ, but large-N
techniques showed that it ceased to be real for a finite, but
small critical value of ϵ. However, for the supersymmetric
tensor model of Ref. [68], smooth interpolation from
d ¼ 3 − ϵ to d ¼ 1þ ϵ was possible, though as noted
there, the existence of the theory in d ¼ 2 exactly is still

uncertain.5 Perhaps, it would be of interest to consider fixed
points N ¼ 1 supersymmetric version of the OðNÞ ×
OðMÞ theory, particularly in the limit M=N ≪ 1, and
compare results to our nonsupersymmetric model.
We also studied the theory in the limit where N is large

and M is finite. In this limit, it is possible to compute the
complete beta function of the theory to first order in 1=N.
Studying the zeros of this beta function, we found a rich
collection of large-N fixed points in d ¼ 3 and in
d ¼ 3 − ϵ, which are determined to all orders in the
parameter ϵ̂ ¼ Nϵ. For most values of M, the fixed points
include at least one ultraviolet stable fixed point, that could
potentially serve as an asymptotically safe definition of the
theory in the large-N limit. Unlike the case of M ¼ 1 [47],
we also found fixed points which survive to arbitrarily large
values of ϵ̂.
Quartic OðNÞ ×OðMÞ fixed points in d ¼ 3 have

applications to frustrated antiferromagnetic systems (for

TABLE V. This series of fixed points, which we denote as ½A−
2 �, approaches the fixed point in (C19) when M → ∞.

M λ1 λ2 λ3 γϕN2 γð1Þ
ϕ4 N γð2Þ

ϕ4 N ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN
11 1.65ϵ̂ −9.04ϵ̂ 29.41ϵ̂ 0.0418ϵ̂2 2.80ϵ̂ 0.90ϵ̂ 2.33ϵ̂ 2ϵ̂ 0.42ϵ̂
12 1.50ϵ̂ −7.98ϵ̂ 32.48ϵ̂ 0.0406ϵ̂2 2.74ϵ̂ 1.03ϵ̂ 2.37ϵ̂ 2ϵ̂ 0.74ϵ̂
13 1.37ϵ̂ −7.22ϵ̂ 35.05ϵ̂ 0.0397ϵ̂2 2.70ϵ̂ 1.09ϵ̂ 2.37ϵ̂ 2ϵ̂ 0.92ϵ̂
14 1.27ϵ̂ −6.63ϵ̂ 37.50ϵ̂ 0.0392ϵ̂2 2.67ϵ̂ 1.13ϵ̂ 2.36ϵ̂ 2ϵ̂ 1.04ϵ̂
15 1.18ϵ̂ −6.14ϵ̂ 39.92ϵ̂ 0.0388ϵ̂2 2.65ϵ̂ 1.16ϵ̂ 2.34ϵ̂ 2ϵ̂ 1.13ϵ̂
16 1.11ϵ̂ −5.73ϵ̂ 42.32ϵ̂ 0.0385ϵ̂2 2.63ϵ̂ 1.19ϵ̂ 2.33ϵ̂ 2ϵ̂ 1.20ϵ̂
17 1.04ϵ̂ −5.38ϵ̂ 44.73ϵ̂ 0.0383ϵ̂2 2.62ϵ̂ 1.21ϵ̂ 2.31ϵ̂ 2ϵ̂ 1.26ϵ̂
18 0.987ϵ̂ −5.07ϵ̂ 47.13ϵ̂ 0.0381ϵ̂2 2.61ϵ̂ 1.22ϵ̂ 2.30ϵ̂ 2ϵ̂ 1.31ϵ̂
19 0.937ϵ̂ −4.80ϵ̂ 49.54ϵ̂ 0.0381ϵ̂2 2.60ϵ̂ 1.23ϵ̂ 2.29ϵ̂ 2ϵ̂ 1.35ϵ̂
20 0.891ϵ̂ −4.56ϵ̂ 51.96ϵ̂ 0.0380ϵ̂2 2.60ϵ̂ 1.24ϵ̂ 2.28ϵ̂ 2ϵ̂ 1.39ϵ̂
100 0.193ϵ̂ −0.967ϵ̂ 250.4ϵ̂ 0.0401ϵ̂2 2.62ϵ̂ 1.33ϵ̂ 2.07ϵ̂ 2ϵ̂ 1.88ϵ̂
1000 0.0199ϵ̂ −0.0996ϵ̂ 2500ϵ̂ 0.0415ϵ̂2 2.66ϵ̂ 1.33ϵ̂ 2.01ϵ̂ 2ϵ̂ 1.99ϵ̂

TABLE VI. This series of fixed points, which we denote as ½A−
3 �, approaches the bifundamental fixed point when M → ∞.

M λ1 λ2 λ3 γϕN2 γð1Þ
ϕ4 N γð2Þ

ϕ4 N ð∂λβλÞð1ÞN ð∂λβλÞð2ÞN ð∂λβλÞð3ÞN
11 1.65ϵ̂ −9.99ϵ̂ 24.67ϵ̂ 0.0417ϵ̂2 2.84ϵ̂ 0.582ϵ̂ 2ϵ̂ 1.97ϵ̂ −0.43ϵ̂
12 1.50ϵ̂ −9.62ϵ̂ 22.88ϵ̂ 0.0402ϵ̂2 2.80ϵ̂ 0.448ϵ̂ 2ϵ̂ 1.73ϵ̂ −0.78ϵ̂
13 1.37ϵ̂ −9.20ϵ̂ 21.78ϵ̂ 0.0390ϵ̂2 2.76ϵ̂ 0.373ϵ̂ 2ϵ̂ 1.57ϵ̂ −0.97ϵ̂
14 1.27ϵ̂ −8.81ϵ̂ 20.93ϵ̂ 0.0381ϵ̂2 2.73ϵ̂ 0.321ϵ̂ 2ϵ̂ 1.45ϵ̂ −1.11ϵ̂
15 1.18ϵ̂ −8.44ϵ̂ 20.22ϵ̂ 0.0374ϵ̂2 2.71ϵ̂ 0.282ϵ̂ 2ϵ̂ 1.35ϵ̂ −1.22ϵ̂
16 1.10ϵ̂ −8.11ϵ̂ 19.59ϵ̂ 0.0368ϵ̂2 2.69ϵ̂ 0.251ϵ̂ 2ϵ̂ 1.27ϵ̂ −1.30ϵ̂
17 1.04ϵ̂ −7.80ϵ̂ 19.02ϵ̂ 0.0364ϵ̂2 2.68ϵ̂ 0.225ϵ̂ 2ϵ̂ 1.20ϵ̂ −1.37ϵ̂
18 0.98ϵ̂ −7.52ϵ̂ 18.49ϵ̂ 0.0360ϵ̂2 2.67ϵ̂ 0.204ϵ̂ 2ϵ̂ 1.15ϵ̂ −1.42ϵ̂
19 0.93ϵ̂ −7.26ϵ̂ 18.00ϵ̂ 0.0358ϵ̂2 2.66ϵ̂ 0.186ϵ̂ 2ϵ̂ 1.10ϵ̂ −1.47ϵ̂
20 0.89ϵ̂ −7.01ϵ̂ 17.53ϵ̂ 0.0355ϵ̂2 2.65ϵ̂ 0.171ϵ̂ 2ϵ̂ 1.06ϵ̂ −1.52ϵ̂
100 0.193ϵ̂ −1.78ϵ̂ 4.84ϵ̂ 0.0356ϵ̂2 2.63ϵ̂ 0.00862ϵ̂ 2ϵ̂ 0.65ϵ̂ −1.97ϵ̂
1000 0.0199ϵ̂ −0.18ϵ̂ 0.482ϵ̂ 0.0369ϵ̂2 2.66ϵ̂ 0.0000856ϵ̂ 2ϵ̂ 0.66ϵ̂ −2.00ϵ̂

5We thank Igor Klebanov for discussions on this point.
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small values ofM andN), as mentioned in the Introduction.
While the calculations in this paper suggest that it may also
be possible to define sextic OðNÞ ×OðMÞ fixed points in
d ¼ 3, these fixed points are ultraviolet fixed points and
require a reasonably high degree of fine-tuning, as all
quartic interactions must be tuned to zero, in addition to
any relevant sextic interaction terms. Therefore, it seems
unlikely that these fixed points would be relevant to
frustrated antiferromagnetic systems, or other real-world
condensed matter/statistical systems, unless those systems
possess a high degree of fine-tuning. Nevertheless, it would
be interesting to construct such statistical models which
would presumably be generalizations of the tricritical Ising
model that possess several chemical potentials that need to
be tuned to critical values. Some of our fixed points in
Secs. IV and V do appear to extend to d ¼ 2 without any
obstruction, and it would also be interesting identify if they
correspond to any known d ¼ 2 conformal field theories.
There are several additional computations one could

carry out related to the theory we study in this paper. We
mention a few possibilities for future work below.
It is possible to study flows between the large-N fixed

points determined for finite M, or at small α. We deter-
mined some flows analytically, in the limit of small α and
for M ¼ 2, as shown in Eq. (3.38) and Fig. 10. It would be

interesting to better study the flows between the large-N
fixed points for various values ofM. We have not discussed
the phenomena of spontaneous breaking of conformal
invariance [48,51–53], which could occur along these
flows. In the future, we hope to investigate the Bardeen-
Moshe-Bender phenomenon in the theories considered
here, both in the limit where M and N are both large,
but α ¼ M=N is small; or for the theories in which N is
large and M is finite. Such an analysis is important for
confirming the existence of the UV fixed points identified
in this paper.
One could determine the higher-spin spectrum of this

and related multiscalar CFTs perturbatively, or using the
technique of Ref. [93]. In the absence of a gauge field, the
scaling dimensions of spin-s operators (represented sche-
matically, as ϕ∂sϕ) are not expected to grow as log s when
s → ∞ and instead approach a finite value as s → ∞,
suggesting that the dual is not stringlike. (This objection
does not apply for the nonsupersymmetric bifundamental
Chern-Simons theories, where the Chern-Simons gauge
field, although nondynamical, still gives rise to a log s
dependence of anomalous dimensions of spin s operators
for large s [17,94,95].)

FIG. 16. This figure schematically depicts the behavior of
fixed-point solutions of the OðNÞ ×Oð2Þ two-loop beta func-
tions as a function of N. Conventions are the same as earlier
figures.

FIG. 15. A plot of the fixed points as a function of ϵ̂ for
M ¼ 14. The horizontal axis is schematic—for any given value of
ϵ̂, fixed points are arranged in order of increasing U, so RG flow
is only possible from right to left. The color of each line specifies
the stability of each fixed point: red, orange, green, and violet
respectively denote fixed points with zero, one, two, and three
unstable directions. Black dots indicate mergers of fixed points.
For ϵ̂ sufficiently large, all fixed points become infrared fixed
points relative to the free theory. When M is increased, the
mergers occur at ϵ̂ ∼Oð1=MÞ, except for the two mergers
indicated by P1 (between ½D−� and ½Eþ�) and P2 (between
½Dþ� and ½A−

3 �) which occur at ϵ̂ ∼OðMÞ. P1 and P2 become
close to each other when M is large.
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When M is finite and N is large, the theory is a large-N
vector model, so there are various computations possible in
principle that may be worth exploring. One may also be
able to study these fixed points in the presence of a Chern-
Simons gauge field as in Refs. [4,15,96–98]. For M ¼ 1,
the fixed points of the sextic interaction were studied in
Ref. [99]—however, many of the terms in the beta function
at present remain uncomputed, due to the difficulty of 1=N
calculations in Chern-Simons vector models. Generalizing
these discussions to higher values of M is possible in
principle.6 Let us also point out that the sextic OðNÞ theory
was studied in the presence of a boundary in Ref. [101], and
similar computations could be attempted for arbitrary M.
Reference [73] studies the existence and merger of the

UV fixed point with IR fixed point in the sextic OðNÞ
theory as a function of N and ϵ using the nonperturbative
renormalization group technique—they seem to find that a
nonperturbtive UV fixed point and IR fixed point merge at
NðdÞ ≈ 3.6=ð3 − dÞ in apparent agreement with Ref. [46].
The authors of Ref. [73] also discuss quartic but not sextic
OðNÞ ×Oð2Þ=Z2 fixed points. The same group use similar
techniques to also point out potential subtleties associated
with the N → ∞ limit [74,75]. It may be interesting and
worthwhile to repeat the nonperturbative renormalization

TABLE VII. Fixed points, stability, and anomalous dimensions when M ¼ 2 and N ¼ 3 in d ¼ 3 − ϵ. Eigenvalues of sextic and
quartic anomalous dimension matrices presented in an arbitrary order.

Fixed point g̃1=ϵ g̃3=ϵ ð∂g̃βg̃Þð1Þ=ϵ ð∂g̃βg̃Þð2Þ=ϵ γð1Þ
ϕ4 =ϵ γð2Þ

ϕ4 =ϵ γϕ=ϵ2 U=ϵ3

[a] 0 3
16

2 2
5

1 1
5

1
480

− 3
8
≈ −0.38

½bþ� 5

12
ffiffi
7

p 5
672

ð21 − 5
ffiffiffi
7

p Þ 2 − 2
3

1
18
ð9þ ffiffiffiffiffi

71
p Þ 1

18
ð9 − ffiffiffiffiffi

71
p Þ 5

2592
− 25

72
≈ −0.35

½b−� − 5

12
ffiffi
7

p 5
672

ð21þ 5
ffiffiffi
7

p Þ 2 − 2
3

1
18
ð9þ ffiffiffiffiffi

71
p Þ 1

18
ð9 − ffiffiffiffiffi

71
p Þ 5

2592
− 25

72
≈ −0.35

TABLE VIII. Fixed points, stability, and anomalous dimensions when M ¼ 2 and N ¼ 7 in d ¼ 3 − ϵ. Eigenvalues of sextic and
quartic anomalous dimension matrices presented in an arbitrary order.

Fixed point g̃1=ϵ g̃3=ϵ ð∂g̃βg̃Þð1Þ=ϵ ð∂g̃βg̃Þð2Þ=ϵ γð1Þ
ϕ4 =ϵ γð2Þ

ϕ4 =ϵ γϕ=ϵ2 U=ϵ3

[a] 0 15
128

2 0 9
8

1
8

3
1024

− 315
256

≈ −1.23
½bþ� 105

988
375
7904

2 − 98
247

11
494

ð26þ ffiffiffiffiffiffiffiffi
541

p Þ 11
494

ð26 − ffiffiffiffiffiffiffiffi
541

p Þ 10989
3904576 − 1153845

976144
≈ −1.18

TABLE IX. Fixed points, stability, and anomalous dimensions when M ¼ 2 and N ¼ 12 in d ¼ 3 − ϵ. Eigenvalues of sextic and
quartic anomalous dimension matrices presented in an arbitrary order.

Fixed point g̃1=ϵ g̃3=ϵ ð∂g̃βg̃Þð1Þ=ϵ ð∂g̃βg̃Þð2Þ=ϵ γð1Þ
ϕ4 =ϵ γð2Þ

ϕ4 =ϵ γϕ=ϵ2 U=ϵ3

½b−� 5
108

25
432

2 2
27

2
81
ð27þ ffiffiffiffiffiffiffiffi

449
p Þ 2

81
ð27 − ffiffiffiffiffiffiffiffi

449
p Þ 91

26244
− 1820

729
≈ −2.50

½bþ� 25
372

65
1488

2 − 10
93

4
279

ð45þ ffiffiffiffiffiffiffiffiffiffi
1409

p Þ 4
279

ð45 − ffiffiffiffiffiffiffiffiffiffi
1409

p Þ 539
155682

− 21560
8649

≈ −2.49
[a] 0 15

188
2 − 10

47
56
47

4
47

91
26508

− 5460
2209

≈ −2.47

FIG. 17. Flows in the g̃1-g̃3 plane in d ¼ 3 − ϵwhenM ¼ 2 and
N ¼ 3. The black dot is the free fixed point, the red dot is ½aþ�,
the blue dot is ½bþ�, and the green dot is ½b−�.6See also Ref. [100] for related computations.
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group analysis of Refs. [73–75] for the theories considered
in this paper—both for the large-N bifundamental fixed
points of Sec. III B in the α − d plane as well as the finiteM
fixed points of Sec. IV in the N-d plane.
In addition, drawing inspiration from the discussion in

Refs. [73,102], one could also study bifundamental fixed
points with ϕ2m interactions for m > 3. Such interactions
become relevant for d < 2

1−1
m
and could define multicritical

interacting conformal field theories in d ¼ 2.
Another avenue for future research arises from the

observation that, for noninteger M in the −3 < M < 2,
our theory can be used to define large-N nonunitary fixed
points in d ¼ 3, that could exhibit unconventional behavior,
as in Refs. [60,61]. Unfortunately, as described in
Appendix E, we did not find a fixed point whose stability
matrix contains purely imaginary eigenvalues, so our par-
ticular model does not contain (perturbative) limit cycles.
However, it may be possible to construct slightly more
complicated theories, with sextic interactions that are effec-
tively triple-trace, [e.g., OðM1Þ ×OðM2Þ ×OðNÞ tensor
models with N large and M1 and M2 finite] to generate
nonunitary large-N fixed points with unconventional behav-
ior in d ¼ 3.
We briefly discussed the perturbative fixed points of the

OðNÞ ×Oð2Þ theory when N is finite. As the focus of the
paper was mainly on large-N limits, we have not studied
fixed points with OðNÞ ×OðMÞ=Z2 symmetry when both
M and N are finite and greater than 2. Such fixed points
were studied when M ¼ N in Ref. [60], but the case of
M ≠ N appears not to have yet been considered in the
literature and could be investigated in order to better map
out the space of multiscalar fixed points.
Finally, let us comment on the possibility of asking an

analogous question about bifundamental multiscalar fixed
points in 6 − ϵ dimensions. A cubic OðNÞ ×OðMÞ theory
in 6 − ϵ dimensions was put forth in Ref. [103] generalizing
the cubic vector model studied in Refs. [104–106]. See also
Refs. [107,108,35].
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APPENDIX A: FOUR-LOOP BETA FUNCTIONS
AT FINITE M AND N

In this Appendix, we present the four-loop beta functions
for gi at finite N and M. These expressions are also
available in the electronic supplemental material [109].
The expressions are rather long, and we organize them by
powers of ϵ and N as

βgi ¼ −2ϵgi þ
1

90ð8πÞ2 β̃
ð2 loopÞ
gi þ 1

4ð90Þ2ð8πÞ4 β̃
ð4 loopÞ
gi ;

ðA1Þ

where

β̃ðp loopÞ
gi ¼

Xp−1
j¼0

β̃ðp loop;kÞ
gi Nk: ðA2Þ

The two-loop contributions to Eq. (A2) are given by

β̃ð2 loop;1Þ
g1 ¼ ð9g21 þ 8g22ÞM þ 36g21 þ 96g2g1; ðA3Þ

β̃ð2 loop;0Þ
g1 ¼ 12g1ð3g1 þ 8g2ÞM

þ 4ð75g21 þ 12ð9g2 þ 10g3Þg1 þ 64g22Þ; ðA4Þ

β̃ð2 loop;1Þ
g2 ¼ ð12g1g2 þ 48g3g2ÞM þ 27g21

þ 24g2g1 þ 144g3g1 þ 56g22; ðA5Þ

β̃ð2 loop;0Þ
g2 ¼ ð27g21 þ 24g2g1 þ 144g3g1 þ 56g22ÞM

þ 144g21 þ 456g2g1

þ 288g3g1 þ 128g22 þ 864g2g3; ðA6Þ

β̃ð2 loop;1Þ
g3 ¼ ð4g22 þ 72g23ÞM þ 4g22 þ 12g1g2 þ 96g3g2;

ðA7Þ

β̃ð2 loop;0Þ
g3 ¼ ð4g22 þ 12g1g2 þ 96g3g2ÞM þ 21g21 þ 36g2g1

þ 144g3g1 þ 84g22 þ 528g23 þ 96g2g3; ðA8Þ

and the four-loop contributions are given by the following
for g1,

β̃ð4 loop;3Þ
g1 ¼ −3π2ð3g21 þ 8g22Þg1M − 36π2ðg1 þ 4g2Þg21;

ðA9Þ
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β̃ð4 loop;2Þ
g1 ¼ −6ð51g31 þ 4ðð30þ π2Þg22 − 96g23Þg1 þ 384g22g3ÞM2

þ ð−27ð124þ 7π2Þg31 − 36ð312þ 17π2Þg2g21 −
32

3
ð480þ 23π2Þg32

− 216g2ðð12þ π2Þg2 þ 4ð20þ π2Þg3Þg1ÞM
− 1332π2g31 − 15264g31 − 2880π2g2g21 − 38016g2g21 − 2592π2g3g21 − 40320g3g21

− 2880π2g22g1 − 44928g22g1; ðA10Þ

β̃ð4 loop;1Þ
g1 ¼ ð−9π2g31 − 24π2g22g1ÞM3 þ

�
−189π2g31 − 3348g31 − 612π2g2g21 − 11232g2g21 − 216π2g22g1 − 2592g22g1

− 864π2g2g3g1 − 17280g2g3g1 −
736

3
π2g32 − 5120g32

�
M2

þ
�
−4752π2g31 − 63936g31 − 10980π2g2g21 − 137376g2g21 − 11016π2g3g21

− 122688g3g21 − 12792π2g22g1 − 170208g22g1 − 12960π2g23g1 − 107136g23g1 − 6048π2g2g3g1

− 79488g2g3g1 −
4384

3
π2g32 − 18176g32 − 12096π2g22g3 − 142848g22g3

�
M

− 19944π2g31 − 223344g31 −
51968

3
π2g32 − 181248g32 − 47808π2g1g22 − 509184g1g22 − 59760π2g21g2

− 680832g21g2 − 46656π2g21g3 − 473472g21g3 − 107136π2g1g2g3 − 1009152g1g2g3; ðA11Þ

β̃ð4 loop;0Þ
g1 ¼ ð−36π2g31 − 144π2g2g21ÞM3 þ ð−1332π2g31 − 15264g31 − 2880π2g2g21 − 38016g2g21 − 2592π2g3g21

− 40320g3g21 − 2880π2g22g1 − 44928g22g1ÞM2

þ
�
−19944π2g31 − 223344g31 − 59760π2g2g21 − 680832g2g21 − 46656π2g3g21 − 473472g3g21

− 47808π2g22g1 − 509184g22g1 − 107136π2g2g3g1 − 1009152g2g3g1 −
51968

3
π2g32 − 181248g32

�
M

− 86040π2g31 − 863136g31 −
198656

3
π2g32 − 614400g32 − 252672π2g1g22 − 2330496g1g22

− 207360π2g1g23 − 1709568g1g23 − 246960π2g21g2 − 2339712g21g2 − 256608π2g21g3 − 2200320g21g3

− 221184π2g22g3 − 1990656g22g3 − 387072π2g1g2g3 − 3442176g1g2g3; ðA12Þ
and, for g2,

β̃ð4 loop;3Þ
g2 ¼ −24π2g22g3M2 þ ð−32π2g32 − 18π2g21g2 − 144π2g1g3g2ÞM − 27π2g31 − 36π2g2g21 − 216π2g3g21 − 168π2g22g1;

ðA13Þ

β̃ð4 loop;2Þ
g2 ¼ −24π2g22g3M3 þ ð−48π2g32 − 576g32 − 96π2g3g22 − 18π2g21g2 − 540g21g2

− 864π2g23g2 − 15552g23g2 − 288π2g1g3g2 − 3456g1g3g2ÞM2

þ ð−162π2g31 − 2430g31 − 234π2g2g21 − 3024g2g21 − 972π2g3g21 − 13392g3g21

− 1008π2g22g1 − 12816g22g1 − 2592π2g23g1 − 53568g23g1 − 864π2g2g3g1

− 6912g2g3g1 − 144π2g32 − 864g32 − 2688π2g22g3 − 39168g22g3ÞM − 675π2g31

− 8100g31 − 1440π2g32 − 18560g32 − 1848π2g1g22 − 19584g1g22 − 3168π2g21g2

− 34560g21g2 − 2376π2g21g3 − 26784g21g3 − 8928π2g1g2g3 − 134784g1g2g3; ðA14Þ

BIFUNDAMENTAL MULTISCALAR FIXED POINTS IN … PHYS. REV. D 108, 026002 (2023)

026002-27



β̃ð4 loop;1Þ
g2 ¼ ð−32π2g32 − 18π2g21g2 − 144π2g1g3g2ÞM3 þ ð−162π2g31 − 2430g31 − 234π2g2g21 − 3024g2g21 − 972π2g3g21

− 13392g3g21 − 1008π2g22g1 − 12816g22g1 − 2592π2g23g1 − 53568g23g1 − 864π2g2g3g1

− 6912g2g3g1 − 144π2g32 − 864g32 − 2688π2g22g3 − 39168g22g3ÞM2 þ ð−2727π2g31
− 30780g31 − 11574π2g2g21 − 132192g2g21 − 7020π2g3g21 − 95472g3g21 − 6936π2g22g1

− 84384g22g1 − 5184π2g23g1 − 107136g23g1 − 38880π2g2g3g1 − 521856g2g3g1

− 6552π2g32 − 81312g32 − 49248π2g2g23 − 556416g2g23 − 6432π2g22g3 − 77184g22g3ÞM
− 14742π2g31 − 152280g31 − 10848π2g32 − 121344g32 − 53328π2g1g22 − 580608g1g22

− 88128π2g1g23 − 919296g1g23 − 40644π2g21g2 − 422064g21g2 − 54864π2g21g3

− 652320g21g3 − 83904π2g22g3 − 880128g22g3 − 66528π2g1g2g3 − 819072g1g2g3; ðA15Þ

β̃ð4 loop;0Þ
g2 ¼ ð−27π2g31 − 36π2g2g21 − 216π2g3g21 − 168π2g22g1ÞM3 þ ð−675π2g31 − 8100g31

− 3168π2g2g21 − 34560g2g21 − 2376π2g3g21 − 26784g3g21 − 1848π2g22g1

− 19584g22g1 − 8928π2g2g3g1 − 134784g2g3g1 − 1440π2g32 − 18560g32ÞM2

þ ð−14742π2g31 − 152280g31 − 40644π2g2g21 − 422064g2g21 − 54864π2g3g21

− 652320g3g21 − 53328π2g22g1 − 580608g22g1 − 88128π2g23g1 − 919296g23g1

− 66528π2g2g3g1 − 819072g2g3g1 − 10848π2g32 − 121344g32 − 83904π2g22g3

− 880128g22g3ÞM − 61020π2g31 − 550800g31 − 80192π2g32 − 761216g32

− 177216π2g1g22 − 1713024g1g22 − 176256π2g1g23 − 1838592g1g23 − 442368π2g2g23

− 4161024g2g23 − 196704π2g21g2 − 1845504g21g2 − 173232π2g21g3 − 1785024g21g3

− 166272π2g22g3 − 1654272g22g3 − 484416π2g1g2g3 − 4672512g1g2g3; ðA16Þ

and, for g3,

β̃ð4 loop;3Þ
g3 ¼ −72π2g33M3 þ

�
1

3
ð−4Þπ2g32 − 216π2g23g2

�
M2 þ

�
−
1

3
4π2g32 − 12π2g1g22 − 192π2g3g22 − 216π2g1g23

�
M

−
1

3
112π2g32 − 12π2g1g22 − 18π2g21g2 − 288π2g1g3g2 ðA17Þ

β̃ð4 loop;2Þ
g3 ¼

�
1

3
ð−4Þπ2g32 − 216π2g23g2

�
M3 þ ð−8π2g32 − 24π2g1g22 − 288g1g22 − 528π2g3g22

− 2592g3g22 − 216π2g23g2 − 2448π2g33 − 30528g33 − 648π2g1g23 þ 288g21g3ÞM2

þ
�
−
1

3
1012π2g32 − 2848g32 − 108π2g1g22 − 864g1g22 − 456π2g3g22 − 2592g3g22

− 126π2g21g2 − 1404g21g2 − 6048π2g23g2 − 76032g23g2 − 2160π2g1g3g2

− 12096g1g3g2 − 648π2g1g23 þ 864g21g3

�
M − 90π2g31 − 1080g31 − 224π2g32 − 2560g32

− 1236π2g1g22 − 9792g1g22 − 3456π2g1g23 − 40320g1g23 − 306π2g21g2 − 2808g21g2

− 1404π2g21g3 − 12240g21g3 − 3552π2g22g3 − 44928g22g3 − 1584π2g1g2g3 − 8640g1g2g3; ðA18Þ
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β̃ð4 loop;1Þ
g3 ¼

�
−
1

3
4π2g32 − 12π2g1g22 − 192π2g3g22 − 216π2g1g23

�
M3

þ
�
−
1

3
1012π2g32 − 2848g32 − 108π2g1g22 − 864g1g22 − 456π2g3g22 − 2592g3g22

− 126π2g21g2 − 1404g21g2 − 6048π2g23g2 − 76032g23g2 − 2160π2g1g3g2 − 12096g1g3g2

− 648π2g1g23 þ 864g21g3

�
M2 þ ð−441π2g31 − 3510g31 − 1008π2g2g21 − 11772g2g21

− 4644π2g3g21 − 35856g3g21 − 4248π2g22g1 − 41328g22g1 − 13824π2g23g1 − 174528g23g1

− 5328π2g2g3g1 − 44928g2g3g1 − 896π2g32 − 10464g32 − 44640π2g33 − 494208g33

− 6048π2g2g23 − 76032g2g23 − 16152π2g22g3 − 193248g22g3ÞM − 1674π2g31 − 14580g31

− 6800π2g32 − 72832g32 − 7440π2g1g22 − 80640g1g22 − 10368π2g1g23 − 120960g1g23

− 72576π2g2g23 − 774144g2g23 − 8964π2g21g2 − 82728g21g2 − 8748π2g21g3

− 90288g21g3 − 12000π2g22g3 − 147456g22g3 − 39888π2g1g2g3 − 454464g1g2g3; ðA19Þ

β̃ð4 loop;0Þ
g3 ¼

�
−
1

3
112π2g32 − 12π2g1g22 − 18π2g21g2 − 288π2g1g3g2

�
M3

þ ð−90π2g31 − 1080g31 − 306π2g2g21 − 2808g2g21 − 1404π2g3g21 − 12240g3g21

− 1236π2g22g1 − 9792g22g1 − 3456π2g23g1 − 40320g23g1 − 1584π2g2g3g1

− 8640g2g3g1 − 224π2g32 − 2560g32 − 3552π2g22g3 − 44928g22g3ÞM2

þ ð−1674π2g31 − 14580g31 − 8964π2g2g21 − 82728g2g21 − 8748π2g3g21 − 90288g3g21

− 7440π2g22g1 − 80640g22g1 − 10368π2g23g1 − 120960g23g1 − 39888π2g2g3g1

− 454464g2g3g1 − 6800π2g32 − 72832g32 − 72576π2g2g23 − 774144g2g23 − 12000π2g22g3

− 147456g22g3ÞM − 10260π2g31 − 74520g31 −
38272

3
π2g32 − 130944g32 − 195840π2g33

− 1903104g33 − 42912π2g1g22 − 421056g1g22 − 101952π2g1g23 − 1080576g1g23

− 72576π2g2g23 − 774144g2g23 − 27936π2g21g2 − 263088g21g2 − 40824π2g21g3

− 428544g21g3 − 100608π2g22g3 − 991872g22g3 − 79200π2g1g2g3 − 877824g1g2g3: ðA20Þ

APPENDIX B: ANOMALOUS DIMENSIONS AT FINITE M AND N

These equations are included in electronic supplemental information [109]. The four-loop anomalous dimension of ϕ is

γð4Þϕ ¼ 1

32400ð8πÞ4 ð3g1
2ð36þ 24N þ 24M þ 21NM þ 4N2 þ 4M2 þ 3N2M þ 3NM2 þ N2M2Þ

þ 24g32ð8þ 6NM þ N2M2Þ þ 24g1g2ð8þ 7N þ 7M þ 4NM þ N2 þM2 þ N2M þ NM2Þ
þ 48g1g3ð4þ 3N þ 3M þ 3NM þ N2 þM2Þ þ 48g2g3ð4þ 4N þ 4M þ NM þ N2M þ NM2Þ
þ 4g22ð28þ 16N þ 16M þ 19NM þ 4N2 þ 4M2 þ N2M þ NM2 þ N2M2ÞÞ: ðB1Þ

The four-loop anomalous dimension of ϕ2 is

γð4Þ
ϕ2 ¼ 32γð4Þϕ : ðB2Þ
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The four-loop anomalous dimension matrix for quartic operators is given by

�
γν1;ν1 γν1;ν2
γν2;ν1 γν2;ν2

�
: ðB3Þ

At two loops the entries of this matrix are

γð2Þν1ν1 ¼
3g1MN þ 6g1M þ 6g1N þ 30g1 þ 8g2M þ 8g2N þ 20g2 þ 24g3

1440π2
ðB4Þ

γð2Þν1ν2 ¼
3g1M þ 3g1N þ 6g1 þ g2MN þ 8g2

360π2
ðB5Þ

γð2Þν2ν1 ¼
3g1M þ 3g1N þ 9g1 þ 2g2MN þ 2g2M þ 2g2N þ 18g2 þ 12g3M þ 12g3N þ 12g3

1440π2
ðB6Þ

γð2Þν2ν2 ¼
3g1 þ 2g2M þ 2g2N þ 2g2 þ 3g3MN þ 12g3

360π2
: ðB7Þ

We do not present the four-loop expressions here, but they are available in Ref. [109].
The anomalous dimensions of sextic operators are determined from the eigenvalues of the stability matrix ∂λbβa.

APPENDIX C: FOUR-LOOP AND 1=N CORRECTIONS TO THE BIFUNDAMENTAL FIXED POINT

In this Appendix, we discuss four-loop and 1=N corrections in the bifundamental large-N limit, described in Sec. III A.

1. Four-loop large-N fixed point

In the large-N bifundamental limit, the four-loop beta function is given by

βλ1 ¼ −2λ1ϵþ
αλ21
10

−
αðπ2ðα2 þ 1Þ þ 34αÞλ31

3600
ðC1Þ

βλ2 ¼ −2λ2ϵþ
1

30
αλ1ð9ðαþ 1Þλ1 þ 4λ2Þ −

αλ21
3600

ð3ðαþ 1Þðπ2ðα2 þ 5αþ 1Þ þ 90αÞλ1 þ 2ðπ2ðα2 þ αþ 1Þ þ 30αÞλ2Þ
ðC2Þ

βλ3 ¼ −2λ3ϵþ
1

90
αð21αλ21 þ 12ðαþ 1Þλ2λ1 þ 4λ22Þ −

α

97200
ð27αð30ð4α2 þ 13αþ 4Þ þ π2ð10α2 þ 49αþ 10ÞÞλ31

þ 4π2ðαþ 1Þλ32 þ 54λ21ððαþ 1Þðπ2ðα2 þ 6αþ 1Þ þ 78αÞλ2 − 16αλ3Þ þ 36ðπ2ðαþ 1Þ2 þ 24αÞλ22λ1Þ ðC3Þ

The unique infrared fixed point at four loops is

λ�1 ¼
20ϵ

α
þ 10ðπ2ðα2 þ 1Þ þ 34αÞϵ2

9α2
þOðϵ3Þ ðC4Þ

λ�2 ¼ −
180ðαþ 1Þϵ

α
−
10ððαþ 1Þðπ2ð3α2 þ αþ 3Þ þ 22αÞÞϵ2

α2
þOðϵ3Þ ðC5Þ

λ�3 ¼
�
480αþ 480

α
þ 3020

3

�
ϵþ 10ϵ2

27α2
ð2αð558α2 þ 1241αþ 558Þþπ2ð558α4 þ 1604α3 þ 1977α2 þ 1604αþ 558ÞÞ

þOðϵ3Þ: ðC6Þ
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2. 1=N corrections

The complete beta function allows us to compute 1=N
and 1=N2 corrections to the fixed point at two loops and
four loops, without much difficulty. Here, however, we
content ourselves with 1=N and 1=N2 corrections to the
two-loop fixed point.
We find that the 1=N2 corrections to the fixed point are

λ�1 ¼
20ϵ

α
−
80ðαþ 1Þϵ

α2N
þ 400ð6α2þ 7αþ 6Þ

3α3
ϵ

N2
ðC7Þ

λ�2 ¼ −
180ðαþ 1Þϵ

α
−
960ϵ

αN

þ 160ð135α3 þ 529α2 þ 529αþ 135Þ
α3

ϵ

N2
ðC8Þ

λ�3¼
20

3

�
72αþ72

α
þ151

�
ϵ

þ80ð63α3þ388α2þ388αþ63Þϵ
3α2N

−
80ð4032α4þ18673α3þ28714α2þ18673αþ4032Þ

3α3

×
ϵ

N2
: ðC9Þ

The anomalous dimension of the scalar field in this
limit is

γϕ ¼ ϵ2

27
−
5ðαþ 1Þϵ2

27αN
: ðC10Þ

The anomalous dimensions of quartic operators mix
when 1=N corrections are taken into account. The correc-
tions to the anomalous dimension matrix are

γð1=NÞ
ν1ν2 ¼ 1

N

0
B@− 16ðαþ1Þϵ

3α − 64ðαþ1Þϵ
3α

− 40ðαþ1Þϵ
3α 0

1
CA;

γð1=N
2Þ

ν1ν2 ¼ 1

N2

0
B@ 16ð12α2−11αþ12Þϵ

9α2
− 64ð2α2þ11αþ2Þϵ

3α2

− 8ð10α2þ49αþ10Þϵ
3α2

64ð27α2þ59αþ27Þϵ
9α2

1
CA:

ðC11Þ

The eigenvalues of the above matrix are

γν1 ¼
8ϵ

3
−
2ðπ2α2 þ 3π2αþ 38αþ π2Þϵ2

27α

−
16ðαþ 1Þϵ

3αN
þ 16ð72α2 þ 109αþ 72Þϵ

9α2N2
ðC12Þ

γν2 ¼
64ϵ2

27
þ 64ð12α2 þ 29αþ 12Þϵ

9α2N2
ðC13Þ

with the eigenvectors

 
1

− 5ðαþ1Þ
αN − ð20α2þ69αþ20Þ

α2N2

!
and

 
8ðαþ1Þ
αN þ 8ð4α2þ15αþ4Þ

α2N2

1

!
:

ðC14Þ

The corrections to the stability matrix are

Mð1=NÞ
ab ¼ ϵ

N

0
BB@

0 0 0

− 32ð3α2þ8αþ3Þ
α − 16ðαþ1Þ

3α 0

− 712ðαþ1Þ
3

− 8ð10α2þ49αþ10Þ
3α 0

1
CCA:

ðC15Þ

The eigenvalues and eigenvectors are

2ϵ;
2ϵ

3
−
16ð1þ αÞϵ

3αN
and − 2ϵ ðC16Þ

0
BB@

3þ 3ð−540α3−2444α2−2444α−540Þ
αð72α2þ151αþ72ÞN

−27ðαþ 1Þ − 9ð−756α4−4260α3−6896α2−4260α−756Þ
αð72α2þ151αþ72ÞN

72α2 þ 151αþ 72

1
CCA;

0
BB@

0

−1þ 20α2þ69αþ20
5αðαþ1ÞN

5ðαþ 1Þ

1
CCA and

0
BB@

0

0

1

1
CCA: ðC17Þ

3. Additional fixed points at Oð1=N2Þ and Oð1=N4Þ
When terms of order 1=N2 are included in the two-loop

beta function, we find the beta function admits a new
fixed point, not present for the leading-order beta function,
which is

λ1 ¼ Oðϵ2Þ; λ2 ¼ Oðϵ2Þ; λ3 ¼
5

2
αN2ϵþOðϵ2Þ:

ðC18Þ

When terms of order 1=N4 are included in the two-loop
beta function, we find that the beta function admits another
new fixed points, which is
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λ1 ¼
20ϵ

α
−
80ðαþ 1Þϵ

α2N
þOðϵ2Þ;

λ2 ¼ −
100ðαþ 1Þ

α
ϵþ 80ð14α2 þ 13αþ 14Þ

3α2N
ϵþOðϵ2Þ;

λ3 ¼
5αN2ϵ

2
−
80ð31α3 − 27α2 − 27αþ 31Þ

27α2
ϵ

þ 5ð80α2 − 29αþ 80Þ
9αN

ϵþOðϵ2Þ: ðC19Þ

We mention these fixed points only because, when α is
small, these correspond to large-M limits of the two
infrared fixed points ½A−� and ½A−

2 � determined in
Sec. IVA 1. Note, however, that, at finite α, the fixed
points determined in this Appendix are only perturbative
fixed points. Unlike the fixed points of Sec. IVA 1, we
expect these fixed points to receive corrections from all
higher-loop contributions to the beta function, which, in the
bifundamental large-N limit, are not suppressed by powers
of N.

APPENDIX D: BETA-FUNCTIONS AS THE
GRADIENT OF A POTENTIAL

In a general scalar theory in 3 − ϵ dimensions, the beta
function up to four loops may be written as a gradient,

βa ¼ Tab
∂U
∂λb

;

of the following potential, where gijklmn is assumed to be a
symmetric tensor:

U ¼ −ϵgijklmngijklmn þ
1

3
gijklmnβ

ð2Þ
ijklmn þ

1

4
gijklmnβ

ð4Þ
ijklmn:

ðD1Þ

This expression is similar to the ones used in
Refs. [66,110]. The inverse metric is trivial at this order:

ðT−1Þab ¼
∂gijklmn

∂ga

∂gijklmn

∂gb
: ðD2Þ

The expression for the potential when M and N are both
finite is too long to present here. We will mainly make use
of this potential in the limit whereN is large andM is finite.
In this limit, a potential which allows one to compute the
beta functions in Sec. IV is

U ¼ −
ϵ

360M
ð16λ22 þ 24λ23 þ 48λ1λ3 þ 48λ2λ3 þ 3λ21M

4 þ 9λ21M
3 þ 12λ21M

2 þ 4λ22M
2

þ 24λ1λ2M2 þ 4λ22M þ 24λ1λ2MÞ þ 1

97200M2N
ð896λ32 þ 1728λ33 þ 5184λ1λ

2
3 þ 5184λ2λ

2
3

þ 4608λ22λ3 þ 6912λ1λ2λ3 þ 27λ31M
6 þ 189λ31M

5 þ 756λ31M
4 þ 72λ1λ

2
2M

4 þ 648λ21λ2M
4

þ 756λ31M
3 þ 216λ1λ

2
2M

3 þ 1944λ21λ2M
3 þ 416λ32M

2 þ 2592λ1λ
2
2M

2 þ 2592λ21λ2M
2

þ 2592λ21λ3M
2 þ 288λ22λ3M

2 þ 1728λ1λ2λ3M2 þ 416λ32M þ 2304λ1λ
2
2M þ 2592λ21λ3M

þ 288λ22λ3M þ 1728λ1λ2λ3MÞ − π2

46656000M2N
ð1408λ42 þ 1728λ43 þ 3584λ1λ

3
2 þ 6912λ1λ

3
3

þ 6912λ2λ
3
3 þ 10368λ21λ

2
3 þ 10368λ22λ

2
3 þ 20736λ1λ2λ

2
3 þ 6656λ32λ3 þ 18432λ1λ

2
2λ3

þ 27λ41M
6 þ 189λ41M

5 þ 756λ41M
4 þ 144λ21λ

2
2M

4 þ 864λ31λ2M
4 þ 756λ41M

3 þ 432λ21λ
2
2M

3

þ 2592λ31λ2M
3 þ 160λ42M

2 þ 1664λ1λ
3
2M

2 þ 5184λ21λ
2
2M

2 þ 3456λ31λ2M
2 þ 3456λ31λ3M

2

þ 128λ32λ3M
2 þ 1152λ1λ

2
2λ3M

2 þ 3456λ21λ2λ3M
2 þ 160λ42M þ 1664λ1λ

3
2M þ 4608λ21λ

2
2M

þ 3456λ31λ3M þ 128λ32λ3M þ 1152λ1λ
2
2λ3M þ 3456λ21λ2λ3M þ 13824λ21λ2λ3Þ: ðD3Þ

In the above expression, we rescaled U by a factor of N, which was absorbed into the inverse metric in Eq. (4.2) to make it
independent of N.
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APPENDIX E: LARGE-N “UNCONVENTIONAL”
FIXED POINTS IN d = 3

In this Appendix, we extend the analysis in Sec. IV to
theories with non-integer values ofM. N is still assumed to
be a (large) integer. We are motivated by the fact thatOðMÞ
theories based on noninteger values of M have recently
been given a physical interpretation in Ref. [85] and have
attracted some attention recently [60,61]. Reference [85]
also explains how to formulate OðMÞ symmetry for non-
integer M via category theory and describes some of the
(rather exotic) statistical models that may have such a
symmetry.
The essential idea of Refs. [60,61] is that when one

considers fixed points with noninteger M one may obtain
limit cycles or unusual behavior. This can only occur if one
works in a range of M where the theory is nonunitary. For
our theory, when M ¼ 2, the three couplings are not
independent—this is reflected in the fact that the matrix
T in Eq. (4.2) involved in rewriting the beta functions as the
gradient of a potential has a zero eigenvalue when M ¼ 2.
For noninteger in the range M < 2, the matrix T is no
longer positive definite and possesses at least one negative
eigenvalue. Therefore, although the beta functions are
related to the gradient of a potential, the matrix T relating
the beta functions to the gradient is not positive definite,
allowing, in principle, for unconventional RG trajectories.
We may also be able to find fixed points for which the
eigenvalues of ∂β

∂gi
include a pair of complex eigenvalues, or

a pair of purely imaginary eigenvalues. Such fixed points
were dubbed as unconventional fixed points in Ref. [60]. If
a fixed point were found in which the eigenvalues were
purely imaginary, then we would expect small deforma-
tions around the fixed point to result in limit cycles—i.e.,
closed RG flows which start and end at the same point in
coupling constant space. Such a fixed point is known as a
Hopf point. For fixed points with complex eigenvalues, RG
trajectories form spirals in coupling constant space and are
unusual but, admittedly, much less interesting than limit
cycles.
Our fixed points differ from those in Ref. [60] in that our

fixed points are large-N saddle points in integer dimension
d ¼ 3, while the fixed points there were perturbative finite-
N fixed points studied in d ¼ 3 − ϵ. So, if we were to
find limit cycles in our model, it would be quite interesting,
and there could be a formal holographic dual to such
RG flows.
The fixed point solutions are depicted schematically in

Fig. 18. We find nonunitary fixed points with whose
stability matrix ∂λiβj has a pair of complex eigenvalues,
similar to some of the fixed points in Ref. [60].
Unfortunately, however, we do not find any fixed points
with purely imaginary eigenvalues; hence, we do not expect

limit cycles in the theory.7 We also studied the fixed points
in the range −3 < M < 0 and did not find any fixed point
with purely imaginary eigenvalues. For M < −3, the
inverse metric T in Eq. (4.2) is negative definite, so no
unconventional fixed points are possible.
The fixed points in the main text correspond to symmetry

groups with integer values of M and N and therefore may
describe phase transitions of some as-yet unknown, but not
unconventional, statistical models that generalize the clas-
sic models such as the tricritical Ising model in a straight-
forward way—they may be considered exotic only to the
extent that they presumably require the tuning of several
chemical potentials, rather than just one.

FIG. 18. A plot of the fixed points that exist in d ¼ 3, for
nonintegerM between 0 and 2. We find that for some ranges ofM
fixed points become “spooky” or unconventional [60]—i.e., the
stability matrix ∂λiβj contains complex eigenvalues. These ranges
are highlighted in black. The color of each line denotes the
number of unstable directions as in Fig. 13, in which directions
corresponding to complex eigenvalues of the stability matrix are
considered unstable if their real part is negative. Unlike Fig. 13,
fixed points are not arranged according to the value of the
potential.

7We thank Fedor Popov and Igor Klebanov for discussions on
this point.
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