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Axions mix with neutral pions after the QCD phase transition through their common coupling to the
radiation bath via a Chern-Simons term, as a consequence of the Uð1Þ anomaly. The nonequilibrium
effective action that describes this mixing phenomenon is obtained to second order in the coupling of
neutral pions and axions to photons. We show that a misaligned axion condensate induces a neutral pion
condensate after the QCD phase transition. We argue that even a very small axion-photon coupling will
“seed” the chiral phase transition. The dynamics of the pion condensate displays long and short timescales
and decays on the longer timescale exhibiting a phenomenon akin to the “purification” in a kaon beam. On
the intermediate timescales the macroscopic pion condensate is proportional to a condensate of the Abelian
Chern-Simons term induced by the axion. We argue that the coupling to the common bath also induces
kinetic mixing. We obtain the axion and pion populations, and these exhibit thermalization with the bath.
The mutual coupling to the bath induces long-lived axion–neutral pion coherence independent of initial
conditions. The framework of the effective action and many of the consequences are more broadly general
and applicable to scalar or pseudoscalar particles mixing in a medium.

DOI: 10.1103/PhysRevD.108.025012

I. INTRODUCTION

The axion is a CP-odd (pseudo) scalar particle which was
proposed as an extension beyond the standard model as a
possible solution of the strong CP problem in quantum
chromodynamics (QCD) [1–3]. Such particle may be
produced nonthermally in the Early Universe, and has been
recognized as a compelling cold dark matter candidate [4–6].
Extensions beyond the standard model can accommodate
pseudoscalar particles with properties similar to the QCD
axion, namely axion-like-particles (ALP) which can also be
suitable dark matter candidates [7–11], in particular as
candidates for ultra light dark matter [12,13]. Constraints
on the mass and couplings of ultra light (ALP) [9–11,14] are
being established by various experiments [15–17]. There are
various possible mechanisms for axion production available
in the early Universe [9–11], among them a nonthermal
misalignment mechanism which results in an initial non-
vanishing expectation value of the (ALP) field, which
consequently evolves with coherent oscillations yielding a
contribution to the energy density as a cold dark matter

component [4–6,9–11,18]. Such misalignment mechanism
may be a consequence of nonperturbative effects during the
QCD phase transition. Through the Peccei-Quinn [1] U(1)
anomaly the pseudoscalar nature leads to an interaction
between the (ALP) and photons or gluons via pseudoscalar
composite operators of gauge fields, namely Chern-Simons
terms such as E⃗ · B⃗ in the case of the (ALP)-photon
interaction and Gμν;bG̃μν;b in the case of gluons, which
allows an (ALP) to decay into two photons or gluons, effects
of such decay process on the (ALP) evolution have been
studied in Refs. [19–21]. More recently the nonequilibrium
effective action of (ALP) interacting with photons in a
radiation bath has been derived [22], and from which the
effective equations of motion for the (ALP) condensate were
obtained. These are stochastic equations of the Langevin
type, with friction and noise kernels that fulfill a generalized
fluctuation dissipation relation [23]. The solutions of this
Langevin equation allowed us to obtain the energy density
which revealed the approach to thermalization with the
cosmic microwave background, implying in turn, a mixed
cold and hot dark matter scenario. These results were
confirmed via an alternative method based on the quantum
master equation in Ref. [24]. Furthermore, it was shown in
Ref. [25] that an expectation value of the axion field, namely
a “misaligned” axion, can induce an expectation value of
the Chern-Simons density. A corollary of this result is
that neutral π0 mesons, which also couple to photons via
the U(1) anomaly, mix with axions via this common two
photon channel. As a result of this indirect mixing,
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misaligned axions induce an expectation value of the neutral
meson field.
Axions may also play a role in condensed matter physics,

possibly as emergent quasiparticles in topological insula-
tors where magnetic fluctuations couple to electromagnet-
ism just like axions [26–29], as axionic charge density
waves in Weyl semimetals [30,31], as an emergent axion
response in multilayered metamaterials with tunable cou-
plings [32] or in multiferroics [33]. The measurement of an
emergent dynamic axion field in chromia has been reported
in Ref. [34], therefore, condensed matter systems may very
well provide an experimental platform to test the main
aspects of axion electrodynamics which may complement
and bolster the case for axions in cosmology. Hence, the
study of axion (electro) dynamics is of timely interdisci-
plinary relevance bridging cosmology and condensed
matter with the tantalizing possibility of probing the
cosmological axion with novel condensed matter systems.
Motivation and objectives: The Peccei-Quinn axion has

been motivated as a solution of the strong CP problem in
QCD, and the misalignment mechanism yielding the axion
condensate making it a compelling cold dark matter candi-
date may be a consequence of the QCD phase transition.
Such phase transition has another important consequence:
the binding of the lightest u, d quarks into the lightest
pseudoscalar isotriplet of π mesons, namely pions, which
are copiously produced at the QCD phase transition at
TQCD ≃ 150–170 MeV ≥ mπ ≃ 140 MeV. Among the three
pion states π0; π�, the neutral pion π0 couples to the
electromagnetic field via the U(1) triangle anomaly, resulting
in that it decays into two photons with a ≃99% branching
ratio. The neutral pion has the same quantum numbers as the
axion: it is a neutral pseudoscalar, and just as the axion its
coupling to electromagnetism is a consequence of the Uð1Þ
triangle anomaly.
Several extensions beyond the Standard Model can

accommodate axionlike particles, however, a common
thread among these hypothetical particles is that they couple
to photons and gluons via a Chern-simons term, thereby
allowing a two-photon decay channel, thus generalizing the
original proposal for the QCD axion.
The main premise of this study is that the neutral pion and

the axionmix via a common set of two-photons intermediate
states: consider the processes π0 ↔ 2γ ↔ a with a the
axion, such process induces a mixing between the two fields
in the form of an off-diagonal self-energy. Such mixing is
enhanced in the thermal medium at the temperature of the
QCD phase transition since photons in the bath feature
thermal energies sufficient to produce π0 in detailed balance
with the annihilation (decay) process. This mixing mecha-
nism via a common decay channel for neutral pions and
axions was anticipated in Ref. [25] where it was suggested
that as a consequence of such mixing, a misaligned axion
condensate will induce a neutral pion condensate.

Our motivation in this study stems from this observation,
namely that the axion will mix with the neutral pion after
the QCD phase transition through a common intermediate
state of two photons in the medium. In fact, this observation
leads to a more overarching possibility: if there are other
axionlike particles emerging from extensions beyond the
standard model that, just like the QCD axion, couple to
photons or gluons as a consequence of a gauge anomaly,
these alternative (ALP)’s will also couple to the QCD axion
via a common intermediate state of photons or gluons.
Therefore, beyond the QCD axion, other possible (ALP),

will mix among themselves as well as with the neutral pion
after the QCD phase transition via their mutual coupling to
photons and or gluons through the Chern-Simons density.
However, studying the dynamics of field mixing in a

medium is of much broader fundamental and intrinsic
interest within the context of CP violation and/or baryo-
genesis. A paradigmatic example in vacuum is the mixing of
K0 − K̄0 or flavored meson-antimesons as a consequence of
a common intermediate state, which provide dynamical
observational signatures of CP violation [35–37]. Field
mixing may also be a consequence of “portals,” connecting
standard model degrees of freedom to hypothetical ones
beyond the standard model, such portals may lead to mixing
between fields on different sides of the portal. Hence the
study of the dynamics of mixing in a medium may open
hitherto unexplored new windows into extensions beyond
the standard model.
Furthermore, axion electrodynamics in topological mate-

rials and/or Weyl semimetals also features a coupling of
these emergent collective excitations to electromagnetism
via processes akin to the U(1) anomaly [26–32,34].
Therefore, these “synthetic” axions may mix with the
cosmological axion in the same manner as pions or generic
(ALP)’s do in the early Universe, hence motivating the
study of the possibility of mixing between the cosmological
and the “synthetic” axions. Such mixing may yield alter-
native insights into probing cosmological axions with
condensed matter experiments.
Our objectives in this study are two-fold: (i) to develop

the framework to study the dynamics of scalar or pseudo-
scalar field mixing in a medium via a common intermediate
channel corresponding to degrees of freedom in thermal
equilibrium. This indirect mixing is a consequence of off
diagonal contributions to the self-energy where the inter-
mediate states (in the loops) are those corresponding to the
bath degrees of freedom. This is achieved by obtaining the
Schwinger-Keldysh (in-in) nonequilibrium effective action
[38–42] of the mixing degrees of freedom after tracing over
the bath degrees of freedom, by extending and generalizing
the formulation of the nonequilibrium effective action [23],
and applied to axion dynamics in Ref. [22]. The framework
developed within this study will find a natural arena in
cosmology.

CAO, HUANG, and BOYANOVSKY PHYS. REV. D 108, 025012 (2023)

025012-2



(ii) To implement this general framework in the specific
example of axion-neutral pion mixing after the QCD phase
transition. There are several reasons for studying this
particular case: (a) it provides an explicit realization of
the main concepts behind indirect mixing via a common set
of intermediate states in terms of off-diagonal self-energies,
(b) (ALP) mixing, and or (ALP)-neutral pion mixing are of
cosmological interest, (c) the operator that describes the
common set of intermediate states is clearly identified and
amenable of a spectral analysis, (d) it allows us to scrutinize
one of the conjectures of Ref. [25], namely that a misaligned
axion condensate will induce a neutral pion condensate,
which in turn is related to a Chern-Simons condensate [25].
As it will become clear, this example provides the setting for
a wide separation of timescales, leading to decaying
eigenstates with short and long lifetimes, akin to (albeit
with important differences with) the kaon system, and
illuminating fundamental aspects related to the dynamics
of mixing, such as the emergence of long-lived correlations
and “purification.” Furthermore, we show that a misaligned
axion seeds a pion condensate, and we argue that even for a
very small axion-photon coupling, the “seed” of pion
condensate will be amplified by the inherent instabilities
associated with the chiral phase transition.
Brief summary of results: (a) We obtain the nonequili-

brium effective action for scalar or pseudoscalar mixing
indirectly through their mutual coupling to a common bath.
The equations of motion are stochastic with dissipative and
noise kernels obeying generalized fluctuation dissipation.
These are solved for the general case and applied to axion-
neutral pion mixing after the QCD phase transition. (b) A
misaligned axion condensate induces a macroscopic neutral
pion condensate that “seeds” the chiral phase transition. The
induced pion condensate displays time evolution on a long
and a short timescale, akin to the K0 − K̄0 in vacuum (albeit
with important differences). The pion condensate survives
on timescales much longer than the pion decay lifetime, a
phenomenon reminiscent of the “purification” of a kaon
beam. (c) On timescales much longer than the pion lifetime,
the neutral pion condensate is proportional to the macro-
scopic U(1) Chern-Simons condensate. (d) Indirect mixing
also implies the necessity for kinetic mixing. (e) The axion
and pion populations exhibit thermalization with the radi-
ation bath, while connected correlation functions exhibit
long-lived off-diagonal coherence, a manifestation of “bath-
induced coherence.”
In Sec. II, we introduce the generic model to be studied,

obtain the Schwinger-Keldysh (in-in) effective action, and
derive and solve the equations of motion of the mixing fields
in the general case. In this section we discuss subtle
renormalization aspects and the necessity for kinetic mixing
in the effective action. Section III is devoted to studying the
dynamics of axion-neutral pion mixing as a specific
example, from which we draw more general lessons. In
this section we confirm one of the main conjectures of

Ref. [25], namely that a misaligned axion induces a neutral
pion condensate via mixing, and study the time evolution of
correlations, coherences and populations. Section IV sum-
marizes our results and conclusions. Several appendices
provide technical details.

II. THE NONEQUILIBRIUM EFFECTIVE ACTION

To set the stage for the general formulation and to
highlight the main concepts behind indirect mixing in a
medium, let us consider the following Lagrangian density
describing axions and neutral pions a; π0 respectively
coupled to a photon bath via a Chern-Simons term, as
an effective field theory description of the system to be
studied,

L ¼ 1

2
∂μπ

0
∂
μπ0 −

1

2
m2

ππ
02 −

α

8πfπ
π0FμνF̃μν þ 1

2
∂μa∂μa

−
1

2
m2

aa2 −
ga
4
aFμνF̃μν þ Lγ; ð2:1Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ. α is the fine structure constant

and fπ the pion decay constant together yield α=πfπ ≃
0.025 GeV−1, for QCD with three quark colors, as deter-
mined by the neutral pion decay width into two photons.
The axion coupling is ga ¼ C=fa with C a dimensionless
constant and fa the axion decay constant. In the effective
Lagrangian (2.1), Lγ is the Lagrangian density for the
electromagnetic fields, including coupling to charged
degrees of freedom within (or beyond) the Standard
Model. At finite temperature both the pion mass and decay
constant fπ are modified by thermal corrections differing
by about 15% from the zero temperature values [43].
However, in this study we will not be concerned with
the actual values of the couplings and masses, focusing
instead on the fundamental aspects of the dynamics of
mixing and its consequences. Both the axion and neutral
pion couple to the radiation bath of photons in equilibrium
via the Uð1Þ Chern-Simons density −FμνF̃μν=4 ¼ E⃗ · B⃗.
Hence both can decay into two photons or absorb photons
from the bath, thereby allowing photons to mediate axion-
pion mixing via the processes π0 ↔ 2γ ↔ a. These proc-
esses yield an off-diagonal contribution to the axion and
pion self-energies (see Fig. 2 below). This is the main
concept underpinning “indirect” mixing.1

Since we seek to understand the mixing of axions with
pions, as well as with other possible (ALP) candidates, we
generalize the effective Lagrangian (2.1) to describe two
different pseudoscalar fields ϕ1;2, of masses m1;2 respec-
tively coupled to a common bath of photons in thermal
equilibrium via the Chern-Simons density. The radiation
bath is itself coupled to and in thermal equilibrium with

1Direct mixing would correspond to an off-diagonal mass
matrix for example.
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other charged degrees of freedom, denoting these bath
degrees of freedom generically as χ. Hence, we propose to
study mixing dynamics described by the generalized
Lagrangian density given by

L½ϕ1;ϕ2; χ� ¼ Lϕ þ Lχ þ LI; ð2:2Þ

where

Lϕ ¼ 1

2

X
a¼1;2

ð∂ϕaÞ2 −
1

2
m2

aϕ
2
a −

1

2

X
a;b¼1;2

ϕaΔm2
abϕb

LI ¼ ðg1ϕ1 þ g2ϕ2ÞO½χ� ; O½χ�≡ E⃗ · B⃗: ð2:3Þ

Anticipating renormalization we introduced a matrix of
mass counterterms Δm2

ab required to cancel the ultraviolet
divergences in the self-energies. Lχ is the Lagrangian of
electromagnetic fields, including coupling to other charged
degrees of freedom, assumed to describe the bath degrees
of freedom in thermal equilibrium. The general form (2.3)
allows us to treat the different cases within one framework,
from which we can extract individual cases by specifying
masses and couplings. In what follows we will always
consider ϕ2 as the (QCD) axion field, with ϕ1 being either
the neutral pion, or alternative (ALP) fields.
We shall first obtain the nonequilibrium effective action

for general masses and couplings by extending the methods
introduced in Refs. [22,23], addressing each specific case
a posteriori. In 3þ 1 space-time dimensions, the composite
operator E⃗ · B⃗ features mass dimension four, therefore the
couplings g1;2 feature dimensions ðmassÞ−1, and the theory
defined by the Lagrangian density (2.3) is nonrenormaliz-
able. It must be understood as an effective field theory valid
below a scale Λ, which for consistency will be taken to
satisfy Λ ≫ m1;2; T, where T is the temperature of the bath
degrees of freedom. The steps toward obtaining the non-
equilibrium effective action are the following [22,23]: an
initial density matrix describing the fields ϕ1;2 and the bath
degrees of freedom χ is evolved in timewith the unitary time
evolution operator, a trace over the bath degrees of freedom
χ yields a reduced density matrix associated solely with the
fields ϕ1;2, this reduced density matrix does not evolve
unitarily in time. The nonequilibrium effective action yields
the kernel that determines the time evolution of the reduced
density matrix and includes the dissipative effects associated
with tracing out the χ degrees of freedom in terms of self-
energies. These steps are implemented in detail below.

A. The nonequilibrium effective action:

Let us consider the initial density matrix at a time t ¼ 0
to be of the form

ρ̂ð0Þ ¼ ρ̂ϕð0Þ ⊗ ρ̂χð0Þ: ð2:4Þ

The initial density matrix ρ̂ϕð0Þ is normalized so that
Trϕρ̂ϕð0Þ ¼ 1 and that of the χ fields will be taken to
describe a statistical ensemble in thermal equilibrium at a
temperature T ¼ 1=β, namely

ρ̂χð0Þ ¼
e−βHχ

Trχe−βHχ
; ð2:5Þ

where Hχ is the total Hamiltonian for the χ degrees of
freedom.
The factorization of the initial density matrix is an

assumption often explicitly or implicitly made in the
literature, it may be relaxed by including initial correlations
between the fields ϕa and the bath fields χ at the expense of
daunting technical complications. We will not consider this
important case, relegating it to future study. In what follows
we will refer to the set of fields ϕ1;2 collectively as ϕ to
simplify notation.
In the field basis the matrix elements of ρ̂ϕð0Þ and ρ̂χð0Þ

are given by

hϕjρ̂ϕð0Þjϕ0i ¼ ρϕ;0ðϕ;ϕ0Þ ; hχjρ̂χð0Þjχ0i ¼ ρχ;0ðχ; χ0Þ;
ð2:6Þ

we emphasize that this is a functional density matrix as
the fields have spatial arguments. The density matrix for
the fields ϕ represents either a pure state or more generally
an initial statistical ensemble, whereas ρ̂χð0Þ is given
by Eq. (2.5).
To obtain the effective action out of equilibrium for the

fields ϕ1;2 [describing the (ALP) and neutral pion fields
in (2.1)], we evolve the initial density matrix in time and
trace over the “bath” degrees of freedom, leading to a
reduced density matrix for the fields ϕ1;2, from which we
can compute its expectation values or correlation functions
as a function of time.
The time evolution of the density matrix in the

Schroedinger picture is given by

ρ̂ðtÞ ¼ UðtÞρ̂ð0ÞU−1ðtÞ; ð2:7Þ

where

UðtÞ ¼ e−iHt: ð2:8Þ

The total Hamiltonian H is given by

H ¼ H0ϕ þHχ þ
Z

d3x
X
a¼1;2

gaϕaO½χ�; ð2:9Þ

and H0ϕ, Hχ are the Hamiltonians for the respective fields.
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The reduced density matrix for the ϕ1;2 fields is obtained
by tracing over the χ degrees of freedom as

ρrϕðtÞ ¼ TrχUðtÞρ̂ð0ÞU−1ðtÞ: ð2:10Þ

To extract the nonequilibrium effective action it is more
convenient to obtain the density matrix elements in field
space, namely

ρðϕf; χf;ϕ0
f; χ

0
f; tÞ ¼ hϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0

f; χ
0
fi;
ð2:11Þ

from which the reduced density matrix elements are

ρrðϕf;ϕ
0
f; ; tÞ ¼

Z
Dχfhϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0

f; χfi:

ð2:12Þ

With the functional integral representation

hϕf; χfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0
f; χ

0
fi

¼
Z

DϕiDχiDϕ0
iDχ0ihϕf; χfjUðtÞjϕi; χiiρϕ;0ðϕi;ϕ

0
iÞ

⊗ ρχ;0ðχi; χ0iÞhϕ0
i; χ

0
ijU−1ðtÞjϕ0

f; χ
0
fi; ð2:13Þ

from which it follows that the reduced density matrix
elements are

ρrðϕf;ϕ
0
f; ; tÞ ¼

Z
Dχf

Z
DϕiDχiDϕ0

iDχ0i

× hϕf;χfjUðtÞjϕi;χiiρϕ;0ðϕi;ϕ
0
iÞ

⊗ ρχ;0ðχi;χ0iÞhϕ0
i;χ

0
ijU−1ðtÞjϕ0

f;χfi: ð2:14Þ

The
R
Dϕ etc, are functional integrals where the spatial

argument has been suppressed. The matrix elements of the
time evolution forward and backward can be written as path
integrals, namely

hϕf; χfjUðtÞjϕi; χii ¼
Z

DϕþDχþei
R

d4xL½ϕþ;χþ�; ð2:15Þ

hϕ0
i;χ

0
ijU−1ðtÞjϕ0

f;χ
0
fi¼

Z
Dϕ−Dχ−e−i

R
d4xL½ϕ−;χ−�; ð2:16Þ

where we use the shorthand notationZ
d4x≡

Z
t

0

dt0
Z

d3x: ð2:17Þ

L½ϕ; χ� is given by (2.2), (2.3) and the boundary conditions
on the path integrals are

ϕþðx⃗; t ¼ 0Þ ¼ ϕiðx⃗Þ; ϕþðx⃗; tÞ ¼ ϕfðx⃗Þ; ð2:18Þ

χþðx⃗; t ¼ 0Þ ¼ χiðx⃗Þ; χþðx⃗; tÞ ¼ χfðx⃗Þ; ð2:19Þ

ϕ−ðx⃗; t ¼ 0Þ ¼ ϕ0
iðx⃗Þ; ϕ−ðx⃗; tÞ ¼ ϕ0

fðx⃗Þ; ð2:20Þ

χ−ðx⃗; t ¼ 0Þ ¼ χ0iðx⃗Þ; χ−ðx⃗; tÞ ¼ χ0fðx⃗Þ: ð2:21Þ

The field variables ϕ�
a ; χ� along the forward (þ) and

backward (−) evolution branches are recognized as those
necessary for the in-in or Schwinger-Keldysh [38–40,42]
closed time path approach to the time evolution of a
density matrix.
The reduced density matrix for the fields ϕa (2.14), can

be written as

ρrðϕf;ϕ0
f; tÞ ¼

Z
DϕiDϕ0

iT ½ϕf;ϕ0
f;ϕi;ϕ0

i; t�ρϕðϕi;ϕ0
i; 0Þ;

ð2:22Þ

where the time evolution kernel is given by

T ½ϕf;ϕi;ϕ
0
f;ϕ

0
i; t�

¼
Z

Dϕþ
Z

Dϕ−ei
R

d4x½L0½ϕþ�−L0½ϕ−��eiI ½ϕþ;ϕ−�; ð2:23Þ

from which the nonequilibrium in-in effective action is
identified as

Seff ½ϕþ;ϕ−�¼
Z

t

0

dt0
Z

d3x
n
L0½ϕþ�−L0½ϕ−�þI ½ϕþ;ϕ−�

o
;

ð2:24Þ

where I ½ϕþ;ϕ−� is the influence action [41] obtained by
tracing over the χ degrees of freedom,

eiI ½ϕþ;ϕ−� ¼
Z

DχiDχ0iDχf

Z
Dχþ

×
Z

Dχ−ei
R
d4x½L½χþ�−

P
a
gaϕ

þ
a O½χþ��

× e−i
R
d4x½L½χ−�−

P
b
gbϕ−

bO½χ−��ρχðχi;χ0i; 0Þ: ð2:25Þ

The path integral representations for both T ½ϕf;ϕi;
ϕ0
f;ϕ

0
i; t� and I ½ϕþ;ϕ−� feature the boundary conditions

in (2.18)–(2.21) except that we now set χ�ðx⃗; tÞ ¼ χfðx⃗Þ to
trace over χ field.
In the above path integral defining the influence

action Eq. (2.25), the fields ϕ�
a ðxÞ act as external sources

(c-number) coupled to the operator O½χ�. Therefore, it is
straightforward to conclude that the right-hand side of
Eq. (2.25) is the path integral representation of the trace
over the environmental fields coupled to external sources
ϕ�, namely
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eiI ½ϕþ;ϕ−� ¼ Trχ
h
Uðt;ϕþÞρχð0ÞU−1ðt;ϕ−Þ

i
; ð2:26Þ

where Uðt;ϕ�Þ is the time evolution operator in the χ
Hilbert space in presence of external sources ϕ�, i.e.

Uðt;ϕþÞ ¼ T
�
e−i
R

t

0
Hχ ½ϕþðt0Þ�dt0

�
;

U−1ðt;ϕ−Þ ¼ T̃
�
ei
R

t

0
Hχ ½ϕ−ðt0Þ�dt0

�
; ð2:27Þ

with

Hχ ½ϕ�ðtÞ� ¼ Hχ þ
Z

d3x
X
a

gaϕ�
a ðx⃗; tÞO½χðx⃗Þ� ð2:28Þ

and T̃ is the anti-time evolution operator describing evolu-
tion backwards in time, it is defined by T̃ðAðt1ÞBðt2ÞÞ ¼
Aðt1ÞBðt2ÞΘðt2 − t1Þ þ Bðt2ÞAðt1ÞΘðt1 − t2Þ.
The calculation of the influence action is facilitated by

passing to the interaction picture for the Hamiltonian
Hχ ½ϕ�ðtÞ�, defining

Uðt;ϕ�Þ ¼ e−iHχ tU ipðt;ϕ�Þ ð2:29Þ

and the e�iHχ t cancel out in the trace in (2.26), the
interaction picture operators are now standard, and given by

U ipðt;ϕþÞ ¼ 1 − i
Z

d4x0
X
a

gaϕþ
a ðx⃗0; t0ÞOðx⃗0; t0Þ

−
1

2

Z
d4x1

Z
d4x2

X
a;b

gagbT
�
ϕþ
a ðx⃗1; t1ÞOðx⃗1; t1Þϕþ

b ðx⃗2; t2ÞOðx⃗2; t2Þ
�
þ � � � ð2:30Þ

U−1
ip ðt;ϕ−Þ ¼ 1þ i

Z
d4x0

X
a

gaϕ−
a ðx⃗0; t0ÞOðx⃗0; t0Þ

−
1

2

Z
d4x1

Z
d4x2

X
a;b

gagbT̃
�
ϕ−
a ðx⃗1; t1ÞOðx⃗1; t1Þϕ−

b ðx⃗2; t2ÞOðx⃗2; t2Þ
�
þ � � � ; ð2:31Þ

where the composite operator Oðx⃗; tÞ≡O½χðx⃗; tÞ� is in the Heisenberg picture of Hχ .
Now the trace (2.26) can be obtained systematically in perturbation theory in ga, it is important to note that in taking

the trace, the operators with ϕþ always appear in front of ρχð0Þ, whereas those with ϕ− appear behind, for example
TrOþðx1Þρχð0ÞO−ðx2Þ ¼ TrOðx2ÞOðx1Þρχð0Þ≡ hOðx2ÞOðx1Þiχ , etc. Including all such terms up to quadratic order in ϕ�

we find

I ½ϕþ;ϕ−� ¼ −
Z

d4x
X
a

gaðϕþ
a ðxÞ − ϕ−

a ðxÞÞhOðxÞiχ

þ i
2

Z
d4x1

Z
d4x2

X
a;b

gagb
n
ϕþ
a ðx1Þϕþ

b ðx2ÞGþþðx1 − x2Þ þ ϕ−
a ðx1Þϕ−

b ðx2ÞG−−ðx1 − x2Þ

− ϕþ
a ðx1Þϕ−

b ðx2ÞGþ−ðx1 − x2Þ − ϕ−
a ðx1Þϕþ

b ðx2ÞG−þðx1 − x2Þ
o
: ð2:32Þ

This result is confirmed by expanding the left-hand side of (2.26) and comparing to the right-hand side after
symmetrization of the crossed terms of the form ϕþ

a ϕ
−
b . In this expression the connected correlation functions in the initial

density matrix of the χ fields, namely ρχð0Þ are given by

G−þðx1 − x2Þ ¼ hOðx1ÞOðx2Þiχ − hOðx1ÞiχhOðx2Þiχ ≡G>ðx1 − x2Þ; ð2:33Þ

Gþ−ðx1 − x2Þ ¼ hOðx2ÞOðx1Þiχ − hOðx2ÞiχhOðx1Þiχ ≡G<ðx1 − x2Þ; ð2:34Þ

Gþþðx1 − x2Þ ¼ G>ðx1 − x2ÞΘðt1 − t2Þ þ G<ðx1 − x2ÞΘðt2 − t1Þ; ð2:35Þ

G−−ðx1 − x2Þ ¼ G>ðx1 − x2ÞΘðt2 − t1Þ þ G<ðx1 − x2ÞΘðt1 − t2Þ; ð2:36Þ
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in terms of fields in the Heisenberg picture of Hχ , where

hð� � �Þiχ ¼ Trχð� � �Þρχð0Þ: ð2:37Þ

We highlight that the correlation functions G>;G< are
exact, namely to all orders in the couplings of the
environmental fields χ that enter in O to all other fields
to which it couples except the fields ϕ1;2.
We will assume that the expectation value of the

composite operator O½χ� has been subtracted if necessary
so that hO½χ�i ¼ 0, therefore the first term in (2.32)
vanishes along with the second terms on the right-hand
sides of Eqs. (2.33), (2.34).
Since the operator O is hermitian, it follows from the

definitions above that

G<ðx1 − x2Þ ¼ G>ðx2 − x1Þ: ð2:38Þ

The influence action (2.32) becomes simpler by writing
it solely in terms of the two correlation functionsG≶, this is
achieved by implementing the following steps:

(i) In the term with ϕþ
a ðx1Þϕþ

b ðx2Þ: in the contribution
G<ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (2.35)] relabel
x1 ↔ x2, a ↔ b and use the property (2.38).

(ii) In the term with ϕ−
a ðx1Þϕ−

b ðx2Þ: in the contribution
G>ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (2.36)] relabel
x1 ↔ x2, a ↔ b and use the property (2.38).

(iii) In the term with ϕþ
a ðx1Þϕ−

b ðx2Þ: multiply G<ðx1 −
x2Þ by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in the term
with Θðt2 − t1Þ relabel x1 ↔ x2, a ↔ b and use the
property (2.38).

(iv) In the term with ϕ−
a ðx1Þϕþ

b ðx2Þ: multiply G>ðx1 −
x2Þ by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in the term
with Θðt2 − t1Þ relabel x1 ↔ x2, a ↔ b and use the
property (2.38).

We find

I ½ϕþ;ϕ−� ¼ i
X
a;b

gagb

Z
d4x1d4x2

n
ϕþ
a ðx⃗1; t1Þϕþ

b ðx⃗2; t2ÞG>ðx1 − x2Þ þ ϕ−
a ðx⃗1; t1Þϕ−

b ðx⃗2; t2ÞG<ðx1 − x2Þ

− ϕþ
a ðx⃗1; t1Þϕ−

b ðx⃗2; t2ÞG<ðx1 − x2Þ − ϕ−
a ðx⃗1; t1Þϕþ

b ðx⃗2; t2ÞG>ðx1 − x2Þ
o
Θðt1 − t2Þ ð2:39Þ

where G≶ are given by Eqs. (2.33), (2.34). This is the
general form of the influence function up to second order in
the couplings of the fields ϕ1;2 to the environmental fields χ
but to all orders in the couplings of the environmental
fields to any other field except ϕ1;2. Notice that
I ½ϕþ;ϕ−�jϕþ¼ϕ− ¼ 0 consistently with its definition given
by Eq. (2.26). The contributions to the influence action
I ½ϕþ;ϕ−� can be interpreted in terms of self-energy type
diagrams shown in Fig. 1. For the case of pion-axion
mixing, the type of self-energy diagrams that determine the
influence action is shown in Fig. 2, and explicitly shows the
origin of axion-pion mixing. We emphasize that whereas
Fig. 2 displays a one-loop self-energy as an illustrative
example, the results are valid to all orders in the couplings
of the electromagnetic field to any other charged field
within or beyond the standard model. This is explicit in the
exact Lehmann-representation of the correlation functions
analyzed in appendix A. In Fig. 2 the photon propagators
can be dressed by loops of the charged fields, for example

eþe− loops, and similarly for quark-antiquark loops,
describing processes such as π0γ ↔ eþe− ↔ γa, etc.
These radiative corrections to the photon propagators result
in a thermal mass for the photon [44], all of these processes
are included in the exact spectral representation of the
Green’s functions.
We can obtain expectation values and correlation

functions of the meson fields by including sources J�a ðxÞ
with L0ðϕ�Þ → L0ðϕ�Þ �Pa J

�
a ðxÞϕ�

a ðxÞ and defining
the generating functional

Z½Jþ; J−� ¼ TrρrðJþ;J−; tÞ

¼
Z

DϕfDϕiDϕ0
i

Z
Dϕþ

×
Z

Dϕ−eiSeff ½ϕþ;Jþ;ϕ−;J−;t�ρϕðϕi;ϕ0
i; 0Þ ð2:40Þ

FIG. 1. Contributions to the influence functional I ½ϕþ;ϕ−�.
The black circle denotes the correlation functions G≶ to all orders
in the couplings to degrees of freedom other than the fields ϕa;b.

FIG. 2. Contributions to the influence functional for the pion-
axion mixing case. The self-energy diagram corresponds to the
processes π0 ↔ 2γ� ↔ a and the inverse process, with γ� a
photon in the medium. These processes induce axion-pion
mixing. The photon propagators can be dressed by loops of
charged particles. The branch labels � are suppressed for clarity.
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with the boundary conditions

ϕþ
a ðx⃗; t ¼ 0Þ ¼ ϕi;aðx⃗Þ; ϕþ

a ðx⃗; tÞ ¼ ϕf;aðx⃗Þ
ϕ−
a ðx⃗; t ¼ 0Þ ¼ ϕ0

i;aðx⃗Þ; ϕ−
a ðx⃗; tÞ ¼ ϕf;aðx⃗Þ: ð2:41Þ

Expectation values or correlation functions of ϕ� in the
reduced density matrix are obtained as usual with varia-
tional derivatives with respect to the sources J�.
The effective action (2.24) may be written in a manner

more suitable to exhibit the equations of motion by
introducing the Keldysh [39] variables

Φaðx⃗; t0Þ ¼
1

2
ðϕþ

a ðx⃗; t0Þ þ ϕ−
a ðx⃗; t0ÞÞ;

Raðx⃗; t0Þ ¼ ðϕþ
a ðx⃗; t0Þ − ϕ−

a ðx⃗; t0ÞÞ: ð2:42Þ

The boundary conditions on the a� path integrals given
by (2.41) translate into the following boundary conditions
on the center of mass and relative variables

Φaðx⃗; t ¼ 0Þ ¼ Φa;i; Raðx⃗; t ¼ 0Þ ¼ Ra;i; ð2:43Þ

Φaðx⃗; tÞ ¼ Φa;fðx⃗Þ; Raðx⃗; tÞ ¼ 0: ð2:44Þ

In terms of the center of mass and relative field variables,
the effective action (2.24) with the influence functional
(2.32) in terms of spatial Fourier transform becomes

iSeff ½Φ;R� ¼ −i
Z

d3x
X
a

Ra;iðxÞ _Φaðx; t ¼ 0Þ

− i
Z

t

0

dt1
X
k⃗

Rað−k⃗; t1Þ
n
Φ̈aðk⃗; t1Þ þ ðω2

aðkÞδab þ Δm2
abÞΦbðk⃗; t1Þ −Φaðk⃗; t1ÞJ að−k⃗; t1Þ

o

−
Z

t

0

dt1

Z
t

0

dt2
X
k⃗

�
1

2
Rað−k⃗; t1ÞN abðk⃗; t1 − t2ÞRbðk⃗; t2Þ þ iRað−k⃗; t1ÞΣR

abðk⃗; t1 − t2ÞΦbðk⃗; t2Þ
�
: ð2:45Þ

where repeated indices are summed over, and ω2
aðkÞ ¼

k2 þm2
a. To obtain the above form, we integrated by parts,

defined J aðxÞ ¼ ðJþa ðxÞ − J−a ðxÞÞ, and kept only the
sources conjugate to Φa because we are interested in
expectation values and correlation functions of this variable
only as discussed in detail below.
The kernels in the above effective Lagrangian are given

by [see Eqs. (2.33)–(2.36)]

N abðk; t− t0Þ ¼Cab
1

2
½G>ðk; t− t0ÞþG<ðk; t− t0Þ� ð2:46Þ

iΣR
abðk; t − t0Þ ¼ Cab½G>ðk; t − t0Þ −G<ðk; t − t0Þ�Θðt − t0Þ

≡ iΣabðk; t − t0ÞΘðt − t0Þ ð2:47Þ

where G<;>ðk; t − t0Þ are the spatial Fourier transforms of
the correlation functions in (2.33)–(2.36) and

Cab ¼
�

g21 g1g2
g1g2 g22

�
: ð2:48Þ

In the exponential of the effective action eiSeff , the quadratic
term in the relative variables Ra is written as a functional
integral over a noise variable ξa as follows,

exp
�
−
1

2

Z
dt1

Z
dt2Rað−k⃗; t1ÞN abðk⃗; t1 − t2ÞRbðk⃗; t2Þg

¼ A
Z

Dξa exp

�
−
1

2

Z
dt1

Z
dt2ξað−k⃗; t1Þ

×N −1
abðk⃗; t1 − t2Þξbðk⃗; t2Þ þ i

Z
dtξað−k⃗; tÞRaðk⃗; tÞ

�
ð2:49Þ

where A is a normalization factor.
We seek to obtain the equations of motion as an

initial value problem rather than a boundary value problem.
This is achieved by writing the initial density matrix in
terms of the initial center of mass and relative variables
Φa;i;Ra;i as

ρϕðϕa;i;ϕ0
a;i; 0Þ≡ ρϕ

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�
;

ð2:50Þ

and by introducing the functional Wigner transform [45]

W½Φa;i;Πa;i� ¼
Z

DRie
−i
R

d3xΠa;iðx⃗ÞRiðx⃗Þρϕ

×

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�
; ð2:51Þ
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which allows us to write (up to a normalization factor)

ρϕ

�
Φa;i þ

Ra;i

2
;Φa;i −

Ra;i

2
; 0

�

¼
Z

DΠa;ie
i
R

d3xΠa;iðx⃗ÞRa;iðx⃗ÞW½Φa;i;Πa;i�: ð2:52Þ

The Wigner transform is the “closest” to a (semi)
classical phase space distribution function [45].
Gathering these results together, we now write the

generating functional (2.40) in terms of the Keldysh
variables (2.42), with the effective action in these variables
given by Eq. (2.45), implementing the Wigner transform
(2.52) and using the representation (2.49) we obtain

Z½J � ¼
Z

DΦf

Z
DRiDΦiDΠi

Z
DΦDRDξW½Φi;Πi�×P½ξ�× exp

�
i
Z

dt
X
k⃗

Φaðk⃗; tÞJ að−k⃗; tÞ
�

× exp

�
−i
Z

dt
X
k⃗

Rað−k⃗; tÞ
�
Φ̈aðk⃗; tÞ þ ðω2

aðkÞδab þΔm2
abÞΦbðk⃗; tÞ þ

Z
t

0

Σabðk⃗; t− t0ÞΦbðk⃗; t0Þdt0 − ξaðk⃗; tÞ
��

× exp

�
i
X
k⃗

Ra;ið−k⃗Þ
�
Πa;iðk⃗Þ− _Φa;iðk⃗Þ

��
; ð2:53Þ

where repeated field indices are summed over, and the
noise probability distribution function P½ξ� is given by

P½ξ� ¼ A
Y
k⃗

exp

�
−
1

2

Z
dt1

Z
dt2ξað−k⃗; t1Þ

×N −1
abðk; t1 − t2Þξbðk⃗; t2Þ

�
: ð2:54Þ

The generating functionalZ½J � is the final form of the time
evolved reduced density matrix after tracing over the bath
degrees of freedom. Variational derivatives with respect to
the source J yield the correlation functions of the Keldysh
center of mass variables Φ [42].
Carrying out the functional integrals over Riðk⃗Þ and

Rk⃗ðtÞ yields a more clear form, namely

Z½J � ∝
Z

DΦa;f

Z
DΦa;iDΠa;i

Z
DΦaDξaW½Φi;Πi� × P½ξ� × exp

�
i
Z

dt
X
a;k⃗

Φaðk⃗; tÞJ að−k⃗; tÞ
�

×
Y
k⃗

δ

�
Φ̈aðk⃗; tÞ þ ðω2

aðkÞδab þ Δm2
abÞΦbðk⃗; tÞ þ

Z
t

0

Σabðk⃗; t − t0ÞΦbðk⃗; t0Þdt0 − ξaðk⃗; tÞ
	

×
Y
a;k⃗

δ½Πa;iðk⃗Þ − _Φa;iðk⃗Þ
	
: ð2:55Þ

The functional delta functions determine the field configu-
rations that contribute to the generating functional Z½J �:

(i) The equation of motion of Φaðk⃗; tÞ is a stochastic
Langevin equation [22,42], namely

Φ̈aðk⃗; tÞ þω2
aðkÞΦaðk⃗; tÞþΔm2

abΦbðk⃗; tÞ

þ
Z

t

0

Σabðk⃗; t− t0ÞΦbðk⃗; t0Þdt0 ¼ ξaðk⃗; tÞ: ð2:56Þ

Note that this equation of motion involves the
retarded self-energy, thereby defining a causal initial
value problem, this is a distinct consequence of the
in-in formulation of time evolution.

(ii) The initial conditions of Φaðk⃗Þ satisfy
Φaðk⃗; t ¼ 0Þ ¼ Φa;iðk⃗Þ; _Φaðk⃗; t ¼ 0Þ ¼ Πa;iðk⃗Þ;

ð2:57Þ
where Φa;iðk⃗Þ;Πa;iðk⃗Þ are distributed according to
the probability distribution function W½Φa;i;Πa;i� in
turn determined by the initial density matrix. This
is one of the manifestations of stochasticity. We
introduce the notation ð� � �Þ to denote averaging over
the initial conditions (2.57) with the distribution
function W½Φa;i;Πa;i�.

(iii) The expectation value and correlations of the sto-
chastic noise ξaðk⃗; tÞ are determined by the Gaussian
probability distribution P½ξ�, yielding
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⟪ξaðk⃗; tÞ⟫ ¼ 0;

⟪ξaðk⃗; tÞξbðk⃗0; t0Þ⟫ ¼ N abðk; t − t0Þδk⃗;−k⃗0 ; ð2:58Þ

where ⟪ � � �⟫ means averaging weighted by P½ξ�.
Since P½ξ� is Gaussian, higher order correlation
functions are obtained by implementing Wick’s
theorem. This averaging is the second manifestation
of stochasticity. It is important to highlight that
Gaussianity of the noise does not imply a free field
theory, the kernel N abðk; t − t0Þ is in principle to all
orders in the coupling of photons to charged fields
within or beyond the standard model, and is at least
of one-loop order as displayed in Fig. 2 and
explained in detail in appendix A.

The solutions of the Langevin equation (2.56) Φa½k⃗; t; ξ;
Φa;i;Πa;i� are functionals of the stochastic noise variables
ξa and the initial conditions, therefore correlation functions
of the original field variables ϕa in the reduced density
matrix correspond to averaging the products of the sol-
utions over both the initial conditions with the Wigner
distribution function, and the noise with the probability
distribution function P½ξ�. We denote such averages by
⟪ð� � �Þ⟫ with ð� � �Þ any functional of the initial conditions
(2.57) and ξa. These stochastic averages yield the expect-
ation values and correlation functions of functionals of Φa
obtained from variational derivatives with respect to J a.
We seek to obtain correlation functions of ϕa in the

reduced density matrix, therefore we must relate these to
the averages of the center of mass Keldysh fields Φa. To
establish this relation, we begin with the path integral
representations for the forward and backward time evolu-
tion operators (2.13), (2.15), (2.16) which show that ϕþ

a are
associated with UðtÞ and ϕ−

a with U−1ðtÞ, hence it follows
that inside the path integral operators in the forward,
backward, and mixed forward-backward branches, are
given by

Trϕþ
a ðk⃗; tÞϕþ

b ðk⃗0; t0Þρð0Þ≡TrTðϕaðk⃗; tÞϕbðk⃗0; t0ÞÞρð0Þ
Trϕ−

a ðk⃗; tÞϕ−
b ðk⃗0; t0Þρð0Þ≡Trρð0ÞT̃ðϕaðk⃗; tÞϕbðk⃗0; t0ÞÞ

Trϕþ
a ðk⃗; tÞϕ−

b ðk⃗0; t0Þρð0Þ≡Trϕaðk⃗; tÞρð0Þϕbðk⃗0; t0Þ
¼Trϕbðk⃗0; t0Þϕaðk⃗; tÞρð0Þ; ð2:59Þ

where T; T̃ are the time ordering and antitime ordering
symbols respectively. From the cyclic property of the trace,
it follows that the expectation value of the ϕ fields in the
total density matrix is

hϕaðx⃗; tÞi ¼ Trϕþ
a ðx⃗; tÞρ̂ð0Þ ¼ Trρð0Þϕ−

a ðx⃗; tÞ
¼ TrΦaðx⃗; tÞρð0Þ ¼ ⟪Φaðx⃗; tÞ⟫; ð2:60Þ

whereas

TrRaðx⃗; tÞρ̂ð0Þ ¼ 0: ð2:61Þ

Furthermore, using the relations (2.59) it is straightforward
to confirm that

TrΦaðx⃗; tÞΦbðx⃗0; t0Þρð0Þ≡ 1

2
Tr
�
ϕaðx⃗; tÞϕbðx⃗0; t0Þ

þ ϕbðx⃗0; t0Þϕaðx⃗; tÞ
�
ρð0Þ:

ð2:62Þ

Upon obtaining the functional solutions of Eq. (2.56) our
objective is to obtain the connected equal time correlation
functions

hϕaðtÞϕbðtÞic ¼ Trρð0ÞϕaðtÞϕbðtÞ
− Trρð0ÞϕaðtÞTrρð0ÞϕbðtÞ; ð2:63Þ

which provides a measure of coherence, and the population
of each mode of wave vector k, namely

naðk; tÞ ¼
1

2ωaðkÞ
Trρð0Þ

�
_ϕaðk⃗; tÞ _ϕað−k⃗; tÞ

þω2
aðkÞϕaðk⃗; tÞϕað−k⃗; tÞ

	
−
1

2
ðnosumover aÞ:

ð2:64Þ

The fields ϕaðtÞ;ϕbðtÞ commute at equal times, therefore
with the definition of the Keldysh center of mass field
variables Φa (2.42) and the relations (2.59), (2.60), (2.61)
we find that the equal time connected correlation function
(2.63) is given by

hϕaðtÞϕbðtÞic ¼ ⟪ΦaðtÞΦbðtÞ⟫ − ⟪ΦaðtÞ⟫⟪ΦbðtÞ⟫ :

ð2:65Þ

In analogy with the density matrix of two level systems [45]
or qubits, we refer to the off-diagonal connected correlation
function as coherences.
To obtain the population per mode (2.64) we introduce

the correlation functions (no sum over the label a)

C>a ðk; t; t0Þ ¼ Trϕaðk⃗; tÞϕað−k⃗; t0Þρð0Þ;
C<a ðk; t; t0Þ ¼ Trϕað−k⃗; t0Þϕaðk⃗; tÞρð0Þ; ð2:66Þ

the populations per mode of wave vector k⃗ (2.64) become

naðk; tÞ ¼
1

4ωaðkÞ
�
∂

∂t
∂

∂t0
þ ω2

aðkÞ
�

×
h
C>a ðk; t; t0Þ þ C<a ðk; t; t0Þ

i
t¼t0

−
1

2
: ð2:67Þ
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Using the identity (2.62) it is straightforward to show that
this symmetrized product yields

naðk; tÞ ¼
1

2ωaðkÞ
�
⟪ _Φaðk⃗; tÞ _Φað−k⃗; tÞ⟫

þ ω2
aðkÞ⟪Φaðk⃗; tÞΦað−k⃗; tÞ⟫

�
−
1

2
; ð2:68Þ

and the energy per mode

Eaðk; tÞ≡
�
naðk; tÞ þ

1

2

�
ωaðkÞ: ð2:69Þ

The corollary of this analysis is that we can obtain the
connected correlation functions and the populations of the
fields ϕ1;2 by obtaining the solutions of the Langevin
equation of motion (2.56) with initial conditions (2.57) and
taking the averages over the initial conditions and noise
described above. The stochastic equation of motion (2.56)
with initial conditions (2.57) defines an initial value
problem whose solution is obtained by Laplace transform.
The Laplace transforms are given by

Φ̃aðk⃗; sÞ ¼
Z

∞

0

e−stΦaðk⃗; tÞdt; ð2:70Þ

ξ̃aðk⃗; sÞ ¼
Z

∞

0

e−stξaðk⃗; tÞdt; ð2:71Þ

Σ̃abðk⃗; sÞ ¼
Z

∞

0

e−stΣabðk⃗; tÞdt ¼ −
Cab

2π

Z
∞

−∞

ρðk0; kÞ
k0 − is

dk0;

ð2:72Þ

where in (2.72) we used the representation (A13). The
Laplace transform of the Langevin equation (2.56)
becomes

G−1
abðk;sÞΦ̃bðk⃗;sÞ ¼Πa;iðk⃗Þþ sΦa;iðk⃗Þþ ξ̃aðk⃗;sÞ; ð2:73Þ

where

G−1
abðk; sÞ ¼ ðs2 þ ω2

aÞδab þ Δm2
ab þ Σ̃abðk⃗; sÞ: ð2:74Þ

The solution in real time is obtained by inverse Laplace
transform, it is given by

Φaðk⃗; tÞ ¼ Φh
aðk⃗; tÞ þΦξ

aðk⃗; tÞ; ð2:75Þ

where Φh
aðk⃗; tÞ;Φξ

aðk⃗; tÞ are the homogeneous and inho-
mogeneous solutions respectively, namely

Φh
aðk⃗; tÞ ¼ _Gabðk; tÞΦb;iðk⃗Þ þ Gabðk; tÞΠb;i; ð2:76Þ

Φξ
aðk⃗; tÞ ¼

Z
t

0

Gabðk; t − t0Þξbðk⃗; t0Þdt0; ð2:77Þ

and the Green’s function is given by

Gabðk; tÞ ¼
1

2πi

Z
C
estGabðk; sÞds; ð2:78Þ

C denotes the Bromwich contour parallel to the imaginary
axis and to the right of all the singularities ofGabðk; sÞ in the
complex s-plane and closing along a large semicircle at
infinity with ReðsÞ < 0. These singularities correspond to
poles and multiparticle branch cuts with ReðsÞ < 0, thus the
contour runs parallel to the imaginary axis s ¼ iðν − iϵÞ,
with −∞ ≤ ν ≤ ∞ and ϵ → 0þ. Therefore,

Gabðk; tÞ ¼
Z

∞

−∞
Gabðk; s ¼ iðν − iϵÞÞeiνt dν

2π
: ð2:79Þ

We obtain the Green’s functionGabðk; sÞ in appendix B, it is
given by Eq. (B9) for the general case.
The general form of the Green’s function has been found

in appendix B, it is given by Eqs. (B9), (B10) with

M2ðs; kÞ ¼ s2 þ k2 þ 1

2

h
m2

1 þm2
2 þ Δm2

11 þ Δm2
22

þ ðg21 þ g22Þσðs; kÞ
i

ð2:80Þ

Dðs; kÞ ¼
h
ðm2

1 −m2
2 þ Δm2

11 − Δm2
22 þ ðg21 − g22Þσðs; kÞÞ2

þ 4ðΔm2
12 þ g1g2σðs; kÞÞ2

i
1=2 ð2:81Þ

αðs; kÞ ¼ 1

D

h
m2

1 −m2
2 þΔm2

11 −Δm2
22 þ ðg21 − g22Þσðs; kÞ

i
;

ð2:82Þ

βðs; kÞ ¼ γðs; kÞ ¼ 2

D

h
Δm2

12 þ g1g2σðs; kÞ
i
; ð2:83Þ

with

σðs; kÞ ¼ −
Z

∞

−∞

ρðk0; kÞ
k0 − is

dk0
2π

: ð2:84Þ

The counterterms Δm2
ab will be chosen to cancel the

divergences in the self-energy in the effective theory with
a cutoffΛ. The Green’s function (2.79) requires the analytic
continuation s → iðν − iϵÞ in the self-energy, yielding

σðν; kÞ ¼ −
Z

∞

−∞
P
�
ρðk0; kÞ
k0 − ν

	
dk0
2π

þ i
ρðν; kÞ

2
; ð2:85Þ
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where we used the property ρðk0; kÞ ¼ −ρð−k0; kÞ (see
appendix A), as a consequence of which the real (R) and
imaginary (I) parts of σðν; kÞ obey the property

σRðν; kÞ ¼ σRð−ν; kÞ; σIðν; kÞ ¼ −σIð−ν; kÞ: ð2:86Þ

B. Renormalization aspects: Kinetic mixing

Before we move on to the dynamical evolution, we now
address several subtle aspects associated with renormaliza-
tion. The couplings g1;2 each feature mass dimension
ðmassÞ−1, therefore the effective field theory is nonrenor-
malizable, since the self-energy must be of mass dimension
ðmassÞ2, it follows that σ must feature dimension ðmassÞ4.
Although the full spectral density ρðk0; kÞ is not available to
all orders in perturbation theory, we can illustrate the main
aspects of renormalization by considering the one photon
loop contribution to the self-energy obtained in Ref. [22]
and given by Eqns. (A18), (A19) in appendix A.
The zero temperature contribution to the spectral

density (A18) yields an ultraviolet divergent result for
σRðν; kÞ, calculating the integral in (2.85) with an upper
cutoff Λ we find for the zero temperature part

σð0ÞR ðν; kÞ ¼−
1

128π2

�
Λ4þ 4K2Λ2þ 2ðK2Þ2 ln

�
Λ2e3=2

jK2j
	�

;

K2 ¼ ν2 − k2; ð2:87Þ

the finite temperature contribution does not yield ultraviolet
divergences because of the thermal suppression associated
with the distribution functions. Whereas the first term ∝ Λ4

may be absorbed by mass counterterms, the terms K2Λ2

and ðK2Þ2 lnΛ imply the necessity for off-diagonal four
momentum dependent counterterms of the form

∂μπ
0
∂
μa; ð∂μ∂μπ0Þð∂ν∂νaÞ: ð2:88Þ

This observation suggests that the most general effective
field theory mixing axions and neutral pions via a common
intermediate state of photons must include kinetic mixing
terms of the form (2.88). This analysis leads us to conclude
that mass counterterms of the form Δm2

ab are insufficient to
absorb the ultraviolet divergences in the effective field
theory and that other counterterms associated with the
kinetic mixing (2.88) must be included.
In the analysis that follows, we will assume that such

counterterms have been introduced to cancel all of the zero
temperature divergences in the self-energies and m2

a are the
renormalized masses. Hence we now set Δm2

ab ¼ 0 in
Eqs. (2.80)–(2.83) along with the counterterms from kinetic
mixing and keep solely the finite temperature (ultraviolet
finite) contributions to σ. Furthermore, we will also assume
that the renormalized kinetic mixing terms all feature
vanishing coefficients (after absorbing the ultraviolet

divergent contributions from self-energies). Of course this
is a special choice of the effective field theory, which we
accept here without further elaboration, however the con-
sequences of such kinetic mixing merits further study,
which is beyond the scope of this article.

C. Dynamics

In order to obtain the solutions of the Langevin
Eq. (2.75) from which we can extract the correlation
functions and populations, it remains to obtain the
Green’s function (2.79). Using the results of appendix B
and after renormalization as described above, we obtain

Gabðk;tÞ¼
Z

∞

−∞

�
P−ðν;kÞ

M2ðν;kÞ−Dðν;kÞ
2

þ Pþðν;kÞ
M2ðν;kÞþDðν;kÞ

2

�
eiνt

dν
2π

;

ð2:89Þ

where

P�ðν; kÞ ¼
1

2

�
1� αðν; kÞ βðν; kÞ
βðν; kÞ 1 ∓ αðν; kÞ

�
; ð2:90Þ

and

M2ðν; kÞ ¼ −ðν − iϵÞ2 þ 1

2

h
ω2
1ðkÞ þ ω2

2ðkÞ

þ ðg21 þ g22Þσðν; kÞ
i
; ð2:91Þ

Dðν; kÞ ¼
h
ðm2

1 −m2
2 þ ðg21 − g22Þσðν; kÞÞ2

þ 4g21g
2
2σ

2ðν; kÞ
i
1=2

; ð2:92Þ

αðν; kÞ ¼ 1

Dðν; kÞ
h
m2

1 −m2
2 þ ðg21 − g22Þσðν; kÞ

i
; ð2:93Þ

βðν; kÞ ¼ 2g1g2σðν; kÞ
Dðν; kÞ : ð2:94Þ

In the above expressions, ω1;2ðkÞ are the renormalized
frequencies and σðν; kÞ is the renormalized self-energy
(without the couplings), it is given by Eq. (2.85) after
subtracting the zero temperature ultraviolet divergent part.2

The final result is obtained by complex integration by
closing the contour in the upper half complex ν-plane (for
t > 0), and recognizing the position of complex poles
and/or branch cut singularities, which necessarily depend
on the values of masses and couplings.

2An alternative renormalization scheme would keep the ultra-
violet finite zero temperature parts.
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III. DYNAMICS OF NEUTRAL
PION-AXION MIXING

The formulation and results above are general for scalar
and/or pseudoscalar fields interacting indirectly through
their coupling to a common bath in equilibrium and applies
to any case of pseudoscalar meson mixing with axions or
among different axion-like species. In this section we focus
on the particular example of neutral pion-axion mixing
after the QCD phase transition, under the following main
assumptions: (i) the neutral pion mass is much larger than
the axion mass mπ ≫ ma, (ii) the neutral pion coupling to
photons is much larger than that of the axion, namely
g1 ≫ g2, this latter assumption is motivated by the axion
being assumed to be a very weakly interacting dark matter
candidate with a lifetime of the order of the Hubble time or
larger. Under these assumptions it follows that

Dðν; kÞ ≃ ðm2
1 −m2

2 þ ðg21 − g22Þσðν; kÞÞ

×

�
1þ 2g21g

2
2σ

2ðν; kÞ
ðm2

1 −m2
2Þ2

þ � � �
	
; ð3:1Þ

αðν; kÞ ≃ 1 −
2g21g

2
2σ

2ðν; kÞ
ðm2

1 −m2
2Þ2

; ð3:2Þ

βðν; kÞ ≃ 2g1g2σðν; kÞ
ðm2

1 −m2
2Þ

≡ εðν; kÞ: ð3:3Þ

Keeping only terms up to order g21; g
2
2; g1g2, consistently

with obtaining the effective action up to second order in
couplings, we find

M2ðν;kÞþDðν;kÞ
2

≃−ðν− iϵÞ2þω2
1ðkÞþg21σðν;kÞ; ð3:4Þ

M2ðν;kÞ−Dðν;kÞ
2

≃−ðν− iϵÞ2þω2
2ðkÞþg22σðν;kÞ; ð3:5Þ

Pþðν; kÞ ≃
 

1
εðν;kÞ
2

εðν;kÞ
2

0

!
; ð3:6Þ

P−ðν; kÞ ≃
 

0 − εðν;kÞ
2

− εðν;kÞ
2

1

!
: ð3:7Þ

In this limit, the two contributions to the Green’s
function (2.89) have a simple interpretation: the term with
Pþ is identified with a pion-like pole and that with P− with
the axionlike pole.
In the Breit-Wigner approximation, these contributions

feature complex poles in the upper half ν-plane at

ν1;2ðkÞ ¼ �ω1;2 þ i
Γ1;2ðkÞ

2
ð3:8Þ

for pionlike (1) or axionlike (2) respectively, with

Γ1;2ðkÞ ¼ g21;2
σIðω1;2ðkÞÞ
ω1;2ðkÞ

: ð3:9Þ

The integral in (2.89) can be carried out in this approxi-
mation, yielding the Green’s function (in matrix form)

Gðk; tÞ ¼ Z1e−
Γ1ðkÞ
2

t sinðω1ðkÞtÞ
ω1ðkÞ

�
1 0

0 0

�

þ Z2e−
Γ2ðkÞ
2

t sinðω2ðkÞtÞ
ω2ðkÞ

�
0 0

0 1

�

þ ðZ1F 1ðtÞ − Z2F 2ðtÞÞ
�
0 1

1 0

�
; ð3:10Þ

where for a ¼ 1; 2,

Za ¼
�
1 − g2a

∂σRðν; kÞ
∂ν






ν¼ωaðkÞ

	
−1
; ð3:11Þ

are the wave function renormalization constants which
are finite after canceling the ultraviolet divergences of the
self-energy with proper counterterms, and

F aðtÞ ¼ e−
ΓaðkÞ
2

t

 
γaþ

eiωaðkÞt

2iωaðkÞ
− γa−

e−iωaðkÞt

2iωaðkÞ

!
;

γa� ¼ g1g2
m2

1 −m2
2

ðσRðωaðkÞÞ � iσIðωaðkÞÞ: ð3:12Þ

In the following analysis we will assume that the wave
function renormalization constants Za are absorbed into the
usual field redefinitions by adding proper diagonal counter-
terms in the Lagrangian so that the diagonal part of poles in
the Green’s functions feature residue equal to one, thereby
setting Z1 ¼ Z2 ¼ 1 in (3.10).
Armed with this result, we can now study the evolution

of expectation values, correlation functions and popula-
tions, by implementing the general results (2.65), (2.68),
(2.75), (2.77).

A. Induced pion condensate

The expectation value ⟪Φðk⃗; tÞ⟫ is determined solely
by the homogeneous solution in Eq. (2.75) and given
by Eq. (2.76), because the average over the noise vanishes
[see Eq. (2.58)]. Let us consider that initially there is a
misaligned axion condensate with vanishing velocity, and
no pion condensate, namely
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Φiðk⃗Þ ¼
�

0

aiðk⃗Þ

�
; Πiðk⃗Þ ¼

�
0

0

�
; ð3:13Þ

yielding

⟪Φðk⃗; tÞ⟫ ¼
 
π0ðk⃗; tÞ
āðk⃗; tÞ

!
ð3:14Þ

with

āðk⃗; tÞ ¼ aiðk⃗Þe−
Γ2ðkÞ
2

t cosðω2ðkÞtÞ; ð3:15Þ

where we neglected terms of order Γa=ωaðkÞ ≪ 1. The off-
diagonal components of the Green’s function (3.10) induce
an expectation value of the pion field, namely a pion

condensate π0ðk⃗; tÞ, which is given by

π0ðk⃗; tÞ ¼ aiðk⃗Þ
2

h
γ1þe−

Γ1ðkÞ
2

teiω1ðkÞtþ γ1−e−
Γ1ðkÞ
2

te−iω1ðkÞt

− γ2þe−
Γ2ðkÞ
2

teiω2ðkÞt − γ2−e−
Γ2ðkÞ
2

te−iω2ðkÞt
i
; ð3:16Þ

this result confirms the conjecture in Ref. [25]: a misaligned
axion condensate induces a pion condensate. The expres-
sion (3.16) is noteworthy, it is a linear combination of a
short-lived (pion-like) component decaying on a timescale
1=Γ1 and a long-lived (axionlike) component decaying on a
timescale 1=Γ2 ≫ 1=Γ1. In this sense, the result (3.16) is
reminiscent of the time evolution of neutral kaon beams
where the propagation eigenstates correspond to short lived
and long-lived (Ks, KL) states. An initially prepared K0

beam (from a strong interaction reaction) evolves in time as
a linear superposition of the short and the long lived states
and at times longer than the short lived lifetime but shorter
than the long-lived component it “purifies” into the long
lived component. A similar dynamics is explicit in the
solution (3.16), despite the fact that neutral pions feature a
lifetime 1=Γ1ðkÞ much shorter than that of axions, namely
1=Γ2ðkÞ, their indirect coupling induces a long-lived pion
condensate. During the window of time 1=Γ1ðkÞ ≪ t ≪
1=Γ2ðkÞ and to leading order in the couplings, the induced
pion condensate becomes “purified” in the sense that it is
solely determined by the long-lived misaligned axion
condensate

π0ðk⃗; tÞ ¼ −
g1

g2ðm2
1 −m2

2Þ
h
ΣR
axðkÞāðk⃗; tÞ þ ΓaxðkÞ _̄aðk⃗; tÞ

i
;

ð3:17Þ

with the axion self-energy and decay rate

ΣR
axðkÞ ¼ g22σRðω2ðkÞ; kÞ; ΓaxðkÞ ¼ g22

σIðω2ðkÞ; kÞ
ω2ðkÞ

:

ð3:18Þ

We note that the expression in the bracket in (3.17) is the
induced abelian Uð1Þ Chern-Simons density found in
Ref. [25], namely

hE⃗ðtÞ · B⃗ðtÞi¼−
1

g2

h
ΣR
axðkÞāðk⃗;tÞþΓaxðkÞ _̄aðk⃗;tÞ

i
: ð3:19Þ

Therefore, Eq. (3.17) confirms one of the main conjectures
in that reference, namely that a misaligned axion condensate
induces a neutral pion condensate proportional to the Chern
Simons condensate.
It is important to highlight differences with the kaon

system: in absence of coupling to the common set of
intermediate states (weak interactions in the kaon case),
K0; K̄0 are degenerate. Therefore their mass splitting as a
consequence of mixing is of the same order as their decay
widths, hence, kaon dynamics features interference terms
manifest as oscillations. Obviously these are not relevant
in the case of axion-pion mixing because of the large
difference in masses that suppresses the interference
terms, averaging them out on very short timescales.
Nevertheless, this important difference with the axion-
neutral pion case notwithstanding, the physical reason for
the “purification” is the same, a large discrepancy in the
decay lifetimes of the propagating states.
It is clear from Eq. (3.16) that the amplitude of the

induced pion condensate is very small as it is proportional to
the axion-photon coupling. However, near the QCD phase
transition associated with chiral symmetry breaking and the
binding of quarks into the pseudoscalar bound states there is
an instability associated with this symmetry breaking, such
instability will amplify the “seed” induced by the axion field
given by (3.16). Therefore, even for a small induced
condensate seed the instability toward chiral symmetry
breaking results in an amplification of its initial value. It
is not the purpose of this study to assess the phenomenology
of chiral symmetry breaking but to highlight the funda-
mental result that the “seeding” of the pion condensate by a
misaligned axion is a direct and unambiguous consequence
of axion-pion mixing revealed by the nonequilibrium
framework introduced above. The full nonequilibrium
dynamics of the pion condensate during the transition to
the lower free energy state including the concomitant
instabilities must be addressed within a more complete
theory of chiral symmetry breaking, Eq. (3.16) describes
only the “seeding” of the neutral pion condensate.

B. Connected correlation functions:

The connected correlation functions are defined by
Eq. (2.65), there are two distinct contributions, one from
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the homogeneous solutions Φh (2.76) and another from the
noise dependent part of the solution Φξ (2.77), writing the
total correlation function (2.65) in obvious notation as

hϕaðk⃗; tÞϕbð−k⃗; tÞic ≡ Ih
abðtÞ þ Iξ

abðtÞ; ð3:20Þ

the homogeneous contribution is given by

Ih
abðk; tÞ ¼ _GacðtÞΦc;iðk⃗ÞΦd;iðk⃗Þ _GdbðtÞ

þ GacðtÞΠc;iðk⃗ÞΠd;iðk⃗ÞGdbðtÞ
þ crossed terms: ð3:21Þ

because each Greens functions features a decaying expo-
nential the homogeneous contribution decays exponen-
tially, thereby erasing memory of the initial conditions.
We now consider the noise contribution, for which we

need the noise correlation function (2.58) with the spectral
representation (A14) shown explicitly in appendix A,
namely

N abðk; t − t0Þ ¼ Cab

Z
Nðk0; kÞe−ik0ðt−t0Þ

dk0
2π

ð3:22Þ

Nðk0; kÞ ¼
ρðk0; kÞ

2
coth

�
βk0
2

	
; ð3:23Þ

along with the inhomogeneous solution (2.77). Using that
the Greens function matrix is symmetric, the noise con-
tribution to the connected correlation function (2.65)
becomes

Iξ
abðtÞ ¼

Z
∞

−∞
Nðk0; kÞ

�Z
t

0

GacðτÞeik0τ
	

× Ccd

�Z
t

0

GdbðτÞe−ik0τ
	
dk0
2π

: ð3:24Þ

Each integral is straightforward to obtain, their product
feature direct terms of the form

1

k0 � ωa þ i Γa
2

1

k0 � ωa − i Γa
2

; ð3:25Þ

indirect terms of the form

1

k0 � ωa þ i Γa
2

1

k0 ∓ ωa − i Γa
2

; ð3:26Þ

and interference terms that mix different components.
The integral over k0 is dominated by the various poles
in the complex k0-plane, the ones just described, and those
at the Matsubara frequencies k0¼2πn=β; n ¼ �1;�2 � � �,
the n ¼ 0 term features vanishing residue because
ρð0; kÞ ¼ 0. The direct terms feature resonant poles with

residues ∝ 1=Γa ∝ 1=g2a, the indirect terms are nonreso-
nant featuring residues of the form 1=ðωa � iΓa=2Þ,
therefore subleading with respect to the direct terms since
ωa ≫ Γa, with a similar behavior for the interference
terms featuring denominators of the form 1=ðω1 − ω2 þ
iðΓ1 − Γ2ÞÞ with ω1 ≫ ω2, and the poles at the Matsubara
frequencies, therefore the k0 integral is dominated by the
resonant poles. A long but straightforward calculation
finally yields

Iξðk; tÞ ¼ 1þ 2nðω1Þ
2ω1

ð1 − e−Γ1tÞð1þOðg21;2ÞÞ
�
1 0

0 0

�

þ 1þ 2nðω2Þ
2ω2

ð1 − e−Γ2tÞð1þOðg21;2ÞÞ
�
0 0

0 1

�

þ g1g2

�
1þ 2nðω1Þ

2ω1

ð1 − e−Γ1tÞΔ1

−
1þ 2nðω2Þ

2ω2

ð1 − e−Γ2tÞΔ2

	�
0 1

1 0

�
ð3:27Þ

where

Δa ¼
σRðωaðkÞÞ
m2

1 −m2
2

; ð3:28Þ

used the relations (3.9) and kept the leading order terms
in the couplings. Whereas the homogeneous contribution
(3.21) depends on the initial conditions, the noise con-
tribution (3.27) does not and is solely a consequence of
the bath.
In order to understand the combined results (3.21), (3.27),

let us compare to the equal time correlation function of the
free scalar fields in thermal equilibrium,

hϕaðk⃗; tÞϕbð−k⃗; tÞi ¼
1þ 2nðω1Þ

2ω1

�
1 0

0 0

�

þ 1þ 2nðω2Þ
2ω2

�
0 0

0 1

�
: ð3:29Þ

On long timescales t ≫ 1=Γ1; 1=Γ2 the mixing fields
approach thermal equilibration with the common bath. The
off-diagonal elements are a distinct signature of the long-
lived correlations as a consequence of mixing. We note that
the off diagonal correlations that survive in the long time
limit t ≫ 1=Γ1;2 are independent of the initial conditions
and arise solely from the noise contribution, namely the
bath, because the homogeneous contribution (3.21) van-
ishes in this limit.
Repeating the calculation for the populations (2.68),

keeping solely the connected contribution and neglecting
quadratic corrections in the couplings we find

naðk; tÞ ¼ nðωaÞð1þOðg21;2ÞÞð1 − e−ΓaðkÞtÞ; ð3:30Þ
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which clearly indicates the approach to thermalization with
the common bath. For the case of axions only, this result
confirms those of Ref. [22].
The results (3.21), (3.29) are noteworthy, the off-diagonal

correlations, namely the coherences as defined above, are a
distinct consequence of the indirect coupling mediated by
the bath. This is a manifestation of bath (or environment)
induced coherence between the mixing fields. While the
homogeneous contribution (3.21) vanishes in the long time
limit erasing the memory of the initial conditions, the off-
diagonal contribution from the noise remains nonvanishing
in this limit. Note that this contribution to the coherence
is established on the shortest timescale, namely, even if
the axion field thermalizes on a very long timescale, the
thermalization of the pion field leads to nonvanishing
coherence that is long-lived and remains even beyond the
axion lifetime.

IV. SUMMARY OF RESULTS, CONCLUSIONS,
AND FURTHER QUESTIONS

In this study we introduced a framework to study the
nonequilibrium dynamics of mixing of scalar or pseudo-
scalar fields that each couples to a common bath of degrees
of freedom in thermal equilibrium. Field mixing is a result
of this coupling to a set of common intermediate states that
results in off-diagonal self-energies. Our motivation for this
study stems from the observation in Ref. [25] that axions
can mix with a neutral pion after the QCD phase transition
via a common two photon channel, since they both couple
to this channel via the Chern-Simons density, a conse-
quence of the U(1) triangle anomaly. Furthermore, it was
conjectured in this reference that a misaligned axion can
induce a pion condensate and that such macroscopic
condensate is proportional to a condensate of the Chern-
Simons density, itself induced by the misaligned axion.
The nonequilibrium dynamics of field mixing in a

medium is, however, of much broader fundamental interest,
encompassing the possibility of other axionlike particles in
extensions beyond the standard model mixing with axions,
or in extensions that feature “portals” connecting the
standard model to extensions beyond it, as such portals
may provide intermediate states that could indirectly mix
both sides through their mutual coupling to these “portal
states.” A framework that extends the formulation of meson
mixing in vacuum to the case when the intermediate states
are in a medium, may prove relevant to study CP violation
and/or baryogenesis in cosmology, since flavored meson
mixing in vacuum yields direct and distinct observational
signatures of CP violation. Furthermore, this study was
also motivated by the tantalizing possibility that axionlike
degrees of freedom are emergent quasiparticles in a wide
range of condensed matter systems, from topological
insulators and Weyl semimetals to multilayered metama-
terials or multiferroics also coupling to electromagnetism
via the Chern-Simons density.

In this article we obtained the nonequilibrium effective
action that determines the time evolution of the reduced
density matrix for the pseudoscalar fields by extending and
generalizing the methods introduced in Ref. [22,23] to the
case of field mixing, and applied this framework to study
axion-neutral pion mixing as a specific example from
which we can draw broader lessons.
Summary of results: Although the neutral pion and

the axion feature widely different masses and decay widths,
the nonequilibrium mixing dynamics displays a wealth of
interesting phenomena.

(i) A misaligned axion condensate induces a macro-
scopic condensate of the neutral pion thereby
confirming a conjecture in Ref. [25]. The pion
condensate exhibits evolution on a long and a short
timescale akin to the K0 − K̄0 in vacuum, this
induced pion condensate survives on timescales
much longer than the pion lifetime and eventually
decays on the much longer axion-like timescale.
This phenomenon is reminiscent of the “purifica-
tion” into a long-lived kaon state in the K0 − K̄0

system, albeit with important differences because
the axion-neutral pion system features a large mass
difference in the absence of mixing, thereby sup-
pressing interference effects.

(ii) On timescales much longer than the pion lifetime, the
neutral pion condensate is proportional to the macro-
scopic condensate of the Chern-Simons density found
in Ref. [25], confirming another conjecture in this
reference. Taken together, these results indicate that a
misaligned axion condensate does induce a macro-
scopic neutral pion condensate after the QCD phase
transition. If the lightest up and down quarks were
massless, this condensate would imply chiral sym-
metry breaking, hence the axion seeds chiral sym-
metry breaking in QCD as a consequence of its
indirect mixing with the neutral pion via the U(1)
anomaly. While the amplitude of the induced pion
condensate is small, being proportional to the axion-
photon coupling, the instability associated with the
chiral phase transition in QCD will amplify this
small seed.

(iii) Another important consequence of mixing, is that
the effective field theory obtained upon tracing out
the bath degrees of freedom must include kinetic
mixing terms with higher derivative operators. This
is a consequence of the nonrenormalizability of the
effective field theory, and manifest in ultraviolet
divergences in the zero temperature contribution of
the one loop self-energies which are quadratic and
quartic in the four momenta.

(iv) The off-diagonal components of the axion-pion
connected correlation functions, interpreted as co-
herences in analogy with the density matrix of two
level systems (qubits), exhibit thermalization and
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remain nonvanishing and independent of initial
conditions even on the longer timescales of axion
decay. This is a manifestation of long-lived bath
induced coherences, a consequence of the indirect
interaction of pions and axions mediated by the
common bath.

While the effects of axion-neutral pion mixing are
undoubtedly rather small, because the axion is very weakly
coupled as befits a dark matter candidate, the main
framework and many results are of fundamental relevance,
a “proof of principle” and hitherto unexplored. The effective
action for mixing in a medium has a far broader appli-
cability than the specific example studied here. As men-
tioned above, it may prove important in complementary
studies of the nonequilibrium dynamics of CP violation
and/or baryogenesis in cosmology, after all flavored meson
mixing in vacuum is one of the observational pillars of CP
violation, and perhaps in “portal” extensions beyond the
standard model. Several of the results obtained for axion-
neutral pion mixing transcend this example: if one of the
mixing fields features a nonvanishing expectation value
(condensate), a condensate of the other field will be induced
as a consequence of mixing. An off-diagonal self energy, a
hallmark of indirect mixing, will also result in nonvanishing
off diagonal correlations, namely “bath-induced” coherence
between the fields, even when initially they are uncorre-
lated. An important aspect that merits further study is the
dynamics under conditions of near degeneracy, namely
when the mass difference is of the same order as the
differences in the widths. Under this circumstance

interference effects will become important and must be
included in the dynamics. We expect to report on such study
in future work.
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APPENDIX A: LEHMANN REPRESENTATION
OF CORRELATION FUNCTIONS

The correlation functions G>ðx − yÞ;G<ðx − yÞ can be
written in an exact Lehmann (spectral) representation
which is useful to include in the equations of motion.

G>ðx − yÞ ¼ 1

Zχ
Tre−βHχOðxÞOðyÞ ðA1Þ

G<ðx − yÞ ¼ 1

Zχ
Tre−βHχOðyÞOðxÞ; ðA2Þ

where Zχ ¼ Tre−βHχ , Oðx⃗; tÞ ¼ E⃗ðx⃗; tÞ · B⃗ðx⃗; tÞ and

Oðx⃗; tÞ ¼ eiHχ te−iP⃗·x⃗Oð0ÞeiP⃗·x⃗e−iHχ t. In terms of a com-
plete set of simultaneous eigenstates of Hχ ; P⃗, namely

ðHχ ; P⃗Þjni ¼ ðEn; P⃗nÞjni and inserting the identity in this
basis, we find

G>ðx1 − x2Þ ¼
1

Zχ

X
n;m

e−βEneiðEn−EmÞðt1−t2Þe−iðP⃗n−P⃗mÞ·ðx⃗1−x⃗2ÞhnjOð0ÞjmihmjOð0Þjni; ðA3Þ

G<ðx1 − x2Þ ¼
1

Zχ

X
n;m

e−βEne−iðEn−EmÞðt1−t2ÞeiðP⃗n−P⃗mÞ·ðx⃗1−x⃗2ÞhnjOð0ÞjmihmjOð0Þjni: ðA4Þ

These representations may be written in terms of spectral densities, by introducing

ρ>ðk0; k⃗Þ ¼
ð2πÞ4
Zχ

X
n;m

e−βEnhnjOð0ÞjmihmjOð0Þjniδðk0 − ðEm − EnÞÞδ3ðk⃗ − ðP⃗m − P⃗nÞÞ; ðA5Þ

ρ<ðk0; k⃗Þ ¼
ð2πÞ4
Zχ

X
n;m

e−βEnhnjOð0ÞjmihmjOð0Þjniδðk0 − ðEn − EmÞÞδ3ðk⃗ − ðP⃗n − P⃗mÞÞ; ðA6Þ

in terms of which

G>ðx1−x2Þ¼
Z

d4k
ð2πÞ4ρ

>ðk0; k⃗Þe−ik0ðt1−t2Þeik⃗·ðx⃗1−x⃗2Þ ðA7Þ

G<ðx1−x2Þ¼
Z

d4k
ð2πÞ4ρ

<ðk0; k⃗Þe−ik0ðt1−t2Þeik⃗·ðx⃗1−x⃗2Þ: ðA8Þ

Relabeling n ↔ m and using the k0 delta function in (A6),
we find the Kubo-Martin-Schwinger condition [46]

ρ<ðk0; k⃗Þ ¼ e−βk0ρ>ðk0; kÞ: ðA9Þ

Introducing the spectral density
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ρðk0; k⃗Þ ¼ ρ>ðk0; k⃗Þ − ρ<ðk0; k⃗Þ ¼ ρ>ðk0; k⃗Þð1 − e−βk0Þ;
ðA10Þ

it follows that

ρ>ðk0; k⃗Þ ¼ ð1þ nðk0ÞÞρðk0; k⃗Þ;
ρ<ðk0; k⃗Þ ¼ nðk0Þρðk0; k⃗Þ; ðA11Þ

where

nðk0Þ ¼
1

eβk0 − 1
: ðA12Þ

Therefore the spatial Fourier transform of the self-energy
matrix (2.47) and the noise kernel (2.46) can be written as

Σabðk; t − t0Þ ¼ −iCab

Z
dk0
ð2πÞ ρðk0; kÞe

−ik0ðt−t0Þ ðA13Þ

N abðk; t − t0Þ ¼ 1

2
Cab

Z
dk0
ð2πÞ ρðk0; kÞ coth

�
βk0
2

	
e−ik0ðt−t0Þ;

ðA14Þ

this is the general relation between the self-energy and
the noise correlation function commonly determined by
the spectral density ρðk0; kÞ, a direct consequence of the
fluctuation-dissipation relation as a result of the bath being
in thermal equilibrium, namely in terms of the time-
Fourier transform and in obvious notation,

2N abðk0; kÞ ¼ iΣabðk0; kÞ coth
�
βk0
2

	
: ðA15Þ

For the case under consideration Oðx⃗; tÞ ¼ E⃗ðx⃗; tÞ ·
B⃗ðx⃗; tÞ and with the thermal ensemble (radiation bath in
equilibrium with charged fields) being invariant under
rotations, it follows that ρðk0; k⃗Þ ¼ ρðk0; kÞ and the rela-
tions above lead to the property

ρðk0; kÞ ¼ −ρð−k0; kÞ: ðA16Þ

These results are valid to all orders in the couplings of the
electromagnetic field to any charged field within or beyond
the standard model, including charged particle loop correc-
tions to the internal photon propagators in the self-energy.
Obviously the full spectral density is not available,

however the one free-photon loop contribution has been
obtained in Ref. [22], it is given by

ρðk0; kÞ ¼ ρð0Þðk0; kÞ þ ρðTÞðk0; kÞ; ðA17Þ

where the zero (0) and finite temperature (T) parts are
given by

ρð0Þðk0; kÞ ¼
ðK2Þ2
32π

ΘðK2Þsignðk0Þ; ðA18Þ

ρðTÞðk0; kÞ ¼
ðK2Þ2
16πβk

(
ln

�
1 − e−βω

I
þ

1 − e−βω
I
−

	
ΘðK2Þ

þ ln

�
1 − e−βω

II
þ

1 − e−βω
II
−

	
Θð−K2Þ

�
signðk0Þ;

β ¼ 1

T
; K2 ¼ k20 − k2;

ωðIÞ
� ¼ jk0j � k

2
; ωðIIÞ

� ¼ k� jk0j
2

; ðA19Þ

which explicitly shows the property (A16). The terms with
Θðk20 − k2Þ arise from the processes ϕ1;2 ↔ 2γ, namely
emission and absorption of photons with the reverse or
recombination process 2γ → ϕ1;2 being a consequence of
the radiation bath, these processes feature support on the
axion and pion mass shells for massive axions. The
contribution proportional to Θðk2 − k20Þ only features sup-
port below the light cone, it describes off-shell processes
γϕ1;2 ↔ γ and vanishes in the k → 0 limit.

APPENDIX B: GREEN’S FUNCTION

Let us write

M11 ¼ s2 þ k2 þm2
1 þ Δm2

11 þ Σ̃11ðk⃗; sÞ
M12 ¼ Δm2

12 þ Σ̃12ðk⃗; sÞ; M21 ¼ Δm2
21 þ Σ̃21ðk⃗; sÞ

M22 ¼ s2 þ k2 þm2
2 þ Δm2

22 þ Σ̃22ðk⃗; sÞ; ðB1Þ

in terms of which the general form of G−1
abðk; sÞ in

Eq. (2.74) is written as

G−1
abðk;sÞ ¼

�
M11 M12

M21 M22

�
≡M21þD

2

�
α β

γ −α

�
; ðB2Þ

where, neglecting the labels k, s to simplify notation, which
will be assumed as arguments in the quantities defined
below, we introduced

D ¼
h
ðM11 −M22Þ2 þ 4M12M21

i
1=2 ðB3Þ

M2 ¼ 1

2
ðM11 þM22Þ; α ¼ ðM11 −M22Þ

D

β ¼ 2M12

D
; γ ¼ 2M21

D
ðB4Þ

from which it follows that

α2 þ βγ ¼ 1; ðB5Þ
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therefore

det

�
α β

γ −α

�
¼ −1 ðB6Þ

hence, the eigenvalues of this matrix are �1, and

det½G−1� ¼
�
M2 þD

2

��
M2 −

D
2

�
: ðB7Þ

The inverse of the matrix (B2) is given by

G ¼ 1

det½G−1�
�
M21 −

D
2

�
α β

γ −α

�	
: ðB8Þ

Writing

M2 ¼ 1

2

�
M2 þD

2

�
þ 1

2

�
M2 −

D
2

�
;

D ¼
�
M2 þD

2

��
M2 −

D
2

��
1

M2 − D
2

−
1

M2 þ D
2

	

yields

G ¼ P−

M2 − D
2

þ Pþ
M2 þ D

2

; P� ¼ 1

2
ð1�RÞ; ðB9Þ

with

R ¼
�
α β

γ −α

�
; R2 ¼ 1; ðB10Þ

where the last equality follows from the identity (B5),
therefore the matrices P� are projectors, namely

P2
� ¼ P�; ðB11Þ

hence their eigenvalues are 0,1.
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