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In effective field theory, the positivity bounds of higher-derivative operators are derived from analyticity,
causality, and unitarity. We show that the positivity bounds on some operators of the effective field theory,
e.g., the dimension-eight term of a single massless scalar field, the Standard Model effective field theory
dimension-eight SUðNÞ gauge bosonic operators, and higher-derivative operators in the Einstein-Maxwell
theory, generated by interactions between heavy and light degrees of freedom can be derived by the non-
negativity of relative entropy. For such effective field theories, we prove that the interactions increase
thermodynamic entropy at a fixed charge and an extremal point of energy, which is intimately connected
with the extremality relations of black holes exhibiting the weak gravity conjecture. These arguments are
applicable when corrections from the interactions involving higher-derivative operators of light fields are
not dominant in the effective field theories. The entropy constraint is a consequence of the Hermiticity of
Hamiltonian, and any theory violating the non-negativity of entropy would not respect the second law of
thermodynamics.
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I. INTRODUCTION

Relative entropy [1–3] is a fundamental quantity in
probability theory and information theory. The relative
entropy, which is non-negative, depicts a distance between
two probability distributions and plays important roles in
statistical mechanics [4–6] and quantum information theory
[7–9]. In the context of information-thermodynamics, the
distance between two probability distributions is an essen-
tial concept to derive a non-negativity of difference in von
Neumann entropy between initial and final states [4,5,10];
the so-called second law of thermodynamics.
Recently, thermodynamics of black hole [11–16] have

been studied in the context of the weak gravity conjecture
(WGC) [17], which is motivated to distinguish the land-
scape from the swampland [18]. The WGC states that the
Uð1Þ charge-to-mass ratio of extremally charged black
holes is larger than unity in any gravitational effective field
theory (EFT) that admits a consistent UV completion [16].
Some proofs for this statement have been made using black

holes and entropy consideration [12,13], or positivity
bounds from unitarity and causality [19,20]. In particular,
Refs. [12,13] are based on a positivity of entropy difference
between Einstein-Maxwell theories with and without per-
turbative corrections that are described by higher-derivative
operators.
The crucial role of relative entropy in information-

thermodynamics suggests that the positivity of entropy
difference in the WGC is intimately connected to the
distance between two theories, which has been studied
in different contexts [21–24]. That inspires us to establish a
connection between relative entropy and positivity bounds
in the EFTs. In the work, we provide lower and upper
bounds on perturbative corrections from the interactions
between heavy and light degrees of freedom to the
Euclidean effective action. From the upper bound, we
obtain the same bounds on some operators of EFTs, e.g.,
the dimension-eight term of a single massless scalar field,
the Standard Model EFT (SMEFT) dimension-eight
SUðNÞ gauge bosonic operators, and the higher-derivative
operators in the Einstein-Maxwell theory, as those pos-
itivity bounds achieved in conventional EFT studies
[17,25,26] when the higher-derivative operators are gen-
erated by the interactions between heavy and light fields.
The constraints on such EFTs are applicable when the
perturbative corrections from the interactions involving
higher-derivative operators of the light fields are not
dominant in the EFTs.
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Reference [16] implies a possibility that the WGC-like
behavior in the perturbative correction to extremality
relations of black hole [12] can be generalized to a broad
class of thermodynamic systems on the condition that the
correction to entropy is non-negative. We prove that the
corrections to the entropy at a fixed charge and an extremal
point of energy from the operators, such as the dimension-
eight term of a single massless scalar field, the SMEFT
dimension-eight SUðNÞ gauge bosonic operators and
higher-derivative operators in the Einstein-Maxwell theory,
are non-negative when the corrections from the interactions
involving higher-derivative operators of the light fields are
not dominant in the EFTs.
The paper is organized as follows. In Sec. II, we introduce

a distance between two theories. In Sec. III, we explore the
implications of the non-negativity of the distance between
two theories, focusing on EFTs and examining several
examples. In Sec. IV, we discuss the relation between
entropy constraints and some inequalities in physics, e.g.,
the second law of thermodynamics. Section V concludes this
work. In addition, we provide some appendixes to supple-
ment the above sections. In Appendix A, we explain how to
define theories with and without interactions by using some
examples. In Appendix B, detailed derivations of inequalities
depicting the distance between two theories are presented.
In Appendix C, the invariance of the relative entropy under
field redefinition is discussed. Appendix D is devoted to
explaining the wave function renormalization in the relative
entropy. In Appendixes E and F, conditions to apply the
entropy constraints are discussed. We summarize the con-
ditions as a flow chart in Fig. 2.

II. DISTANCE BETWEEN TWO THEORIES

Consider a field theory that contains a set of light fields
ϕ’s and that of heavy fields Φ’s; see Fig. 1. We introduce a
thermodynamic system A described by the Euclidean action
I0½ϕ;Φ�, which does not involve interactions between ϕ’s
and Φ’s. See Appendix A for the detailed definition of I0.

1

We define a probability distribution function for the system
A as P0 ≡ e−I0=Z0½β;ϕ�, where β is an inverse temperature
of the system and ϕ denotes a background field corre-
sponding to the light field, which is held fixed while the
path integral over Φ’s is performed. Even if the path
integral over ϕ’s is performed, following explanations
do not change much; see Appendix B. Note that heavy
background fields are expressed by the light ones using
the equation of motions. The partition function is given as
the Euclidean path integral Z0½β;ϕ�≡ R

β d½Φ�e−I0 , which is
determined by the Wick-rotated Lagrangian and boundary

conditions. The effective action of the system is
W0½β;ϕ�≡ − lnZ0½β;ϕ�.
The system B is defined by Ig½ϕ;Φ�≡ I0½ϕ;Φ� þ

g · II½ϕ;Φ�, where II denotes interactions between ϕ’s
and Φ’s, of which the probability distribution function is
Pg ≡ e−Ig=Zg½β;ϕ�, where Zg½β;ϕ�≡ R

β d½Φ�e−Ig . The
effective action of the system is given by Wg½β;ϕ�≡
− lnZg½β;ϕ�. The coupling g is an auxiliary parameter
introduced to characterize the interaction.
The relative entropy2 between P0 and Pg is defined as

SðP0kPgÞ≡
Z
β
d½Φ�ðP0 ln P0 − P0 ln PgÞ ≥ 0: ð1Þ

It is greater than or equal to zero, with the equality holding
if and only if Pg ¼ P0. Thanks to this non-negativity, the
relative entropy is often used as a distance between P0 and
Pg even though it is not a symmetric function of the two
sets of probabilities SðP0kPgÞ ≠ SðPgkP0Þ. A simple
algebra yields

SðP0kPgÞ ¼
Z
β
d½Φ�ðP0 ln P0 − P0 ln PgÞ

¼ − ln Z0½β;ϕ� þ ln Zg½β;ϕ� þ g ·
Z
β
d½Φ�P0 · II

¼ W0½β;ϕ�−Wg½β;ϕ� þ g · hIIig¼0; ð2Þ

FIG. 1. Schematic illustration of the distance between theory A
and theory B, defined by the action I0 and Ig, respectively. The
distance, i.e., the relative entropy between P0 and Pg, yields
lower and upper bounds on perturbative correction from the
interaction between heavy and light degrees of freedom to the
Euclidean effective action.

1The theory A is a reference theory to obtain constraints on the
low energy theory generated by Ig. Note that we discuss the
constraints on the theory described by Ig, not I0.

2This quantity is also called Kullback-Leibler divergence.
Sometimes, the Kullback-Leibler divergence is distinguished
from the quantum relative entropy defined as Sðρ0kρgÞ≡
Tr½ρ0 ln ρ0 − ρ0 ln ρg� for two density operators ρ0 and ρg. In
this paper, Eq. (1) plays a central role in deriving constraints on
EFTs rather than the above quantum relative entropy.
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where hIIig¼0 ≡
R
β d½Φ�P0 · II is an expectation value

of the interaction, which satisfies ðdWg=dgÞg¼0 ¼R
β d½Φ�P0 · II . Note here that the derivation of Eq. (2)
does not rely on the expansion in g. In Eq. (2), the path
integral is performed only over the heavy degrees of
freedom, and the self-interacting term of the light degrees
of freedom cancels in hIIig¼0. The path integral over the
light degrees of freedom does not change Eq. (2); see
Appendix B. It follows from the non-negativity of the
relative entropy that

ΔWðEÞ
g ≡Wg½β;ϕ� −W0½β;ϕ� ≤ g · hIIig¼0; ð3Þ

where ΔWðEÞ
g denotes the difference between the effective

actions of the two systems in the Euclidean space. Another
choice of relative entropy,

SðPgkP0Þ ¼Wg½β;ϕ�−W0½β;ϕ�− g ·
Z

d½Φ�Pg · II; ð4Þ

is related to the renormalization group [21]. It provides a

lower bound ΔWðEÞ
g ≥ g · hIIig with hIIig ≡

R
β d½Φ�Pg · II .

We end up with the inequalities

g · hIIig ≤ ΔWðEÞ
g ≤ g · hIIig¼0; ð5Þ

which implies that the sign of the interaction controls the
sign of perturbative corrections to the Euclidean effective
action. For example, the Euclidean effective action is
increased in the theory with g · hIIig ≥ 0 but decreased
in the theory with g · hIIig¼0 ≤ 0. We emphasize that the
inequalities (5) are applicable to the UV theories in which
one-loop contributions from one-light-particle-irreducible
diagrams with heavy-and-light-field mixing appear; then,
we perform the path integral over ϕ’s, i.e., focusing on the
case of d½Φ� → d½ϕ�d½Φ�. Even for such a case, Eq. (5)
holds; see Appendix B.
Here, we provide another explanation of the meaning of

the upper bound of Eq. (5). By expanding Wg½β;ϕ� with
respect to g, the upper bound of Eq. (5) yields

g2

2
·

�
d2Wg

dg2

�
g¼0

þOðg3Þ ≤ 0; ð6Þ

where Wg ½β;ϕ� ¼ W0 ½β;ϕ� þ g · ðdWg=dgÞg¼0 þ g2 ·
ðd2Wg=dg2Þg¼0=2þOðg3Þ. Note here that g · hIIig¼0

cancels in Eq. (6). Therefore, the upper bound of Eq. (5)
means that the Euclidean effective action decrease by the
perturbative corrections of the second- or higher-order
corrections for g.
As the inequalities (5) do not rely on either Lorentz

symmetry or gauge symmetry, it works for a wide class
of quantum theories that consist of both light and heavy

degrees of freedom. Consider thermodynamic systems
described by quantum mechanics, which generally do
not respect the Lorentz symmetry. Define the
Hamiltonian of the system as H ≡H0 þHI , where HI
denotes the interaction between light and heavy degrees of
freedom, and H0 does not involve the interactions. Define
the theory A as the Hamiltonian H0. By introducing
the auxiliary parameter g, also define the theory B as a
Hamiltonian Hg ≡H0 þ g ·HI. The density operators of
the theory A and B are respectively defined as follows:

ρ0 ≡ e−βH0

Z0ðβÞ
; ρg ≡ e−βHg

ZgðβÞ
ð7Þ

with the partition functions

Z0ðβÞ≡ Tr½e−βH0 �; ZgðβÞ≡ Tr½e−βHg �: ð8Þ

The non-negativity of relative entropy between ρ0 and ρg
yields

Sðρ0jjρgÞ ¼ Tr½ρ0 ln ρ0 − ρ0 ln ρg�
¼ − ln Z0ðβÞ þ ln ZgðβÞ þ g · βTr½ρ0HI�
¼ W0ðβÞ −WgðβÞ þ g · βhHIig¼0 ≥ 0; ð9Þ

where the effective actions, and the expectation value of the
interaction are defined as

W0ðβÞ≡ − ln Z0ðβÞ; ð10Þ

WgðβÞ≡ − ln Z0ðβÞ; ð11Þ

hHIig¼0 ≡ Tr½ρ0HI�: ð12Þ

Therefore, Eq. (9) yields

ΔWðEÞ
g ¼ WgðβÞ −W0ðβÞ ≤ g · βhHIig¼0: ð13Þ

This inequality means that the Euclidean action decreases
for the nonpositive interacting theory defined by
g · hHIig¼0 ≤ 0. Also, consider another choice of the
relative entropy Sðρgjjρ0Þ as follows:

Sðρgjjρ0Þ ¼ Tr½ρg ln ρg − ρg ln ρ0�
¼ − ln ZgðβÞ þ ln Z0ðβÞ − g · βTr½ρgHI�
¼ WgðβÞ −W0ðβÞ − g · βhHIig ≥ 0; ð14Þ

where hHIig ≡ Tr½ρgHI�. Thus, Eq. (14) yields

g · βhHIig ≤ WgðβÞ −W0ðβÞ ¼ ΔWðEÞ
g : ð15Þ
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Combining Eqs. (13) and (15), we obtain

g · βhHIig ≤ ΔWðEÞ
g ≤ g · βhHIig¼0: ð16Þ

This inequality corresponds to Eq. (5), and it is clear that
the UV properties such as symmetry is not necessary to
obtain the entropy constraints of Eq. (5).

III. EXAMPLES

Equipped with the distance between the two theories,
we are ready to discuss the entropy constraints on various
EFTs. In this section, under the setup of the previous
section, i.e., the Euclidean path integral method is valid,
and perturbative corrections are generated from the inter-
acting term, we take two different approaches, i.e., the
top-down approach and the bottom-up approach. In the top-
down approach, the relative entropy is evaluated in the UV
theories with the light and heavy degrees of freedom to
check the validity of the inequalities of (5). In the bottom-
up approach, it is supposed that the UV theory is not
specified for a given EFT, and the higher-dimensional
operators of the EFT are generated by integrating out the
heavy fields. We focus on the EFTs, where the perturbative
corrections to the leading terms, such as renormalizable
terms, can be eliminated by the field redefinition and study
the constraints on the EFTs.

A. Top-down approach

We adopt the top-down approach and check the con-
sistency of the entropy constraints by evaluating the
effective action of the UV theories. The temperature of
the system is assumed to be zero in the first four examples.
(a) A tree-level UV completion of the single massless

scalar field theory: Consider a theory in Minkowski
space,

IðMÞ ¼
Z

d4x

�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μΦ∂

μΦÞ − 1

2
m2Φ2

þ α

Λ
·Φð∂μϕ∂μϕÞ þ

β

Λ2
·Φ2ð∂μϕ∂μϕÞ

�
; ð17Þ

where ϕ denotes a massless scalar field, Φ is a heavy
scalar field with mass m, α, and β are dimensionless
parameters, and Λ is some mass scale. Define the
actions I0 and II in Minkowski space as follows:

IðMÞ
0 ¼

Z
d4x

�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μΦ∂

μΦÞ− 1

2
m2Φ2

�
;

ð18Þ

IðMÞ
I ¼ 1

Λ
·
Z

d4xΦð∂μϕ∂μϕÞ
�
αþ β

Λ
·Φ

�
: ð19Þ

The theory B is defined as Ig ≡ I0 þ g · II with the
parameter g. In this example, higher-dimensional
operators are generated at tree level, and the
interaction II does not contribute to the Euclidean
effective action at the first order for g. At tree level,
the Euclidean effective actions are calculated as
follows:

Wg½ϕ� ¼
Z

ðd4xÞE
�
−
1

2
ð∂μϕ∂μϕÞ

−
g2α2

2Λ2m2
ð∂μϕ∂μϕÞ2

�
; ð20Þ

W0½ϕ� ¼ −
Z

ðd4xÞE
1

2
ð∂μϕ∂μϕÞ: ð21Þ

From Eqs. (20) and (21), the shift of the Euclidean
effective action is obtained as

ΔWðEÞ
g ¼ −

g2α2

2Λ2m2

Z
ðd4xÞEð∂μϕ∂μϕÞ2: ð22Þ

Then, the expectation value of the interaction is
calculated as

g · hIIig¼0 ¼ g ·

�
dWg

dg

�
g¼0

¼ 0: ð23Þ

Combining the upper bound of Eqs. (5), (22), and (23),
we obtain the positivity bound as follows:

g2α2

2Λ2m2

Z
ðd4xÞEð∂μϕ∂μϕÞ2 ≥ 0 ⇒

g2α2

2Λ2m2
≥ 0:

ð24Þ

Therefore, the coefficient of the dimension-eight
operator of Eq. (20) is positive because of the non-
negativity of relative entropy.

(b) A tree-level UV completion of the single mass less
scalar field theory with a linear term: We discuss the
effects of the linear term of Φ in I0, which generally
generates a nonzero expectation value of the inter-
action hIIig¼0. As shown later, the constraints on EFTs
can arise even if hIIig¼0 takes a nonzero value.
Consider an action in Minkowski space defined as

IðMÞ ¼
Z

d4x
�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μΦ∂

μΦÞ

−
1

2
m2Φ2 þm2vΦ −

1

2
m2v2

þ α

Λ
·Φð∂μϕ∂μϕÞ þ

β

Λ2
·Φ2ð∂μϕ∂μϕÞ

�
; ð25Þ
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where v is a dimensionful parameter. Define I0 and II
as follows:

IðMÞ
0 ¼

Z
d4x

�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μΦ∂

μΦÞ

−
1

2
m2Φ2 þm2vΦ −

1

2
m2v2

�
; ð26Þ

IðMÞ
I ¼ 1

Λ
·
Z

d4xΦð∂μϕ∂μϕÞ
�
αþ β

Λ
·Φ

�
: ð27Þ

By introducing the parameter g, define the theory B as
Ig ≡ I0 þ g · II. The Euclidean effective actions are
calculated as follows:

Wg½ϕ�

¼
Z

ðd4xÞE
�
−
1

2

�
1þ 2g ·

αv
Λ

þ 2g ·
βv2

Λ2

�
ð∂μϕ∂μϕÞ

−
g2

2Λ2m2

�
αþ 2vβ

Λ

�
2

ð∂μϕ∂μϕÞ2
�
; ð28Þ

W0½ϕ� ¼ −
Z

ðd4xÞE
1

2
ð∂μϕ∂μϕÞ: ð29Þ

From Eqs. (28) and (29), the shift of the Euclidean
effective action is given by

ΔWðEÞ
g ¼ −g ·

v
Λ

�
αþ β

Λ
v
�Z

ðd4xÞEð∂μϕ∂μϕÞ

−
g2

2Λ2m2

�
αþ 2vβ

Λ

�
2
Z

ðd4xÞEð∂μϕ∂μϕÞ2:

ð30Þ

At tree level, the expectation value of II in Euclidean
space is calculated as

g · hIIig¼0

¼ g ·

�
dWg

dg

�
g¼0

¼−g ·
Z

d½Φ�P0 ·
Z

ðd4xÞE
1

Λ

�
αΦþ β

Λ
Φ2

�
ð∂μϕ∂μϕÞ

¼−g ·
v
Λ

�
αþ β

Λ
v

�Z
ðd4xÞEð∂μϕ∂μϕÞ; ð31Þ

where we used P0 ¼ e−I0=Z0 with Z0 ¼
R
d½Φ�e−I0 . It

is clear that the expectation value g · hIIig¼0 generally
takes a nonzero value even in the tree-level UV
completion. For v ¼ 0, both linear term of Φ in
Eq. (25) and expectation value g · hIIig¼0 vanish. This
fact holds in general UV theory involving the linear
term of Φ. Here, it should be noted that the constraint

on the higher-dimensional operators can be derived
even if g · hIIig¼0 takes a nonzero value. Combining
Eqs. (30), (31), and the upper bound of Eq. (5), the
expectation value g · hIIig¼0 cancels, and we obtain

ΔWðEÞ
g¼1≤ hIIig¼0

⇒
g2

2Λ2m2

�
αþ2vβ

Λ

�
2
Z

ðd4xÞEð∂μϕ∂μϕÞ2≥0

⇒
g2

2Λ2m2

�
αþ2vβ

Λ

�
2

≥0: ð32Þ

Consequently, the relative entropy yields the con-
straint on the coefficient of the dimension-eight
operator of Eq. (28). The reason why the expectation
value hIIig¼0 cancels in Eq. (32) is the same as that it
cancels in Eq. (6).
Here, we show that the expectation value g · hIIig¼0

can be removed by a redefinition of Φ. By defining
Φ≡ ηþ v, the action of Eq. (25) is expressed as
follows:

IðMÞ ¼
Z

d4x

�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μη∂μηÞ −

1

2
m2η2

þ α

Λ
· vð∂μϕ∂μϕÞ þ

β

Λ2
· v2ð∂μϕ∂μϕÞ

þ α

Λ
· ηð∂μϕ∂μϕÞ þ

β

Λ2
· 2vηð∂μϕ∂μϕÞ

þ β

Λ2
· η2ð∂μϕ∂μϕÞ

�
: ð33Þ

Note here that the liner term of η does not arise in
Eq. (33). Then, we define

I0ðMÞ
0 ≡

Z
d4x

�
1

2
ð∂μϕ∂μϕÞ þ

1

2
ð∂μη∂μηÞ −

1

2
m2η2

þ α

Λ
· vð∂μϕ∂μϕÞ þ

β

Λ2
· v2ð∂μϕ∂μϕÞ

�
; ð34Þ

I0ðMÞ
I ≡ 1

Λ
·
Z

d4xηð∂μϕ∂μϕÞ
�
αþ β

Λ
· 2vþ β

Λ
· η

�
;

ð35Þ

where I0I denotes the interaction, and I00 does not
involve it. By introducing the parameter g, define the
theory B as I0g ≡ I00 þ g · I0I. Then, the Euclidean
effective actions are calculated as follows:

W0
g½ϕ� ¼

Z
ðd4xÞE

�
−
1

2

�
1þ 2

αv
Λ

þ 2
βv2

Λ2

�
ð∂μϕ∂μϕÞ

−
g2

2Λ2m2

�
αþ 2vβ

Λ

�
2

ð∂μϕ∂μϕÞ2
�
; ð36Þ
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W0
0½ϕ� ¼ −

Z
ðd4xÞE

1

2

�
1þ 2

αv
Λ

þ 2
βv2

Λ2

�
ð∂μϕ∂μϕÞ:

ð37Þ

The shift of the Euclidean effective action is
calculated as

ΔW0ðEÞ
g ¼ W0

g½ϕ� −W0
0½ϕ�

¼ −
Z

ðd4xÞE
g2

2Λ2m2

�
αþ 2vβ

Λ

�
2

ð∂μϕ∂μϕÞ2:

ð38Þ

Since the linear term of η does not arises in Eq. (33),
the expectation value of the interaction II in Euclidean
space takes a zero value as follows:

g · hI0Iig¼0 ¼ g ·

�
dW0

g

dg

�
g¼0

¼ 0: ð39Þ

Then, from Eqs. (38), (39), and the upper bound of
Eq. (5), we obtain

W0
g½ϕ�≤ hI0Iig¼0

⇒
g2

2Λ2m2

�
αþ2vβ

Λ

�
2
Z

ðd4xÞEð∂μϕ∂μϕÞ2 ≥ 0

⇒
g2

2Λ2m2

�
αþ2vβ

Λ

�
2

≥ 0: ð40Þ

This result is the same as Eq. (32) because the
expectation value of the interaction II cancels in the
relative entropy, i.e., the relative entropy is invariant
under the redefinition to eliminate the linear term ofΦ.
Therefore, we found that the constraint on the EFT
does not depend on the condition of vanishing the
linear term.
The above explanations are based on the theory of

Eq. (25), but the invariance of the inequality of Eq. (3)
under the field redefinition to eliminate the linear term
of Φ hold in general UV theories. Similar to the above
explanations, take two different approaches.
First, consider the UV theory with the linear term as

follows:

I½ϕ;Φ� ¼ Ilin0 ½ϕ;Φ� þ II½ϕ;Φ�; ð41Þ

where Ilin0 involves the linear term of Φ, and II is the
interacting term. Consider the classical solution v of
Ilin0 , where indices of the classical solution, such as
Lorentz indices, are omitted. Also, the classical
solution of I for Φ is assumed to be vþ fðϕÞ, where

f depends on the light field ϕ because of the
interacting term II . Note here that fðϕÞ vanishes in
the limit of II → 0. By introducing the parameter g, we
define Ig ≡ Ilin0 þ g · II . At tree level, the Euclidean
effective actions of Ig¼1 and Ig¼0 are respectively
calculated as follows:

Wg¼1½ϕ� ¼ Ilin0 ½ϕ; vþ fðϕÞ� þ II½ϕ; vþ fðϕÞ�; ð42Þ

W0½ϕ� ¼ Ilin0 ½ϕ; v�: ð43Þ

The shift of the Euclidean effective action is
calculated as

ΔWðEÞ
g¼1 ≡Wg¼1½ϕ� −W0½ϕ�

¼ Ilin0 ½ϕ; vþ fðϕÞ�
þ II½ϕ; vþ fðϕÞ� − Ilin0 ½ϕ; v�: ð44Þ

The expectation value of the interaction II in the
Euclidean space is also calculated as

hIIig¼0 ¼
Z

d½Φ�P0½Φ�II½ϕ;Φ� ¼ II½ϕ; v�; ð45Þ

where P0½Φ�≡ e−I
lin
0 =Z0½ϕ� with Z0½ϕ�≡ R

d½Φ�e−Ilin0 .
Combining Eqs. (44), (45), and the inequality of
Eq. (3), we obtain

Wg¼1½ϕ� ≤ hIIig¼0

⇒ Ilin0 ½ϕ; vþ fðϕÞ� þ II½ϕ; vþ fðϕÞ�
− II½ϕ; v� − Ilin0 ½ϕ; v� ≤ 0: ð46Þ

This inequality corresponds to Eq. (32).
Next, consider the field redefinition Φ≡ ηþ v.

Then, Eq. (41) is expressed as

I½ϕ;Φ� ¼ Ilin0 ½ϕ; ηþ v� þ II½ϕ; ηþ v�
¼ ðIlin0 ½ϕ; ηþ v� þ II½ϕ; v�Þ
þ ðII½ϕ; ηþ v� − II½ϕ; v�Þ: ð47Þ

For convenience, define

I00½ϕ; η�≡ Ilin0 ½ϕ; ηþ v� þ II½ϕ; v�; ð48Þ

I0I½ϕ; η�≡ II½ϕ; ηþ v� − II½ϕ; v�; ð49Þ

where I00 does not include the linear term of η. By
introducing the parameter g, we also define
I0g ≡ I00 þ g · I0I. At tree level, the Euclidean effective
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actions of I0g and I00 are respectively calculated as
follows:

W0
g¼1½ϕ� ¼ I00½ϕ; fðϕÞ� þ I0I½ϕ; fðϕÞ�

¼ Ilin0 ½ϕ; vþ fðϕÞ� þ II½ϕ; v� þ I0I½ϕ; fðϕÞ�;
ð50Þ

W0
0½ϕ� ¼ Ilin0 ½ϕ; v� þ II½ϕ; v�: ð51Þ

Note here that the classical solution of I for η is fðϕÞ,
and that of I for Φ ¼ vþ η is vþ fðϕÞ. Similarly, the
classical solution of I00 for η is zero, and that of I00 for
Φ ¼ vþ η is v. Then, the shift of the Euclidean
effective action is calculated as

ΔW0
g¼1½ϕ�≡W0

g¼1½ϕ�−W0
0½ϕ�

¼ Ilin0 ½ϕ; vþ fðϕÞ� þ II½ϕ; v� þ I0I½ϕ; fðϕÞ�
− Ilin0 ½ϕ; v�− II½ϕ; v�

¼ Ilin0 ½ϕ; vþ fðϕÞ� þ I0I½ϕ; fðϕÞ�− Ilin0 ½ϕ; v�:
ð52Þ

The expectation value of the interaction II in the
Euclidean space is calculated as

hI0Iig¼0 ¼
Z

d½η�P0
0½η�I0I½ϕ; η� ¼ 0; ð53Þ

where P0
0½η�≡ e−I

0
0
½ϕ;η�=Z0

0½ϕ� with Z0
0½ϕ�≡

R
d½η�×

e−I
0
0
½ϕ;η�. Combining Eqs. (52), (53), and the inequality

of Eq. (3), we obtain

W0
g¼1½ϕ�≤ hI0Iig¼0

⇒ Ilin0 ½ϕ;vþ fðϕÞ�þ I0I½ϕ; fðϕÞ�− Ilin0 ½ϕ;v�
¼ Ilin0 ½ϕ; vþfðϕÞ�þ II½ϕ; vþfðϕÞ�− II½ϕ; v�
− Ilin0 ½ϕ; v�≤ 0: ð54Þ

This result is the same as Eq. (46). Consequently, it is
found that the inequality of Eq. (3) is invariant under
the field redefinition to remove the linear term of Φ.
We often define the heavy fields such that the linear
term vanishes for ease of calculation of the relative
entropy. We mention it in the following calculations
when such a definition is used.

(c) Euler-Heisenberg theory: The action of quantum
electrodynamics of electron field (ψ) in Minkowski
space is

IðMÞ ¼
Z

d4x

�
−
1

4
FμνFμν þ ψ̄ði=D −mÞψ

�
; ð55Þ

whereDμ ¼ ∂μ þ ieAμ is the covariant derivative,m is
the mass of ψ , and Fμν ¼ ∂μAν − ∂νAμ is the field
strength of photon. Define I0 and II as follows:

IðMÞ
0 ¼

Z
d4x

�
−
1

4
FμνFμν þ ψ̄ði=∂ −mÞψ

�
; ð56Þ

IðMÞ
I ¼ −e

Z
d4xψ̄γμψAμ: ð57Þ

By introducing the parameter g, the theory B is defined
as Ig ≡ I0 þ g · II . The Euclidean effective actions of
theories A and B are respectively calculated as follows:

W0½Ā� ¼
Z

ðd4xÞE
�
1

4
F̄μνF̄μν

�
; ð58Þ

Wg½Ā� ¼
Z

ðd4xÞE
�
1

4
F̄μνF̄μν

−
g4 · e4

6!π2m4
ðγ1ðF̄μνF̄μνÞ2 þ γ2ðF̄μν

˜̄FμνÞ2Þ
�
;

ð59Þ

where
R ðd4xÞE is the volume of Euclidean spacetime,

˜̄Fμν ¼ ϵμνρσF̄ρσ=2, the Wilson coefficents γ1 ¼ 1=2
and γ2 ¼ 7=8 [27], Āμ is the background field satisfy-
ing ∂μF̄μν ¼ 0 with constant F̄μν, and the vacuum
energy is omitted because it cancels in relative entropy.
The details of the wave function renormalizations are
explained in Appendix D. From Eqs. (58) and (59),
the difference of the Euclidean effective action at the
one-loop level is

ΔWðEÞ
g

¼ −
g4 · e4

6!π2m4

Z
ðd4xÞEðγ1ðF̄μνF̄μνÞ2 þ γ2ðF̄μν

˜̄FμνÞ2Þ:

ð60Þ

From Eq. (59), the expectation value of the interaction
II in the Euclidean space is also calculated as follows:

g · hIIig¼0 ¼ g ·

�
dWg

dg

�
g¼0

¼ 0: ð61Þ

Combining the inequality (5), Eqs. (61) and (60), the
shift of the Euclidean effective action is given by

ΔWðEÞ
g ≤ g · hIIig¼0

⇒ −
g4 · e4

6!π2m4

Z
ðd4xÞEðγ1ðF̄μνF̄μνÞ2

þ γ2ðF̄μν
˜̄FμνÞ2Þ ≤ 0: ð62Þ
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The left-hand side of Eq. (62) denotes the linear
combination of dimension-eight operators of Eq. (59),
and it is found that the constraints on the EFTs arise
from the relative entropy. Consequently, the Euler-
Heisenberg theory satisfies the non-negativity of rela-
tive entropy because γ1 and γ2 are positive values.

(d) Massive, gravitationally coupled scalar field at tree
level [12]; to explain how to define the interaction II
in gravitational theories, consider a simple theory in
Minkowski space,

IðMÞ½gμν;Rμνρσ; A;Φ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν

− ðaΦRþ bΦFμνFμνÞΦ

þ 1

2
gμν∂μΦ∂νΦ −

1

2
m2

ΦΦ2

�
; ð63Þ

where Rμνρσ is the Riemann tensor, R is the scalar
curvature, and aΦ; bΦ are dimensionful coupling
constants. Define the noninteracting and interacting
terms as follows:

IðMÞ
0 ½gμν;Rμνρσ; A;Φ� ¼ IðMÞ½gμν;Rμνρσ; A; 0�

þ IðMÞ½gμν; 0; 0;Φ�; ð64Þ
IðMÞ
I ½gμν;Rμνρσ; A;Φ� ¼ IðMÞ½gμν;Rμνρσ; A;Φ�

− IðMÞ
0 ½gμν;Rμνρσ; A;Φ�: ð65Þ

It should be noted that the theory A does not include
the interaction between Φ and Aμ, Rμνρσ, but the
interaction between gμν and Φ. The higher-derivative
operators generally arise from the interaction between
gμν and Φ, but such effects are discussed later in (h).
The theory B is defined as Ig ¼ I0 þ g · II with the
parameter g. In this example, I0 and II are obtained as

IðMÞ
0 ½gμν;Rμνρσ;A;Φ� ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

4
FμνFμν

þ 1

2
gμν∂μΦ∂νΦ−

1

2
m2

ΦΦ2

�
;

ð66Þ
IðMÞ
I ½gμν;Rμνρσ; A;Φ�

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ðaΦRþ bΦFμνFμνÞΦ: ð67Þ

The Euclidean effective actions of theories A and B are
respectively calculated as follows:

W0½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν

�
;

ð68Þ

Wg½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν

−
g2

2m2
Φ
ðaΦR̄þ bΦF̄μνF̄μνÞ2

�
; ð69Þ

where ḡμν and Āμ denote the background fields. From
Eqs. (68) and (69), the shift of the Euclidean effective
action is calculated as

ΔWðEÞ
g ¼ Wg½ḡμν; Ā� −W0½ḡμν; Ā�

¼ −
g2

2m2
Φ

Z
ðd4xÞE

ffiffiffī
g

p ðaΦR̄þ bΦF̄μνF̄μνÞ2:

ð70Þ

From Eq. (69), the expectation value of the interaction
II at the tree level is calculated as

g · hIIig¼0 ¼ g ·
�
dWg

dg

�
g¼0

¼ 0: ð71Þ

Equations (5), (70), and (71) yield

ΔWðEÞ
g ≤ g · hIIig¼0

⇒ −
g2

2m2
Φ

Z
ðd4xÞE

ffiffiffī
g

p ðaΦR̄þ bΦF̄μνF̄μνÞ2

≤ 0: ð72Þ

The left-hand side of Eq. (72) denotes the linear
combination of higher-dimensional operators of
Eq. (69), and the constraints on the EFT arise from
the relative entropy. As explained later, the entropy
constraints by the relative entropy is a generalization
of Ref. [12], which includes the result of Ref. [12].

(e) A spin system in one dimension: Consider a spin
system in one dimension defined by a Hamiltonian

Hμ ¼ −J
XN=2

i¼1

σ2i−1σ2i − μM
XN
i¼1

σi; ð73Þ

where σi ¼ �1 is a spin on site i, J is a coupling
constant characterizing exchange interactions, N is the
number of sites, μ is a magnetic moment, and M is an
external magnetic field. Then, define H0 and HI as
follows:

H0 ≡ −J
XN=2

i¼1

σ2i−1σ2i; HI ≡ −μM
XN
i¼1

σi: ð74Þ
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By introducing the parameter g, the theory B is defined
as Hg ≡H0 þ g ·HI . Then, density operators are
given by

ρ0 ¼
e−βH0

Z0ðβÞ
; ρg ¼

e−βHg

ZgðβÞ
; ð75Þ

with the partition functions,

Z0ðβÞ ¼ Tr½e−βH0 �
¼ ð2feβJ þ e−βJgÞN=2; ð76Þ

ZgðβÞ ¼ Tr½e−βHg �
¼ ð2feβJ coshð2βgμMÞ þ e−βJgÞN=2: ð77Þ

For each of the theories, the effective actions are defined
as W0ðβÞ¼−lnZ0ðβÞ, and WgðβÞ¼− lnZgðβÞ. The
expectation value of the interaction is calculated as
Tr½ρ0HI� ¼ 0, and the shift of the Euclidean effective
action is given by

ΔWðEÞ
g ¼ Wg½β� −W0½β�

¼ N
2

ln

�
eβJ þ e−βJ

eβJ coshð2βgμMÞ þ e−βJ

�
≤ 0: ð78Þ

This result is consistent with Eq. (13) because
coshð2βgμMÞ ≥ 1. The entropy constraints explain
why the free energy of the spin system decreases by
the external magnetic field.

B. Bottom-up approach

We adopt the bottom-up approach and derive the con-
straints on a class of EFTs, where corrections to the leading
terms, such as the kinetic term and the Einstein-Hilbert
term, can be eliminated by the redefinition of the light field.
For such a class of EFTs, consider the higher-dimensional
operators generated by integrating out Φ. The interaction
of the UV theory is generally expressed as II½ϕ;Φ�¼R ðd4xÞEO½Φ�⊗J½ϕ�. Throughout the bottom-up approach,
we suppose this general form of interaction for a given
EFT. Here, assume J½ϕ� does not include the higher-
dimensional operators. In other words, we assume cor-
rections from the interactions involving higher-derivative
operators of the light fields are not dominant in the EFTs.
The assumption is quantitatively reasonable because the
higher-dimensional operator J½ϕ� is suppressed by a
heavier mass than Φ. The expectation value of the
interaction is calculated as follows:

hIIig¼0 ¼
�
dWg

dg

�
g¼0

¼
Z

d½Φ�P0½Φ�II½ϕ;Φ�

¼
Z

ðd4xÞE
Z

d½Φ�P0½Φ�O½Φ� ⊗ J½ϕ�

¼
Z

ðd4xÞE
�
δWg

δJ

�
J¼0

⊗ J½ϕ�: ð79Þ

When J½ϕ� preserves the symmetries of the EFT, J½ϕ� can
be proportional to the leading term, such as the kinetic
term and the Einstein-Hilbert term, and generally takes a
nonzero value. If J½ϕ� is the higher-dimensional operator,
the EFT includes terms proportional to J½ϕ� generated
from degrees of freedom other than Φ. Therefore, it would
be quantitatively and qualitatively reasonable to impose
the above assumption. As explained later, hIIig¼0 can take
zero value by a suitable field redefinition when J½ϕ� does
not preserve the symmetries of the EFT, such as the gauge
symmetry.
We focus on two cases; tree-level UV completion and

loop-level UV completion. In the tree-level UV completion,
we assume the tree-level effects dominate the perturbative
corrections from the heavy degrees of freedom to the
Euclidean effective action. On the other hand, in the
loop-level UV completion, we assume the loop-level effects
dominate the perturbative corrections to the Euclidean
effective action. For each EFT, we evaluate the relative
entropy as follows:
(f) Single massless scalar field with dimension-eight

term: Consider an effective action in Minkowski space
defined by

IðMÞ
c ¼

Z
d4x

�
1

2
ð∂μϕ∂μϕÞ þ

c
Λ4

ð∂μϕ∂μϕÞ2
�
; ð80Þ

where we used a metric signature convention,
gμν ¼ diagðþ1;−1;−1;−1Þ, and the second term is
induced by integrating out heavy fields. Because of
the shift symmetry, ϕ → ϕþ const., Eq. (80) in-
volves only the kinetic term as the renormalizable
term, and corrections to the kinetic term can be
removed by the field redefinition of ϕ. We suppose
that the dimension-six operators are eliminated by
demanding ∂μ∂

μϕ̃ ¼ 0 with constant ∂
μϕ̃. Because

of the assumption, i.e., J½ϕ� does not include the
higher-derivative operators, J½ϕ� can be ∂μϕ or
∂μϕ∂

μϕ, which preserve the shift symmetry, but
∂μϕ effects on hIIig¼0 vanish because hIIig¼0 pre-
serves the Lorentz symmetry. When we suppose that
the EFT arises from integrating out heavy degrees of
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freedom, the first-order corrections for g to the
Euclidean effective action are expressed as

hIIig¼0 ¼
�
dWg

dg

�
g¼0

¼
Z

ðd4xÞE
�
δWg

δJ

�
J¼0

J½ϕ�

∝
Z

ðd4xÞEð∂μϕ∂μϕÞ: ð81Þ

For each tree and loop-level UV completions, we
evaluate the constraint from the relative entropy as
follows:
(i) Tree-level UV completion—First, consider the

EFT generated by the tree-level UV comple-
tion. Not depending on details of the UV theory,
up to the dimension-eight operator, the Euclid-
ean effective action of the theory B is calculated
as follows:

Wg½ϕ� ¼
Z

ðd4xÞE
�
1

2
ð1þ αtree2 Þð∂μϕ∂μϕÞ

− βtree2 ð∂μϕ∂μϕÞ2
�
; ð82Þ

where αtree2 and βtree2 denote the second or
higher-order corrections for g. Note here that
βtree2 does not include the first-order correction
for g because of the assumption, i.e., J½ϕ� does
not include the higher-dimensional operators. It
is assumed that αtree2 and βtree2 are generated at
the tree level. Also, according to the procedure
in Eqs. (47)–(49), the first-order correction for g
is removed in αtree2 . We choose the background
fields as ∂μϕ̃ ¼ const to remove the dimension-
six operators. The Euclidean effective actions of
the theory B and A are respectively obtained as

Wg½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ

− βtree2 · ð1þ αtree2 Þ−2ð∂μϕ̃∂μϕ̃Þ2
�
;

ð83Þ

W0½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ

�
; ð84Þ

where the wave function renormalization is
performed in Eq. (83); see Appendix D. Note
here that ϕ̃ is also a classical solution of W0½ϕ�.
Then, the shift of the Euclidean effective action
is calculated as

ΔWðEÞ
g ¼ Wg½ϕ̃� −W0½ϕ̃�

¼ −βtree2 · ð1þ αtree2 Þ−2

×
Z

ðd4xÞEð∂μϕ̃∂μϕ̃Þ2: ð85Þ

Also, from Eq. (83), we obtain�
dWg

dg

�
g¼0

¼ 0: ð86Þ

The detail derivation of Eq. (86) is provided in
Appendix D. From Eq. (5) or (B12), combining
Eq. (85) and (86) yields

ΔWðEÞ
g ≤ g · hIIig¼0

⇒ −βtree2 · ð1þ αtree2 Þ−2

×
Z

ðd4xÞEð∂μϕ̃∂μϕ̃Þ2 ≤ 0

⇒ βtree2 · ð1þ αtree2 Þ−2 ≥ 0: ð87Þ
Equation (87) denotes the constraint on the
coefficient of dimension-eight operator of
Eq. (83).

(ii) Loop-level UV completion—Next, consider the
EFT generated by the loop-level UV comple-
tion. The Euclidean effective action of the
theory B is calculated as follows:

Wg½ϕ�¼
Z

ðd4xÞE
�
1

2
ð1þαloop1 þαloop2 Þð∂μϕ∂μϕÞ

−βloop2 ð∂μϕ∂μϕÞ2þEvac

�
; ð88Þ

where αloop1 is the first-order correction for g,
αloop2 , and βloop2 are the second- or higher-order
correction for g, and Evac is the vacuum energy
coming from Φ and ϕ. It is assumed that αloop1 ,
αloop2 , and βloop2 are generated from the loop
corrections of Φ. We choose ∂μϕ̃ ¼ const to
remove the dimension-six operators. Since the
background field ϕ̃ is also a classical solution of
W0½ϕ�, the Euclidean effective action for the
theory B and A are respectively obtained as
Eq. (D15),

Wg½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 Þð∂μϕ̃∂μϕ̃Þ

− βloop2 ð∂μϕ̃∂μϕ̃Þ2 þ Evac

�
; ð89Þ

W0½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ þ Evac

�
:

ð90Þ
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Then, the shift of the Euclidean effective action is
obtained as

ΔWðEÞ
g ¼ Wg½ϕ̃� −W0½ϕ̃�

¼ 1

2
αloop1

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ

− βloop2

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ2: ð91Þ

Also, from Eqs. (81) and (89), we obtain�
dWg

dg

�
g¼0

¼ 1

2

dαloop1

dg
·
Z

ðd4xÞEð∂μϕ̃∂μϕ̃Þ;

ð92Þ

where αloop1 denotes the first-order correction
for g and satisfies a relation of the form
g · ðdαloop1 =dgÞ ¼ αloop1 . From Eq. (5) or (B12),
combining Eqs. (91) and (92) yields

ΔWðEÞ
g ≤ g · hIIig¼0

⇒ −βloop2

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ2 ≤ 0

⇒ βloop2 ≥ 0: ð93Þ
Equation (93) yields the constraint on the di-
mension-eight operator generated at the loop
level.

For both tree and loop-level UV completion,
demanding ∂μ∂

μϕ̃ ¼ 0 with constant ∂μϕ̃, after
Wick rotation the inequality (5) gives rise to

c
Λ4

Z
d4xEð∂μϕ̃∂μϕ̃Þ2 ≥ 0 ⇒

c
Λ4

≥ 0: ð94Þ

Consequently, the coefficient c must be positive
to respect the entropy constraints, when it arises
from integrating out the heavy fields. This result
is the same as the positivity bound from the
unitarity and causality.

(g) Standard Model EFT (SMEFT) dimension-eight
SUðNÞ gauge bosonic operators. Consider an effective
action in Minkowski space defined by

IðMÞ
SMEFT ¼

Z
d4x

�
−
1

4
Fa
μνFa;μν þ 1

Λ4

X
i

ciOi

�
; ð95Þ

where the dimensional-eight operators Oi’s are [26]

OF4

1 ¼ ðFa
μνFa;μνÞðFb

ρσFb;ρσÞ; ð96Þ
OF4

2 ¼ ðFa
μνF̃a;μνÞðFb

ρσF̃b;ρσÞ; ð97Þ
OF4

3 ¼ ðFa
μνFb;μνÞðFa

ρσFb;ρσÞ; ð98Þ

OF4

4 ¼ ðFa
μνF̃b;μνÞðFa

ρσF̃b;ρσÞ; ð99Þ
OF4

5 ¼ dabedcdeðFa
μνFb;μνÞðFc

ρσFd;ρσÞ; ð100Þ
OF4

6 ¼ dabedcdeðFa
μνF̃b;μνÞðFc

ρσF̃d;ρσÞ; ð101Þ
OF4

7 ¼ dacedbdeðFa
μνFb;μνÞðFc

ρσFd;ρσÞ; ð102Þ
OF4

8 ¼ dacedbdeðFa
μνF̃b;μνÞðFc

ρσF̃d;ρσÞ; ð103Þ

ÕF4

1 ¼ ðFa
μνFa;μνÞðFb

ρσF̃b;ρσÞ; ð104Þ

ÕF4

2 ¼ ðFa
μνFb;μνÞðFa

ρσF̃b;ρσÞ; ð105Þ

ÕF4

3 ¼ dabedcdeðFa
μνFb;μνÞðFc

ρσF̃d;ρσÞ; ð106Þ

ÕF4

4 ¼ dacedbdeðFa
μνFb;μνÞðFc

ρσF̃d;ρσÞ; ð107Þ

where Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field

strength of the gauge field Aa
μ and g denotes the gauge

coupling of SUðNÞ. The Greek letters stand for
Lorentz indices, the italic letters represent SUðNÞ
color indices, and totally antisymmetric and symmet-
ric structure constants are defined by ½Ta; Tb� ¼
ifabcTc and fTa; Tbg ¼ δab1̂=N þ dabcTc with Ta

the generator of SUðNÞ Lie algebra. To avoid
the effect from the dimension-six operators
fabcFaν

μ Fbρ
ν Fcμ

ρ and fabcFaν
μ Fbρ

ν F̃cμ
ρ , we follow [26]

to choose a background field satisfying the leading-
order equation of motion, ∂μFa

μν þ gfabcAμbFc
μν ¼ 0,

in Minkowski space as Āa
μ ¼ ua1ϵ1μw1 þ ua2ϵ2μw2 with

fabcua1u
b
2 ¼ 0, where u1;2 is a constant real vector in

SUðNÞ color space, ϵ1;2 is a constant four-vector, and
w1;2 is an arbitrary Cartesian coordinate in spacetime
satisfying ∂μw1 ¼ lμ and ∂μw2 ¼ kμ with lμ and kμ
being constant four-vectors.
When J½Aa

μ� does not include the higher-
dimensional operators, there are two cases: (i) J½Aa

μ�
preserves the gauge symmetry or (ii) not. For case (i),
J½Aa

μ� ∝ Fa
μνFa;μν holds. The CP-violating term gen-

erally arises, but we assume such a term is removed by
axionlike degrees of freedom in the UV theory. Then,
from Eq. (79), the first-order corrections for g to the
Euclidean effective action are expressed as

hIIig¼0 ¼
�
dWg

dg

�
g¼0

¼
Z

ðd4xÞE
�
δWg

δJ

�
J¼0

J½Aa
μ�

∝
Z

ðd4xÞEFa
μνFa;μν: ð108Þ

For case (ii), J½Aa
μ� can be proportional to Aa

μ, or Aa
μAa;μ

because of the covariant derivative of the kinetic term.
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Since corrections from the interacting terms of the
higher-dimensional operators would not be dominant
effects, we focus on corrections from the kinetic terms.
However, J½Aa

μ� ∝ Aa
μ vanishes because hIIig¼0 keeps

the Lorentz symmetry. Although J½Aa
μ� ∝ Aa

μAa;μ gen-
erally remains, it can be eliminated by the gauge fixing
condition, which is called a nonlinear gauge; see
Refs. [28,29]. Therefore, we focus on the case of
Eq. (108) below. For each tree and loop-level UV
completions, the constraints on the SMEFT from the
relative entropy are evaluated as follows:
(i) Tree-level UV completion—Consider the EFT

generated by the tree-level UV completion. The
Euclidean effective action of the theory B is
generally calculated as follows:

Wg½A� ¼
Z

ðd4xÞE
�
1

2
ð1þ αtree2 ÞFa

μνFa;μν

−
X
i

βtreei;2 Oi½A�
�
; ð109Þ

where αtree2 and βtreei;2 denote the second- or
higher-order corrections for g, and βtreei;2 does
not include the first-order correction for g
because of Eq. (109). The corrections αtree2

and βtreei;2 are assumed to be generated at the
tree level. According to the procedure in
Eqs. (47)–(49), the first-order correction for g
is eliminated in αtree2 . The background fields are
chosen to hold F̄μν ¼ const Since Āa

μ is also a
classical solution of W0½A�, the Euclidean
effective actions of the theory B and A are
respectively obtained as follows:

Wg½Ā� ¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν

−
X
i

βtreei;2 · ð1þ atree2 Þ−2Oi½Ā�
�
;

ð110Þ

W0½Ā� ¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν

�
; ð111Þ

where the wave function renormalization is
performed in Eq. (110); see Eq. (D24). Then,
the shift of the Euclidean effective action is
calculated as follows:

ΔWðEÞ
g ¼Wg½Ā�−W0½Ā�

¼−
X
i

βtreei;2 ·ð1þatree2 Þ−2
Z

ðd4xÞEOi½Ā�:

ð112Þ

From Eq. (110), the first-order correction for g
is calculated as�

dWg

dg

�
g¼0

¼ 0: ð113Þ

From Eq. (5) or (B12), combining Eqs. (112)
and (113) yields

ΔWðEÞ
g ≤ g · hIIig¼0

⇒
X
i

βtreei;2 · ð1þ atree2 Þ−2

×
Z

ðd4xÞEOi½Ā� ≥ 0: ð114Þ

The left-hand side of Eq. (114) denotes the
coefficients of the dimension-eight operators of
Eq. (110). Therefore, the relative entropy yields
the constraints on the linear combination of the
dimension-eight operators.

(ii) Loop-level UV completion—Consider the
SMEFT generated by the loop-level UV com-
pletion. The Euclidean effective action of the
theory B is generally calculated as follows:

Wg½A� ¼
Z

ðd4xÞE

×

�
1

2
ð1þ αloop1 þ αloop2 ÞFa

μνFa;μν

−
X
i

βloop2;i Oi½A� þ Evac

�
; ð115Þ

where αloop1 is the first-order correction for g,
αloop2 , and βloop2;i are the second- or higher-order
correction for g, and Evac is the vacuum energy
coming from Φ and Aa

μ. It is assumed that αloop1 ,

αloop2 , and βloop2;i arise from the loop corrections
of Φ. We choose the background field satisfy-
ing F̄a

μν ¼ const to remove the dimension-six
operators. Āa

μ is also a classical solution of
W0½A�, and the Euclidean effective actions of
the theory B and A are respectively obtained as
Eq. (D32),

Wg½Ā� ¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 ÞF̄a

μνF̄a;μν

−
X
i

βloop2;i Oi½Ā� þ Evac

�
; ð116Þ

W0½Ā�¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μνþEvac

�
; ð117Þ
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where the wave function renormalization is
performed in Eq. (116); see Eq. (D29). Then,
the shift of the Euclidean effective action is
calculated as follows:

ΔWðEÞ
g ¼ Wg½Ā� −W0½Ā�

¼
Z

ðd4xÞE
�
1

2
αloop1 F̄a

μνF̄a;μν

−
X
i

βloop2;i Oi½Ā�
�
: ð118Þ

Also, from Eq. (116), the first-order corrections
for g is calculated as

�
dWg

dg

�
g¼0

¼ 1

2

dαloop1

dg

Z
ðd4xÞEF̄a

μνF̄a;μν;

ð119Þ

where g · ðdαloop1 =dgÞ ¼ αloop1 . From Eqs. (5) or
(B12), combining Eqs. (118) and (119) yields

ΔWðEÞ
g ≤ g · hIIig¼0

⇒
X
i

βloop2;i

Z
ðd4xÞEOi½Ā� ≥ 0: ð120Þ

Equation (120) yields the constraint on the
dimension-eight operator generated at the loop
level.

It is found that, for both tree- and loop-level
UV completion, the inequality (5) gives rise to

1

Λ4

X
i

ciOi½Ā� ≥ 0: ð121Þ

After Wick rotation, Eq. (121) yields

A · cos2 ψ þ B · sin2 ψ þ C · sin ψ cos ψ ≥ 0;

ð122Þ

where

A ¼ N½ð2c1 þ c3Þðu1 · u2Þ2 þ c3u21u
2
2

þ 2ðc5 þ c7ÞU2� þ 2c7½ðu1 · u2Þ2 − u21u
2
2�;

B ¼ N½ð2c2 þ c4Þðu1 · u2Þ2 þ c4u21u
2
2

þ 2ðc6 þ c8ÞU2� þ 2c8½ðu1 · u2Þ2 − u21u
2
2�;

C ¼ N½ð2c̃1 þ c̃2Þðu1 · u2Þ2 þ c̃2u21u
2
2

þ 2ðc̃3 þ c̃4ÞU2� þ 2c̃4½ðu1 · u2Þ2 − u21u
2
2�;

ð123Þ

with Ua ¼ dabcub1u
c
2, lμ ¼ ð1; 0;− sin ψ ;

cos ψÞ= ffiffiffi
2

p
, kμ ¼ ð1; 1; 0; 0Þ= ffiffiffi

2
p

, ϵμ1 ∝ ð0; 1;
0; 0Þ, and ϵμ2 ∝ ð0; 0; 0; 1Þ. We end up with
positivity bounds as follows:

A ≥ 0; B ≥ 0; C2 ≤ 4AB; ð124Þ
which are completely consistent with the
positivity bounds from unitarity and causality
[26,29]. More comprehensive constraints are
studied in Ref. [29] by considering more gen-
eral solutions, which yield additional con-
straints on the Wilson coefficients of SUð3Þ
gauge bosonic operators.

(h) Einstein-Maxwell theory with higher-derivative oper-
ators: Consider a gravitational effective action in
Minkowski space defined by

IðMÞ
EM ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν

þ α1
4M2

Pl

ðFμνFμνÞ2 þ α2
4M4

Pl

ðFμνF̃μνÞ2

þ α3
2M2

Pl

FμνFρσRμνρσ

�
; ð125Þ

where other operators up to four-derivative are elim-
inated by the field redefinition of gμν. Also, the Gauss-
Bonnet combination, i.e., RμνρσRμνρσ − 4RμνRμν þ R2,
is a total derivative and vanishes in four dimensions.
Consider the higher-derivative operators generated
from the UV theory defined by I½gμν;Rμνρσ; A;Φ�,
where gμν is the metric of space-time, Rμνρσ is the
Riemann tensor, Aμ is the Uð1Þ gauge boson, and Φ is
the heavy degrees of freedom. Then, the noninteract-
ing and interacting terms are defined as Eqs. (66)
and (67). It should be noted that the theory of I0 does
not include the interaction between Aμ; Rμνρσ, and Φ,
but the interaction between gμν and Φ. The gravita-
tional operators up to four-derivative such as R2

μν are
generated from I0 and can contribute to α1 and α2 by
the field redefinition of gμν. Our entropy consideration
does not constrain such effects because the relative
entropy constrains only the higher-derivative operators
generated from the interaction II . In the following
explanations, especially for loop-level UV theory, we
suppose that the R2

μν operator effects are not dominant
by assuming a large charge-to-mass ratio of the
particle integrated out.
Similar to the SMEFT, when J½gμν;Rμνρσ; Aμ� does

not include the higher-derivative operators, there
are two cases: (i) J½gμν;Rμνρσ; Aμ� ∝ FμνFμν or R,
and (ii) J½gμν;Rμνρσ; Aμ� ∝ Aμ, or AμAμ. Because of
the same reason as the SMEFT, we focus on the
following case:
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hIIig¼0 ¼
�
dWg

dg

�
g¼0

¼
Z

ðd4xÞE
�
δWg

δJ

�
J¼0

J½gμν;Rμνρσ; Aμ�

∝
Z

ðd4xÞE
ffiffiffi
g

p
FμνFμν or

Z
ðd4xÞE

ffiffiffi
g

p
R:

ð126Þ

For each tree- and loop-level UV completions, the
constraints on the EFT from the relative entropy are
evaluated as follows:
(i) Tree-level UV completion—Consider the EFT

generated by the tree-level UV completion.
Then, by integrating out the heavy fields, the
Euclidean effective action is generally calcu-
lated as follows:

Wg½gμν; A�

¼
Z

ðd4xÞE
ffiffiffi
g

p �
−
M2

Pl

2
ð1þ αtree2;RÞR

þ 1

4
ð1þ αtree2;FÞFμνFμν − βtree2;1 ðFμνFμνÞ2

− βtree2;2 ðFμνF̃μνÞ2 − βtree2;3FμνFρσRμνρσ

�
;

ð127Þ

where αtree2;R , α
tree
2;F , β

tree
2;1 , β

tree
2;2 , and βtree2;3 denote the

second- or higher-order corrections for g. Note
here that βtree2;1 , β

tree
2;2 , and βtree2;3 do not include the

first-order correction for g because of Eq. (126).
According to the procedure in Eqs. (47)–(49),
the first-order correction for g is eliminated in
αtree2;R and αtree2;F . Since the gravitational higher-
derivative operators involving the Riemann
tensor can be removed by field redefinition,
and the Riemann-squared operator vanishes in
four dimensions, we omit such terms. The
effective actions of the theory B and A are
respectively obtained as Eq. (D44),

Wg½ḡμν; Ā�

¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν

− βtree2;1

�
1þ 2

3
αtree2;R − 2αtree2;F

�
ðF̄μνF̄μνÞ2

− βtree2;2 ð1þ 2αtree2;R − 2αtree2;FÞðF̄μν
˜̄FμνÞ2

− βtree2;3

�
1þ 1

3
αtree2;R − αtree2;F

�
F̄μνF̄ρσR̄μνρσ

�
;

ð128Þ

W0½ḡμν; Ā�

¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν

�
;

ð129Þ

where Āμ and ḡμν include the effects of the
higher-derivative terms. It should be noted
that the first-order correction for the higher-
derivative terms vanishes in W0 by using the
equation of motion. Then, the shift of the

Euclidean effective action ΔWðEÞ
g denotes cor-

rections from the higher-derivative terms. Also,
from Eq. (128), the first-order correction for g is
calculated as �

dWg

dg

�
g¼0

¼ 0: ð130Þ

From Eq. (5) or (B12), combining Eqs. (128)
and (130) yields

ΔWðEÞ
g ≤ 0: ð131Þ

This inequality means that the relative entropy
yields the negative shift of the Euclidean
effective action by the higher-derivative oper-
ators generated at tree level.

(ii) Loop-level UV completion—Next, consider the
EFT generated by the loop-level UV comple-
tion. The Euclidean effective actions of the
theory B and A are respectively obtained as
Eqs. (D53) and (D54),

Wg½ḡμν; Ā�

¼
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R ÞR̄

þ 1

4
ð1þ αloop1;F ÞF̄μνF̄μν − βloop2;1 ðF̄μνF̄μνÞ2

− βloop2;2 ðF̄μν
˜̄FμνÞ2 − βloop2;3 F̄μνF̄ρσR̄μνρσ

þ ðcorrection from R and FμνFμνÞ
�
;

ð132Þ

W0½ḡμν; Ā�

¼
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
R̄þ 1

4
F̄μνF̄μν

þ ðcorrection from R and FμνFμνÞ
�
;

ð133Þ
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where βloop2;1 , βloop2;2 , and βloop2;3 are the second- or

higher-order corrections for g, αloop1;R and αloop1;F

are the first-order corrections for g, and Λloop
0;Φ is

the vacuum energy coming from Φ. The last
terms of Eqs. (132) and (133) arise from the
one-loop correction of light fields in M2

PlR=2
and FμνFμν=4. Since such a correction does not
depend on g, they cancel in relative entropy.
From Eq. (132), the first-order correction for g
is calculated as

�
dWg

dg

�
g¼0

¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2

dαloop1;R

dg
R̄

þ 1

4

dαloop1;F

dg
F̄μνF̄μν

�
; ð134Þ

where g · ðdαloop1;R =dgÞ ¼ αloop1;R and g·ðdαloop1;F =

dgÞ¼αloop1;F . From Eq. (5) or (B12), Eqs. (132)–
(134) yield

ΔWðEÞ
g ≤ g · hIIig¼0

⇒ Wnon-lin
g ½ḡμν; Ā� −W0½ḡμν; Ā� ≤ 0:

ð135Þ

Here, we defined the effective action without
the first-order corrections for g as follows:

Wnon-lin
g ½ḡμν; Ā�

¼
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
R̄þ 1

4
F̄μνF̄μν

− βloop2;1 ðF̄μνF̄μνÞ2 − βloop2;2 ðF̄μν
˜̄FμνÞ2

− βloop2;3 F̄μνF̄ρσR̄μνρσ

þ ðcorrection from R and FμνFμνÞ
�
:

ð136Þ

It should be noted that the one-loop corrections
from R and FμνFμν cancel in Eq. (135). There-
fore, Wnon-lin

g ½ḡμν; Ā� −W0½ḡμν; Ā� denotes the
shift of the Euclidean effective action by the
higher-derivative operators. Consequently, even
for the loop-level UV completion, the relative
entropy yields the negative shift of the Euclid-
ean effective action by the higher-derivative
operators.

For both tree- and loop-level UV completion,
it is found that the non-negativity of relative
entropy yields the negative shift of the

Euclidean effective action by the higher-deriva-
tive operators. As explained in the next section,
this result is closely related to the WGC-like
behavior.

Here, we consider the relative entropy when
additional higher-derivative operators are added
to theory A. In Eq. (135), the loop effects from
light fields cancel in the relative entropy, and
the relative entropy does not depend on whether
the higher-derivative operators are added to the
theory A or not. Consider the action of theory A
with the additional higher-derivative operators
as follows:

I0 → I00 ¼ I0 þ Ic; ð137Þ

where Ic denotes the additional higher-
derivative operators consisting of light fields.
Then, the Euclidean effective action of theory A
of Eq. (133) is modified as follows:

W0½ḡμν; Ā� → W0
0½ḡμν; Ā�

¼ W0½ḡμν; Ā� þ Ic½ḡμν; Ā�; ð138Þ

where Ic eliminates the divergences of loop
effects from the light fields and would make the
probability distribution function well-defined.
Note here that Ic does not depend on the
parameter g because the theory A is defined
from the action Ig by taking the limit of g ¼ 0.
In other words, the action of theory B is also
modified as follows:

Ig → I0g ¼ Ig þ Ic: ð139Þ

Then, the Euclidean effective action of the
theory B of Eq. (132) is also rewritten as
follows:

Wg½ḡμν; Ā� → W0
g½ḡμν; Ā�

¼ Wg½ḡμν; Ā� þ Ic½ḡμν; Ā�; ð140Þ

where Ic also eliminates the divergences com-
ing from the loop effects from the light fields in
the effective action of theory B. Then, the
relative entropy of Eq. (2) is modified as
follows:

SðP0jjPgÞ ¼ W0 −Wg þ g ·

�
dWg

dg

�
g¼0

→ W0
0 −W0

g þ g ·

�
dW0

g

dg

�
g¼0

;

ð141Þ
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where we used hIIig¼0 ¼
R
β d½Φ�P0 · II ¼

ðdWg=dgÞg¼0 in the first line. Substituting
Eqs. (138) and (140) into Eq. (141), we obtain

W0
0 −W0

g þ g ·

�
dW0

g

dg

�
g¼0

¼ W0 −Wg þ g ·

�
dWg

dg

�
g¼0

¼ SðP0jjPgÞ; ð142Þ

where Ic cancels in W0
0 −Wg, and

ðdW0
g=dgÞg¼0 ¼ ðdWg=dgÞg¼0 holds because

Ic does not depend on the parameter g. There-
fore, the relative entropy of Eq. (2) does not
depend on whether the higher-derivative oper-
ators consisting of the light fields are added to
the theory A.

(i) Weak gravity conjecture: Last but not the least, we
discuss the close connection between the entropy
inequality (5) and the WGC. The WGC states that
quantum gravity theories have to contain a charged
particle with the charge-to-mass ratio larger than unity,
which is motivated by a gedanken experiment of the
decay of an extremal black hole. The extremality
bound, M ≥ Mext ¼ Q where M and Q denote the
mass and charge of the black hole described by
the Einstein-Maxwell theory and Mext represents the
minimum mass, would indicate existence of a particle
with the charge-to-mass ratio larger than unity. The
extremality bound is modified by a perturbative
correction in the Einstein-Maxwell theory; however,
the conclusion of the above gedanken experiment
remains for an extremal BH of arbitrary large size
if the perturbative correction does reduceMext at fixed
charge. Based on thermodynamic, Ref. [16] general-
izes a relation between the perturbative corrections to
the black hole entropy and the extremality bound [12]
to a wide class of thermodynamic system as

�
∂Mext

∂ϵ

�
Q⃗
¼ lim

M→MextðQ⃗;ϵÞ
−
1

β

�
∂S
∂ϵ

�
M;Q⃗

; ð143Þ

where ϵ is the parameter introduced to characterize the
perturbative corrections in the system, and Q⃗ is the
charge. Note here that the extremal limit is taken in
Eq. (143). From Eq. (143), if ϵ · ð∂S=∂ϵÞM;Q⃗ > 0, then
a perturbed extremal system is less massive than its
unperturbed counterpart at fixed charge.

Consider the effective action including the perturbative
correction as

Wϵ½β;ϕ� ¼ W0½β;ϕ� þ ϵ · ð∂Wϵ=∂ϵÞϵ¼0; ð144Þ

where ϵ · ð∂Wϵ=∂ϵÞϵ¼0 ≡ ΔWðEÞ
g ≤ g · hIIig¼0 in accord to

the inequality (3). Note that ϵ · ð∂Wϵ=∂ϵÞϵ¼0 contains the
higher-order correction of Oðg2Þ. Again, the parameter ϵ
characterizes the perturbative corrections and we consider
the leading term of ϵ hereafter. The free energy of
the thermodynamic system, G≡M − S=β − Q⃗ · μ⃗, is
expressed as

G½β; μ⃗; ϵ� ¼ β−1 ·Wϵ½β; ϕ̃ϵ�; ð145Þ

where ϕ̃ϵ is a local minimum of Wϵ, β is the inverse
temperature, S is the thermodynamic entropy, and μ⃗ is the
chemical potential. Therefore, the difference in the free
energy between the two theories is

ΔG≡ G½β; μ⃗; ϵ� −G½β; μ⃗; 0� ¼ 1

β
ϵ ·

�
∂Wϵ

∂ϵ

�
ϵ¼0

¼ ΔWðEÞ
g

β
;

ð146Þ

whereWϵ½β; ϕ̃ϵ� ¼ Wϵ½β; ϕ̃0� þOðϵ2Þ is used because ϕ̃ϵ is
a local minimum of Wϵ. In gravitational EFTs, this point
has been mentioned in Ref. [16] with special attention to
contributions from boundary terms. From the relation
ð∂S=∂ϵÞM;Q⃗ ¼ −βð∂G=∂ϵÞβ;μ⃗ in Refs. [14,16], we obtain

ϵ ·
1

β

�
∂S
∂ϵ

�
M;Q⃗

¼ −ϵ ·
�
∂G
∂ϵ

�
β;μ⃗

¼ −
ΔWðEÞ

g

β
: ð147Þ

Combining Eqs. (5) and (147), lower and upper bounds on
the perturbative correction to entropy are given by

−
1

β
g · hIIig ≥ ϵ ·

1

β

�
∂S
∂ϵ

�
M;Q⃗

≥ −
1

β
g · hIIig¼0: ð148Þ

For the EFTs discussed in Sec. III B, under the assumption
that J does not include the higher-derivative operators, the
shift of the Euclidean effective action by the higher-
derivative operators becomes nonpositive at zero temper-
ature. When we substitute such nonpositive-perturbative
corrections from the higher-derivative operators into ϵ ·
ð∂Wϵ=∂ϵÞϵ¼0 in Eq. (144), the right-hand side of Eq. (147)
takes a non-negative value up to the first order of the
higher-derivative operators, and the WGC-like behavior
arises in the EFTs discussed in Sec. III B. In particular, to
derive the above arguments for the Einstein-Maxwell
theory with higher-derivative operators, it is also supposed
that the R2

μν operator effects are not dominant because of a
large charge-to-mass ratio of the particle integrated out.
Note here that the exception is possible because the entropy
constraints rely on the Euclidean path-integral method.
Some conditions to apply the entropy constraints are
explained in Appendix E. Although the entropy constraint
is a generalization of Ref. [12], investigations of the
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adaption range of the entropy constraint on the WGC is one
of our future directions.
We comment on a connection between this work and

Ref. [12]. In Ref. [12], it is demonstrated that the Euclidean
effective action decreases by higher-derivative operators
generated at tree level. For convenience, we briefly review
it. At finite temperature β, consider the actions I0 and Ig.
The saddle point approximation yields

I0½ϕ̃0; 0� ¼ Ig½ϕ̃0; 0� ≥ Ig½ϕ̃g; Φ̃g�; ð149Þ

where ϕ̃0 is the classical solution of I0, ϕ̃g and Φ̃g are those
of Ig, and Ig½ϕ̃0; 0� ¼ I0½ϕ̃0; 0� holds because the interacting
term of Ig vanishes for Φ ¼ 0. It should be noted that the
relation

lim
ϕ̃g→ϕ̃0;Φ̃g→0

Ig½ϕ̃g; Φ̃g� ¼ I0½ϕ̃0; 0� ¼ lim
g→0

Ig½ϕ̃g; Φ̃g� ð150Þ

is derived by taking the limit of g ¼ 0 in this work. Thus,
I0½ϕ̃0; 0�, and Ig½ϕ̃g; Φ̃g� are the Euclidean effective action
of the theory A and B, respectively. Since Φ̃g denotes the
local minimum of Ig and would take a small value because
of heavy field mass suppressions, the inequality of (149)
arises by the saddle point approximation. The action I0
does not generate the higher-dimensional operators, but the
action Ig yields them through the interacting term between
ϕ and Φ. Therefore, the inequality (149) means that the
Euclidean effective action decreases by higher-dimensional
operators generated at tree level. In other words, at
fixed temperature β, the free energy decreases by higher-
dimensional operators generated at tree level. Note here
that the inequality of (149) does not need the extremal limit
to be valid. Although the origin of the inequality is slightly
different, Ref. [12] is essentially the same as this work at
the tree level.

IV. IMPLICATION OF ENTROPY CONSTRAINT

The entropy constraint is intimately connected to the
unitarity of time evolution. In the study, the canonical
distributions are adopted as the density operator, which is a
positive semidefinite (Hermitian) operator with trace one.
In other words, the Hamiltonians of the two theories
are Hermitian to ensure the non-negativity of relative
entropy. Therefore, the entropy constraint on the EFTs is
consistent with the positivity bound obtained from unitarity
considerations.
So far we have studied the constraints on theories from

the non-negativity of relative entropy, however, the second
law of thermodynamics is also intimately connected with
the non-negativity of relative entropy [6]. For example,
consider a thermodynamic system consisting of a system,
and an external heat bath system described by the
Hamiltonian HB. We assume that the initial state of the

entire system is ρS ⊗ e−βHB=ZB, where ρS is a quantum
state of the system, β is an inverse temperature of the
external heat bath system, and ZB ≡ TrB½e−βHB � is obtained
by tracing out the heat bath system degrees of freedom.
After the time evolution by the unitary operator U, the final
state of the entire system becomes Uρg ⊗ e−βHB=ZBU†.
Then, the final state of the system is obtained as ρ̃S ≡
TrB½Uρg ⊗ e−βHB=ZBU†� by tracing out the heat bath
system. The definition of relative entropy Eq. (1) yields [6]

SðUρS ⊗ e−βHB=ZBU†kρ̃S ⊗ e−βHB=ZBÞ
¼ Δs − β · Δq ≥ 0; ð151Þ

where Δs≡ −TrS½ρ̃S ln ρ̃S� þ TrS½ρS ln ρS� denotes the dif-
ference in the thermodynamic entropy of the system, Δq≡
Tr½ρS ⊗ e−βHB=ZBHB� − Tr½ρS ⊗ e−βHB=ZBU†HBU� is a
heat exchange between the system and the external heat
bath system, and the second term −β · Δq represents the
difference in the thermodynamic entropy of external heat
bath systems at inverse temperature β. Therefore, the non-
negativity of relative entropy yields the second law of
thermodynamics, and any theory violating the non-
negativity of relative entropy does not respect the second
law of thermodynamics. It is remarkable that the non-
negativity of relative entropy yields a unified understanding
of various phenomena, e.g., the positivity bounds on EFTs,
the WGC-like behavior in thermodynamics, and the second
law of thermodynamics.

V. CONCLUDING REMARKS

In this Letter, we have studied the positivity bounds on
EFTs, and the WGC-like behavior in thermodynamics in
terms of the non-negativity of relative entropy. Form the
relative entropy, we obtained the lower and upper bounds
on perturbative corrections from the interaction between
heavy and light degrees of freedom to the Euclidean
effective action. We argued that the bounds are applicable
in both field theoretical systems and quantum mechanical
systems. Focusing on the class of EFTs, e.g., the single
massless scalar field with dimension-eight term, SMEFT
SUðNÞ gauge bosonic operators, and Einstein-Maxwell
theory with higher-derivative operators, generated by the
interactions, we found that the upper bound yields the
positivity bounds as the same as those derived by unitarity
and causality in the conventional EFT study [26]. This
argument holds when the corrections from the interactions
involving higher-derivative operators of the light fields are
not dominant in the EFTs. By combining the entropy
constraints and pure thermodynamics, it is also shown that
theWGC-like behavior arises in some EFTs, e.g., the single
massless scalar field with dimension-eight term, SMEFT
SUðNÞ gauge bosonic operators, and Einstein-Maxwell
theory with higher-derivative operators, up to the first order
of the higher-derivative operators. Finally, we remark that
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the positivity bounds on EFTs, the WGC-like behavior in
thermodynamics, and the second law of thermodynamics
are intimately connected by the non-negativity of relative
entropy.
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APPENDIX A: DEFINITION OF I0 AND Ig

We study the relative entropy between a theory with and
without interactions between heavy and light degrees of
freedom. In this section we provide a definition of the
two theories by using some examples. Let us consider
a theory defined by an action I0½ϕ;Φ� þ II½ϕ;Φ�.
Throughout this paper, it is supposed that I0 does not
involve interactions between ϕ’s and Φ’s, and II denotes
the interactions. To characterize the interaction, we intro-
duce an auxiliary parameter g and define an action
Ig½ϕ;Φ�≡ I0½ϕ;Φ� þ g · II½ϕ;Φ�. The theory A and B
are defined as I0½ϕ;Φ� and Ig½ϕ;Φ�, respectively. Note
here that, for g ¼ 1, the theory B reproduces the original
action defined by I0½ϕ;Φ� þ II½ϕ;Φ�. For ease of under-
standing, we provide the definitions of I0 and Ig by using
some examples.
(A) A loop-level UV completion of the single massless

scalar field theory with dimension-eight term: Let us
consider a theory in Minkowski space,

IðMÞ ¼
Z

d4x

�
1

2
ð∂μϕ∂μϕÞ

þ ψ̄

�
i=∂ −

1

v
=∂ϕγ5 −m

�
ψ

�
; ðA1Þ

where ϕ denotes a massless scalar field, and ψ is a
heavy fermion feild with mass m. We define an
action Ig ≡ I0 þ g · II with

IðMÞ
0 ¼

Z
d4x

�
1

2
ð∂μϕ∂μϕÞ þ ψ̄ði=∂ −mÞψ

�
;

IðMÞ
I ¼ −

1

v

Z
d4xψ̄=∂ϕγ5ψ : ðA2Þ

Then, the upper bound of Eq. (5) becomes zero,
because a tadpole diagram proportional to g van-
ishes. Consequently, the positivity bound of Eq. (95)
arises.

(B) Massive scalar field theory in linearized gravity: Let
us consider following theory in Minkowski space:

IðMÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν

þ gμνDμΦDνΦ� −m2jΦj2

− VðΦÞ þ 1

2
ξRjΦj2

�
; ðA3Þ

where Φ is a massive charged-scalar field, DμΦ ¼
ð∂μ þ ieAμÞΦ, and ξ is a dimensionless coupling
constant. We can define as

IðMÞ
0 ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

4
FμνFμν

�

þ
Z

d4x
ffiffiffiffiffiffi
−η

p ðημν∂μΦ∂νΦ−m2jΦj2 −VðΦÞÞ;

ðA4Þ

IðMÞ
I ¼ IðMÞ − IðMÞ

0 : ðA5Þ

Then, the theory B is defined as Ig ¼ I0 þ g · II by
introducing the coupling g. Let us consider a
classical fluctuation of the metric hμν around the
flat metric ημν,

gμν ¼ ημν þ hμν: ðA6Þ

At the linearized level, we obtain

IðMÞ
0 ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν

�

þ
Z

d4xðημν∂μΦ∂νΦ� −m2jΦj2 − VðΦÞÞ;

ðA7Þ

IðMÞ
I ¼

Z
d4x

�
ημνð−ieAνð∂μΦÞΦ� þ ieAμΦ∂νΦ�Þ

þ e2AμAνjΦj2 þ 1

2
ημνhμνðημνDμΦDνΦ�

−m2jΦj2 − VðΦÞÞ þ hμνDμΦDνΦ�

þ 1

2
ξRjΦj2

�
: ðA8Þ

It is clear that the II denotes the interaction between
graviton, photon and massive scalar field, and I0
does not involve it.
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APPENDIX B: DERIVATION OF EQUATION (5)

For convenience, we would like to provide details of the derivation of Eq. (5). The relative entropy is calculated as
follows:

SðP0jjPgÞ≡
Z

d½Φ�ðP0 lnP0 − P0 lnPgÞ;

¼
Z

d½Φ�ðP0ð−I0½ϕ;Φ� − lnZ0½β;ϕ�Þ − P0ð−Ig½ϕ;Φ� − lnZg½β;ϕ�ÞÞ;

¼ − lnZ0½β;ϕ� þ lnZg½β;ϕ� þ
Z

d½Φ�P0ðIg½ϕ;Φ� − I0½ϕ;Φ�Þ;

¼ W0½β;ϕ� −Wg½β;ϕ� þ g · hIIig¼0;

¼ −ΔWðEÞ
g þ g · hIIig¼0 ≥ 0; ðB1Þ

where the probability distributions are defined as

P0 ≡ e−I0½ϕ;Φ�

Z0½β;ϕ�
; Pg ≡ e−Ig½ϕ;Φ�

Zg½β;ϕ�
: ðB2Þ

The first line denotes the definition of the relative entropy.
In the second line, we used the following relations:

lnP0 ¼ −I0½ϕ;Φ� − lnZ0½β;ϕ�; ðB3Þ

lnPg ¼ −Ig½ϕ;Φ� − lnZg½β;ϕ�: ðB4Þ

In the fourth line, we used the following definitions:

W0½β;ϕ�≡ − lnZ0½β;ϕ�; ðB5Þ

Wg½β;ϕ�≡ − lnZg½β;ϕ�; ðB6Þ

g · hIIig¼0 ≡
Z

d½Φ�P0ðIg½ϕ;Φ� − I0½ϕ;Φ�Þ

¼
Z

d½Φ�P0g · II½ϕ;Φ�: ðB7Þ

In the last line, we used the non-negativity of relative

entropy and ΔWðEÞ
g ≡Wg½β;ϕ� −W0½β;ϕ�. From Eq. (B1),

the upper bound of the shift of the Euclidean effective
action is expressed as

ΔWðEÞ
g ≤ g · hIIig¼0: ðB8Þ

Similarly, another choice of the relative entropy is calcu-
lated as follows:

SðPgjjP0Þ≡
Z

d½Φ�ðPg lnPg − Pg lnP0Þ;

¼
Z

d½Φ�ðPgð−Ig½ϕ;Φ� − lnZg½β;ϕ�Þ − Pgð−I0½ϕ;Φ� − lnZ0½β;ϕ�ÞÞ;

¼ − lnZg½β;ϕ� þ lnZ0½β;ϕ� −
Z

d½Φ�PgðIg½ϕ;Φ� − I0½ϕ;Φ�Þ;

¼ Wg½β;ϕ� −W0½β;ϕ� − g · hIIig;
¼ ΔWðEÞ

g − g · hIIig ≥ 0: ðB9Þ

In the fourth line, we used

g · hIIig ¼
Z

d½Φ�PgðIg½ϕ;Φ� − I0½ϕ;Φ�Þ

¼
Z

d½Φ�Pgg · II½ϕ;Φ�: ðB10Þ

The last line yields the lower bound of the shift of the
Euclidean effective action as follows:

g · hIIig ≤ ΔWðEÞ
g : ðB11Þ

Combining Eqs. (B8) and (B11), we get Eq. (5). Note here
that the derivation of Eq. (5) does not depend on the detail
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form of Ig. Since, however, the relative entropy is calcu-
lated based on the Euclidean path-integral method, Eq. (5)
may be broken when the Euclidean path-integral method
does not work, see Appendix E.
For the dynamical light fields, similar to Eq. (2), the

relative entropy is calculated as follows:

SðP0kPgÞ ¼
Z
β
d½ϕ�d½Φ�ðP0 lnP0 − P0 lnPgÞ

¼ − lnZ0½β; ϕ̃0� þ lnZg½β; ϕ̃g�

þ g
Z
β
d½ϕ�d½Φ�P0 · II

¼ W0½β; ϕ̃0� −Wg½β; ϕ̃g� þ g · hIIig¼0

¼ −ΔWðEÞ
g þ g · hIIig¼0 ≥ 0; ðB12Þ

whereW0½β; ϕ̃0�≡− lnZ0½β; ϕ̃0�,Wg½β; ϕ̃g�≡− lnZg½β; ϕ̃g�,
ΔWðEÞ

g ≡Wg½β; ϕ̃g� −W0½β; ϕ̃0�, and the partition functions
are defined as

Z0½β; ϕ̃0�≡
Z
β
d½ϕ�d½Φ�e−I0½ϕ;Φ�; ðB13Þ

Zg½β; ϕ̃g�≡
Z
β
d½ϕ�d½Φ�e−Ig½ϕ;Φ�: ðB14Þ

The expectation value of the interaction is expressed as

hIIig¼0 ¼
�
∂Wg½β; ϕ̃g�

∂g

�
g¼0

; ðB15Þ

where the partial derivative is performed with the fixed
classical solution ϕ̃g.
Also, the another choice of relative entropy of Eq. (4) is

calculated as follows:

SðPgkP0Þ ¼
Z
β
d½ϕ�d½Φ�ðPg lnPg − Pg lnP0Þ

¼ − lnZg½β; ϕ̃g� þ lnZ0½β; ϕ̃0�

− g
Z
β
d½ϕ�d½Φ�Pg · II

¼ Wg½β; ϕ̃g� −W0½β; ϕ̃0� − g · hIIig
¼ ΔWðEÞ

g − g · hIIig ≥ 0; ðB16Þ

where the expectation value of the interaction is
expressed as

hIIig ¼
�
∂Wg½β; ϕ̃g�

∂g

�
g
: ðB17Þ

Here, similar to Eq. (B15), the partial derivative is
performed with the fixed classical solution.

APPENDIX C: RELATIVE ENTROPY UNDER
FIELD REDEFINITION

To demonstrate how to use the entropy constraints, let us
consider theories described by the following functions:

I0½xl; xh� ¼ m2
hx

2
h þm2

l x
2
l ; II½xl; xh� ¼ c · xlxh; ðC1Þ

where xl and xh denote the light and heavy degrees of
freedom, respectively, and mh, ml, and c are coupling
constants. We define Ig ≡ I0 þ g · II with the parameter g.
Then, probability distribution functions are defined as
follows:

P0½xl; xh�≡ e−I0½xl;xh�

Z0½xl�
; Pg½xl; xh�≡ e−Ig½xl;xh�

Zg½xl�
; ðC2Þ

with the partition functions

Z0½xl� ¼
Z

∞

−∞
dxhe−I0½xl;xh� ¼ e−m

2
l x

2
l

ffiffiffiffiffiffi
π

m2
h

r
; ðC3Þ

Zg½xl� ¼
Z

∞

−∞
dxhe−Ig½xl;xh� ¼ Z0½xl� · eg2c2x2l =4m2

h : ðC4Þ

The expectation value of the interaction is calculated as

g · hIIig¼0 ¼
Z

∞

−∞
dxhP0½xl; xh�II½xl; xh� ¼ 0: ðC5Þ

Combining Eq. (C3), (C4), and (C5), the relative entropy
between P0 and Pg is calculated as

SðP0jjPgÞ ¼
Z

∞

−∞
dxhðP0 lnP0 − P0 lnPgÞ;

¼ − lnZ0½xl� þ lnZg½xl� þ g · hIIig¼0;

¼ − lnZ0½xl� þ lnZg½xl�;

¼ g2c2x2l
4m2

h

≥ 0: ðC6Þ

It is clear that entropy constraint is satisfied in systems
described by the Gaussian distributions. Note here that the
relative entropy is invariant under the field redefinition of xh.
Although the definition of the interaction of Eq. (C1) is not
invariant under the redefinition of xh, the definition of the
relative entropy of Eq. (1) and the integral of the Gaussian
distributions do not change under the field redefinition.
To see the invariant formulation under the field redefi-

nition, let us consider a tree-level UV completion described
by the following action in Euclidean space:

IðEÞ ¼
Z

ðd4xÞE
�
1

4
FμνFμν þm2

Aϕ
2
A −

1

M
ϕAFρσFρσ

�
;

ðC7Þ
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where ϕA is an auxiliary field. We define the theory B as
Ig ¼ I0 þ g · II with the parameter g, and

IðEÞ0 ¼
Z

ðd4xÞE
�
1

4
FμνFμν þm2

Aϕ
2
A

�
; ðC8Þ

IðEÞI ¼ −
Z

ðd4xÞE
�
1

M
ϕAFρσFρσ

�
: ðC9Þ

At tree level, the expectation value of the interaction II is
calculated as

hIIig¼0 ¼
dWg

dg

����
g¼0

¼
Z

d½ϕA�P0II ¼ 0: ðC10Þ

Therefore, the definition of the relative entropy yields

SðP0jjPgÞ ¼ W0½β;ϕ� −Wg½β;ϕ� þ g · hIIig¼0

¼ W0½β;ϕ� −Wg½β;ϕ�

¼ g2 ·
Z

ðd4xÞE
�

1

4m2
AM

2
ðFρσFρσÞ2

�
≥ 0;

ðC11Þ

where we used

Wg½β;ϕ� ¼
Z

ðd4xÞE
�
1

4
FμνFμν − g2 ·

1

4m2
AM

2
ðFρσFρσÞ2

�
;

ðC12Þ

W0½β;ϕ� ¼
Z

ðd4xÞE
�
1

4
FμνFμν

�
: ðC13Þ

Here, consider a field redefinition,

ϕA → ϕA þ g ·
1

2m2
AM

FρσFρσ: ðC14Þ

Under this field redefinition, the actions are transformed as

IðEÞ0 → I0ðEÞ0 ¼
Z

ðd4xÞE
�
1

4
FμνFμν þm2

Aϕ
2
A þ g ·

1

M
ϕAFρσFρσ þ g2 ·

1

4m2
AM

2
ðFρσFρσÞ2

�
; ðC15Þ

g · IðEÞI → g · I0ðEÞI ¼ g · IðEÞI − g2 ·
Z

ðd4xÞE
1

2m2
AM

2
ðFρσFρσÞ2; ðC16Þ

IðEÞg → I0ðEÞg ¼
Z

ðd4xÞE
�
1

4
FμνFμν þm2

Aϕ
2
A − g2 ·

1

4m2
AM

2
ðFρσFρσÞ2

�
: ðC17Þ

Similarly, the relative entropy is transformed as

SðP0jjPgÞ → SðP0
0jjP0

gÞ; ðC18Þ

where P0
0 ¼ e−I

0
0=Z0

0½β;ϕ� and P0
g ¼ e−I

0
g=Z0

g½β;ϕ� with Z0
0½β;ϕ� ¼

R
d½ϕA�e−I00 and Z0

g½β;ϕ� ¼
R
d½ϕA�e−I0g . Then, the

relative entropy SðP0
0jjP0

gÞ is calculated as

SðP0
0jjP0

gÞ ¼
Z

d½ϕA�ðP0
0 lnP

0
0 − P0

0 lnP
0
gÞ ðC19Þ

¼ − lnZ0
0½β;ϕ� þ lnZ0

g½β;ϕ� þ
Z

d½ϕA�P0
0ðI0g − I00Þ

¼ W0
0½β;ϕ� −W0

g½β;ϕ� − g2 ·
1

2m2
AM

2
ðFρσFρσÞ2 − g ·

Z
d½ϕA�P0

0

Z
ðd4xÞE

1

M
ϕAðFρσFρσÞ

¼ W0
0½β;ϕ� −W0

g½β;ϕ�

¼ g2 ·
Z

ðd4xÞE
�

1

4m2
AM

2
ðFρσFρσÞ2

�
≥ 0; ðC20Þ
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where we used following relations:Z
d½ϕA�P0

0

Z
ðd4xÞE

1

M
ϕAðFρσFρσÞ

¼ −g ·
1

2m2
AM

2
ðFρσFρσÞ2; ðC21Þ

W0
0½β;ϕ� ¼ W0½β;ϕ�; ðC22Þ

W0
g½β;ϕ� ¼ Wg½β;ϕ�: ðC23Þ

Comparing Eqs. (C11) and (C20), we found that the
relative entropy is invariant under the field redefinition.
Although, in this paper, we focus on the case that II
represents the interactions between the heavy and light
degrees of freedom, the formulation using the relative
entropy does not depend on whether II represents the
interactions. In fact, as shown in Eq. (C16), noninteracting
terms arise after the field redefinition. The key point is that
the formulation using the relative entropy is invariant under
the field redefinition once I0 and II are defined.

APPENDIX D: WAVE FUNCTION
RENORMALIZATION IN RELATIVE ENTROPY

We evaluate the entropy constraints on EFTs paying
particular attention to the wave function renormalization.
To clarify the wave function renormalization, we suppose
that the light fields are dynamical and evaluate the

relative entropy by the procedure of Appendix B. We
focus on two cases: tree-level UV completion and loop-
level UV completion. In the tree-level UV completion,
we assume the tree-level effects dominate the perturba-
tive corrections from the heavy degrees of freedom to the
effective actions. On the other hand, in the loop-level UV
completion, we assume the loop-level effects dominate
the perturbative corrections to effective actions. For the
two cases, we calculate the relative entropy of each EFTs
as follows:

1. Single massless scalar field with dimension-eight term

According to the assumptions, i.e., J½ϕ� does not include
the higher-dimensional operators, J½ϕ� ∝ ∂μϕ∂

μϕ may
hold. Then, from Eq. (79), the first-order corrections for
g to the Euclidean effective action are expressed as

hIIig¼0 ¼
�
dWg

dg

�
g¼0

∝
Z

ðd4xÞEð∂μϕ∂μϕÞ: ðD1Þ

Note here that J½ϕ� can be proportional to ϕ, ∂μϕ, and so on,
but the EFT does not respect the symmetry of the EFTs,
such as the Lorentz symmetry and the global shift
symmetry.

(i) Tree-level UV completion—First, consider the EFT
generated by the tree-level UV completion. Then,
not depending on the details of the UV theory, the
partition function is calculated as follows:

Zg½ϕ̃� ¼
Z

d½ϕ�d½Φ�e−Ig½ϕ;Φ�

¼
Z

d½ϕ� exp
�
−
Z

ðd4xÞE
�
1

2
ð1þ αtree2 Þð∂μϕ∂μϕÞ − βtree2 ð∂μϕ∂μϕÞ2

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αtree2 Þð∂μ eϕ0

∂
μ eϕ0Þ − βtree2 ð∂μ eϕ0

∂
μ eϕ0Þ2

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ − βtree2 · ð1þ αtree2 Þ−2ð∂μϕ̃∂μϕ̃Þ2

��
; ðD2Þ

where αtree2 and βtree2 denote the second or higher-order corrections for g. Note here that βtree2 does not include the first-
order correction for g because of Eq. (D1). It is assumed that αtree2 , and βtree2 are generated at the tree level. Also, in the
second line, according to the procedure in Eq. (47), (48), and (49), the first-order correction for g is eliminated in
αtree2 . The background field ϕ̃0 denotes the classical solution of the effective action of

Wg½ϕ� ¼
Z

ðd4xÞE
�
1

2
ð1þ αtree2 Þð∂μϕ∂μϕÞ − βtree2 ð∂μϕ∂μϕÞ2

�
: ðD3Þ

The equation of motion of Wg½ϕ� is expressed as

ð1þ αtree2 Þ∂μ∂μϕ − βtree2 ∂μð∂νϕ∂νϕ∂μϕÞ ¼ 0: ðD4Þ
To remove the dimension-six operators, we choose the background fields as follows:

eϕ0 ¼ ð1þ αtree2 Þ−1=2 · ϕ̃; ðD5Þ
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where ∂μϕ̃ ¼ const Note here that the background field ϕ̃ is also a classical solution of W0½ϕ�. Therefore, the
Euclidean effective actions of theories B and A are respectively obtained as

Wg½ϕ̃� ¼ − lnZg½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ − βtree2 · ð1þ αtree2 Þ−2ð∂μϕ̃∂μϕ̃Þ2

�
; ðD6Þ

W0½ϕ̃� ¼ − lnZ0½ϕ̃� ¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ

�
: ðD7Þ

Then, the shift of the Euclidean effective action is calculated as

ΔWðEÞ
g ¼ Wg½ϕ̃� −W0½ϕ̃�

¼ −βtree2 · ð1þ αtree2 Þ−2
Z

ðd4xÞEð∂μϕ̃∂μϕ̃Þ2: ðD8Þ

Also, from Eq. (D6), we obtain the following relation�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
�
δWg

δeϕ0

�
·

�
deϕ0

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

¼ 0; ðD9Þ

where ðdϕ̃0=dgÞg¼0 ¼ 0 because αtree2 denotes the second- or higher-order corrections for g. From Eq. (5) or (B12),
combining Eqs. (D8) and (D9) yields

ΔWðEÞ
g ≤ g · hIIig¼0 ⇒ −βtree2 · ð1þ αtree2 Þ−2

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ2 ≤ 0

⇒ βtree2 · ð1þ αtree2 Þ−2 ≥ 0: ðD10Þ
Equation (D10) denotes the constraint on the coefficient of dimension-eight operator of Eq. (D6).

(ii) Loop-level UV completion—Next, consider the EFT generated by the loop-level UV completion. Then, the partition
function is calculated as follows:

Zg½ϕ̃� ¼
Z

d½ϕ�d½Φ�e−Ig½ϕ;Φ�

¼
Z

d½ϕ� exp
�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 Þð∂μϕ∂μϕÞ − βloop2 ð∂μϕ∂μϕÞ2 þ EΦ

vac

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 Þð∂μ eϕ0

∂
μ eϕ0Þ − βloop2 ð∂μ eϕ0

∂
μ eϕ0Þ2 þ Evac

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 Þð∂μϕ̃∂μϕ̃Þ − βloop2 ð∂μϕ̃∂μϕ̃Þ2 þ Evac

��
; ðD11Þ

where αloop1 is the first-order correction for g, αloop2 , and βloop2 are the second- or higher-order correction for g, EΦ
vac is

the vacuum energy coming from the loop-level correction of Φ, and Evac is the vacuum energy of Φ and ϕ. It is
assumed that αloop1 , αloop2 , and βloop2 are generated from the loop corrections ofΦ. The background field ϕ̃0 denotes the
classical solution of the effective action of

Wg½ϕ� ¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 Þð∂μϕ∂μϕÞ − βloop2 ð∂μϕ∂μϕÞ2

�
: ðD12Þ

The equation of motion of Eq. (D12) is expressed as follows:

ð1þ αloop1 þ αloop2 Þ∂μ∂μϕ − βloop2 ∂μð∂νϕ∂νϕ∂μϕÞ ¼ 0: ðD13Þ
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We choose the background field as follows:

eϕ0 ¼
�
1 −

1

2
αloop2

�
· ϕ̃; ðD14Þ

where ∂μϕ̃ ¼ const to remove the dimension-six
operators. Since the background field ϕ̃ is also
a classical solution of W0½ϕ�, the Euclidean
effective actions of theories B and A are respectively
obtained as

Wg½ϕ̃� ¼ − lnZg½ϕ̃�

¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 Þð∂μϕ̃∂μϕ̃Þ

− βloop2 ð∂μϕ̃∂μϕ̃Þ2 þ Evac

�
; ðD15Þ

W0½ϕ̃� ¼ − lnZ0½ϕ̃�

¼
Z

ðd4xÞE
�
1

2
ð∂μϕ̃∂μϕ̃Þ þ Evac

�
: ðD16Þ

Then, the shift of the Euclidean effective action is
calculated as

ΔWðEÞ
g ¼ Wg½ϕ̃� −W0½ϕ̃�

¼ 1

2
αloop1 ·

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ

− βloop2

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ2: ðD17Þ

Also, from Eq. (D15), we obtain�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
�
δWg

δeϕ0

�
·

�
deϕ0

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

¼ 1

2

dαloop1

dg
·
Z

ðd4xÞEð∂μϕ̃∂μϕ̃Þ; ðD18Þ

where ðdϕ̃0=dgÞg¼0 ¼ 0 is used. Note here that αloop1

denotes the first-order correction for g and satisfies a
relation of the form g · ðdαloop1 =dgÞ ¼ αloop1 . From
Eqs. (5) or (B12), combining Eqs. (D17) and (D18)
yields

ΔWðEÞ
g ≤g ·hIIig¼0⇒−βloop2

Z
ðd4xÞEð∂μϕ̃∂μϕ̃Þ2≤0

⇒βloop2 ≥0: ðD19Þ

In the loop-level UV completions, Eq. (D19) yields
the constraint on the dimension-eight operator gen-
erated at the loop level.

2. SMEFT dimension-eight SUðNÞ
gauge bosonic operators

When J½Aa
μ� does not include the higher-dimensional

operators, there are two cases: (i) J½Aa
μ� preserves the gauge

symmetry or (ii) not. For case (i), J½Aa
μ� ∝ Fa

μνFa;μν holds.
In general, the CP-violating term arises, but we supposed
that such a term is removed by axionlike degrees of
freedom in the UV theory. Then, from Eq. (79), the
first-order corrections for g to the Euclidean effective
action are expressed as

hIIig¼0 ¼
�
dWg

dg

�
g¼0

∝
Z

ðd4xÞEFa
μνFa;μν: ðD20Þ

For case (ii), J½Aa
μ� can be proportional to Aa

μ, and Aa
μAa;μ

because of the covariant derivative of the kinetic term.
Since corrections from the interacting terms of the higher-
dimensional operators would not be dominant effects, we
focus on corrections from the kinetic terms. Then, J½Aa

μ� ∝
Aa
μ vanishes because hIIig¼0 keeps the Lorentz symmetry.

Although J½Aa
μ� ∝ Aa

μAa;μ generally remains, it can be
eliminated by the gauge-fixing condition. Therefore, we
focus on the case of Eq. (D20) below.

(i) Tree-level UV completion—Consider the EFT gen-
erated by the tree-level UV completion. The parti-
tion function is generally calculated as follows:

Zg½A� ¼
Z

d½A�d½Φ�e−Ig½A;Φ�

¼
Z

d½A� exp
�
−
Z

ðd4xÞE
�
1

2
ð1þ αtree2 ÞFa

μνFa;μν −
X
i

βtreei;2 Oi½A�
��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αtree2 ÞF0a

μνF0a;μν −
X
i

βtreei;2 Oi½A0�
��

¼ exp
�
−
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν −

X
i

βtreei;2 · ð1þ αtree2 Þ−2Oi½Ā�
��

; ðD21Þ
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where αtree2 and βtreei;2 denote the second- or higher-order corrections for g, and βtreei;2 does not include the first-order
correction for g because of Eq. (D20). The corrections αtree2 and βtreei;2 are assumed to be generated at the tree level.
According to the procedure in Eqs. (47)–(49), the first-order correction for g is eliminated in αtree2 . The background
field A0a

μ denotes the classical solution of the effective action of

Wg½A� ¼
Z

ðd4xÞE
�
1

2
ð1þ αtree2 ÞFa

μνFa;μν −
X
i

βtreei;2 Oi½A�
�
: ðD22Þ

The background fields are chosen as follows:

A0a
μ ¼ ð1þ αtree2 Þ−1=2 · Āa

μ; ðD23Þ

where F̄μν ¼ const. Since Āa
μ is also a classical solution ofW0½A�, the Euclidean effective actions of theories B and A

are respectively obtained as follows:

Wg½Ā� ¼ − lnZg½Ā� ¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν −

X
i

βtreei;2 · ð1þ atree2

�
−2
Oi½Ā�Þ; ðD24Þ

W0½Ā� ¼ − lnZ0½Ā� ¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν

�
; ðD25Þ

Then, the shift of the Euclidean effective action is calculated as follows:

ΔWðEÞ
g ¼ Wg½Ā� −W0½Ā�

¼ −
X
i

βtreei;2 · ð1þ atree2 Þ−2
Z

ðd4xÞEOi½Ā�: ðD26Þ

Also, the first-order corrections for g is calculated as

�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
�
δWg

δA0

�
·

�
dA0

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

¼ 0; ðD27Þ

where ðdA0=dgÞg¼0 ¼ 0 is used. From Eq. (5) or (B12), combining Eqs. (D26) and (D27) yields

ΔWðEÞ
g ≤ g · hIIig¼0 ⇒ −

X
i

βtreei;2 · ð1þ atree2 Þ−2
Z

ðd4xÞEOi½Ā� ≤ 0

⇒
X
i

βtreei;2 · ð1þ atree2 Þ−2
Z

ðd4xÞEOi½Ā� ≥ 0: ðD28Þ

The left-hand side of Eq. (D28) denotes a linear combination of coefficients of the dimension-eight operators
of Eq. (D24).
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(ii) Loop-level UV completion—Consider the SMEFT generated by the loop-level UV completion. The partition
function is generally calculated as follows:

Zg½Ā� ¼
Z

d½A�d½Φ�e−Ig½A;Φ�

¼
Z

d½A� exp
�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 ÞFa

μνFa;μν −
X
i

βloop2;i Oi½A� þ EΦ
vac

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 ÞF0a

μνF0a;μν −
X
i

βloop2;i Oi½Ā0� þ Evac

��

¼ exp

�
−
Z

ðd4xÞE
�
1

2
ð1þ αloop1 ÞF̄a

μνF̄a;μν −
X
i

βloop2;i Oi½Ā� þ Evac

��
: ðD29Þ

where αloop1 is the first-order correction for g, αloop2 , and βloop2;i are the second- or higher-order correction for g, EΦ
vac is

the vacuum energy coming from the loop-level correction of Φ, and Evac is the vacuum energy of Φ and Aa
μ. It is

assumed that αloop1 , αloop2 , and βloop2;i are generated from the loop corrections of Φ. The background field Ã0a
μ denotes

the classical solution of the effective action of

Wg½A� ¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 þ αloop2 ÞFa

μνFa;μν −
X
i

βloop2;i Oi½A� þ EΦ
vac

�
: ðD30Þ

We choose the background field as follows:

A0a
μ ¼

�
1 −

1

2
αloop2

�
Āa
μ; ðD31Þ

where F̄μν ¼ const to remove the dimension-six operators. Āa
μ is also a classical solution ofW0½A�, and the Euclidean

effective actions of theories B and A are respectively obtained as follows:

Wg½Ā� ¼
Z

ðd4xÞE
�
1

2
ð1þ αloop1 ÞF̄a

μνF̄a;μν −
X
i

βloop2;i Oi½Ā� þ Evac

�
; ðD32Þ

W0½Ā� ¼
Z

ðd4xÞE
�
1

2
F̄a
μνF̄a;μν þ Evac

�
: ðD33Þ

Then, the shift of the Euclidean effective action is calculated as follows:

ΔWðEÞ
g ¼ Wg½Ā� −W0½Ā�

¼
Z

ðd4xÞE
�
1

2
αloop1 F̄a

μνF̄a;μν −
X
i

βloop2;i Oi½Ā�
�
: ðD34Þ

Also, the first-order corrections for g is calculated as

�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
�
δWg

δA0

�
·
�
dA0

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

¼ 1

2

dαloop1

dg

Z
ðd4xÞEF̄a

μνF̄a;μν; ðD35Þ
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where ðdA0=dgÞg¼0 ¼ 0 is used. From Eq. (5) or
(B12), combining Eqs. (D34) and (D35) yields

ΔWðEÞ
g ≤ ghIIig¼0 ⇒ −

X
i

βloop2;i

Z
ðd4xÞEOi½Ā� ≤ 0

⇒
X
i

βloop2;i

Z
ðd4xÞEOi½Ā� ≥ 0;

ðD36Þ

where g · ðdαloop1 =dgÞ ¼ αloop1 is used. In the loop-
level UV completion, Eq. (D36) yields the constraint
on the dimension-eight operator generated at the
loop level.

3. Einstein-Maxwell theory with higher-dimensional
operators

Consider the Einstein-Maxwell theory with higher-
dimensional operators generated from the UV theory
defined by I½gμν;Rμνρσ; A;Φ�, where gμν is the metric of
spacetime, Rμνρσ is the Riemann tensor, Aμ is the Uð1Þ
gauge boson, and Φ is the heavy degrees of freedom.
Define the noninteracting and interacting terms as
follows:

I0½gμν;Rμνρσ; A;Φ� ¼ I½gμν;Rμνρσ; A; 0� þ I½gμν; 0; 0;Φ�;
ðD37Þ

II½gμν;Rμνρσ; A;Φ�
¼ I½gμν;Rμνρσ; A;Φ� − I0½gμν;Rμνρσ; A;Φ�; ðD38Þ

where the cosmological constant is omitted because it
cancels in the relative entropy. It should be noted that the
theory of I0 does not include the interaction between Φ
and Aμ; Rμνρσ, but the interaction between gμν and Φ. Note
that gravitational operators such as R2

μν can be generated
from I0. Also, the Gauss-Bonnet combination, i.e.,
RμνρσRμνρσ − 4RμνRμν þ R2, is a total derivative and van-
ishes in four dimensions. In this work, we focus on the
higher-dimensional operators generated from the interac-
tion between Φ and Aμ; Rμνρσ.
Similar to the SMEFT, when J½gμν;Rμνρσ; Aμ� does not

include the higher-derivative operators, there are two cases:
(i) J½gμν;Rμνρσ; Aμ� ∝ FμνFμν or R, and (ii) J½gμν;Rμνρσ;
Aμ� ∝ Aμ or AμAμ. Because of the same reason as the
SMEFT, we focus on the following case:

hIIig¼0¼
�
dWg

dg

�
g¼0

∝
Z

ðd4xÞE
ffiffiffi
g

p
FμνFμν or

Z
ðd4xÞE

ffiffiffi
g

p
R: ðD39Þ

For each of the tree- and loop-level UV completion, the
constraints on the EFTs are evaluated as follows:

(i) Tree-level UV completion—Consider the EFT gen-
erated at the tree-level UV completion. Then, the
partition function is generally calculated as follows:

Zg½ḡμν; Ā� ¼
Z

d½g�d½A�d½Φ�e−Ig½gμν;Rμνρσ ;A;Φ�

¼
Z

d½g�d½A� exp
�
−
Z

ðd4xÞE
ffiffiffi
g

p �
−
M2

Pl

2
ð1þ αtree2;RÞRþ 1

4
ð1þ αtree2;FÞFμνFμν − βtree2;1 ðFμνFμνÞ2

− βtree2;2 ðFμνF̃μνÞ2 − βtree2;3FμνFρσRμνρσ

��

¼ exp

�
−
Z

ðd4xÞE
ffiffiffiffi
g0

q �
−
M2

Pl

2
ð1þ αtree2;RÞR0 þ 1

4
ð1þ αtree2;FÞF0

μνF0μν − βtree2;1 ðF0
μνF0μνÞ2

− βtree2;2 ðF0
μνF̃0μνÞ2 − βtree2;3F

0
μνF0

ρσR0μνρσ
��

¼ exp

�
−
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν − βtree2;1

�
1þ 2

3
αtree2;R − 2αtree2;F

�
ðF̄μνF̄μνÞ2

− βtree2;2 ð1þ 2αtree2;R − 2αtree2;FÞðF̄μν
˜̄FμνÞ2 − βtree2;3

�
1þ 1

3
αtree2;R − αtree2;F

�
F̄μνF̄ρσR̄μνρσ

��
; ðD40Þ

where αtree2;R , α
tree
2;F , β

tree
2;1 , β

tree
2;2 , and βtree2;3 denote the second- or higher-order corrections for g. Note here that βtree2;1 , β

tree
2;2 ,

and βtree2;3 do not include the first-order correction for g because of Eq. (D39). According to the procedure in
Eqs. (47)–(49), the first-order correction for g is eliminated in αtree2;R and αtree2;F . Since the gravitational operators only
involving the Riemann tensors can be removed by field redefinition, and the Riemann-squared operator can be
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dropped in four dimensions, we omit such terms. The background fields A0
μ and g0μν denote the classical solutions of

the effective action of

Wg½gμν; A� ¼
Z

ðd4xÞE
ffiffiffi
g

p �
−
M2

Pl

2
ð1þ αtree2;RÞRþ 1

4
ð1þ αtree2;FÞFμνFμν − βtree2;1 ðFμνFμνÞ2

− βtree2;2 ðFμνF̃μνÞ2 − βtree2;3FμνFρσRμνρσ

�
: ðD41Þ

We choose the background field as follows:

A0
μ ¼

�
1þ 1

2

�
4

3
αtree2;R − αtree2;F

��
Āμ; ðD42Þ

g0μν ¼
�
1 −

1

3
αtree2;R

�
ḡμν; g0

μν ¼
�
1þ 1

3
αtree2;R

�
ḡμν: ðD43Þ

The effective actions of theories B and A are respectively obtained as follows:

Wg½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν − βtree2;1

�
1þ 2

3
αtree2;R − 2αtree2;F

�
ðF̄μνF̄μνÞ2

− βtree2;2 ð1þ 2αtree2;R − 2αtree2;FÞðF̄μν
˜̄FμνÞ2 − βtree2;3

�
1þ 1

3
αtree2;R − αtree2;F

�
F̄μνF̄ρσR̄μνρσ

�
; ðD44Þ

W0½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2
R̄þ 1

4
F̄μνF̄μν

�
; ðD45Þ

where Āμ and ḡμν include the effects of the higher-derivative terms. It should be noted that the first-order

correction for the higher-derivative terms vanishes in W0 by using the equation of motion. Then, ΔWðEÞ
g ¼

Wg½ḡμν; Ā� −W0½ḡμν; Ā� denotes the shift of the Euclidean effective action by the higher-derivative terms. Also, from
Eq. (D44), the first-order correction for g is calculated as

�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
ffiffiffiffiffiffi
−g

p ��
δWg

δA0

�
·

�
dA0

dg

�
g¼0

þ
�
δWg

δg0μν

�
·

�
dg0μν
dg

�
g¼0

�

¼
�
∂Wg

∂g

�
g¼0

¼ 0; ðD46Þ

where ðdA0=dgÞg¼0 ¼ 0 and ðdg0μν=dgÞg¼0 ¼ 0 are used. From Eq. (5) or (B12), Eq. (D46) yields

ΔWðEÞ
g ≤ 0: ðD47Þ

Consequently, it is found that the relative entropy yields the negative shift of the effective action by the higher-
derivative terms generated at the tree level.
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(ii) Loop-level UV completion—Next, consider the EFT generated by the loop-level UV completion. The partition
function is generally calculated as follows:

Zg½ḡμν; Ā� ¼
Z

d½g�d½A�d½Φ�e−Ig½gμν;Rμνρσ ;A;Φ�

¼
Z

d½g�d½A� exp
�
−
Z

ðd4xÞE
ffiffiffi
g

p �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R þ αloop2;R ÞRþ 1

4
ð1þ αloop1;F þ αloop2;F ÞFμνFμν

− βloop2;1 ðFμνFμνÞ2 − βloop2;2 ðFμνF̃μνÞ2 − βloop2;3 FμνFρσRμνρσ

��

¼ exp

�
−
Z

ðd4xÞE
ffiffiffiffi
g0

q �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R þ αloop2;R ÞR0 þ 1

4
ð1þ αloop1;F þ αloop2;F ÞF0

μνF0μν

− βloop2;1 ðF0
μνF0μνÞ2 − βloop2;2 ðF0

μνF̃0μνÞ2 − βloop2;3 F0
μνF0

ρσR0μνρσ þ ðcorrection from R and FμνFμνÞ
��
ðD48Þ

¼ exp

�
−
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R ÞR̄þ 1

4
ð1þ αloop1;F ÞF̄μνF̄μν − βloop2;1 ðF̄μνF̄μνÞ2

− βloop2;2 ðF̄μν
˜̄FμνÞ2 − βloop2;3 F̄μνF̄ρσR̄μνρσ þ ðcorrection from R and FμνFμνÞ

��
; ðD49Þ

where αloop2;R , αloop2;F , βloop2;1 , βloop2;2 , and βloop2;3 are the second- or higher-order corrections for g, αloop1;R , and αloop1;F are the first-

order corrections for g, and Λloop
0;Φ is the vacuum energy coming from Φ. The last term of Eq. (D48) arises from loop

corrections of light fields in M2
PlR=2 and FμνFμν=4. Since these corrections do not depend on g, they cancel in

relative entropy. The background fields A0
μ and g0μν denote the classical solution of the effective action of

Wg½gμν; A� ¼
Z

ðd4xÞE
ffiffiffi
g

p �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R þ αloop2;R ÞRþ 1

4
ð1þ αloop1;F þ αloop2;F ÞFμνFμν

− βloop2;1 ðFμνFμνÞ2 − βloop2;2 ðFμνF̃μνÞ2 − βloop2;3 FμνFρσRμνρσ

�
: ðD50Þ

We choose the background field as follows:

A0
μ ¼

�
1þ 1

2

�
4

3
αloop2;R − αloop2;F

��
Āμ; ðD51Þ

g0μν ¼
�
1 −

1

3
αloop2;R

�
ḡμν; g0μν ¼

�
1þ 1

3
αloop2;R

�
ḡμν: ðD52Þ

The effective action for the theory B and A are respectively obtained as follows:

Wg½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
ð1þ αloop1;R ÞR̄þ 1

4
ð1þ αloop1;F ÞF̄μνF̄μν − βloop2;1 ðF̄μνF̄μνÞ2 − βloop2;2 ðF̄μν

˜̄FμνÞ2

− βloop2;3 F̄μνF̄ρσR̄μνρσ þ ðcorrection from R and FμνFμνÞ
�
; ðD53Þ

W0½ḡμν; Ā� ¼
Z

ðd4xÞE
ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
R̄þ 1

4
F̄μνF̄μν þ ðcorrection from R and FμνFμνÞ

�
: ðD54Þ
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Similar to the case of the tree-level UV completion, the first-order correction for the higher-derivative terms vanish in
W0 by using the equation of motion. Also, from Eq. (D53), the first-order correction for g is calculated as

�
dWg

dg

�
g¼0

¼
�
∂Wg

∂g

�
g¼0

þ
Z

ðd4xÞE
ffiffiffiffiffiffi
−g

p ��
δWg

δA0

�
·

�
dA0

dg

�
g¼0

þ
�
δWg

δg0μν

�
·

�
dg0μν
dg

�
g¼0

�

¼
�
∂Wg

∂g

�
g¼0

¼
Z

ðd4xÞE
ffiffiffī
g

p �
−
M2

Pl

2

dαloop1;R

dg
R̄þ 1

4

dαloop1;F

dg
F̄μνF̄μν

�
; ðD55Þ

where ðdA0
μ=dgÞg¼0 ¼ 0 and ðdg0μν=dgÞg¼0 ¼ 0 are used. Note here that the last term of Eq. (D53) does not depend

on g. From Eq. (5) or (B12), Eqs. (D53)–(D55) yields

ΔWðEÞ
g ≤ g · hIIig¼0 ⇒ Wnon-lin

g ½ḡμν; Ā� −W0½ḡμν; Ā� ≤ 0: ðD56Þ

Here, we define the effective action without the first-order corrections for g as follows:

Wnon-lin
g ½ḡμν; Ā� ¼

Z
ðd4xÞE

ffiffiffī
g

p �
Λloop
0;Φ −

M2
Pl

2
R̄þ 1

4
F̄μνF̄μν − βloop2;1 ðF̄μνF̄μνÞ2 − βloop2;2 ðF̄μν

˜̄FμνÞ2

− βloop2;3 F̄μνF̄ρσR̄μνρσ þ ðcorrection from R and FμνFμνÞ
�
: ðD57Þ

Therefore, Wnon-lin
g ½ḡμν; Ā� −W0½ḡ0;μν; Ā0� denotes

the corrections from the higher-derivative terms to
the Euclidean effective action. It should be noted
that the one-loop correction from R and FμνFμν

cancels in Eq. (D56).

APPENDIX E: LOOPHOLE OF ENTROPY
CONSTRAINTS

We discuss the loophole of the entropy constraints. As
discussed in Refs. [20,30], positive perturbative corrections
to the Euclidean action can arise in some examples. We
show that the loophole arises because the entropy con-
straints are based on the saddle point approximation in the
Euclidean path integral method. First, we consider the
entropy constraints on tree-level UV completions, and
clarify a relation between this work and Ref. [12]. The
relative entropy of Eq. (1) is calculated as

SðP0jjPgÞ ¼
Z
β
d½Φ�ðP0 lnP0 − P0 lnPgÞ

¼ − lnZ0½β;ϕ� þ lnZg½β;ϕ� þ g
Z
β
d½Φ�P0 · II

¼ − lnZ0½β;ϕ� þ lnZg½β;ϕ�
≃ I0½ϕ; Φ̃0� − Ig½ϕ; Φ̃g� ≥ 0; ðE1Þ

where in the third line we used
R
β d½Φ�P0 · II ¼ 0 at tree

level by using a suitable definition of Φ, in the last line the

saddle point approximation is used, and Φ̃0 and Φ̃g are
classical solutions of I0 and Ig, respectively. By the
definition of Φ, I0½ϕ; 0� ¼ I0½ϕ; Φ̃0� is satisfied. Then,
Eq. (E1) yields

Ig½ϕ; 0� ¼ I0½ϕ; 0� ¼ I0½ϕ; Φ̃0� ≥ Ig½ϕ; Φ̃g�; ðE2Þ

where we used Ig½ϕ; 0� ¼ I0½ϕ; 0� similar to Ref. [12]. This
inequality has been provided in Ref. [12], and it is clear that
the entropy constraints by the relative entropy is a gener-
alization of Ref. [12]. The key point of derivation of
Eq. (E2) is that the relative entropy must be evaluated
around the local minimum of heavy degrees of freedom.
Otherwise, the saddle point approximation does not work
well, and the perturbative corrections to the Euclidean
effective action can be positive.
To see the loophole, let us consider following action in

Minkowski space:

IðMÞ ¼
Z

d4x

�
−
1

4
FμνFμν þm2

Aϕ
2
A þ 1

M
ϕAFρσFρσ

�
;

ðE3Þ

where ϕA is an auxiliary field. The solution of the equation
of motion of ϕA is calculated as

ϕ̃A ¼ −
1

2m2
AM

FμνFμν: ðE4Þ
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After integrating out ϕA, Eq. (E3) yields

IðMÞ
eff ¼

Z
d4x

�
−
1

4
FμνFμν −

1

4m2
AM

2
ðFμνFμνÞ2

�
: ðE5Þ

In the Euclidean space, the second term in Eq. (E5)
increases the Euclidean effective action, and contradicts
the entropy constraints. This is because the solution of the
equation of motion of ϕA is not a local minimum of I in the
Euclidean space.
Next, let us consider a doublet of real, shift-symmetric,

massless scalar fields ϕi, i ¼ 1, 2 in Minkowski space,

IðMÞ ¼
Z

d4x

�
1

2
ð∂μϕi∂

μϕiÞ þm2
AðXμνXμνÞ

−
ϵil

M
ð∂μϕi∂νϕlÞXμν

�
; ðE6Þ

where Xμν is an auxiliary field, and ϵ12 ¼ −ϵ21 ¼ 1. The
equation of motion of Xμν is calculated as

X̃μν ¼
ϵil

2m2
AM

ð∂μϕi∂νϕlÞ: ðE7Þ

After integrating out Xμν Eq. (E6) yields

Ieff ¼
Z

d4x

�
1

2
ð∂μϕi∂

μϕiÞ

þ 1

4m2
AM

2
ϵilϵkjð∂μϕi∂

μϕjÞð∂νϕk∂
νϕlÞ

�
: ðE8Þ

Substituting a solution of the equation of motion of ϕi:
∂μϕ̄1 ¼ ð0; 1; 0; 0Þ; ∂μϕ̄2 ¼ ð0; 0; 1; 0Þ into Eq. (E8), we
find that the second term of Eq. (E8) is negative as follows:

ϵilϵkjð∂μϕ̄i∂
μϕ̄jÞð∂νϕ̄k∂

νϕ̄lÞ
¼ 2ðð∂μϕ̄1∂

μϕ̄2Þ2 − ð∂μϕ̄1∂
μϕ̄1Þð∂νϕ̄2∂

νϕ̄2ÞÞ
¼ −2: ðE9Þ

Therefore, the second term of Eq. (E8) increases the
Euclidean effective action, and a contradiction of the
entropy constraint arises. This is because X̃μν is not a local
minimum of I in the Euclidean space, and the saddle point
approximation does not work well. Note here that the
negative shift of the Euclidean effective action arises when
the sign of the second term of Eq. (E6) is flipped.
Consequently, the loophole of entropy constraints can arise

from the classical solution of heavy degrees of freedom not
being the local minimum, where the path integral method in
the Euclidean space does not work.

APPENDIX F: CONDITIONS TO APPLY
ENTROPY CONSTRAINTS

We summarize the conditions to apply the entropy
constraints. For ease of understanding, we show the con-
ditions as a flowchart in Fig. 2. In this paper, the entropy
constraints mainly denote three inequalities. For each of the
inequalities, we explain the conditions as follows:

(i) g · hIIig ≤ ΔWðEÞ
g ≤ g · hIIig¼0

To derive the inequality (5), we impose condi-
tions: (a) the theories A and B are defined by I0 and
Ig ≡ I0 þ g · II, respectively, and the probability
distribution functions P0 and Pg are defined by
them, and (b) the tree-level corrections from the
heavy degrees of freedom to the Euclidean effective
actions W0 andWg arise from the local minimum of
Ig and I0, respectively. The condition (b) is relevant
to the loophole discussed above. Note here that, in
general, Eq. (5) does not depend on whether II
represents the interactions between heavy and light
degrees of freedom. Since, however, in this paper,
we are interested in the constraints on higher-
derivative terms that arise from the interactions
between heavy and light degrees of freedom, we
suppose that II represents the interactions between
heavy and light degrees of freedom.

(ii) Positivity bounds on higher-derivative terms
To derive the positivity bounds on the Wilson

coefficients of higher-derivative operators, in addi-
tion to the conditions (a) and (b), we use a condition
(c), quantum corrections to nonhigher-derivative
terms can be absorbed by redefinitions of light
fields, and (d) J½ϕ� does not include the higher-
derivative operators. In general, the corrections
from the interactions contribute to the nonhigher-
derivative terms, but these conditions (c) and
(d) allow us to remove such corrections.

(iii) ð∂S=∂ϵÞM;Q⃗ ≥ 0

To derive the positive perturbative corrections
from the higher-derivative terms to thermodynamic
entropy at a fixed energy and charge, in addition to
the conditions (a), (b), (c), and (d), we impose
conditions (e) thermodynamics relations hold in
the system, and (f) the system is the weak-dynamics
theory, where Oðϵ2Þ terms are negligible.

ENTROPY CONSTRAINTS ON EFFECTIVE FIELD THEORY PHYS. REV. D 108, 025011 (2023)

025011-31



[1] S. Kullback and R. A. Leibler, On information and suffi-
ciency, Ann. Math. Stat. 22, 79 (1951).

[2] Hisaharu Umegaki, Conditional expectation in an operator
algebra. IV. Entropy and information, Kodai Math. Sem.
Rep. 14, 59 (1962).

[3] Alfred Wehrl, General properties of entropy, Rev. Mod.
Phys. 50, 221 (1978).

[4] Hal Tasaki, Jarzynski relations for quantum systems and
some applications, arXiv:cond-mat/0009244.

[5] Massimiliano Esposito, Katja Lindenberg, and Christian
Van den Broeck, Entropy production as correlation between
system and reservoir, New J. Phys. 12, 013013 (2010).

[6] Takahiro Sagawa, Second law-like inequalities with quan-
tum relative entropy: An introduction, Lectures on Quantum
Computing, Thermodynamics and Statistical Physics
(World Scientific, Singapore, 2012), pp. 125–190.

[7] Masanori Ohya, Some aspects of quantum information
theory and their applications to irreversible processes,
Rep. Math. Phys. 27, 19 (1989).

[8] Manuel Vogel, Quantum computation and quantum infor-
mation, by M. A. Nielsen and I. l. Chuang, Contemp. Phys.
52, 604 (2011).

[9] V. Vedral, The role of relative entropy in quantum infor-
mation theory, Rev. Mod. Phys. 74, 197 (2002).

FIG. 2. A flow chart for conditions of applicability of entropy constraints: Each step explains which conditions are necessary to use the
entropy constraints.

QING-HONG CAO and DAIKI UEDA PHYS. REV. D 108, 025011 (2023)

025011-32

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://arXiv.org/abs/cond-mat/0009244
https://doi.org/10.1088/1367-2630/12/1/013013
https://doi.org/10.1016/0034-4877(89)90034-7
https://doi.org/10.1080/00107514.2011.587535
https://doi.org/10.1080/00107514.2011.587535
https://doi.org/10.1103/RevModPhys.74.197


[10] H.-H. Hasegawa, J. Ishikawa, K. Takara, and D. J. Driebe,
Generalization of the second law for a nonequilibrium initial
state, Phys. Lett. A 374, 1001 (2010).

[11] Yevgeny Kats, Lubos Motl, and Megha Padi, Higher-order
corrections to mass-charge relation of extremal black holes,
J. High Energy Phys. 12 (2007) 068.

[12] Clifford Cheung, Junyu Liu, and Grant N. Remmen, Proof
of the weak gravity conjecture from black hole entropy,
J. High Energy Phys. 10 (2018) 004.

[13] Clifford Cheung, Junyu Liu, and Grant N. Remmen,
Entropy bounds on effective field theory from rotating
dyonic black holes, Phys. Rev. D 100, 046003 (2019).

[14] Gregory J. Loges, Toshifumi Noumi, and Gary Shiu,
Thermodynamics of 4D dilatonic black holes and the weak
gravity conjecture, Phys. Rev. D 102, 046010 (2020).

[15] Harvey S. Reall and Jorge E. Santos, Higher derivative
corrections to Kerr black hole thermodynamics, J. High
Energy Phys. 04 (2019) 021.

[16] Garrett Goon and Riccardo Penco, Universal Relation
between Corrections to Entropy and Extremality, Phys.
Rev. Lett. 124, 101103 (2020).

[17] Nima Arkani-Hamed, Lubos Motl, Alberto Nicolis,
and Cumrun Vafa, The string landscape, black holes and
gravity as the weakest force, J. High Energy Phys. 06 (2007)
060.

[18] Cumrun Vafa, The string landscape and the swampland,
arXiv:hep-th/0509212.

[19] Brando Bellazzini, Matthew Lewandowski, and Javi
Serra, Positivity of Amplitudes, Weak Gravity Conjecture,
and Modified Gravity, Phys. Rev. Lett. 123, 251103
(2019).

[20] Yuta Hamada, Toshifumi Noumi, and Gary Shiu, Weak
Gravity Conjecture from Unitarity and Causality, Phys. Rev.
Lett. 123, 051601 (2019).

[21] Jose C. Gaite and Denjoe O’Connor, Field theory entropy and
the renormalization group, Phys. Rev. D 54, 5163 (1996).

[22] Jacques Calmet and Xavier Calmet, Distance between
physical theories based on information theory, Mod. Phys.
Lett. A 26, 319 (2011).

[23] Vijay Balasubramanian, Jonathan J. Heckman, and
Alexander Maloney, Relative entropy and proximity of
quantum field theories, J. High Energy Phys. 05 (2015) 104.

[24] Horacio Casini, Eduardo Teste, and Gonzalo Torroba,
Relative entropy and the RG flow, J. High Energy Phys.
03 (2017) 089.

[25] Allan Adams, Nima Arkani-Hamed, Sergei Dubovsky,
Alberto Nicolis, and Riccardo Rattazzi, Causality, analy-
ticity and an IR obstruction to UV completion, J. High
Energy Phys. 10 (2006) 014.

[26] Grant N. Remmen and Nicholas L. Rodd, Consistency of
the standard model effective field theory, J. High Energy
Phys. 12 (2019) 032.

[27] Jeremie Quevillon, Christopher Smith, and Selim Touati,
Effective action for gauge bosons, Phys. Rev. D 99, 013003
(2019).

[28] Y. Nambu, Quantum electrodynamics in nonlinear gauge,
Prog. Theor. Phys. Suppl. E 68, 190 (1968).

[29] Qing-Hong Cao, Naoto Kan, and Daiki Ueda, Effective field
theory in light of relative entropy, arXiv:2211.08065.

[30] Nima Arkani-Hamed, Yu-tin Huang, Jin-Yu Liu, and Grant
N. Remmen, Causality, unitarity, and the weak gravity
conjecture, J. High Energy Phys. 03 (2022) 083.

ENTROPY CONSTRAINTS ON EFFECTIVE FIELD THEORY PHYS. REV. D 108, 025011 (2023)

025011-33

https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1088/1126-6708/2007/12/068
https://doi.org/10.1007/JHEP10(2018)004
https://doi.org/10.1103/PhysRevD.100.046003
https://doi.org/10.1103/PhysRevD.102.046010
https://doi.org/10.1007/JHEP04(2019)021
https://doi.org/10.1007/JHEP04(2019)021
https://doi.org/10.1103/PhysRevLett.124.101103
https://doi.org/10.1103/PhysRevLett.124.101103
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1088/1126-6708/2007/06/060
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1103/PhysRevLett.123.251103
https://doi.org/10.1103/PhysRevLett.123.251103
https://doi.org/10.1103/PhysRevLett.123.051601
https://doi.org/10.1103/PhysRevLett.123.051601
https://doi.org/10.1103/PhysRevD.54.5163
https://doi.org/10.1142/S0217732311034955
https://doi.org/10.1142/S0217732311034955
https://doi.org/10.1007/JHEP05(2015)104
https://doi.org/10.1007/JHEP03(2017)089
https://doi.org/10.1007/JHEP03(2017)089
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1103/PhysRevD.99.013003
https://doi.org/10.1103/PhysRevD.99.013003
https://doi.org/10.1143/PTPS.E68.190
https://arXiv.org/abs/2211.08065
https://doi.org/10.1007/JHEP03(2022)083

