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We demonstrate a relation between Nielsen’s approach toward circuit complexity and Krylov complexity
through a particular construction of quantum state space geometry. We start by associating Kähler
structures on the full projective Hilbert space of low rank algebras. This geometric structure of the states in
the Hilbert space ensures that every unitary transformation of the associated algebras leave the metric and
the symplectic forms invariant. We further associate a classical matter free Jackiw-Teitelboim gravity
model with these state manifolds and show that the dilaton can be interpreted as the quantum mechanical
expectation values of the symmetry generators. On the other hand, we identify the dilaton with the spread
complexity over a Krylov basis thereby proposing a geometric perspective connecting two different notions
of complexity.
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I. INTRODUCTION

The notion of complexity was introduced initially to
measure the efficiency of algorithms for quantum compu-
tation by associating different costs to different arrange-
ments of quantum gates from a predefined set, needed to go
from a particular reference state to a target state [1–4].
Recently, complexity has become an important tool for
theoretical physicists to deal with problems ranging from
probing the black hole interior [5] to diagnosing quantum
chaos [6–11] as well as other interesting avenues [12–23].
Due to the freedom of choosing the relevant quantum gates
or unitary operators that constitute valid circuits as well as
the freedom to choose the reference state and the associated
cost, there are several different notions of complexity used
in the literature [24–30]. A natural question is whether
different measures of complexity may be related in some
way and thus capture related physical information. In this
paper, we will expand upon a geometric relation between
Nielsen’s approach toward circuit complexity and Krylov

complexity first put forward in [31] by demonstrating that
the relevant quantities may be obtained as classical sol-
utions of an appropriate action. In particular we have
established that the quantum mechanical expectation values
of the symmetry generators in Neilsen’s approach can be
identified with the spread complexity of a target state in a
chosen Krylov basis.
Problems in quantum computing can generally be

formulated as producing a certain target state from a
given initial state by acting on it with some set of
accessible quantum gates. Loosely, the notion of circuit
complexity can be thought of to be the minimum number
of gates required to complete this operation. In the
continuum limit, the problems in quantum computing
gets translated into a geometric problem of finding
the minimum path connecting two points in a curved
manifold [2,32]. For problems involving quantum field
theories, one essentially replaces the set of quantum gates
by a set of unitary operators and take Nielsen’s geometric
approach as mentioned before [22,34,35]. Since the
Nielsen complexity basically computes the minimum
number of required gates, in the continuum limit, one
has to therefore define a metric in the space of unitary
transformations and look for an optimized trajectory in
this space, minimizing the required number of unitary
operations, given a pair of reference and target states. At
this point one should note that not all possible unitary
transformations are allowed in this process otherwise
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complexity would become trivial. Contrary to its quantum
computational counterpart, the Nielsen’s approach toward
complexity applied to field theory have an inherent
ambiguity in the choice of the cost functional associated
to a particular path in the manifold of unitary operators.
To circumvent this ambiguity in cost function, a subtly
different approach can be taken utilizing Fubini-Study
metric following [36]. Rather than taking the space of
unitary transformations, [36] prescribes to take a space of
states defined by the Fubini-Study(FS) metric. Therefore,
in this scenario one has to keep track of the infinitesimal
changes in states while preparing the target state from an
initial state and the complexity is defined as the geodesic
distance between them. More importantly one crucial
difference is that while in Nielsen approach every quan-
tum gate or unitary transformation is assigned a fixed cost,
FS complexity associates variable costs for each gate
depending on the states they act on. For the setups that we
will consider there is a one-to-one correspondence
between elements of a factor group and quantum states.
As such, the cost function may equivalently be defined on
the manifold of unitary transformations or the manifold of
target states.
In contrast to the considerations above, [30] defines a

new notion of complexity dubbed Krylov or spread
complexity, which depends on the time-evolution of some
reference state in the Hilbert space of the systems under
consideration. The time dependence of any operator is
dictated through the Heisenberg equation, which can be
formally solved as a power series in time. The basis of these
power series expansion are the nested commutators of the
operator with the Hamiltonian. The trick is to associate a
state corresponding to the operators in the Hilbert space and
going over to an orthonormal basis for the power series
expansion utilising the Lanczos algorithm. This ortho-
normal basis is known as the Krylov basis. As elaborated
in the following sections, the expansion coefficients in this
basis can be thought of as some probability amplitudes
whose squared sum is always conserved in time and
Krylov complexity is defined to be a weighted sum of
these probabilities. Since the operator growth in time as
described above, grows exponentially fast at late times, one
can further associate analogues of Lyapunov exponents
for different quantum systems to measure the bounds
on quantum chaos [30,37]. Recently, Krylov complexity
has become the subject of various interesting investigations
[11,13,31,38–52]. As its other counterparts, Krylov com-
plexity also have an inherent ambiguity while defining the
inner products required to establish the Krylov basis,
although most of the literature in physics uses the notion
defined in [53]. Nevertheless, the actual physical or geo-
metric meaning of the Krylov complexity is still inside
a veil.
The leitmotif of all notions of complexity thus far, relies

on the construction of some geometry. Even before the

success of complexity, there are many methods or algo-
rithms to define an underlying geometry of Hilbert space of
quantum mechanics. Most notably, using the symplectic
structure inherent in quantum mechanics á la [54],
Kibble proposed a geometrization of quantum mechanics
in [55]. Provost and Vallee in [56] extended this proposal
to quantum state space and defined a compatible
Riemannian metric on submanifolds of Hilbert space
consisting of generalized coherent states [57]. Following
Ashtekar and Schilling’s viewpoint of Kähler structure of
quantum field theory [59], one of the authors have
proposed a dual description of SUð1; 1Þ theories in terms
of a two dimensional dilaton gravity theory [60]. This
otherwise foundational exercise of geometric reformulation
of quantum mechanics, has interestingly found its appli-
cation in the literature of complexity starting with [36]. The
authors used the same Fubini-Study metric that comes out
of the Kähler structure of the projective Hilbert space to
define complexity. Another hint toward using this quantum
state space become apparent through the work of [31]
where Krylov complexity is shown to be proportional to the
volume enclosed by a certain geodesic radius in a hyper-
bolic disc generated through the coherent states. In this
paper we will use the construction described in [60] for
SUð1; 1Þ, SUð2Þ and Heisenberg-Weyl cases to show that
the FS metric described in [60] corresponds to the FS
complexity and Krylov complexity for SUð1; 1Þ case plays
the role of dilaton appearing in the two-dimensional
Jackiw-Teitelboim (JT) gravity theory [61,62].
This paper is structured as the following. We begin by

reviewing a few basics in Sec. II, focusing mainly on
Nielsen and spread complexity as well as the quantum state
manifold which is the setting for our computations. In
Sec. III we provide a modest generalization of the spread
complexity computations of [31] to include arbitrary
choices of reference state, target state and Hamiltonian
for unitary representations of low-rank algebras. Finally,
we establish an exact geometric connections between these
general spread complexities and Nielsen complexity in
Sec. IV through the introduction of a 2d dilaton model. We
conclude in Sec. V, with possible generalities and future
directions. We also include the basic origin of metric and
the symplectic structure of quantum state manifolds in
Appendix A, along with a simple example. In Appendix B,
we discuss manifolds for non-normalizable states and their
isometries and Killing vectors.

II. A FEW BASICS

In the following two subsections we will briefly review
the two core ingredients of our proposal as mentioned
before. Apart from increasing the pedagogic value for the
benefit of readers, this would also serve the purpose of
setting up our notations and conventions.
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A. Complexity

Our focus will be on continuous notions of complexity
for quantum states (as opposed to operator complexity). In
several formulas it will turn out to be useful to drop
normalization factors. We will use the notation j·Þ and ð·j·Þ
to denote unnormalized (and potentially non-normalizable)
vectors and their inner product and reserve the notation j·i
for normalized vectors.

1. Nielsen complexity

The Nielsen approach [1–4] considers the set of all
possible unitary gates to be elements of a unitary repre-
sentation of some symmetry group, U ∈ G. These may act
on a reference state jϕri to give the Hilbert space of
accessible target states

jϕti ¼ UðσÞjϕri: ð2:1Þ
In the above we have introduced a circuit parameter σ,
usually taken to run from 0 to 1 so thatUð0Þ ¼ I. Written in
terms of the generators of the group, Ai, the target state is
given by

jϕtðs1; s2;…; snÞi ¼ ei
P

j
sjðσÞAj jϕri: ð2:2Þ

Note that various choices of the functions sjðσÞ can be made
to give circuits that connect the reference state and desired
target state. When computing complexity one will make a
choice for these functions that minimize some choice of cost
function. The cost function can be implemented as a metric
defined on the Hilbert space of target space (or equivalently
on the space of unitary gates). This choice is not unique, but a
popular choice is the Fubini-Study metric

ds2 ¼
X
j;k

�
hϕrj

dU†

dsk

dU
dsj
jϕri

− hϕrj
dU†

dsk
UjϕrihϕrjU† dU

dsj
jϕri

�
dsk
dσ

dsj
dσ

dσ2:

ð2:3Þ
An appealing feature of this cost function is that, assuming
that all symmetry transformations are equally easy to
perform, the cost function for the class of simple gates
we consider is fixed up to a global choice of units [63]. The
choices of the functions sjðσÞ thatminimise the cost function
correspond to geodesics of the metric

ds2 ¼
X
j;k

�
hϕrj

dU†

dsk

dU
dsj
jϕri

− hϕrj
dU†

dsk
UjϕrihϕrjU† dU

dsj
jϕri

�
dskdsj ð2:4Þ

and the complexity gets mapped to the geodesic distance.

Note that group elements from the stationary subgroup,
H, of the reference state jϕri i.e., those that act as

Ujϕri ¼ eiθjϕri ð2:5Þ

add zero cost through (2.4). As such, states that differ by an
overall phase should be identified with the same point on
the manifold of accessible target states. At this point is
worthwhile to note that the space of accessible target states,
as defined through (2.1), are precisely generalized coherent
states as introduced by Perelemov [64]. There is a one-to-
one correspondence between accessible target states and
elements of the factor group G=H. We elaborate on this
point in Sec. II B.

2. Spread complexity

Another method by which to quantify the computational
cost associated with preparing a desired target state jϕti is
spread complexity [11]. The central idea here is that there
exists an ordered basis (ordered in increasing complexity)
for the Hilbert space. In terms of such a basis jBni the
spread complexity of a desired target state is given by

C ¼
X
n

cnjhϕtjBnij2; ð2:6Þ

where the weights cn are strictly increasing with n.
A physically motivated algorithm to obtain such a basis

is as follows [31]: Consider the time-evolved reference state

jti ¼ eitHjϕri; ð2:7Þ

with some Hamiltonian of interest,H. The accessible target
states are taken to be any linear combination of time-
evolved reference states. A natural (unnormalized) basis
one may then write down for the Hilbert space of target
states is

jOnÞ ¼
1

n!
ðiHÞnjϕri: ð2:8Þ

These states are not, however, orthogonal with respect to
the Hilbert space inner product. They can be orthogonal-
ized by means of a Gram-Schmidt process. A way to
implement this procedure iteratively for Hermitian oper-
ators is the Lanczos algorithm [53] which yields the
orthonormal Krylov basis jKni [30]

jK0i≡ jϕri;
jAnþ1Þ ¼ ðH − anÞjKni − bnjKn−1i;
jKni≡ ðAnjAnÞ−1

2jAnÞ; ð2:9Þ

with the Lanczos coefficients defined as follows,
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an ¼ hKnjHjKni;
bn ¼ ðAnjAnÞ12: ð2:10Þ

The Hamiltonian is tri-diagonal in the Krylov basis,

HjKni ¼ anjKni þ bnjKn−1i þ bnþ1jKnþ1i; ð2:11Þ

and it has been demonstrated that the Krylov basis
minimises the complexity of the time-evolved reference
state for cost functions of the form (2.6) [11].
With the basis fixed jBni ¼ jKni one now needs to fix

the coefficients cn in the cost function (2.6). A popular
choice is simply cn ¼ n so that the spread complexity of a
target state jϕti in the Krylov basis is defined as

K ¼
X∞
n¼0

nhϕtjKnihKnjϕti; ð2:12Þ

which is the expectation value of the Krylov complexity
operator with respect to the target state

K̂ ¼
X∞
n¼0

njKnihKnj: ð2:13Þ

The Lanczos algorithm allows one (at least in principle)
to compute spread complexity for an arbitrary choice of
Hamiltonian and reference state. In this paper we will be
interested in the case where the Hamiltonian is the element
of some symmetry algebra.
In these special cases, the Krylov subspace can be

represented as a one-dimensional subspace on the manifold
of target states of the Nielsen complexity for the same
symmetry group. Indeed, the Krylov subspace generated by
the Hamiltonian on any choice of reference state on the
manifold may be represented in a similar way. It thus
follows that the manifold of accessible target states asso-
ciated with the symmetry group is a natural setting for both
notions of complexity. This brings in the necessary per-
spective to briefly review the geometric reformulation of
quantum mechanics in the next subsection.

B. Geometry of quantum state manifolds

We will now make some general statements regarding
quantum state manifolds, for the benefit of the interested
reader. Unlike its counterpart, classical mechanics is
intrinsically geometric in nature. One can visualise classical
states being points on the phase space Γ, which is also a
symplectic manifold. The classical observables are then
described as some real-valued function on this manifold.
Being symplectic, the classical state manifold already have
a Lie-bracket, which is the Poisson bracket. Each individual
observable f can also be associated with a Hamiltonian
vector field, generating individual flows on Γ. The flow

corresponding to the Hamiltonian H describes the time
evolution of the system.
On the flip side, the canonical language of quantum

mechanics is rather algebraic, revolving around the
construction of a Hilbert space H. Each state is described
by a ray in the Hilbert space, and observables are the
self-adjoint linear operators defined on H [59]. The Lie-
algebra appears through the commutators between
different observables. Similar to classical mechanics, oper-
ators here also generates a flow on the state-space and the
dynamics is described through the flow corresponding to
the Hamiltonian operator Ĥ. Although one should note that,
in this case the flow is generated through a one parameter
group expðiλĜÞ corresponding to some observable Ĝ.
Therefore, it is quite interesting to look for geometric

structures of quantum mechanics as well. The main interest
in this approach kindled with Kibble’s work in [55], where
he showed that Schrödinger equation can be regarded as a
Hamiltonian flow on the Hilbert space H. Heslot in [65]
observed that the Hilbert space H admits a symplectic
formulation where the projective Hilbert space behaves
analogous to the phase space. There are several works in
this direction mostly restricted to the scenario of finite
dimensional Hilbert spaces [66–68]. In the current situation
we will consider the geometric structure of H for infinite
dimensional cases [59,60,69,70]. In the following, we will
follow [60] to set up our notations and conventions [71] for
the sections to come. The origin of the metric and the
symplectic form of the projective Hilbert space is reviewed
in Appendix A.

1. Metric and the symplectic structure

We will start by considering a Hilbert space H with a
family of normalized state vectors S ≡ fjsig such that
S ⊆ H and the state vectors are smoothly parametrized
by a set of coordinates s ¼ ðs1; s2;…; snÞ ∈ Rn. For these
vectors to have physical significance, they have to be
invariant under the transformation jsi→ eiϕðsÞjsi, with
ϕðsÞ being some real function of s. Therefore, one can

associate with each jsi, a ray fjsi ¼ feiθjsi∶θ ∈ Rg, and all
elements of a ray represents the same physical content. As
shown in Appendix A, given the definition of inner product
in this context, the metric gij and the two form σij can be
written as

gijðsÞ ¼ ∂i∂
0
j logðhsjs0iÞjs¼s0 ; and

σij ¼
1

2i

�
∂i∂
0
j log
hsjs0i
hs0jsi

�����
s¼s0

; ð2:14Þ

with ∂i ≡ ∂

∂si
. This expression of the metric and the 2-form

is also invariant under any arbitrary scaling of the states by
some scalar function. This invariance is very crucial in
regulating the inner product for manifolds generated
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through potentially non-normalizable states. This construc-
tion is briefly reviewed in Appendix B.
Interestingly, for manifolds of (potentially) non-normalised

states S, parametrized holomorphically by a set of complex
coordinates z ¼ ðz1; z2;…; znÞ ∈ Cn, the nonzero compo-
nents of g and σ can be written as

gab̄ ¼ gb̄a ¼
1

2
∂a∂b̄ logðz̄jzÞ and σab̄ ¼ −σb̄a ¼ igab̄:

ð2:15Þ
with ∂a ≡ ∂

∂za
; ∂ā ≡ ∂

∂z̄a
with a; b ∈ ½1; n�. Since the 2-form

is nondegenerate, it also qualifies as the symplectic form
and thus S is a Kähler manifold with potential 1

2
logðzjzÞ.

Further, assuming zj ¼ aj þ ibj, the tangent space at jzÞ
can be identified with spanRf∂ai jzÞ; ∂bi jzÞg which remains
invariant under multiplication of i since i∂ai jzÞ ¼ ∂bi jzÞ.
Thinking of this n dimensional complex manifold
as 2n dimensional real manifold parametrized by s ¼
fs1; s2;…; s2ng this same relation can be expressed through
the complex structure J as

i∂kjsÞ ¼ Jjk∂jjsÞ:
The complex structure J has the property that JikJkj ¼ −δij
so that J2 ¼ −1. Following [60], on can further show that

σij ¼ Jkigkj and Jij ¼ σji: ð2:16Þ

Using (2.15) it can then be written

Jab̄ ¼ Jab̄ ¼ 0 and Jab ¼ −Jāb̄ ¼ iδba: ð2:17Þ

In the following we will focus on the manifolds generated
through the action of a Lie group on a fixed reference state
as discussed in Appendix A.

2. Vector field action

Let us now consider an operator Ĝ on the state manifold,
which generates a transformation that leave the manifolds

of rays S̃ ¼ f fjsig invariant i.e.
eiλĜjsi ¼ eiϕðsÞjuðsÞi: ð2:18Þ

The infinitesimal version of this transformation implies
the existence of a scalar function ϕðsÞ and vector field
XĜ ¼ ki∂i such that

Ĝjsi ¼ ϕðsÞjsi − iXĜjsi ð2:19Þ

using (2.16), then one can show that [60],

ki ¼ −
1

2
½σij∂jhĜ1i þ gij∂jhĜ2i�; ð2:20Þ

with Ĝ ¼ Ĝ1 þ iĜ2 and h·i ¼ hsj · jsi. Which further
simplifies in the complex coordinates as

ka ¼ −
1

2
σab∂b̄hĜi; and kā ¼ −

1

2
σāb∂bhĜi: ð2:21Þ

Therefore the vector field includes both the information of
the Riemannian and the symplectic structure of the mani-
fold. Evidently, one can consider hĜi as a scalar field on the
manifold. In fact, (2.19) further implies that

XĜhÔi ¼ ihÔδĜ − δĜ†Ôi; ð2:22Þ

where Ô is some arbitrary operator on the manifold and
δĜ ¼ Ĝ − hĜi. In case, Ĝ is Hermitian then,

XĜhÔi ¼ h½−iĜ; Ô�i and XiĜhÔi ¼ hf−δĜ; Ôgi:
ð2:23Þ

Hence, one can infer that if the symmetries of S̃ is
generated by a Lie algebra with generators being the set
of Hermitian operators fD̂ig, then the vector fields fXD̂i

g
provides a representation of the Lie algebra spanned by
f−iD̂ig and the scalar fields fhD̂iig transforms under the
adjoint representation.
In summary, the manifold of accessible target states,

equipped with the Fubini-Study metric, allows for the
action of operators to be represented by vectors fields.
In particular, the symmetry generators are associated with
Killing vector fields on the manifold. We will make
profitable use of this observation later.

III. COMPLEXITY FOR LOW-RANK ALGEBRAS

In [31] an elegant interpretation of Krylov complexity
was found as a volume contained on the information metric
for SLð2; RÞ; SUð2Þ and Heisenberg-Weyl symmetry
groups. Additionally, the authors demonstrated that, for
these examples, the Krylov complexity operator (2.13) can
be identified with an isometry of the information metric.
For our later use, we provide here a modest generaliza-

tion of these results. We consider a low-rank algebra
spanned by one pair of ladder operators and their commu-
tator, Lþ; L−; ½L−; Lþ� [73]. The algebra we consider is

Lþ ¼ L†
−;

½½L−; Lþ�; Lþ� ¼ 2fLþ;

½½L−; Lþ�; L−� ¼ −2fL−; ð3:1Þ

parametrized by the real structure constant f. To recover
suð1; 1Þ; suð2Þ and the Heisenberg-Weyl algebra we have
f ¼ 1;−1, and 0 respectively.
To proceed with the computation (both of state spread

complexity and Nielsen complexity) we need to specify a
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reference state. A possible choice is the highest weight state
defined by

L−jwi ¼ 0;

½L−; Lþ�jwi ¼ w0jwi;
which we will specify as the reference state jψ0i ¼ jwi.
The reason for the subscript 0 will be clear shortly. Any
group element acting on this reference state may be
parametrized as

eiðaþLþþa�þL−þa0½L−;Lþ�Þjψ0i ¼ NezLþjψ0i; ð3:2Þ

where z is a complex coordinate that depends on the
parameters aþ and a0. As highlighted in Sec. II, this is
precisely a generalized coherent state [64] and these states
are in a one-to-one correspondence with elements of
G=ð½L−; Lþ�Þ. This manifold of states represents the set
of accessible target states. The reference state is also
represented by a point on this manifold, in this case z ¼ 0.
We compute the Fubini-Study metric for these low-rank

algebras following (2.3) as

ds2 ¼ ∂z∂z log ðhwjez̄L−ezLþjwiÞdzdz̄
¼ ∂z∂z̄ log ð1 − fzz̄Þ−w0

f dzdz̄

¼ w0

ð1 − fzz̄Þ2 dzdz̄: ð3:3Þ

This is a metric of constant scalar curvature given by

R ¼ −
8f
w0

: ð3:4Þ

Note that the scalar curvature is dependent on the algebra
structure constant and the weight of the reference state. In
particular (for positive w0) we recover Euclidean AdS2, dS2
and flat geometries for the suð1; 1Þ, suð2Þ and Heisenberg
algebras respectively, in agreement with [31]. One can
easily check that a parametrization

zðσÞ ¼ reiθ; ð3:5Þ
with w0 ¼ 4 and f ¼ 1 gives us the JT metric with disk
topology,

ds2 ¼ 4

ð1 − r2Þ2 ðdr
2 þ r2dθ2Þ: ð3:6Þ

In this computation we need not have selected the highest
weight state as our reference state. Instead, one may have
taken the reference state to be

jψ z0i ¼ Uðz̄0; z0Þjwi; ð3:7Þ

where Uðz̄0; z0Þ is a representative of G=ð½L−; Lþ�Þ and
may be parametrized as

Uðz̄0; z0Þ ¼ ez0Lþe
1
2f logð1−fz̄0z0Þ½L−;Lþ�e−z̄0L− : ð3:8Þ

When we set z0 ¼ 0, the reference state (3.7) is simply the
highest weight state. On the manifold of states, the action of
the unitary Uðz̄0; z0Þ has the effect of shifting the point on
the manifold of states that corresponds to the reference
state. For Nielsen complexity this transformation has a
rather trivial effect of simply reorganising the points on
the manifold by means of a coordinate transformation. The
geodesic distance between points is insensitive to the
choice of coordinates, so that Nielsen complexity between
reference and target states is unaffected.
The situation is different for spread complexity, however.

This is because the Krylov basis (and therefore the measure
of complexity itself) is altered by selecting a different
reference state. To compute spread complexity we first need
to determine the Krylov basis. This requires a choice of
Hamiltonian which wemay take as a general algebra element

αLþ þ α�L− þ γ½L−; Lþ�;

and reference state, which we take to be the general jψ z0i
in (3.7). Regardless of the choice of coefficients [74], we
obtain theKrylov basis andKrylov complexity operator from
(2.9) and (2.13) as

jKni¼
Uðz̄0;z0ÞðLþÞnjwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihwjðL−ÞnðLþÞnjwi

p ;

K̂¼
X
n

n
Uðz̄0;z0ÞðLþÞnjwihwjðL−ÞnU†ðz̄0;z0Þ

hwjðL−ÞnðLþÞnjwi
: ð3:9Þ

To compute the spread complexity of an arbitrary target
coherent state (built from the highest weight state) we may
write

jzÞ ¼ ezLþjwi ¼ Uðz̄0; z0Þez0Lþjwi; ð3:10Þ

at the cost of a coordinate transformation

z0 ¼ z − z0
1 − fzz̄0

: ð3:11Þ

Note the use of the round bracket since jzÞ is not normalised.
The normalised states are given by

jzi ¼ ðz̄jzÞ−1
2jzÞ: ð3:12Þ

We can now readily compute its spread complexity by taking
the expectation value of the Krylov complexity operator with
respect to this state and find
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ðz̄jK̂jzÞ
ðz̄jzÞ ¼

X
n

n
ðz̄0z0Þn
ðn!Þ2

hwjðL−ÞnðLþÞnjwihwjðL−ÞnðLþÞnjwi
ðz̄0jz0ÞhwjðL−ÞnðLþÞnjwi

¼
X
n

n
ðz̄0z0Þn
ðn!Þ2

hwjðL−ÞnðLþÞnjwi
ðz̄0jz0Þ

¼ z0∂z0 logððz̄0jz0ÞÞ: ð3:13Þ

This may be expressed, in general, as the expectationvalue of
some algebra element as follows. We note that

½L−; Lþ�ez0Lþjwi ¼ ðw0 þ 2fz0∂z0 Þez0Lþjwi; ð3:14Þ

so that the spread complexity (in the Krylov basis) of the
coherent state jzÞ is given by

ðz̄jK̂jzÞ
ðz̄jzÞ ¼ hz̄

0j 1
2f
ð½L−; Lþ� − w0Þjz0i

¼ hz̄j 1
2f
ðUðz̄0; z0Þ½L−; Lþ�U†ðz̄0; z0Þ − w0Þjzi:

ð3:15Þ

Note that the unitary transformation performed on the
reference state now features in the expectation value.
Depending on the unitary transformation relating the refer-
ence state for Nielsen complexity and reference state for
Krylov complexity, we need to compute the expectationvalue
of a different operator with respect to the target state.
One may proceed with the computation in several ways

but ultimately we find that coherent state jzi with the
Krylov basis built on the reference state Uðz̄0; z0Þjwi is
given by

Kðjzi;H;Uðz̄0; z0ÞjwiÞ ¼ z0∂z0 logðz̄0jz0Þ

¼ w0z0z̄0

1 − fz0z̄0

¼ w0ðz − z0Þðz̄ − z̄0Þ
ð1 − fz̄0z0Þð1 − fz̄zÞ : ð3:16Þ

In the above we have emphasised that the Krylov basis
(and thus the associated spread complexity of states) is a
function of both the choice of Hamiltonian [75] and the
choice of reference state. The reference state is, by
definition, set to zero complexity. This is reflected nicely
in the above formula where the spread complexity vanishes
for z ¼ z0. Note that we recover the expected formulas
(such as those in [31]) when we set z0 ¼ 0. We will soon
see in the next section, how this formula arises from the
matter-free JT gravity model.
Before this we would like to comment how the inter-

pretation of [31] (of spread complexity is geodesic volume)
holds true for these general Krylov subspaces. As men-
tioned, the Krylov subspace can always be represented as a
one-dimensional submanifold of the manifold of quantum

states. Consider, for example, a general reference state
(coherent state) time-evolved subjected to the Hamiltonian
H ¼ αðLþ þ L−Þ. By making use of Baker-Campbell-
Haussdorff equations we can represent the time-evolved
state as a t-dependent family of coherent states

jti ¼ eiαtðLþþL−ÞUðz̄0; z0Þjwi

¼ Ne

�
z0þi

ð1þfz2
0
Þ sinhð

ffiffi
f
p

αtÞ
coshð

ffiffi
f
p

αtÞ−ifz0 sinhð
ffiffi
f
p

αtÞ

�
Lþjwi: ð3:17Þ

Plugging in the value of z of the above into the expression
for the spread complexity (3.16) yields

Kðjti;H;Uðz̄0; z0ÞjwiÞ

¼ w0ð1þ fz20Þð1þ fz̄20Þ
fð1 − fz̄0z0Þ2

sinh2ð
ffiffiffi
f

p
αtÞ ð3:18Þ

When comparing this to the geodesic volumes of [31] we
note, interestingly, that this quantity is also proportional to it.
The appropriate family of states to compare, however,

are realised after a unitary transformation i.e. we consider
the time evolution of the reference state

Ujψ0i ð3:19Þ

under the Hamiltonian

H0 ¼ UðαLþ þ αL−ÞU† ð3:20Þ

The family of coherent states involved in this evolution is
parametrized as

eiαtH
0
Uðz̄0; z0Þjwi ¼ e

−i
ffiffi
f
p

z0 coshðα
ffiffi
f
p

tÞþsinhðα
ffiffi
f
p

tÞ
−i

ffiffi
f
p

coshðα
ffiffi
f
p

tÞþfz0 sinhðα
ffiffi
f
p

tÞLþjwi ð3:21Þ

which gives the spread complexity as

KðeitH0Ujwi; H;UjwiÞ ¼ w0

f
sinh2ðα

ffiffiffi
f

p
tÞ ð3:22Þ

The appropriate Fubini-Study metric to use is also built on
the unitarily transformed generators, i.e.,

U0ðz; z̄Þ ¼ Uðz̄0; z0ÞUðz̄; zÞU†ðz̄0; z0Þ ð3:23Þ

from where we may compute the generating function for
the Fubini-Study metric as

ðhwjU†ðz̄0; z0ÞÞU0†ðz̄0; z0ÞU0ðz̄; zÞðUðz̄0; z0ÞjwiÞ ð3:24Þ

This (rather trivially) gives rise to the same FS metric in the
z0 coordinates, but note that the origin of the geometry now
represents the state jz0i and not jwi. The coherent state
coordinate z is related to z0 as (3.11). The time-evolved
states (3.21) correspond to the coordinates
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z0 ¼ ei
π
2
tanhð ffiffiffi

f
p

αtÞffiffiffi
f
p ð3:25Þ

and corresponds to geodesic motion. Indeed, the expres-
sions one obtains in the z0 coordinates matches precisely
with those of [31]. The geodesic volume computed from
the FS metric in the z0 coordinate is the appropriate quantity
to match with reference state (3.19) time-evolved under the
Hamiltonian (3.20).
This demonstrates that the connection between geodesic

volume and spread complexity of [31] generalizes to
arbitrary choices of coherent state as reference states. To
be specific, one has to match up the reference state of
spread complexity with the center of the Fubini-Study
metric and perform the corresponding unitary transforma-
tion on the Hamiltonian. In what follows we will not make
these specific choices, but instead discuss the spread
complexity for arbitrary choices of reference state, target
state, and Hamiltonian.

IV. COMPLEXITY FROM DILATON GRAVITY

We now demonstrate how, using a duality construction
first utilized in [60], we can recover both the Fubini-Study
metric characterising the Nielsen complexity and spread
complexity as classical solutions of a 2d dilaton gravity
model. The relevant action is of the form

S ¼ 1

2π

Z
d2x

ffiffiffi
g
p ½ηRþ VðηÞ� þ Sboundary; ð4:1Þ

with η being the dilaton and VðηÞ being some arbitrary
potential of the dilaton. The (bulk) equations of motion are

R ¼ −V 0ðηÞ and ∇μ∇νη −
1

2
gμνVðηÞ ¼ 0: ð4:2Þ

A generic static solution for g and η in this case [60] can be
written as [76]

g¼ C̄ðrÞdt2þ dr2

4C̄ðrÞ ; η¼ r; VðrÞ ¼ 4C̄0ðrÞ: ð4:3Þ

The manifolds of coherent states considered have a high
degree of symmetry which restricts the scalar curvature to
be a constant. As such we specialize to a model with a
linear potential V ¼ −Rη. This is the famous Jackiw-
Teitelboim model [61,62]. The equation of motion for η
pertaining to more general (nonstatic) solution of the
gravity theory in (4.2) can be recast as

∇2ηþRη ¼ 0 and ∇μkν þ∇νkμ ¼ 0 ð4:4Þ

where kμ ¼ − 1
2
σμν∇νη. This establishes a relation between

the dilaton and the Killing vectors. This relation along with
Eq. (2.21) demonstrates that the dilaton may be matched

with the expectation values of symmetry generators. This
relation has already been pointed out in [60] and a detailed
discussion is given in Appendix B 1. In the present context,
we make the underlying connection with quantum compu-
tational complexity explicit.
As an interesting aside comment for later, we take note of

the following conserved quantity

M ¼ −
1

2

�
ð∇ηÞ2 þ R

2
η2
�

ð4:5Þ

which is traditionally identified with the mass or energy of
the gravitational system [77,78].
To realize the spread complexity for low-rank algebras as

the classical dilaton solution of a matter-free JT gravity
theory we have to impose appropriate boundary conditions.
The specific action we need to consider is given by

S ¼ 1

2π

Z
d2x

ffiffiffi
g
p

η

�
Rþ 8f

w0

�
ð4:6Þ

The equation of motion resulting from varying the action
with respect to the dilaton fixes the scalar curvature to be a
constant. In two dimensions, the classical background
geometry is thus fixed up to a coordinate transformation
to correspond to Fubini-Study metric with curvature (3.4).
This background geometry can be matched with the
corresponding manifold of accessible target states. As such
the geodesic distances on this background thus captures the
Nielsen complexity between points representing reference
and target states.
Focusing now on the equations that follow from varying

the action with respect to the metric, the dilaton (4.2)
permits the general solution

ηðz; z̄Þ ¼ c1zþ c2z̄þ c3ðfzz̄þ 1Þ
1 − fzz̄

ð4:7Þ

The reality of dilaton would further pose the restriction [79]
that c1 ¼ c�2 ∈ Z and c3 ∈ R. We now impose a boundary
condition that the dilaton is minimized at the location
z ¼ z0, i.e.,

∂zηðz; z̄Þjz¼z0 ¼ ∂z̄ηðz; z̄Þjz¼z0 ¼ 0 ð4:8Þ

which yields

ηðz; z̄Þ ¼ 2c3fðz − z0Þðz̄ − z̄0Þ
ð1þ fz0z̄0Þð1 − fzz̄Þ þ η0

η0 ¼
c3ð1 − fz0z̄0Þ
ð1þ fz̄0z0Þ

ð4:9Þ

This is precisely the spread complexity (3.16) up to the
overall factor c3 and additive constant. Indeed, this sug-
gests that the dilaton solution may be identified with the
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spread complexity of the state jzi. What the condition (4.8)
is doing is identifying the reference state sourcing the
Krylov basis. The reference state is, of course, the point of
minimal spread complexity and thus the minimization
condition. With the identification of the classical dilaton
background with the manifold of accessible target states,
this is thus a natural boundary condition to impose on the
dilaton.
To obtain a precise match between the dilaton and spread

complexity we need to impose further boundary conditions.
The second condition, subtracting the additive constant η0,
is setting the spread complexity of the reference state to
zero. Put differently, the boundary condition (4.8) matches
the dilaton with a spread complexity cost function (2.6)
with the coefficients cn ¼ mnþ c. By subtracting the
constant η0 one fixes c ¼ 0 for the cost function
coefficients.
We need to set a final boundary condition to fix c3, so that

the shifted dilaton is matched with the m ¼ 1 spread
complexity cost function. We find that this boundary
condition may be phrased in a physically interesting way.
In terms of the mass or energy of the gravitational system
(4.5) we find that this third condition is equivalent to

1

4
MR ¼ −1 ð4:10Þ

Recall that the scalar curvature of the FS manifold is
inversely proportional to the weight of the highest weight
state while the spread complexity is proportional to it. Thus
the total energy of the dilaton gravitational system must
scale like the spread complexity with the weight of the
highest weight state.
With these boundary conditions we are thus able to

match the spread complexity of any target state (up to an
additive constant) as the classical dilation of a JT gravity
theory. We have already established that the Fubini-Study
complexity geometry is obtained as the classical back-
ground geometry of this model. In this approach, the
expectation value of symmetry generator hĜi on the
quantum state manifold is the classical solution of dilaton
in (4.7). For a detailed discussion, the interested reader can
go to Appendix B 1. Taken together, these statements
establish a neat link between spread complexity as a scalar
field defined on the FS complexity geometry.
Note furthermore that our derivation are valid for any

low-rank algebra of the form (3.1) which encapsulates the
cases of suð1; 1Þ; suð2Þ and Heisenberg-Weyl.

V. CONCLUSION AND DISCUSSION

The quantum computational complexity of a target and
reference state pair can be defined in various different ways
using various choices of cost function. The effect of these
cost functions is to add additional structure to the Hilbert
space of accessible target states which provides a means to

quantifying the difficulty of state preparation for each
Hilbert space state. From a practical point of view, it is
desirable to either find a physically “most suited” definition
of complexity, or demonstrate that different definitions may
be related in some way. In this paper we utilized a duality
construction of quantum state manifolds to contribute
toward this goal. For low-rank algebras, we demonstrated
that the Fubini-Study information metric and spread com-
plexity of a target state can be obtained as the classical
solutions of a single action. Intriguingly, this action takes
the form of a 2d dilaton gravity model. Our results are in
harmony with those that have already demonstrated a
relation between spread complexity and the Fubini-Study
metric volume [31]. Indeed, the identification made by
those authors (relating the Krylov complexity operator to a
FS metric isometry) can be understood in terms of a
geometric formulation of quantum mechanics [59] which
underpins the duality construction. In particular, it would
be interesting to study the Jacobi group for which the
spread complexity was studied quite recently [50].
A natural question that arises is how the identification

between the dilaton and spread complexity can and should
be modified when higher dimensional symmetry groups
are considered. To this end we would like to make some
additional comments. Firstly, the Fubini-Study metric
always encodes the group symmetries as metric isometries,
but will in general not be maximally symmetric as is the
case for the two-dimensional examples we considered.
Secondly, the Krylov complexity operator will, for higher
dimensional cases, not be linear in the generators of the
symmetry group. We can expect, however, that the Krylov
complexity operator may be expressible as an element of
the enveloping algebra. As such, it should still have an
associated vector field on the manifold of quantum states
related to its expectation value through (2.20).
Taken together, these observations suggest that spread

complexity may be identified as the classical solution of an
appropriately defined scalar field action on the Fubini-
Study background. Our expectation, due to the points
raised above, is that these actions may require the inclusion
of a nontrivial energy momentum tensor. Finding a general
prescription to constrain these scalar field actions is an
interesting (though likely also an involved) problem. It
would also be interesting to pursue the study the conjec-
tured inequality of [80] in this framework and pursue cases
where the behavior of spread complexity differs from
Nielsen complexity.
One should also note that, though the Fubini-Study

metric for higher rank symmetry groups are not maximally
symmetric in general, they may still permit maximally
symmetric submanifolds. There may be examples
where the time-evolved states (and thus the Krylov basis)
can be restricted to these submanifolds. In these cases
we expect the identification to simplify significantly and
the appropriate action may even involve a vanishing
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energy-momentum tensor in these cases. At this stage our
expectation are only speculative, however, and we postpone
a more careful analysis to future work.
We emphasize that the identifications made in this

paper have all been on the classical solutions of the dilaton
gravity action. It would be fascinating to understand
whether other quantities relevant to complexity may be
packaged as the fluctuations of an appropriate action. In
particular, onemaywonder whether the higher cumulants of
the Krylov distribution (such as K-variance and K-skewness
[30,31,39,81]) may be understood in this way. On a related
note, our focus in this paper has been on a particular choice
of spread complexity (characterized by the increasing
coefficients cn) which we matched with a particular dilaton
action, namely a linear dilaton action. One may consider
different models of dilaton gravity which may be related to
different choices of these coefficients. It is intriguing that a
linear model of dilaton gravity yields classical solutions that
may be matched with the spread complexity where the
coefficients of the cost function also scale linearly.
Finally, we remark that the connection between notions of

quantum complexity and dilaton gravity, though intriguing,
is not holographic in nature. In particular, the quantum
systems we have considered are not conformal field theories
and themanifold of quantum states is of the same dimension
as the dilaton gravity. Nevertheless, it would be fascinating
to study the duality construction for conformal field theories
and whether notions of complexity for the CFT may be
understood similarly. In this regard one can explore the
known equivalence between JT gravity action and the
Liouville gravity action containing both timelike and space-
like conformal fields [82]. Computation of Krylov complex-
ity for this Liouville field theory from the two point
correlation function will help us to verify the duality
construction of dilaton from the field theoretic point of view.
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APPENDIX A: METRIC AND THE 2-FORM

We will pick up from the same setup as defined in
Sec. II B for H and S. In addition we will further define S̃

as the set of rays f fjsi ¼ eiθjsi∶θ ∈ Rg forming the
projective Hilbert space P. Here we will follow [56] and
briefly review the basic ideas of quantum state manifolds, a
first guess for metric can be defined through the square of
the norm of two infinitesimally close vectors jsþ dsi and
jsi in H as

kðjsþ dsi − jsiÞk2 ¼ hðjsþ dsi − jsiÞjðjsþ dsi − jsiÞi:
ðA1Þ

Up to first order in derivative expansion we have
jðjsþ dsi − jsiÞi ¼ ∂ijsidsi, therefore one can write up
to second order in derivative

kðjsþ dsi − jsiÞk2 ¼ hsj∂i ∂j
!jsidsidsj; ðA2Þ

with ∂i ≡ ∂

∂si
. By separating the real and the imaginary part

we will introduce the variables γijðsÞ and σijðsÞ as

hsj∂i ∂j
!jsi ¼ γijðsÞ þ iσijðsÞ; ðA3Þ

which by definition of the Hermitian products have the
property

γijðsÞ ¼ γjiðsÞ and σijðsÞ ¼ −σjiðsÞ: ðA4Þ

This new parameters further simplifies the relation

kðjsþ dsi − jsiÞk2 ¼ γijðsÞdsidsj: ðA5Þ

Although, one can check that this tensor γijðsÞ as defined
above has all the nice properties for being a metric tensor
but it fails to be one, if we want to build a manifold of

physical states where both jsi and fjsi would define the
same point on the manifold if

fjsi ¼ eiθðsÞjsi: ðA6Þ

Evidently, we have the relation

fγijðsÞ¼ γijðsÞþβið∂iθðsÞÞþβjð∂iθðsÞÞþð∂iθðsÞÞð∂jθðsÞÞ;
ðA7Þ

with

βjðsÞ ¼ −ihsj∂j!jsi: ðA8Þ

As we are dealing with normalizable states here, we then
have the relation

hsj∂i!jsi ¼ −hsj∂i jsi: ðA9Þ
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Adding with the relation hsj∂⃗ijsi† ¼ hsj∂⃖ijsi, we have the
property that βjðsÞ is real. Which leads one to the definition
of a metric as

gijðsÞ ¼ γijðsÞ − βiðsÞβjðsÞ; ðA10Þ

which by construction is invariant under (A6). Following
[56], one can also show that locally one can define the
2-form σ and 1-form β as

σ ¼ σijðsÞdsi ∧ dsj; and β ¼ βiðsÞdsi with σ ¼ dβ:

ðA11Þ

Furthermore by resorting to the following relation, up to
second order in derivative

½hðjsþ dsi − jsiÞjðjsþ dsi − jsiÞi�
− jhsjðjsþ dsi − jsiÞj2 ¼ gijðsÞdsidsj; ðA12Þ

it is evident that

dl2 ¼ gijdsidsj; ðA13Þ

is always positive definite by Schwartz’s inequality. One
can then write the following relations for γij, σij, and βi in a
simpler form as

βjðsÞ≡ −i∂0jhsjs0ijs¼s0 and

γijðsÞ þ iσijðsÞ≡ ∂i∂
0
jhsjs0ijs¼s0 ðA14Þ

which further implies (2.14). Therefore, by knowing the
inner product between any two elements of S̃ the metric g
and the 2-form σ. At this point one of the interesting
questions to ask is the connection between the phase space
of a classical system (say Γ) and the quantum state space
manifold. Both Γ and P have a symplectic structure but the
quantum state space manifold also have a Riemannian
metric due to the Kähler structure. In general even if the
classical phase space is finite dimensional the quantum
phase space or P is still infinite dimensional. Interestingly,
one can show that the quantum phase space is basically a
trivial bundle over the classical phase space [59].
Therefore, corresponding to each choice of a state (or a
point p ∈ P) there is a cross section equivalent to the
classical phase space Γ. Moreover, it turns out that the
quantum states that lies within this cross sections are
precisely the generalized coherent states [64].
To illustrate the above points one can take for example

the Glauber coherent states for a harmonic oscillator as

jαi ¼ e−
1
2
jαj2 X∞

n¼0

αn

ðn!Þ1=2 jni ðA15Þ

with α ∈ C. The inner product in this case is

hαjα0i ¼ exp

�
αα0 −

1

2
jαj2 − 1

2
jα0j2

�
: ðA16Þ

Hence using (2.14) or (A14) we can write the relation

dl2 ¼ dα21 þ dα22 ¼ dρ2 þ ρ2dϕ2;

σ ¼ 2dα1 ∧ dα2 ¼ 2ρdρ ∧ dϕ; ðA17Þ

where we have parametrized α as α ¼ α1 þ iα2 ¼ ρeiϕ.
Therefore, the manifold corresponding to Glauber coherent
state is a 2-dimensional plane.

1. Isometries and dynamical symmetries

The definition for the metric and the 2-form in (A14)
depends on the inner product on H, therefore they are
also expected to be invariant under unitary transformations
that keeps S̃ invariant. This kind of transformation can be
written as

Ûjsi ¼ eiϕðsÞjuðsÞi where s → uðsÞ; ðA18Þ

and ϕðsÞ is some scalar function. From the change of inner
product under this mapping we then have the relation

gijðsÞ ¼
∂uk
∂si

∂ul
∂sj

gklðuÞ ðA19Þ

implying that (A18) defines a isometry of the metric.
Following [60], one can call them dynamical symmetries.
This rather simple exercise reveals the dual role of the inner
product hsjs0i. In the algebraic side, the dynamical sym-
metries implies specific transformation properties of hsjs0i,
restricting their functional form. In the geometric side,
hsjs0i acts as the potential of the Kähler manifold from
which the metric and the 2-form is derived. Here the
dynamical symmetries defines the isometries of the mani-
fold. Hence, one can realize that hsjs0i acts as the missing
link between the quantum mechanical symmetries of a
system and the isometries defining the geometry of the
system.

APPENDIX B: MANIFOLDS FOR
NON-NORMALIZABLE STATES

So far, we have discussed normalizable and non-
normalizable states more or less interchangeably. Although,
the notion of symmetry transformation and the vector field
properties as discussed before remains identical, the caveat
comes through (2.14) for the definition of metric and the
symplectic structure due the singular nature of the inner
product. This problem can be circumvented by realising that
in fact, the set of potentially non-normalizable vectors
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S∞ ¼ fjsÞg, can have a enhanced set of symmetry
transformations.
To understand the above point, one can consider a one

dimensional manifold corresponding to the trajectory of a
state through the Hilbert space under the time evolution
generated by the Hamiltonian. From the discussions above
and Appendix A, one can state that the one-dimensional
manifold generated through this evolution will only have a
single isometry direction due to the fact that S only have a
single continuous symmetry under time translation. The
weakness of not having a well-defined metric become the
savior for non-normalizable states in this situation. For
non-normalizable states one can then look for a possibly
larger set of dynamical symmetries of the system which
can be carry forwarded as the symmetries of S∞. To this
vein one can start with a non-normalizable state of a one-
dimensional system as the reference state and generate a
manifold of normalizable states where the enhanced
symmetries can act as isometries.
The simplest way to achieve the above is to introduce a

regularization coordinate β following [60], which can be
introduced as the imaginary part of time such that we have a
family of states

jt; βÞ ¼ eitĤjβi ¼ eiðtþiβÞĤjϕ0Þ; ðt; βÞ ∈ R × ðβ0;∞Þ
ðB1Þ

with jϕ0Þ being our reference state. Here we are also
assuming that e−βĤ is the precise factor needed to render
jt; βÞ normalizable as β > β0. Without loss of generality
one can now set β0 ¼ 0 and think of the state manifold
being divided in two parts, the infinite norm “boundary”
states at β ¼ 0 and the finite norm states inside the “bulk”
β > 0. The regularization coordinate β appears as some
energy scale in the system and [60] showed that β actually
plays the analogous role of radial bulk coordinate as
in AdS=CFT.
One can now use (2.14) and calculate the bulk metric and

the 2-form as

g ¼ CðβÞðdt2 þ dβ2Þ and σ ¼ 2CðβÞdt ∧ dβ; ðB2Þ

where

CðβÞ ¼ hβjðδĤÞ2jβi ¼ 1

4
F00ðβÞ;

FðβÞ ¼ logZðβÞ and ZðβÞ ¼ ðt; βjt; βÞ: ðB3Þ

The scalar curvature of this manifold can be calculated
to be

R ¼ −
∂
2
β logðCðβÞÞ

CðβÞ : ðB4Þ

The metric g here is also a Fubini-Study metric since
declaring τ ¼ tþ iβ to be the complex coordinate one
can see that both g and σ can be calculated using (2.15)
through the Kähler potential 1

2
logðτjτÞ with jτÞ≡ jt; βÞ. By

definition ZðβÞ will diverge at the “boundary” β ¼ 0.
Assuming ZðβÞ ¼ β−p expðfðβÞÞ, with p > 0 and fðβÞ
being analytic at β ¼ 0, we have the relation

CðβÞ ¼ p
4β2
þ f00ð0Þ

4
þOðβÞ and

R ¼ −
8

p
−
16f000ð0Þ

p2
β3 þOðβ4Þ: ðB5Þ

Therefore the conformal factor of the metric diverges as
∼β−2 whereas the scalar curvature approaches constant
negative value which is the telltale sign of asymptotically
Euclidean AdS space. Since ZðβÞ encapsulates symmetries
of both the Hamiltonian and the reference state jϕ0Þ, one
can easily show that for a situation where Ĥ and jϕ0Þ are
both invariant under a scale transformation, the metric turns
out to be exactly AdS2.

1. Killing vectors

In this part we will consider systems governed by the
suð1; 1Þ algebra for simplicity but one can extend this
discussion without much modifications for suð2Þ and
Heisenberg-Weyl and other low rank algebras as well.
We consider the generators of suð1; 1Þ being K̂0, K̂þ, and
K̂− with the Casimir operator Ĉ ¼ kðk − 1ÞÎ, with k
labelling the particular irreducible representations under
consideration. In this case, the Hilbert space is spanned by
the states fjk; nig (n ∈ ½0;∞�Þ, where the action of the
generators can be defined as

K̂0jk; ni ¼ ðkþ nÞjk; ni
K̂þjk; ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð2kþ nÞ

p
jk; nþ 1i

K̂−jk; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2kþ n − 1Þ

p
jk; n − 1i: ðB6Þ

This generators can be thought of as the three conformal
generator of conformal quantum mechanics [83] as

K̂ ¼ K̂0 þ
1

2
ðK̂þ þ K̂−Þ

T̂ ¼ K̂0 −
1

2
ðK̂þ þ K̂−Þ

D̂ ¼ i
2
ðK̂þ − K̂−Þ: ðB7Þ
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One can now consider T̂ as the Hamiltonian and consider
the time evolution with the states jti ¼ eitT̂ jϕ0i. To endow
the reference state with the full set of symmetries of
suð1; 1Þ we will consider a non-normalizable family of
states defined as

jϕ0Þ ¼ e−K̂þjk; 0i ðB8Þ

which has infinite norm and is a simultaneous eigenstates
of K̂ and D̂ [60]. Interestingly, these are the precise family
of states fjtÞ ¼ eitT̂ jϕ0Þg considered in [84], in connection
with the AdS2=CFT1 correspondence. It is shown to
be [60,84]

ðt0jtÞ ¼
�

i
2ðt − t0Þ

	
2k
: ðB9Þ

which basically dictates a two point function for a field with
conformal dimension k. As expected, this inner product
diverges as t → t0, therefore to get a valid geometry we
have to introduce the regularization coordinate β as t →
τ ¼ tþ iβ and study the sates jτÞ≡ jt; βÞ ¼ eiτT̂ jϕ0Þ. With
this regularization we have ðτjτÞ ¼ ð4βÞ−2k which is finite
for β > 0. Using (B2), the resulting metric for this two
dimensional manifold spanned by t and β turned out to be
the AdS2 metric

ds2 ¼ k
2β2
½dt2 þ dβ2� ðB10Þ

with the scalar curvature R ¼ − 4
k. The three isometries of

these metric are the three symmetries generated through the
three conformal transformation of suð1; 1Þ. Although in this
discussion we have taken T̂ to be the Hamiltonian, but as
argued in [60] the geometry is determined by the dynamical
symmetry group and not on the particular element of the
algebra chosen as the Hamiltonian. Therefore the above
observation is applicable to any suð1; 1Þ Hamiltonian.

By identifying V̂1 ¼ K̂, V̂−1 ¼ T̂ and V̂0 ¼ D̂, one can
verify that fiV̂ng satisfy the global part of the Virasoro
algebra as

½iV̂n; iV̂m� ¼ ðn −mÞiV̂nþm: ðB11Þ

Hence in principle, one can utilize this same machinery to
study conformal field theory states as well. As discussed in
(2.21), the Killing vector fields fXV̂� ; XV̂0

g would provide
a representation of suð1; 1Þ acting on the scalar fields
defined on S. We already have the result from (2.21) that
for an arbitrary generator Ĝ the associated vector field is
XĜ ¼ kτ∂τ þ kτ̄∂τ̄ where kτ ¼ − 1

2
σττ̄∂τ̄hĜi. For this gen-

erator to be a conformal transformation, kτ must
satisfy ∂τ̄kτ ¼ 0 to be holomorphic. This condition is
equivalent to claiming ka’s are solution of the conformal
Killing equation

∇akb þ∇bka ¼ ð∇ · kÞgab: ðB12Þ

Therefore we conclude that in general the solution for the
scalar field is a linear combination of fhV̂ni∶n ∈
ð0; 1;−1Þg plus an arbitrary holomorphic function [85].
One can now obtain [72] for β > 0

hβ; tjV̂−1jβ; ti ¼
k
β

hβ; tjV̂0jβ; ti ¼
kt
β

hβ; tjV̂1jβ; ti ¼
kðt2 þ β2Þ

β
: ðB13Þ

Therefore for an arbitrary suð1; 1Þ symmetry generator
Ĝ ¼ uV̂−1 þ vV̂0 þ wV̂1 the associated scalar field is

hĜi ¼ ukþ vktþ wkðt2 þ β2Þ
β

: ðB14Þ
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F0ðβÞ ¼ hβjĤjβi. Therefore

we can also see that the dilaton η coincides with the
expectation value of the Hamiltonian which is also the
isometry generator for the static case.

[77] R. B. Mann, Conservation laws and 2-D black holes in
dilaton gravity, Phys. Rev. D 47, 4438 (1993).

[78] M. Navarro, Generalized symmetries and invariant matter
couplings in two-dimensional dilaton gravity, Phys. Rev. D
56, 2384 (1997).

[79] In fact, reality condition is sufficient to check that for
suð1; 1Þ,

η ¼ −2bt − að−1þ t2 þ β2Þ þ c3ð1þ t2 þ β2Þ
2β

¼ ukþ vktþ wkðt2 þ β2Þ
β

;

under the mapping z → −tþið1−βÞ
tþið1þβÞ with c1 ¼ aþ ib,

u ¼ aþc3
2k , v ¼ − b

k, and w ¼ c3−a
2k . Which exactly matches

with (B14).
[80] A. Avdoshkin, A. Dymarsky, and M. Smolkin, Krylov

complexity in quantum field theory, and beyond, arXiv:
2212.14429.

[81] B. Bhattacharjee, P. Nandy, and T. Pathak, Krylov complex-
ity in large-q and double-scaled SYK model, arXiv:2210
.02474.

[82] K. Suzuki and T. Takayanagi, JT gravity limit of Liouville
CFTand matrix model, J. High Energy Phys. 11 (2021) 137.

[83] V. de Alfaro, S. Fubini, and G. Furlan, Conformal invariance
in quantum mechanics, Nuovo Cimento Soc. Ital. Fis. 34A,
569 (1976).

[84] C. Chamon, R. Jackiw, S.-Y. Pi, and L. Santos, Conformal
quantum mechanics as the CFT1 dual to AdS2, Phys. Lett. B
701, 503 (2011).

[85] The general complex solution of the conformal Killing
equation in fhV̂ni∶n ∈ Zg, but for real scalar fields one
have to restrict n ∈ ð−1; 0; 1Þ [60].

SPREAD COMPLEXITY AS CLASSICAL DILATON SOLUTIONS PHYS. REV. D 108, 025013 (2023)

025013-15

https://doi.org/10.1007/JHEP05(2023)226
https://doi.org/10.1007/JHEP05(2023)226
https://arXiv.org/abs/2208.10520
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1007/BF01225149
https://doi.org/10.1007/BF02193559
https://doi.org/10.1016/S0393-0440(00)00052-8
https://doi.org/10.1007/JHEP11(2015)140
https://doi.org/10.1007/JHEP11(2015)140
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1007/JHEP09(2018)043
https://doi.org/10.1007/BF01645091
https://doi.org/10.1103/PhysRevD.31.1341
https://doi.org/10.1103/PhysRevD.31.1341
https://doi.org/10.1016/0393-0440(92)90046-4
https://doi.org/10.1098/rspa.1996.0048
https://doi.org/10.1063/1.528941
https://doi.org/10.1063/1.528941
https://doi.org/10.1063/1.528942
https://doi.org/10.1063/1.528942
https://arXiv.org/abs/1509.01231
https://doi.org/10.1103/PhysRevD.47.4438
https://doi.org/10.1103/PhysRevD.56.2384
https://doi.org/10.1103/PhysRevD.56.2384
https://arXiv.org/abs/2212.14429
https://arXiv.org/abs/2212.14429
https://arXiv.org/abs/2210.02474
https://arXiv.org/abs/2210.02474
https://doi.org/10.1007/JHEP11(2021)137
https://doi.org/10.1007/BF02785666
https://doi.org/10.1007/BF02785666
https://doi.org/10.1016/j.physletb.2011.06.023
https://doi.org/10.1016/j.physletb.2011.06.023

