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In effective field theory, the positivity bounds of higher-derivative operators are derived from analyticity,
causality, and unitarity. We show that the positivity bounds on some operators of the effective field theory,
e.g., the dimension-eight term of a single massless scalar field, the Standard Model effective field theory

dimension-eight SU(N) gauge bosonic operators, and higher-derivative operators in the Einstein-Maxwell
theory, generated by interactions between heavy and light degrees of freedom can be derived by the non-
negativity of relative entropy. For such effective field theories, we prove that the interactions increase

thermodynamic entropy at a fixed charge and an extremal point of energy, which is intimately connected
with the extremality relations of black holes exhibiting the weak gravity conjecture. These arguments are
applicable when corrections from the interactions involving higher-derivative operators of light fields are

not dominant in the effective field theories. The entropy constraint is a consequence of the Hermiticity of
Hamiltonian, and any theory violating the non-negativity of entropy would not respect the second law of

thermodynamics.

DOI: 10.1103/PhysRevD.108.025011

I. INTRODUCTION

Relative entropy [1-3] is a fundamental quantity in
probability theory and information theory. The relative
entropy, which is non-negative, depicts a distance between
two probability distributions and plays important roles in
statistical mechanics [4—6] and quantum information theory
[7-9]. In the context of information-thermodynamics, the
distance between two probability distributions is an essen-
tial concept to derive a non-negativity of difference in von
Neumann entropy between initial and final states [4,5,10];
the so-called second law of thermodynamics.

Recently, thermodynamics of black hole [11-16] have
been studied in the context of the weak gravity conjecture
(WGC) [17], which is motivated to distinguish the land-
scape from the swampland [18]. The WGC states that the
U(1) charge-to-mass ratio of extremally charged black
holes is larger than unity in any gravitational effective field
theory (EFT) that admits a consistent UV completion [16].
Some proofs for this statement have been made using black
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holes and entropy consideration [12,13], or positivity
bounds from unitarity and causality [19,20]. In particular,
Refs. [12,13] are based on a positivity of entropy difference
between Einstein-Maxwell theories with and without per-
turbative corrections that are described by higher-derivative
operators.

The crucial role of relative entropy in information-
thermodynamics suggests that the positivity of entropy
difference in the WGC is intimately connected to the
distance between two theories, which has been studied
in different contexts [21-24]. That inspires us to establish a
connection between relative entropy and positivity bounds
in the EFTs. In the work, we provide lower and upper
bounds on perturbative corrections from the interactions
between heavy and light degrees of freedom to the
Euclidean effective action. From the upper bound, we
obtain the same bounds on some operators of EFTs, e.g.,
the dimension-eight term of a single massless scalar field,
the Standard Model EFT (SMEFT) dimension-eight
SU(N) gauge bosonic operators, and the higher-derivative
operators in the Einstein-Maxwell theory, as those pos-
itivity bounds achieved in conventional EFT studies
[17,25,26] when the higher-derivative operators are gen-
erated by the interactions between heavy and light fields.
The constraints on such EFTs are applicable when the
perturbative corrections from the interactions involving
higher-derivative operators of the light fields are not
dominant in the EFTs.

Published by the American Physical Society


https://orcid.org/0000-0003-0033-2665
https://orcid.org/0000-0001-5014-6364
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.025011&domain=pdf&date_stamp=2023-07-19
https://doi.org/10.1103/PhysRevD.108.025011
https://doi.org/10.1103/PhysRevD.108.025011
https://doi.org/10.1103/PhysRevD.108.025011
https://doi.org/10.1103/PhysRevD.108.025011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

QING-HONG CAO and DAIKI UEDA

PHYS. REV. D 108, 025011 (2023)

Reference [16] implies a possibility that the WGC-like
behavior in the perturbative correction to extremality
relations of black hole [12] can be generalized to a broad
class of thermodynamic systems on the condition that the
correction to entropy is non-negative. We prove that the
corrections to the entropy at a fixed charge and an extremal
point of energy from the operators, such as the dimension-
eight term of a single massless scalar field, the SMEFT
dimension-eight SU(N) gauge bosonic operators and
higher-derivative operators in the Einstein-Maxwell theory,
are non-negative when the corrections from the interactions
involving higher-derivative operators of the light fields are
not dominant in the EFTs.

The paper is organized as follows. In Sec. II, we introduce
a distance between two theories. In Sec. III, we explore the
implications of the non-negativity of the distance between
two theories, focusing on EFTs and examining several
examples. In Sec. IV, we discuss the relation between
entropy constraints and some inequalities in physics, e.g.,
the second law of thermodynamics. Section V concludes this
work. In addition, we provide some appendixes to supple-
ment the above sections. In Appendix A, we explain how to
define theories with and without interactions by using some
examples. In Appendix B, detailed derivations of inequalities
depicting the distance between two theories are presented.
In Appendix C, the invariance of the relative entropy under
field redefinition is discussed. Appendix D is devoted to
explaining the wave function renormalization in the relative
entropy. In Appendixes E and F, conditions to apply the
entropy constraints are discussed. We summarize the con-
ditions as a flow chart in Fig. 2.

I1. DISTANCE BETWEEN TWO THEORIES

Consider a field theory that contains a set of light fields
¢’s and that of heavy fields @’s; see Fig. 1. We introduce a
thermodynamic system A described by the Euclidean action
Iy[¢p, @], which does not involve interactions between ¢’s
and @’s. See Appendix A for the detailed definition of IO.1
We define a probability distribution function for the system
Aas Py=e/Z|B, ¢], where 3 is an inverse temperature
of the system and ¢ denotes a background field corre-
sponding to the light field, which is held fixed while the
path integral over ®’s is performed. Even if the path
integral over ¢’s is performed, following explanations
do not change much; see Appendix B. Note that heavy
background fields are expressed by the light ones using
the equation of motions. The partition function is given as
the Euclidean path integral Z [, ¢] = |, 5 d[®] e~lo, which is
determined by the Wick-rotated Lagrangian and boundary

'The theory A is a reference theory to obtain constraints on the
low energy theory generated by I, Note that we discuss the
constraints on the theory described by 1, not /.

A S(Pyl1Pg) 20

and

S(P,|1Py) = 0

& Pg(_)lg

8- <I1>g < AWéE) <g- <11>g=0

Iy < P

FIG. 1. Schematic illustration of the distance between theory A
and theory B, defined by the action / and /,, respectively. The
distance, i.e., the relative entropy between P, and P, yields
lower and upper bounds on perturbative correction from the
interaction between heavy and light degrees of freedom to the
Euclidean effective action.

conditions. The effective action of the
Wo[ﬂ, qﬂ = — anO[iB’ Q’)]

The system B is defined by I (¢, @] =I[p,®]+
g+ 1;[¢, @], where I; denotes interactions between ¢’s
and @’s, of which the probability distribution function is
Py=es/Z,[p,$l, where Z[B, ¢|= [,d[®@]e”’s. The
effective action of the system is given by W [f,¢] =
—InZ[p, ¢]. The coupling g is an auxiliary parameter
introduced to characterize the interaction.

The relative entropy” between P, and P, is defined as

system is

S(Pyl||P,) E/ﬁd[d)](Po In Py—Pyln P)>0. (1)

It is greater than or equal to zero, with the equality holding
if and only if P, = P,. Thanks to this non-negativity, the
relative entropy is often used as a distance between P and
P, even though it is not a symmetric function of the two
sets of probabilities S(Py||P,) # S(P,[|Py). A simple
algebra yields

S(Po|P,) = /ﬁ d[®](Py In Py— Py In P,)

=—In Zy[p,¢] +In Z,[p. p] +g'/ﬁd[¢]Po'll

= WolB. ¢l = W,[B.¢] + g (I1) =0 (2)

*This quantity is also called Kullback-Leibler divergence.
Sometimes, the Kullback-Leibler divergence is distinguished
from the quantum relative entropy defined as S(pollp,) =
Tr[pgInpy — poInp,] for two density operators p, and p,. In
this paper, Eq. (1) plays a central role in deriving constraints on
EFTs rather than the above quantum relative entropy.
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where (I;),_g= [;d[®]P;-1; is an expectation value
of the interaction, which satisfies (dW,/dg),_, =
J;d[®]Py - 1;. Note here that the derivation of Eq. (2)

does not rely on the expansion in g. In Eq. (2), the path
integral is performed only over the heavy degrees of
freedom, and the self-interacting term of the light degrees
of freedom cancels in (/;),_o. The path integral over the
light degrees of freedom does not change Eq. (2); see
Appendix B. It follows from the non-negativity of the
relative entropy that

E
AW =W [B. ) = Wolp.dl < g- (1) o (3)
where AWéE) denotes the difference between the effective
actions of the two systems in the Euclidean space. Another
choice of relative entropy,

S(P,|Po) = W, . — Wolf.d] — g- / dolp, 1, (4)

is related to the renormalization group [21]. It provides a
lower bound AW(gE) > g-(I}), with (I}), = [, d[®]|P,-1,.
We end up with the inequalities

g- (I, < AW{SE) <g-{I1) 40 (5)

which implies that the sign of the interaction controls the
sign of perturbative corrections to the Euclidean effective
action. For example, the Euclidean effective action is
increased in the theory with g- (I;), > 0 but decreased
in the theory with g- (;),_o < 0. We emphasize that the
inequalities (5) are applicable to the UV theories in which
one-loop contributions from one-light-particle-irreducible
diagrams with heavy-and-light-field mixing appear; then,
we perform the path integral over ¢’s, i.e., focusing on the
case of d[®] — d[¢]d[®]. Even for such a case, Eq. (5)
holds; see Appendix B.

Here, we provide another explanation of the meaning of
the upper bound of Eq. (5). By expanding W[, ¢| with
respect to g, the upper bound of Eq. (5) yields

7 d? W,
2 d¢?

) L o) <o, (6)
g=0

where W, [B.¢] = WolB.¢] + g- (dW,/dg),—o + g* -
(d*W,/dg*),—/2 4+ O(g’). Note here that g-(I;),_,
cancels in Eq. (6). Therefore, the upper bound of Eq. (5)
means that the Euclidean effective action decrease by the
perturbative corrections of the second- or higher-order
corrections for g.

As the inequalities (5) do not rely on either Lorentz
symmetry or gauge symmetry, it works for a wide class
of quantum theories that consist of both light and heavy

degrees of freedom. Consider thermodynamic systems
described by quantum mechanics, which generally do
not respect the Lorentz symmetry. Define the
Hamiltonian of the system as H = H, + H;, where H;
denotes the interaction between light and heavy degrees of
freedom, and H does not involve the interactions. Define
the theory A as the Hamiltonian H,. By introducing
the auxiliary parameter g, also define the theory B as a
Hamiltonian H, = H, + g- H;. The density operators of
the theory A and B are respectively defined as follows:

e_ﬂHO e_ﬂH_q

Z(p)

(7)

Po =

with the partition functions

Zy(B) = Te[e ™), Z,(p) =Te[e ). (8)

The non-negativity of relative entropy between p, and p,
yields

S(pollpy) = Trlpo In po — po In py]
= —In Zy(p) +1n Z,(B) + g - fTr[pyH,]
=Wo(B) = Wy(B) +g-B(H) o 2 0, )

where the effective actions, and the expectation value of the
interaction are defined as

Wo(B) = —1n Zy(p), (10)
W,(B) = —1n Zy(p), (11)
(Hy) y—o = Tr[poH,]. (12)

Therefore, Eq. (9) yields

AW =W, (8) = Wo(B) < g-BlH))yo.  (13)

This inequality means that the Euclidean action decreases
for the nonpositive interacting theory defined by
g+ (H)y—o <0. Also, consider another choice of the
relative entropy S(p,||po) as follows:

S(pyllpo) = Trlpg In py = py In py)
= —In Z,(B) +In Zo(p) — g- fTtlp,H]
=W, () -~ Wo(B) —g- B{H,), > 0, (14)

where (H;), = Tr[p,H,]. Thus, Eq. (14) yields

g-BUHL), < W,(B) = Wo(B) = AWS.  (15)
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Combining Egs. (13) and (15), we obtain

g-B{H), < AW < g-B(H)), .

(16)
This inequality corresponds to Eq. (5), and it is clear that
the UV properties such as symmetry is not necessary to
obtain the entropy constraints of Eq. (5).

III. EXAMPLES

Equipped with the distance between the two theories,
we are ready to discuss the entropy constraints on various
EFTs. In this section, under the setup of the previous
section, i.e., the Euclidean path integral method is valid,
and perturbative corrections are generated from the inter-
acting term, we take two different approaches, i.e., the
top-down approach and the bottom-up approach. In the top-
down approach, the relative entropy is evaluated in the UV
theories with the light and heavy degrees of freedom to
check the validity of the inequalities of (5). In the bottom-
up approach, it is supposed that the UV theory is not
specified for a given EFT, and the higher-dimensional
operators of the EFT are generated by integrating out the
heavy fields. We focus on the EFTs, where the perturbative
corrections to the leading terms, such as renormalizable
terms, can be eliminated by the field redefinition and study
the constraints on the EFTs.

A. Top-down approach

We adopt the top-down approach and check the con-
sistency of the entropy constraints by evaluating the
effective action of the UV theories. The temperature of
the system is assumed to be zero in the first four examples.
(a) A tree-level UV completion of the single massless

scalar field theory: Consider a theory in Minkowski
space,

1 1 1

p

+ 2. 0(d,p0"0) +3

2 @000, (17
where ¢ denotes a massless scalar field, @ is a heavy
scalar field with mass m, @, and f are dimensionless
parameters, and A is some mass scale. Define the
actions I/ and I; in Minkowski space as follows:

" = / d*x G (0,00"¢) + % (0, D ®) — %m2q>2> :
(18)

p

i :%-/d“xd)(a”qﬁa”qﬁ) <a+x-<l>>. (19)

(b)

025011-4

The theory B is defined as I, =1, + g-I; with the
parameter ¢g. In this example, higher-dimensional
operators are generated at tree level, and the
interaction /; does not contribute to the Euclidean
effective action at the first order for g. At tree level,
the Euclidean effective actions are calculated as
follows:

W= [@e(- 50009

~ o (aﬂqﬁa”qb)z), (20)
Wold) = - [ (@)e5 009 @1

From Eqgs. (20) and (21), the shift of the Euclidean
effective action is obtained as

92 a2

E
AWy = =

/ (@) (0,09)%. (22)

Then, the expectation value of the interaction is
calculated as

9 I}y :g-<—g> =0.
1/9g=0 dg =0

Combining the upper bound of Egs. (5), (22), and (23),
we obtain the positivity bound as follows:

(23)

2o? 2 2
ga Pa
2N / (d*0)5(0,49'9)* 20 = 755 2 0.

(24)

Therefore, the coefficient of the dimension-eight
operator of Eq. (20) is positive because of the non-
negativity of relative entropy.

A tree-level UV completion of the single mass less
scalar field theory with a linear term: We discuss the
effects of the linear term of @ in I, which generally
generates a nonzero expectation value of the inter-
action (I),_. As shown later, the constraints on EFTs
can arise even if (I;),_, takes a nonzero value.
Consider an action in Minkowski space defined as

1 1
M) — /d“x <§(aﬂ¢aﬂ¢) +§(aﬂd>aﬂq>)
- lmzq)z + m*v® — lmzvz
2 2

+%. (0, 9) +% : dﬂ(aﬂr/)a“cb)), (25)
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where v is a dimensionful parameter. Define /; and I,
as follows:

1" = [ ax(000) + 5 0,00
- %mztbz + m*o® — %m2v2> , (26)

™ = % : / d*x®(0,p9"P) <a+%q>>. (27)

By introducing the parameter g, define the theory B as
I,=1y+ g-1I;. The Euclidean effective actions are
calculated as follows:

W,l¢]
_/(d‘*x)E(—% <1+2g-%+2g'ﬂ/\—yj> (90 $)
_%mz(ﬁ@) (0,09 $)? ) (28)

Woldl = = [ (@05 @00 (29

From Egs. (28) and (29), the shift of the Euclidean
effective action is given by

AW = g % <a +§v> / (d*x) (0,p0" )

’ 2
i (a+20) [@sa0007.

(30)

At tree level, the expectation value of /; in Euclidean
space is calculated as

g'<11>g*0

().,
:—g-/d[d)]PO-/(d“x)E%<a®+£¢2> (0,00" )
1 (o) [(@0:0.009) G1)

where we used Py = e~ /Z, with Zy = [ d[®]e 0. It
is clear that the expectation value g - (I;),_, generally
takes a nonzero value even in the tree-level UV
completion. For v =0, both linear term of ® in
Eq. (25) and expectation value g - (I;),_ vanish. This
fact holds in general UV theory involving the linear
term of ®. Here, it should be noted that the constraint

025011-5

on the higher-dimensional operators can be derived
even if g- (I;),_, takes a nonzero value. Combining
Egs. (30), (31), and the upper bound of Eq. (5), the
expectation value g (I;),_, cancels, and we obtain

E
AW <),

2 2
= i (e 20) [@nsop09r >0

2 2
g 2vp
:'W<“+T) =0 (32)

Consequently, the relative entropy yields the con-
straint on the coefficient of the dimension-eight
operator of Eq. (28). The reason why the expectation
value (/;),_, cancels in Eq. (32) is the same as that it
cancels in Eq. (6).

Here, we show that the expectation value g - (1),
can be removed by a redefinition of ®. By defining
® =75+ v, the action of Eq. (25) is expressed as
follows:

I(M>=/ ( (u¢a”¢) %( ;t”a””) ; 2’72

+ v, porp) + Ly

: 2(0,009)

+ a0, p09) + 1y

v
a2

5 20m(0,$0" )

T 2<aﬂ¢aﬂ¢>). (33)

Note here that the liner term of # does not arise in
Eq. (33). Then, we define

1 = [ (50009 + 5 0u0n) - g

+ 5 v(0,00') -

1
K-/d“xn(aﬂqﬁ@”qﬁ) (a+%-2v+§-n>,

v2<a,,¢aﬂ¢>), (34)

I

(35)

where I} denotes the interaction, and I, does not
involve it. By introducing the parameter g, define the
theory B as I'y=1Iy+g-I';. Then, the Euclidean
effective actions are calculated as follows:

W (] :/(d4x) < ;<1 +2X+2ﬂ” )(a B P)

o (w2 re2). 0o
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2
Wio[p] = — /(d“x)E% (1 + 2% n 2%) (0,6 ¢).

(37)

The shift of the Euclidean effective action is
calculated as

AW = W [g] - Wyl
2 2 2
_ / (d4x)Eﬁ (a + %) (0,00 $)2.
(38)

Since the linear term of # does not arises in Eq. (33),
the expectation value of the interaction /; in Euclidean
space takes a zero value as follows:

aw’
g-<r>==g-( ) —0. (39)
1/g=0 dg 4=0

Then, from Egs. (38), (39), and the upper bound of
Eq. (5), we obtain

W] <I7) o
g 2082
= <a—|——> / (d*x)(0,90"$)* >0

2A2m? A
2 2
g 20p
2A’m? <a * T) 0. (40)

This result is the same as Eq. (32) because the
expectation value of the interaction /; cancels in the
relative entropy, i.e., the relative entropy is invariant
under the redefinition to eliminate the linear term of ®.
Therefore, we found that the constraint on the EFT
does not depend on the condition of vanishing the
linear term.

The above explanations are based on the theory of
Eq. (25), but the invariance of the inequality of Eq. (3)
under the field redefinition to eliminate the linear term
of @ hold in general UV theories. Similar to the above
explanations, take two different approaches.

First, consider the UV theory with the linear term as
follows:

I[p. @] = I [, @] + I1[h. @), (41)

where I})i“ involves the linear term of @, and /; is the
interacting term. Consider the classical solution v of
I})i“, where indices of the classical solution, such as
Lorentz indices, are omitted. Also, the classical
solution of I for ® is assumed to be v + f(¢), where

025011-6

f depends on the light field ¢ because of the
interacting term /;. Note here that f(¢) vanishes in
the limit of /; — 0. By introducing the parameter g, we
define 1, =Ii" 4+ g-I;. At tree level, the Euclidean
effective actions of /,_; and I, are respectively
calculated as follows:

Woilg] = Ig"[p. v+ (@) + L1 v+ f(#)]. (42)

Wold] = I5"[¢. v]. (43)

The shift of the Euclidean effective action is
calculated as

AW =W [¢] - Wolg)
=1, v+ f(9)]
+ 1. v+ f(@)] - Iip.v].  (44)

The expectation value of the interaction I; in the
Euclidean space is also calculated as

(I = / APy (@11, (. ®] = L[p. o). (45)

where Py[@] = ™!t/ Zy[¢) with Zy[p] = [ d[®]e”!V".
Combining Eqgs. (44), (45), and the inequality of
Eq. (3), we obtain

Woilg] < (I1) -0
= 15" v+ F()] + L. v+ f ()]
—Ii[¢.v] = I§"[¢h. v] < 0. (46)
This inequality corresponds to Eq. (32).

Next, consider the field redefinition ® =75+ v.
Then, Eq. (41) is expressed as

1[p. ®] = I n+ v] + L. n + v]
= (1§ n + v] + L1 v])
+ (Il +v] = L[, v]). (47)

For convenience, define

L) =18 (p.n+ o] + L[ 0], (48)

L. nl = L. n+v] = 1,[¢, v], (49)

where Ij, does not include the linear term of 7. By
introducing the parameter g, we also define
I, =1}, + g- I}. At tree level, the Euclidean effective
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(©)

actions of I, and I, are respectively calculated as
follows:

Wi 8] = Ihl9. f(D)] + 11/ (9)]

=Ig"lp. v + (D)) + 11, v] + 11 [¢. f(9)].
(50)

Wolg] = I"[¢. o] + 11 [¢. v]. (51)
Note here that the classical solution of I for 7 is f(¢),
and that of I for ® = v 4+ nis v + f(¢). Similarly, the
classical solution of I}, for 7 is zero, and that of I{, for
® =wv+7# is v. Then, the shift of the Euclidean
effective action is calculated as

AW [g] = W' _ [¢] — Wi[4]
_ Ihnw} v _|_f(¢)] —|—I,[¢, 11] +1/1[¢7f(¢)]
Illn[ ] [[457 1]}

= 1. v + ()] + . £ ()] = 1i0 [ v].

(52)

The expectation value of the interaction /; in the
Euclidean space is calculated as

1), o = / APy =0, (53)

where Pi[y] = e~/ 7] with Zy|¢] = [d[n] x
e~hl# Combining Egs. (52), (53), and the inequality
of Eq. (3), we obtain

Wil <{I7) =
= 15[, v+ f(@)] + 1. f (D)) = 15" [p, ]
=I"p.v+ f() +1i[p. v+ F ()] — ;[ 0]
—Iin[,v] <0. (54)

This result is the same as Eq. (46). Consequently, it is
found that the inequality of Eq. (3) is invariant under
the field redefinition to remove the linear term of ®.
We often define the heavy fields such that the linear
term vanishes for ease of calculation of the relative
entropy. We mention it in the following calculations
when such a definition is used.

Euler-Heisenberg theory: The action of quantum
electrodynamics of electron field (y) in Minkowski
space is

™M) = / d*x (—%FW,F”” +y(ip — m)l//>, (55)
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where D, = 9, + ieA,, is the covariant derivative, m is
the mass of v, and F,, =d,A, —0d,A, is the field
strength of photon. Define I and I; as follows:

1
I(()M) = /d“x(-ZFuyF’w +1/7(i¢—m)l//), (56)

15’”) = —e/d“xtﬁy”y/A”. (57)

By introducing the parameter g, the theory B is defined
as I, =1+ g- I;. The Euclidean effective actions of
theories A and B are respectively calculated as follows:

A= [@or(3Fare). 9

%m_/wmeﬁﬂv

g e 52
_W(yl(Fﬂ”Fﬂ ) +72(FﬂbF ) )>’

(59)

where [(d*x)g is the volume of Euclidean spacetime,
" = ¢ ,0/2, the Wilson coefficents y; = 1/2
and y, = 7/8 [27], AM is the background field satisfy-
ing 0,F*" =0 with constant F**, and the vacuum
energy is omitted because it cancels in relative entropy.
The details of the wave function renormalizations are
explained in Appendix D. From Egs. (58) and (59),
the difference of the Euclidean effective action at the
one-loop level is

AW§E>
- / (d5) 51 (Fo F#)? 4 72 (F o F)2).
6'77
(60)

From Eq. (59), the expectation value of the interaction
I; in the Euclidean space is also calculated as follows:

st =3- (32 =06

Combining the inequality (5), Egs. (61) and (60), the
shift of the Euclidean effective action is given by

AW!(JE> <g-(I1) g0

gt et

e - —
—W/(d4x)5(71 (F,F*)?

+ 72 (F ")) <0. (62)
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The left-hand side of Eq. (62) denotes the linear
combination of dimension-eight operators of Eq. (59),
and it is found that the constraints on the EFTs arise
from the relative entropy. Consequently, the Euler-
Heisenberg theory satisfies the non-negativity of rela-
tive entropy because y; and y, are positive values.

(d) Massive, gravitationally coupled scalar field at tree

level [12]; to explain how to define the interaction I,
in gravitational theories, consider a simple theory in
Minkowski space,

I(M) [g;w; R;wpm A, (1)]

1
/ d*x\/=g ( FLR— 2 Fuwf"
— (apR + boF, F")®

1 1
+3 70,00, — 3 mﬁ,cbz) , (63)

where R,,,, is the Riemann tensor, R is the scalar
curvature, and ag,be are dimensionful coupling
constants. Define the noninteracting and interacting
terms as follows:

M
I< >[gyw ,uu/)mA (I)] _I( )[g/w’ ;wpmA 0}

+1™1g,,;0.,0, D), (64)

M
15 )[gﬂu;Rﬂppo”A’q)] :I( )[g/ﬂ/’ ;wpmA (D]
_IE) )[gﬂy;R;wpo"A’cD}' (65)

It should be noted that the theory A does not include
the interaction between ® and A,, R, but the
interaction between g,, and ®. The higher-derivative
operators generally arise from the interaction between
9w and @, but such effects are discussed later in (h).
The theory B is defined as I, = I, + g- I; with the
parameter ¢. In this example, /, and /; are obtained as

1
P]R_ZF,MUF Uy

18" 1G5 Ry A @] = / d4x\/_<
+5 Lo, o, - %m%bd)z) ,
(66)
19,5 Rypos A, @)
- / d*xy/=g(aoR + b F,, F*)®.  (67)

The Euclidean effective actions of theories A and B are
respectively calculated as follows:

Wolgu- }—/(d4 )E\/_< Mog. g F/w)

4" m
(68)

(e)

025011-8

W gyw

2
1
4x —PR_F Fw
T 4ok + boF, )
—%(% + boF, F*) |,

(69)

where g, and Aﬂ denote the background fields. From
Egs. (68) and (69), the shift of the Euclidean effective
action is calculated as

AW = W, (G Al = Wolg,. Al
2

=75 [ @0:VilaoR + boF P
2myg,

(70)

From Eq. (69), the expectation value of the interaction
I; at the tree level is calculated as

aw
s Uho=s (52) =0 @
17¢=0 dg g=0
Equations (5), (70), and (71) yield
AW§E> <g- (1) g0
2
g I
= o [ iR+ baF P’
<0. (72)

The left-hand side of Eq. (72) denotes the linear
combination of higher-dimensional operators of
Eq. (69), and the constraints on the EFT arise from
the relative entropy. As explained later, the entropy
constraints by the relative entropy is a generalization
of Ref. [12], which includes the result of Ref. [12].

A spin system in one dimension: Consider a spin
system in one dimension defined by a Hamiltonian

N/2

:—J202, 102i — MMZGN

(73)

where o; = £1 is a spin on site i, J is a coupling
constant characterizing exchange interactions, N is the
number of sites,  is a magnetic moment, and M is an
external magnetic field. Then, define Hy, and H; as
follows:

N/2 N
Hy=-J E 02i-102i,
i=1
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By introducing the parameter g, the theory B is defined
as Hy=H,+g-H;. Then, density operators are
given by

e_ﬂHO e_ﬁHg ( 5)
pPo = , Py = . 7
A T Z,p)
with the partition functions,
Zy(p) = Trle™th]
= (2{e” + e TPN, (76)

Z,(p) = Tefe "
= (2{e? cosh(2pguM) + e P/ })N2. (77)

For each of the theories, the effective actions are defined
as Wo(f)=-InZy(B), and W,(f)=—InZ,(B). The
expectation value of the interaction is calculated as
Tr[pgH;] = 0, and the shift of the Euclidean effective
action is given by

AWy = W,[B] - Wolp)
N B —pJ
| ST <o (1)
2 | cosh(2BguM) + e=F

This result is consistent with Eq. (13) because
cosh(2fguM) > 1. The entropy constraints explain
why the free energy of the spin system decreases by
the external magnetic field.

B. Bottom-up approach

We adopt the bottom-up approach and derive the con-
straints on a class of EFTs, where corrections to the leading
terms, such as the kinetic term and the Einstein-Hilbert
term, can be eliminated by the redefinition of the light field.
For such a class of EFTs, consider the higher-dimensional
operators generated by integrating out ®@. The interaction
of the UV theory is generally expressed as I;[¢p,®]=
J(d*x);O[®] ® J[¢]. Throughout the bottom-up approach,
we suppose this general form of interaction for a given
EFT. Here, assume J[¢] does not include the higher-
dimensional operators. In other words, we assume cor-
rections from the interactions involving higher-derivative
operators of the light fields are not dominant in the EFTs.
The assumption is quantitatively reasonable because the
higher-dimensional operator J[¢] is suppressed by a
heavier mass than @. The expectation value of the
interaction is calculated as follows:

(1) gm0 = (%) 9=0

~ [ delreinip.o
_ / (d*%); / d[®]Po[@]0®] ® J[4)

- [0 (%) @l (719)

When J[¢] preserves the symmetries of the EFT, J[¢] can
be proportional to the leading term, such as the kinetic
term and the Einstein-Hilbert term, and generally takes a
nonzero value. If J[¢] is the higher-dimensional operator,
the EFT includes terms proportional to J[¢] generated
from degrees of freedom other than ®. Therefore, it would
be quantitatively and qualitatively reasonable to impose
the above assumption. As explained later, (;),_, can take
zero value by a suitable field redefinition when J[¢] does
not preserve the symmetries of the EFT, such as the gauge
symmetry.

We focus on two cases; tree-level UV completion and
loop-level UV completion. In the tree-level UV completion,
we assume the tree-level effects dominate the perturbative
corrections from the heavy degrees of freedom to the
Euclidean effective action. On the other hand, in the
loop-level UV completion, we assume the loop-level effects
dominate the perturbative corrections to the Euclidean
effective action. For each EFT, we evaluate the relative
entropy as follows:

(f) Single massless scalar field with dimension-eight
term: Consider an effective action in Minkowski space
defined by

™ = / d%(%(a,,wgb)+%(aﬂ¢d“¢)2>, (80)

where we used a metric signature convention,
g = diag(4+1,-1,-1,—1), and the second term is
induced by integrating out heavy fields. Because of
the shift symmetry, ¢ — ¢ + const., Eq. (80) in-
volves only the kinetic term as the renormalizable
term, and corrections to the Kkinetic term can be
removed by the field redefinition of ¢. We suppose
that the dimension-six operators are eliminated by
demanding @6“(}5 =0 with constant d¢). Because
of the assumption, i.e., J[¢] does not include the
higher-derivative operators, J[¢] can be d,¢ or
0,40 ¢, which preserve the shift symmetry, but
d,¢ effects on (1), vanish because (I;),_, pre-
serves the Lorentz symmetry. When we suppose that
the EFT arises from integrating out heavy degrees of

025011-9
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AW =W, (] - Wo[d)
= g5 (14 afee)?

x / (@), (0,0P).  (85)

freedom, the first-order corrections for ¢ to the
Euclidean effective action are expressed as

o = (%) g=0

= [ (%) sl

x / (d%) o (0,0). (81)

Also, from Eq. (83), we obtain

The detail derivation of Eq. (86) is provided in
Appendix D. From Eq. (5) or (B12), combining
Eq. (85) and (86) yields

For each tree and loop-level UV completions, we
evaluate the constraint from the relative entropy as
follows:

(i) Tree-level UV completion—First, consider the

EFT generated by the tree-level UV comple-
tion. Not depending on details of the UV theory,

AW < g- (1),
= 5 (1 + afe)

up to the dimension-eight operator, the Euclid- « / (d*x) (0 Po* (}5)2 <0
ean effective action of the theory B is calculated EXH -
as follows: N ﬂtzree . (1 + atzree)—Q > 0. (87)

Wl = [ (@ (50 + ) 0009)

—ﬁgee<a,4¢aﬂ¢>2), (2)

where a3 and f5° denote the second or

higher-order corrections for g. Note here that
p5°¢ does not include the first-order correction
for g because of the assumption, i.e., J[¢] does

(i)

Equation (87) denotes the constraint on the
coefficient of dimension-eight operator of
Eq. (83).

Loop-level UV completion—Next, consider the
EFT generated by the loop-level UV comple-
tion. The Euclidean effective action of the
theory B is calculated as follows:

W= [[(@)s (S0 4l 4 0,009)

not include the higher-dimensional operators. It oo
is assumed that ¢ and f5° are generated at —p;"(9,40" ¢)2+Evac>v (88)
the tree level. Also, according to the procedure

loop

in Egs. (47)—(49), the first-order correction for g
is removed in a5°¢. We choose the background
fields as 6,,(;5 = const to remove the dimension-
six operators. The Euclidean effective actions of
the theory B and A are respectively obtained as

~ 1 -~ o~
Wb = [@e(5 0,009
B (20,097 ).
(83)
~ 1 -~ o~
wld = [ (@0 (30009). &
where the wave function renormalization is

performed in Eq. (83); see Appendix D. Note

here that ¢ is also a classical solution of W[¢].
Then, the shift of the Euclidean effective action
is calculated as

025011-10

where o) " is the first-order correction for g,

I ! .
a, ™, and ;" are the second- or higher-order

correction for g, and E,,. is the vacuum energy

coming from ® and ¢. It is assumed that a11°°p,

aY®, and pY are generated from the loop
corrections of ®. We choose 0,,55 = const to
remove the dimension-six operators. Since the
background field ¢ is also a classical solution of
Wol¢], the Euclidean effective action for the
theory B and A are respectively obtained as
Eq. (D15),

Wil = [, (040,009
- ﬁIZOOP (aya)aﬂi)z + Evac> ’ (89)

Wldl = [ @0 (50009 + B ).
(90
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Then, the shift of the Euclidean effective action is
obtained as

AWE =W, (] - Wold)

Also, from Egs. (81) and (89), we obtain

dwW ldalloop o
<d—gg> 9=0 T2 dg /(d4x)E(aﬂ¢a”¢),
(92)

where o/ denotes the first-order correction
for g and satisfies a relation of the form
g- (da® /dg) = a ™. From Eq. (5) or (B12),
combining Egs. (91) and (92) yields

AW < g- (I1)g—0
= =B [ (d*%):(0,00"$)* <0
= Ay > 0. (93)

Equation (93) yields the constraint on the di-
mension-eight operator generated at the loop
level.

For both tree and loop-level UV completion,
demanding dﬂdf‘c} = 0 with constant 0*¢, after
Wick rotation the inequality (5) gives rise to

c ¢
A d*xp(0,00"9)* > 0 = I > 0. (94)
Consequently, the coefficient ¢ must be positive
to respect the entropy constraints, when it arises
from integrating out the heavy fields. This result
is the same as the positivity bound from the
unitarity and causality.

(g) Standard Model EFT (SMEFT) dimension-eight

SU(N) gauge bosonic operators. Consider an effective
action in Minkowski space defined by

Iteer = /d4 <_ZFZUFMD A4ZCO> (95)

where the dimensional-eight operators O;’s are [26]

OF4 (Fa Fe ;w) (FgoFb'po') , (96)
OF = (Fg,Fom)(FL,From), (97)
OF = (FL,FH)(FLF).  (98)
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OF = (FLF*m)(Fg ), (9)
(91;4 — obegede (Fe, Fow) (FS, Fd0e), (100)
054 — obegede (Fa, Fomw)(Fe, Fdoe), (101)
OF' = gace dbde (Fa, Fomv) (FS, Fdoe), (102)
or = dace ghde (Fa, Fbm)(Fe, Fdoo), (103)
O = (Fg, Fom)(Fb,EPor). (104)
OF = (R F) (5 F), (105)

(7)54 — abe gede (FZDFb,/w) (F/L;O-Fd'/)(}—), (106)
@31:4 _ dacedbde (FZDFb,;w) (F/c)‘o_ﬁ*d,pa)’ (107)

where F9, = 0,A% —0,A% + gf***AbAC is the field
strength of the gauge field A7 and g denotes the gauge
coupling of SU(N). The Greek letters stand for
Lorentz indices, the italic letters represent SU(N)
color indices, and totally antisymmetric and symmet-
ric structure constants are defined by [T¢,T°] =
ifebere and {T%,T?} = §1/N + d**°T¢ with T¢
the generator of SU(N) Lie algebra. To avoid
the effect from the dimension-six operators
fF@FYFS and fF@FEY, we follow [26]
to choose a background field satlsfylng the leading-
order equation of motion, ¢"Fy, + gf’ “bCA”bF ¢, =0,
in Minkowski space as Aﬁ = ufe,wy + usey,w, with
fe%eu§ub = 0, where u, , is a constant real vector in
SU(N) color space, € , is a constant four-vector, and
W is an arbitrary Cartesian coordinate in spacetime
satistying d,w; = [, and d,w, =k, with [, and k,
being constant four-vectors.

When J[Aj] does not include the higher-
dimensional operators, there are two cases: (i) J[Af]
preserves the gauge symmetry or (ii) not. For case (i),
JIA]] « Fy, F** holds. The CP-violating term gen-
erally arises, but we assume such a term is removed by
axionlike degrees of freedom in the UV theory. Then,
from Eq. (79), the first-order corrections for g to the
Euclidean effective action are expressed as

o< / (d*x) g Fa, Fasw (108)

For case (ii), J[Af] can be proportional to Ay, or AjA®#
because of the covariant derivative of the kinetic term.
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Since corrections from the interacting terms of the
higher-dimensional operators would not be dominant
effects, we focus on corrections from the kinetic terms.
However, J[Af]] o Aj vanishes because (1), keeps
the Lorentz symmetry. Although J[Af] o< AA“# gen-
erally remains, it can be eliminated by the gauge fixing
condition, which is called a nonlinear gauge; see
Refs. [28,29]. Therefore, we focus on the case of
Eq. (108) below. For each tree and loop-level UV
completions, the constraints on the SMEFT from the
relative entropy are evaluated as follows:

(i) Tree-level UV completion—Consider the EFT
generated by the tree-level UV completion. The
Euclidean effective action of the theory B is
generally calculated as follows:

W,lA] = / (d*x)p G (1 + agee) Fa, Fem
- Zﬁ“ee ) (109)

where af* and pYS® denote the second- or

higher-order corrections for g, and fS° does
not include the first-order correction for g
because of Eq. (109). The corrections a5
and fS° are assumed to be generated at the

tree level. According to the procedure in
Eqgs. (47)—(49), the first-order correction for g
is eliminated in a3°°. The background fields are
chosen to hold F ,w = const Since A,‘j is also a
classical solution of Wy[A], the Euclidean
effective actions of the theory B and A are
respectively obtained as follows:

W, [A] = / (d*x), G o, s
- S (14 a0 ]>
(110)
Wold] = [ (@) GFF) i,

where the wave function renormalization is
performed in Eq. (110); see Eq. (D24). Then,
the shift of the Euclidean effective action is
calculated as follows:

AW =W [A] - W,[A]

:_Zﬂtree Lree /(d4X)EO,[A_]

(112)
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(i)

From Eq. (110), the first-order correction for g
is calculated as

(%)0 ~o. (113)

From Eq. (5) or (B12), combining Eqs. (112)
and (113) yields

AW <g- <11>¢ro

= Z tree | tree) -2
« / (@), 0d] 0. (114)

The left-hand side of Eq. (114) denotes the
coefficients of the dimension-eight operators of
Eq. (110). Therefore, the relative entropy yields
the constraints on the linear combination of the
dimension-eight operators.

Loop-level UV completion—Consider the
SMEFT generated by the loop-level UV com-
pletion. The Euclidean effective action of the
theory B is generally calculated as follows:

Wil = [ (@,

1
x <§<1+ loop+ loop)Fa Famv

- ZﬂIZO,?pOi [A] + Evac> ) (1 15)

loop , :
where o, is the first-order correction for g,
o I :
>F, and S5 are the second- or higher-order
correctlon for g, and E,. is the vacuum energy

coming from ® and A¢. It is assumed that a}"”,

I I
a, P, and ;7 arise from the loop corrections

of ®. We choose the background field satisfy-
ing Fﬁy = const to remove the dimension-six
operators. A;‘ is also a classical solution of
Woy[A], and the Euclidean effective actions of

the theory B and A are respectively obtained as
Eq. (D32),

W, A] = / (d*x), (;(1 +a P e, Fe
- SO Eu ) (16

Wldl= [ @ (3P s B ). 17
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where the wave function renormalization is
performed in Eq. (116); see Eq. (D29). Then,
the shift of the Euclidean effective action is
calculated as follows:

AW = W,[A] - Wo[A]

= [, (G e
-Sokrola).

Also, from Eq. (116), the first-order corrections
for g is calculated as

(d Wg>
dg g=0

where g - (da"®/dg) = ™. From Egs. (5) or
(B12), combining Eqgs. (118) and (119) yields

(118)

(h)
1 d loop

/(d4 EFa Fa/,w

(119)

AWE]E) <9 Iy

N Z ﬁloop /

Equation (120) yields the constraint on the
dimension-eight operator generated at the loop
level.

It is found that, for both tree- and loop-level
UV completion, the inequality (5) gives rise to

1 _
PZCiOi[A] >0

After Wick rotation, Eq. (121) yields

O[A] > 0. (120)

(121)

A-cos’y + B -sin*y + C-sin ycos y > 0,
(122)

where

A= N[(2¢; + c3)(uy - up)* + cauju;
+2(cs + ) UP) + 2¢9[(uy - up)* — ujus),
B = N[(2¢y + c4)(uy - uy)? + cqutul
+2(ce + cg) U] + 2¢5(uy - up)* — ujusd),
C = N[(2¢; + &) (u; - uy)? + &ulu3

+2(83 4 T4) U] + 284[(uy - fu3)

Mz)z — Uiz |,

(123)
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with U = d"ubus, 1* = (1,0, —sin y,
cos y)/V2, k= (1,1,0,0)/v2, € « (0,1,
0,0), and ¢,  (0,0,0,1). We end up with
positivity bounds as follows:

A >0, B >0, C? <4AB, (124)
which are completely consistent with the
positivity bounds from unitarity and causality
[26,29]. More comprehensive constraints are
studied in Ref. [29] by considering more gen-
eral solutions, which yield additional con-
straints on the Wilson coefficients of SU(3)
gauge bosonic operators.

Einstein-Maxwell theory with higher-derivative oper-
ators: Consider a gravitational effective action in
Minkowski space defined by

15 = / d4x\/_(

(FF™)? +

1
PR Z F, F"

- (Fyu )

4M§,1 4M§1

o FF R’“’””)

vFos (125)
2M§,1 wep

where other operators up to four-derivative are elim-
inated by the field redefinition of g,,. Also, the Gauss-
Bonnet combination, i.e., RW/,,,R/‘W’” 4R, R* + R?,
is a total derivative and vanishes in four dimensions.
Consider the higher-derivative operators generated
from the UV theory defined by I[g,,;R,, .. A, @],
where g, is the metric of space-time, R,,,, is the
Riemann tensor, A, is the U(1) gauge boson, and ® is
the heavy degrees of freedom. Then, the noninteract-
ing and interacting terms are defined as Eqgs. (66)
and (67). It should be noted that the theory of /7, does
not include the interaction between A, R,,,,, and @,
but the interaction between g,, and ®. The gravita-
tional operators up to four-derivative such as R,zw are
generated from /, and can contribute to «; and a, by
the field redefinition of g,,. Our entropy consideration
does not constrain such effects because the relative
entropy constrains only the higher-derivative operators
generated from the interaction /;. In the following
explanations, especially for loop-level UV theory, we
suppose that the Rﬁ,, operator effects are not dominant
by assuming a large charge-to-mass ratio of the
particle integrated out.

Similar to the SMEFT, when J[g,,: R,,,,. A,] does
not include the higher-derivative operators, there
are two cases: (i) J[g,,: Ryppr Ayl < FyF* or R,
and (i) J[g,,; Ruper Ayl < Ay, or A,A¥. Because of
the same reason as the SMEFT, we focus on the
following case:

HUpo s
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aw _ =
<Il>g:0 - < d !]) WO{g;w’A]
9740 M3
5w — @i~ TP R R ).
_/(d4x)E( 5Jg> I [9uw Ryuvpos Ayl 2 4"
J=0

(129)

cx/(d“x)E\@FmF"” or /(d4x)E\/§R. . _
where A, and g,, include the effects of the

(126) higher-derivative terms. It should be noted
that the first-order correction for the higher-
derivative terms vanishes in W, by using the
equation of motion. Then, the shift of the
Euclidean effective action AWéE) denotes cor-
rections from the higher-derivative terms. Also,
from Eq. (128), the first-order correction for g is
calculated as

For each tree- and loop-level UV completions, the
constraints on the EFT from the relative entropy are
evaluated as follows:

(i) Tree-level UV completion—Consider the EFT
generated by the tree-level UV completion.
Then, by integrating out the heavy fields, the
Euclidean effective action is generally calcu-

lated as follows: aw
(—q) =0. (130)
dg g=0
Wg [g/u/’ A]

From Eq. (5) or (B12), combining Egs. (128)

M2
= [@neva(-"P 0+ agr

and (130) yields

1
g (L ), Y = B (F, F)?

- ﬁtZI.CZC(FMDF”D)Z - ﬂg.%eFﬂl/FﬂaRﬂypg> ’

(127)

tree tree ree (ree (ree
where AR Ay s Pols P25 and $5% denote the
second- or higher-order corrections for g. Note
here that 455, 5%, and 5% do not include the

AW <o. (131)

This inequality means that the relative entropy
yields the negative shift of the Euclidean
effective action by the higher-derivative oper-
ators generated at tree level.

(i) Loop-level UV completion—Next, consider the

EFT generated by the loop-level UV comple-
tion. The Euclidean effective actions of the
theory B and A are respectively obtained as

first-order correction for g because of Eq. (126).
According to the procedure in Eqs. (47)-(49),
the first-order correction for g is eliminated in
ay% and a3%. Since the gravitational higher-
derivative operators involving the Riemann
tensor can be removed by field redefinition,
and the Riemann-squared operator vanishes in
four dimensions, we omit such terms. The
effective actions of the theory B and A are
respectively obtained as Eq. (D44),

WG Al

— 4 = _%‘ 1" fFuy
= [(d x)E\/§ > R—|—4FWF

2 _
— gy (1 +3 8% - 2ag$;> (F,, Fm)?
— 55 (1 + 205 — 208%) (Fu )2
1 _o
- B (1 +3 8% - a) FWF,,(,Rw) ,

(128)
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Egs. (D53) and (D54),
W (G- Al

= 00] M2
— [@neva(atp -

(1+al?)R

1 _ _
+5 01+ A PVF 7 — B0 (F  Fr)?

— B (F ) = P F, R0

uvt po

+ (correction from R and

WO [g_/w’ A]

(132)

_ 1
= /(d4x)E\/§<AgT$) —TR +ZF/WFMD

+ (correction from R and

FWFM),
(133)
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I I I
where 851", 55, and S, are the second- or

: . I !
higher-order corrections for g, | and ay

. 1 .
are the first-order corrections for g, and Agq is

the vacuum energy coming from ®. The last
terms of Eqgs. (132) and (133) arise from the
one-loop correction of light fields in M3 R/2
and F,, F* /4. Since such a correction does not
depend on g, they cancel in relative entropy.
From Eq. (132), the first-order correction for g
is calculated as

dwg> / M2, da’P
— = [ (d*x)V/G| ——2—ER
Lda*P
-—F, F*" ], 134
+ 4 dg 1224 ) ( )

where g - (dall‘f%p /dg) = a]ff?ep and g- (dalf(}p
dg):alfon. From Eq. (5) or (B12), Egs. (132)—
(134) yield

AWEJE) <g: <II>9=0
= Wgon—lin [g_;uﬂA_] — WO [g_yw A] <0.
(135)

Here, we defined the effective action without
the first-order corrections for g as follows:

Wgon—lin [g_;u/ , A}

M: - 1. -
= 1
_ / (d4x>E¢§<Agng Mg L F,
loop 7 7 loop/ 75 7
_ﬂZ(?(l)p FquW)z _/}20.(2)p<F;wFW)2

_ ﬂlzfgp FW Fpg Rrwro
+ (correction from R and F WF””)).
(136)

It should be noted that the one-loop corrections
from R and F,, F*" cancel in Eq. (135). There-
fore, Wiorlinig . A] — Wy[g,..A] denotes the
shift of the Euclidean effective action by the
higher-derivative operators. Consequently, even
for the loop-level UV completion, the relative
entropy yields the negative shift of the Euclid-
ean effective action by the higher-derivative
operators.

For both tree- and loop-level UV completion,
it is found that the non-negativity of relative
entropy yields the negative shift of the
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Euclidean effective action by the higher-deriva-
tive operators. As explained in the next section,
this result is closely related to the WGC-like
behavior.

Here, we consider the relative entropy when
additional higher-derivative operators are added
to theory A. In Eq. (135), the loop effects from
light fields cancel in the relative entropy, and
the relative entropy does not depend on whether
the higher-derivative operators are added to the
theory A or not. Consider the action of theory A
with the additional higher-derivative operators
as follows:

Iy— Iy =Iy+1,, (137)

where [, denotes the additional higher-
derivative operators consisting of light fields.
Then, the Euclidean effective action of theory A
of Eq. (133) is modified as follows:

W()[g_/w’A] - W()[g;w’A]

= WO[guwA] +Ic[g;w7A]’ (138)

where /. eliminates the divergences of loop
effects from the light fields and would make the
probability distribution function well-defined.
Note here that /. does not depend on the
parameter g because the theory A is defined
from the action I, by taking the limit of g = 0.
In other words, the action of theory B is also
modified as follows:

I=1,=1,+1,. (139)

Then, the Euclidean effective action of the
theory B of Eq. (132) is also rewritten as
follows:

Wg{g_/w’g] - W/g[guw‘&]

- Wg[g_/w’A] +Ic[g_;4wA]’ (140)

where /. also eliminates the divergences com-
ing from the loop effects from the light fields in
the effective action of theory B. Then, the
relative entropy of Eq. (2) is modified as
follows:

aw,
S(Py||Py) =Wo—=W,+g- do
g g=0

> W =W +g <d—W;>
0 9 dg g:O,

(141)
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where we used (I;),o= [,d[®|Py-1; =
(dW,/dg),_ in the first line. Substituting
Egs. (138) and (140) into Eq. (141), we obtain

!

Wo-W,+g- (de>
v dg g=0

aw,
= Wo-W,+g- [~
dg g=0
= S(Po||P,), (142)
where I, cancels in Wy,-W, and

(dWy/dg),—o = (dW,/dg),—, holds because
I .. does not depend on the parameter g. There-
fore, the relative entropy of Eq. (2) does not
depend on whether the higher-derivative oper-
ators consisting of the light fields are added to
the theory A.

(i) Weak gravity conjecture: Last but not the least, we
discuss the close connection between the entropy
inequality (5) and the WGC. The WGC states that
quantum gravity theories have to contain a charged
particle with the charge-to-mass ratio larger than unity,
which is motivated by a gedanken experiment of the
decay of an extremal black hole. The extremality
bound, M > M., = Q where M and Q denote the
mass and charge of the black hole described by
the Einstein-Maxwell theory and M., represents the
minimum mass, would indicate existence of a particle
with the charge-to-mass ratio larger than unity. The
extremality bound is modified by a perturbative
correction in the Finstein-Maxwell theory; however,
the conclusion of the above gedanken experiment
remains for an extremal BH of arbitrary large size
if the perturbative correction does reduce M., at fixed
charge. Based on thermodynamic, Ref. [16] general-
izes a relation between the perturbative corrections to
the black hole entropy and the extremality bound [12]
to a wide class of thermodynamic system as

oM 1 /0S8
de 0 M—M(0.¢) ﬁ de M0

where ¢ is the parameter introduced to characterize the
perturbative corrections in the system, and é is the
charge. Note here that the extremal limit is taken in
Eq. (143). From Eq. (143), if ¢ - (0S/06)M.é > 0, then
a perturbed extremal system is less massive than its
unperturbed counterpart at fixed charge.

Consider the effective action including the perturbative

correction as

We[ﬁ’ ¢] = WO[/j’ ¢] te- (aws/ae)ezo’ (144)

where € - (OW,/0€)._o = AWE,E> < g+ (I;)y— in accord to

the inequality (3). Note that € - (0W,/0¢),_, contains the
higher-order correction of O(g?). Again, the parameter e
characterizes the perturbative corrections and we consider
the leading term of ¢ hereafter. The free energy of
the thermodynamic system, G=M — S/ — é TR
expressed as

Glp.fi.el = p~" - WIp. . (145)
where ¢, is a local minimum of W,, f is the inverse
temperature, S is the thermodynamic entropy, and j is the

chemical potential. Therefore, the difference in the free
energy between the two theories is

Oe B
(146)

(E)
R R 1 (oW, AW
AGEG[ﬂ,u,e]—G[ﬁ,u,O}:ﬁe-< ) = g
e=0

where W, [, ¢.] = W.[B, o] + O(€?) is used because ¢, is
a local minimum of W,. In gravitational EFTs, this point
has been mentioned in Ref. [16] with special attention to
contributions from boundary terms. From the relation
(0S/0€), 5 = —P(0G/0e);; in Refs. [14,16], we obtain

1 <as> <0G> AW
€ — _— = —€ - e = - .
P\o) yp o€ ) 4 p

Combining Egs. (5) and (147), lower and upper bounds on
the perturbative correction to entropy are given by

(147)

1 1/0S 1
o ze (5) 2joting

For the EFTs discussed in Sec. III B, under the assumption
that J does not include the higher-derivative operators, the
shift of the Euclidean effective action by the higher-
derivative operators becomes nonpositive at zero temper-
ature. When we substitute such nonpositive-perturbative
corrections from the higher-derivative operators into € -
(0W./0€)._ in Eq. (144), the right-hand side of Eq. (147)
takes a non-negative value up to the first order of the
higher-derivative operators, and the WGC-like behavior
arises in the EFTs discussed in Sec. III B. In particular, to
derive the above arguments for the Einstein-Maxwell
theory with higher-derivative operators, it is also supposed
that the Rﬁ,, operator effects are not dominant because of a
large charge-to-mass ratio of the particle integrated out.
Note here that the exception is possible because the entropy
constraints rely on the Euclidean path-integral method.
Some conditions to apply the entropy constraints are
explained in Appendix E. Although the entropy constraint
is a generalization of Ref. [12], investigations of the

(148)
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adaption range of the entropy constraint on the WGC is one
of our future directions.

We comment on a connection between this work and
Ref. [12]. In Ref. [12], it is demonstrated that the Euclidean
effective action decreases by higher-derivative operators
generated at tree level. For convenience, we briefly review
it. At finite temperature /3, consider the actions /; and /,,.
The saddle point approximation yields

Io[chy. 0] = Ig[fi’o, 0] > Ig[‘?’gv (i)g]’ (149)

where ¢, is the classical solution of 1, (;ﬁg and <i>g are those
of I, and I,,[¢hy, 0] = I, o, 0] holds because the interacting
term of I, vanishes for @ = 0. It should be noted that the
relation

(150)

lim 1]}, ®,] = 1ydy.0] = liml,[p,, ®
@—%ﬁy—»o g[¢g g] 0[450 ] 90 g[¢g g]

is derived by taking the limit of g = 0 in this work. Thus,
Io[ho. 0], and I,[¢,, @] are the Euclidean effective action
of the theory A and B, respectively. Since d)g denotes the
local minimum of 7, and would take a small value because
of heavy field mass suppressions, the inequality of (149)
arises by the saddle point approximation. The action I
does not generate the higher-dimensional operators, but the
action [ yields them through the interacting term between
¢ and ®. Therefore, the inequality (149) means that the
Euclidean effective action decreases by higher-dimensional
operators generated at tree level. In other words, at
fixed temperature /3, the free energy decreases by higher-
dimensional operators generated at tree level. Note here
that the inequality of (149) does not need the extremal limit
to be valid. Although the origin of the inequality is slightly
different, Ref. [12] is essentially the same as this work at
the tree level.

IV. IMPLICATION OF ENTROPY CONSTRAINT

The entropy constraint is intimately connected to the
unitarity of time evolution. In the study, the canonical
distributions are adopted as the density operator, which is a
positive semidefinite (Hermitian) operator with trace one.
In other words, the Hamiltonians of the two theories
are Hermitian to ensure the non-negativity of relative
entropy. Therefore, the entropy constraint on the EFTs is
consistent with the positivity bound obtained from unitarity
considerations.

So far we have studied the constraints on theories from
the non-negativity of relative entropy, however, the second
law of thermodynamics is also intimately connected with
the non-negativity of relative entropy [6]. For example,
consider a thermodynamic system consisting of a system,
and an external heat bath system described by the
Hamiltonian Hy. We assume that the initial state of the

entire system is pg ® e #H5/Z,, where pg is a quantum
state of the system, £ is an inverse temperature of the
external heat bath system, and Z; = Trg[e 5] is obtained
by tracing out the heat bath system degrees of freedom.
After the time evolution by the unitary operator U, the final
state of the entire system becomes Up, ® ez /Z,U".
Then, the final state of the system is obtained as pg =
Trp[Up, @ ¢ 2 /ZpU'] by tracing out the heat bath
system. The definition of relative entropy Eq. (1) yields [6]

S(Ups ® e PHe | ZyUT||ps @ e PHi ) Zp)

=As—p-Aqg >0, (151)
where As = —Trg[psInpg| + Trglps Inpg| denotes the dif-
ference in the thermodynamic entropy of the system, Ag =
Trlps @ e PHs /ZyHp) — Trlps @ e s /ZyUTHLU] is a
heat exchange between the system and the external heat
bath system, and the second term —f - Ag represents the
difference in the thermodynamic entropy of external heat
bath systems at inverse temperature 5. Therefore, the non-
negativity of relative entropy yields the second law of
thermodynamics, and any theory violating the non-
negativity of relative entropy does not respect the second
law of thermodynamics. It is remarkable that the non-
negativity of relative entropy yields a unified understanding
of various phenomena, e.g., the positivity bounds on EFTs,
the WGC-like behavior in thermodynamics, and the second
law of thermodynamics.

V. CONCLUDING REMARKS

In this Letter, we have studied the positivity bounds on
EFTs, and the WGC-like behavior in thermodynamics in
terms of the non-negativity of relative entropy. Form the
relative entropy, we obtained the lower and upper bounds
on perturbative corrections from the interaction between
heavy and light degrees of freedom to the Euclidean
effective action. We argued that the bounds are applicable
in both field theoretical systems and quantum mechanical
systems. Focusing on the class of EFTs, e.g., the single
massless scalar field with dimension-eight term, SMEFT
SU(N) gauge bosonic operators, and Einstein-Maxwell
theory with higher-derivative operators, generated by the
interactions, we found that the upper bound yields the
positivity bounds as the same as those derived by unitarity
and causality in the conventional EFT study [26]. This
argument holds when the corrections from the interactions
involving higher-derivative operators of the light fields are
not dominant in the EFTs. By combining the entropy
constraints and pure thermodynamics, it is also shown that
the WGC-like behavior arises in some EFTs, e.g., the single
massless scalar field with dimension-eight term, SMEFT
SU(N) gauge bosonic operators, and Einstein-Maxwell
theory with higher-derivative operators, up to the first order
of the higher-derivative operators. Finally, we remark that
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the positivity bounds on EFTs, the WGC-like behavior in
thermodynamics, and the second law of thermodynamics
are intimately connected by the non-negativity of relative
entropy.

ACKNOWLEDGMENTS

D. U. thanks the KEK theory group and the University
of Tokyo for their hospitality, where most of this study was
done. We would like to thank Yuta Hamada for worthwhile
discussions of the WGC. We greatly appreciate many
valuable conversations with our colleagues, Yasuhito
Sakaki, Kiyoharu Kawana, Teppei Kitahara, Yoshinori
Tomiyoshi, Katsuya Hashino, Hikaru Ohta, Naoto Kan,
Ryota Kojima, Sumito Yokoo, and Takumi Kuwahara. The
work is supported in part by the National Science
Foundation of China under Grants No. 11725520,
No. 11675002, and No. 11635001.

APPENDIX A: DEFINITION OF I, AND I,

We study the relative entropy between a theory with and
without interactions between heavy and light degrees of
freedom. In this section we provide a definition of the
two theories by using some examples. Let us consider
a theory defined by an action Iy[p, @]+ I;[p, D).
Throughout this paper, it is supposed that I, does not
involve interactions between ¢’s and ®@’s, and /; denotes
the interactions. To characterize the interaction, we intro-
duce an auxiliary parameter g and define an action
1. @) =1Iy[p. @]+ g-I;[¢p.®]. The theory A and B
are defined as Iy[¢, @] and I,[¢, @], respectively. Note
here that, for g = 1, the theory B reproduces the original
action defined by Iy[¢, @] + I;[¢, ®]. For ease of under-
standing, we provide the definitions of /, and /, by using
some examples.

(A) A loop-level UV completion of the single massless

scalar field theory with dimension-eight term: Let us
consider a theory in Minkowski space,

10— [ as (% (0,60)
n u7<i¢— Lo - m)w) (A1)

where ¢ denotes a massless scalar field, and y is a
heavy fermion feild with mass m. We define an
action I, = Iy + g - I; with

"= / d*x G (0,0 ¢) + i (i — m)l//),

1 _
1M = - / d* xg gy (A2)

(B)
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Then, the upper bound of Eq. (5) becomes zero,
because a tadpole diagram proportional to g van-
ishes. Consequently, the positivity bound of Eq. (95)
arises.

Massive scalar field theory in linearized gravity: Let
us consider following theory in Minkowski space:

(M) i —(Mp, 1
1 = d*x —g TR_ZF”DFIW

+ ¢“D,®D, " — m?|®|?

- V(®) +%§R|CI>|2>, (A3)

where @ is a massive charged-scalar field, D,® =
(0, +ieA,)®, and & is a dimensionless coupling
constant. We can define as

I = / d4x\/——g<M712"R - %F’”’Fﬂy)
+ / d*x\/=n("0,20,® — m*|®> — V(D)),
(A4)
1M = qon _ g0 (A5)
Then, the theory B is defined as I, = I, + g - I; by
introducing the coupling g. Let us consider a

classical fluctuation of the metric &, around the
flat metric 7,,,
9w = NMw + h;u/' (A6)

At the linearized level, we obtain

M 1
= / d4x\/—_g<TP1R —ZF””FW>
+ / dx(9, 00,8 — m2|O[2 — V(®)),
(A7)

™ = / d4x(r]”"(—ieAD(aﬂd>)CD* + ieA, D9, D)

1
+ e?A,A, |0 + En””hw(n””DﬂCDDDCD*
—m?|®f = V(D)) + WD,®D,®*
1
+§§R|<I>|2>. (A8)
It is clear that the /; denotes the interaction between

graviton, photon and massive scalar field, and I
does not involve it.
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APPENDIX B: DERIVATION OF EQUATION (5)

For convenience, we would like to provide details of the derivation of Eq. (5). The relative entropy is calculated as
follows:

S(Pol|P,) = / d[®](PyIn Py — PyIn P,).
=/ﬂ@@&%wﬂhM%WM%Pw%M@Fm%W@»

=—m%MM+m%mﬂ+/ﬂ®%%MM—hWML
= WolB, ] = W[B. ¢ + g (I}) 0

= —AWéE) +9-(I1)y—0 20, (B1)
|
where the probability distributions are defined as W[5, ¢] = —InZ,[B, ¢] (B6)
e~ 1ol @] e~ Lyl @]
Py=——0, Pi=——r. B2 g-{n)g—o = [ d®|P(1,[¢p, D] = Io[¢p, D])
" Zolp.g) T Z,0p.¢) 2 ’ ’

— /d[q>]POg-I,[¢, P). (B7)

The first line denotes the definition of the relative entropy.

In the second line, we used the following relations:
In the last line, we used the non-negativity of relative

In Py = —Iy[p. ®] — In Z[B. $]. (B3)  entropy and AW;E) = W, [f. ] — Wy[p, ¢]. From Eq. (B1),
the upper bound of the shift of the Euclidean effective

action is expressed as
InP, = ~1I,/¢p,.®] —InZ,B. ] (B4)

(E)
AW <g-{I}),_,. B8
In the fourth line, we used the following definitions: 7 =9 1>"’*O (B8)

Similarly, another choice of the relative entropy is calcu-
Wolp. ¢] = —InZ,[B. ¢]. (BS)  lated as follows:

S(P,||Po) = / d[®|(P,In P, — P, In Py).
=/ﬂmww@mm—mamwww¢%m®rm%mﬂ»

=—m4W¢LHMQm@—/ﬁ@w¢u¢®—mW¢u
— W, 1. — Wolp. ] — g (1),

=AW —g-(1)), > 0. (B9)
|

In the fourth line, we used The last line yields the lower bound of the shift of the

Euclidean effective action as follows:

E

9 (1), = [ d9IP,(1,i9. ] - 1) g- (1)), < AW, (B11)
— /d[(D}ng NAIX) (B10) Combining'Eqs. (B8) and (B11), we get Eq. (5). Note her.e
that the derivation of Eq. (5) does not depend on the detail
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form of ,. Since, however, the relative entropy is calcu-
lated based on the Euclidean path-integral method, Eq. (5)
may be broken when the Euclidean path-integral method
does not work, see Appendix E.

For the dynamical light fields, similar to Eq. (2), the
relative entropy is calculated as follows:

S(P|1P,) = /ﬁ d[)d(®](PyIn Py — PyIn P,)
— I Zylf. do] + Z, (6.5
ny /ﬁ dpld@]P, -1,

= Wy [B. o] — W, B, f}q] +9- 1) g0

=~ AW 4 g (), 2 0, (B12)

where WO [ﬂv 430] =—In ZO [/B9 550} ’ Wg LB’ &ﬁq] =-In Zg LB’ &jg]’
AW§E> =W, [, d,] — Wo[B. ¢, and the partition functions
are defined as

Zolp. do) = / dpld@le o (B13)

p

2,03, = /ﬁ dgld@le P9 (B14)

The expectation value of the interaction is expressed as

(I1) g0 = <M> i (B15)

ag

where the partial derivative is performed with the fixed
classical solution z}ﬁg.

Also, the another choice of relative entropy of Eq. (4) is
calculated as follows:

S(P,||Po) = /ﬂ d[¢1d[®](P,In P, - P,In Py)
= —InZ,[B, d,] + In Zy[B, by
-9 [ dsawip, 1,

= W,[B. by = Wolp. o] — g
=AW —g- 1)), 20,

' <11>g
(B16)

where the expectation value of the interaction is

expressed as
_ (VB &)
i, = (M) (B17)

Here, similar to Eq. (B15), the partial derivative is
performed with the fixed classical solution.

APPENDIX C: RELATIVE ENTROPY UNDER
FIELD REDEFINITION

To demonstrate how to use the entropy constraints, let us
consider theories described by the following functions:
Iolxp xp) = myxj, +mix,  Iixpx) =c-xx,,  (Cl)
where x; and x; denote the light and heavy degrees of
freedom, respectively, and my, m;, and ¢ are coupling
constants. We define I, = I + g - I; with the parameter g.
Then, probability distribution functions are defined as
follows:

P e~ lolxixi] P e~ Lolxrxi] ©
O[xhxh] = Zo[xl] ) g[xlaxh] = Zg[-x[] ) ( )
with the partition functions
© 2.2 T
Zo[xl] = / dxhe_l()[x[’xh] = e M — (CS)
o my,

Zy[x] = / dxpe bl = Z,[x)] - e 4 (C4)
The expectation value of the interaction is calculated as

g 1) geo = / dxyPolx;, xp]I1[x;, xp] = 0.

[oe)

(C5)

Combining Eq. (C3), (C4), and (C5), the relative entropy
between P, and P, is calculated as

S(Po||P,) = /oo dx,(PyIn Py — PyIn P,),

=—InZy[x;] +InZ[x;] + g (I;) -

= —anO[xl} —l—ang[xl],
_T
dms T

(Co)

It is clear that entropy constraint is satisfied in systems
described by the Gaussian distributions. Note here that the
relative entropy is invariant under the field redefinition of x;,.
Although the definition of the interaction of Eq. (C1) is not
invariant under the redefinition of x;, the definition of the
relative entropy of Eq. (1) and the integral of the Gaussian
distributions do not change under the field redefinition.

To see the invariant formulation under the field redefi-
nition, let us consider a tree-level UV completion described
by the following action in Euclidean space:

1 1
15 = /(d4x)E<4 F F*" + mifﬁfx - M¢AF/)(:F/M> )

(€7)
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where ¢, is an auxiliary field. We define the theory B as S(Pol||P,) = Wo[B.¢] = W,[B.d] +g- <11>g:0
1, =1y + g-1; with the parameter g, and

= Wo[p. ¢ = W[, @]
1 =7 [ @ (g FoP ) 20
19 = [ (yrar+ ). (@) et

(C11)

where we used

1 1
Wgw’ ¢] = /(d4x)E (ZFWFW _92 'W(FquPO.y)’
(C12)

1
IEE) = — /(d4x)E<M¢AF/)o'F/m> . (Cg)

At tree level, the expectation value of the interaction /; is
calculated as

Wolp, ] = / (d*x), (4FWF"”> (C13)

aw,
v I>g—0 = dg' = [ d[ps]Pol; = 0. (C10) Here, consider a field redefinition,
g=0
1
ha = Pa+ 9 5 F . (C14)
Therefore, the definition of the relative entropy yields 2myM

Under this field redefinition, the actions are transformed as

1 1 1
QU G / (d*x) g (Z F P +mid% +g- 2f PaFpo 7+ g e (FMF”")2>, (C15)

A

1
E E E
01 =g 1 = g1 =@ [ (@05 (PP (c16)
(E) () _ 1 y 1 -

Iy — I/g = /(d4x)E (ZFWF” + m/za‘lﬁ% - 92 'W(Fpaﬂ) )2> (C17)

Similarly, the relative entropy is transformed as
S(Pol[Pg) = S(Pol[Py), (C18)

where P = el0/Z}[B.¢] and P}, = e7's/Z} [, $] with Z{[B.¢] = [d[pale™ and Z,[B.¢] = [d[pale”". Then, the
relative entropy S(Pg||Py) is calculated as

S(Py||P}) = / dl)(PyIn P PyIn P}) (C19)

— —WZ)p. ]+ Z,[. 4] + / dlgA|Py (1, ~ Ty)

= Wl 0] = Wilp 9] = 5o (Foc?F = 0 [ Py [ @00 g ba(Fper?)
=W Wi
= - / (d*x) ( AT (F,,GF/"’)) 0, (C20)
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where we used following relations:

[ dbalps [ (@) balFoe)
1

= gage PV (c21)
Wolp. 4] = Wolp. 4. (€22)
WylB. @] = W,[B. ¢]. (C23)

Comparing Egs. (C11) and (C20), we found that the
relative entropy is invariant under the field redefinition.
Although, in this paper, we focus on the case that I,
represents the interactions between the heavy and light
degrees of freedom, the formulation using the relative
entropy does not depend on whether /; represents the
interactions. In fact, as shown in Eq. (C16), noninteracting
terms arise after the field redefinition. The key point is that
the formulation using the relative entropy is invariant under
the field redefinition once /, and I; are defined.

APPENDIX D: WAVE FUNCTION
RENORMALIZATION IN RELATIVE ENTROPY

We evaluate the entropy constraints on EFTs paying
particular attention to the wave function renormalization.
To clarify the wave function renormalization, we suppose
that the light fields are dynamical and evaluate the
|

Z,[p) = / d[p]d[®]e"s4-®)

relative entropy by the procedure of Appendix B. We
focus on two cases: tree-level UV completion and loop-
level UV completion. In the tree-level UV completion,
we assume the tree-level effects dominate the perturba-
tive corrections from the heavy degrees of freedom to the
effective actions. On the other hand, in the loop-level UV
completion, we assume the loop-level effects dominate
the perturbative corrections to effective actions. For the
two cases, we calculate the relative entropy of each EFTs
as follows:

1. Single massless scalar field with dimension-eight term

According to the assumptions, i.e., J[¢] does not include
the higher-dimensional operators, J[¢]  d,¢0"¢ may
hold. Then, from Eq. (79), the first-order corrections for
g to the Euclidean effective action are expressed as

1), 0 = (dg) « [W@e@m9.  ©V

Note here that J[¢] can be proportional to ¢, 9,,¢, and so on,
but the EFT does not respect the symmetry of the EFTs,
such as the Lorentz symmetry and the global shift
symmetry.

(1) Tree-level UV completion—First, consider the EFT
generated by the tree-level UV completion. Then,
not depending on the details of the UV theory, the
partition function is calculated as follows:

= [adew|- [@ns(50+ a)0,000) - 0,097 )

—exp|- [(@0 (50 + @) 0,509 - p0,599) )|

where a5

(D2)

and f5°¢ denote the second or higher-order corrections for g. Note here that #5° does not include the first-

order correction for g because of Eq. (D1). It is assumed that a5, and 5 are generated at the tree level. Also, in the
second line, according to the procedure in Eq. (47), (48), and (49), the first-order correction for g is eliminated in

as<. The background field ¢' denotes the classical solution of the effective action of

W= [ @50+ =)0.009) - pr=(0,0007 )

The equation of motion of W ,[¢] is expressed as

To remove the dimension-six operators, we choose the background fields as follows:

(D3)
(1 + a3%)0,0") — 39, (9, p0" p0"'p) = 0. (D4)
¢ = (1+as=)2 g, (D5)
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(ii)

where 0,,5) = const Note here that the background field ¢ is also a classical solution of W, [¢]. Therefore, the
Euclidean effective actions of theories B and A are respectively obtained as

W0 = =i 2,f3] = [ (@0 (5 0009) - P51+ a5 20,0097 ). (D6)

Wld] = - zaff] = [ (@)s(50,009)). 7)
Then, the shift of the Euclidean effective action is calculated as
AW = W, (] - Wo (]
(1 ) [ (@0),0,009) (DS)

Also, from Eq. (D6), we obtain the following relation

()0~ (5, JoG5)- ().

= (%) » =0, (D9)

dg

where (dqb’ /dg) ,—o = 0 because a5 denotes the second- or higher-order corrections for g. From Eq. (5) or (B12),
combining Egs. (D8) and (D9) yields

AW € g {1)mg = =P (140502 [ (@0),(0,§09)" <0
= ﬂtree . ( + atzree)—Z > 0. (DIO)
Equation (D10) denotes the constraint on the coefficient of dimension-eight operator of Eq. (D6).

Loop-level UV completion—Next, consider the EFT generated by the loop-level UV completion. Then, the partition
function is calculated as follows:

Zy[&] = /d[¢]d[d)]e—1g[¢-‘l>]

[ ddiess |- [(@e(50-+ 07+ 0000 - e 0000 + B2 )|
—exp|- [[(@0 (50l 4+ )0, 509 - B O,FFFP + B )|
—exp| - [[(@0)s (501 + d™)0,309) - 0,09 + Fue )| o1)

loop - . I oo .
where a " is the first-order correction for g, @, ", and 85" are the second- or higher-order correction for g, E®, is

the vacuum energy coming from the loop-level correction of @, and E,,. is the vacuum energy of @ and ¢. It is

assumed that o™, ay®, and 35" are generated from the loop corrections of ®. The background field ¢’ denotes the

classical solutlon of the effective action of

1 00; 00; 00
Wld] = [0 (50046 4 M) 0,000) - 17 0,007 ) D12
The equation of motion of Eq. (D12) is expressed as follows:

(14 + ay™®)d,0p — p50,(9, po¥¢) = 0. (D13)
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We choose the background field as follows:

#=(1-3dm) 9,

where d,¢ = const to remove the dimension-six

(D14)

operators. Since the background field ¢ is also
a classical solution of Wj[¢], the Euclidean
effective actions of theories B and A are respectively
obtained as

W3] = ~InZ,[j
= [@ne (50 + d™@,d0d)

- IZOOP(aﬂ&SaM;b)z + Evac) > (D15)

Wold] = —InZo[¢]

- [@o (3000 + Euc). @16

Then, the shift of the Euclidean effective action is
calculated as

AW = W, 3] - Wold)
=30 [ (@)(0,009)

Also, from Eq. (D15), we obtain
(&)
dg g=0
oW sW dg/
(%), Jen(Gg)- ()
ag g=0 5¢/ dg g=0
_ <5Wg>
ag g=0

1d loop ~ o~
- Z]g . / (d*x) (3, 00D,

(D18)

where (d¢'/ dg),—o = 0 is used. Note here that P
denotes the first-order correction for ¢ and satisfies a
relation of the form g- (da'®®/dg) = a*®. From
Egs. (5) or (B12), combining Egs. (D17) and (D18)
yields

AW§E> <g-Ip)go= —ﬂlzoop/(d4x)E(au‘;§aﬂ‘})2 <0

Y ) (D19)

In the loop-level UV completions, Eq. (D19) yields

the constraint on the dimension-eight operator gen-
erated at the loop level.

2. SMEFT dimension-eight SU(N)
gauge bosonic operators

When J[A{] does not include the higher-dimensional
operators, there are two cases: (i) J[A{] preserves the gauge
symmetry or (ii) not. For case (i), J[Aj] « Ff, F*** holds.
In general, the CP-violating term arises, but we supposed
that such a term is removed by axionlike degrees of
freedom in the UV theory. Then, from Eq. (79), the
first-order corrections for ¢ to the Euclidean effective
action are expressed as

aw
<11>g:0 = (d—gg

For case (ii), J[A{] can be proportional to A{, and AjA*#
because of the covariant derivative of the kinetic term.
Since corrections from the interacting terms of the higher-
dimensional operators would not be dominant effects, we
focus on corrections from the kinetic terms. Then, J[A{] «
Ay} vanishes because (I;),_, keeps the Lorentz symmetry.
Although J[A{] « AjA“# generally remains, it can be
eliminated by the gauge-fixing condition. Therefore, we
focus on the case of Eq. (D20) below.
(i) Tree-level UV completion—Consider the EFT gen-
erated by the tree-level UV completion. The parti-
tion function is generally calculated as follows:

) « / (d'x)pFo, Fo. (D20
g=0

- [ o[- [@ns (30 + ap e - Ssoiu))
—ox [ [@e (30 FLF - S o )|

1. -
= exp {—/(d“x)E (E Fa Fam — Z tree .

i

1+ agee)—20i[/{]>}, (D21)

1
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where a3 and pi5° denote the second- or higher-order corrections for g, and ﬁgge does not include the first-order
correction for g because of Eq. (D20). The corrections a5 and 45 are assumed to be generated at the tree level.
According to the procedure in Eqs. (47)—(49), the first- order correction for g is eliminated in a5°¢. The background
field A’Z denotes the classical solution of the effective action of

Wl = [ @50+ e - S Ol ). (D22)

The background fields are chosen as follows:
A = (1+a5=)"/2. Ag, (D23)

where F,, = const. Since A;’ is also a classical solution of W;[A], the Euclidean effective actions of theories B and A
are respectively obtained as follows:

WA = =iz, = [ (@, (3Fpee - s (14 ) o). 024

i

1. _
Wold] = =mnZold] = [ (@) (5 FaFe ) (D25)
Then, the shift of the Euclidean effective action is calculated as follows:
AW = W [A] - W,[A]

=3 (a8 [(@0:0/4) (D20

Also, the first-order corrections for ¢ is calculated as

(), o) Jeene () (@),

ow
= <—9> =0, (D27)
ag g=0

where (dA’/dg) g0 = 0 is used. From Eg. (5) or (B12), combining Eqs. (D26) and (D27) yields

AW S g {1ihyo = =31+ a7 / ()0 <

Z tree. 1_|_atree) / d4 Al > 0. (D28)

The left-hand side of Eq. (D28) denotes a linear combination of coefficients of the dimension-eight operators
of Eq. (D24).
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(i) Loop-level UV completion—Consider the SMEFT generated by the loop-level UV completion. The partition
function is generally calculated as follows:

Al = / d[A]d[®]e oA
- Fawen]-Joran( vt s s St )
= exp |:—/(d4x) (; (1 + aloop 4 alzoop)ﬁsyﬁa.ﬂv _ Zﬂlﬁmoi[gl] =+ Evac>:|
1 loo, a a.uy 100
:exp{—/(d‘*x) (2(1—|—a P)Fa, Fer Zﬂ PO +Evac>]. (D29)

loop - . I 1 . . .
where a,"" is the first-order correction for g, a; ¥, and f3; ;" are the second- or higher-order correction for g, Eg,. is

the vacuum energy coming from the loop-level correction of @, and E\, is the vacuum energy of @ and Aj. It is

assumed that @y, ay, and fy" are generated from the loop corrections of ®. The background field A’4 denotes

the classical solution of the effective action of
1
W, lA] = / (d*x) <2(1 + a’® + ay P Fa, Fem — Z/f‘mp +E3>ac>. (D30)
We choose the background field as follows:
ae— (1-1 ay P ) g, D31
/72— - 2 ( )

where F,,, = const to remove the dimension-six operators. A“ is also a classical solution of Wj[A], and the Euclidean
effective actlons of theories B and A are respectively obtamed as follows:

1 1 00 - - 00 1
W, A] = / (d*x) <2 (1 4 @) Fa, For — Zﬂlz,ipoi [A] + Evac>, (D32)

_ 1 - _
Wldl = [ (@) (3PP + Eue). (033)
Then, the shift of the Euclidean effective action is calculated as follows:
AW = W, [A] - W,[A]

1
_ 4 loop Fa Fa.uv loop
—/(dx) (2 Fo, For Zﬁ ) (D34)
Also, the first-order corrections for ¢ is calculated as
aw ow ow, dA’
(), () Jen(5) ().
dg g=0 ag g=0 5AI dg
_ <0Wg>
ag g=0

1d loop o
- 5(2—19 / (d*x) 8, Fos, (D35)
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where (dA’/dg) g0 = 0 is used. From Eq. (5) or
(B12), combining Eqgs. (D34) and (D35) yields

AW < gl11)ye0 = =S A [ (0,04 <0

= S [ @0 >0

(D36)

where g - (da®/dg) = a® is used. In the loop-
level UV completion, Eq. (D36) yields the constraint
on the dimension-eight operator generated at the
loop level.

3. Einstein-Maxwell theory with higher-dimensional
operators

Consider the Einstein-Maxwell theory with higher-
dimensional operators generated from the UV theory
defined by I[g,,; R, .. A, @], where g,, is the metric of
spacetime, R,,,, is the Riemann tensor, A, is the U(1)
gauge boson, and @ is the heavy degrees of freedom.
Define the noninteracting and interacting terms as
follows:

]O[g;w; R;wpm A’ (I)] = I[g/w; R/u//)mAi 0] + I[g/w; 07 07 (I)],

(D37)
|

2,0] = [ digldla)d[@le-t e

— [ dgaies|- [(@0eva( -2 0
2

- ﬁg?(FﬂuF”y)z _ﬂg%erproRﬂypd>:|

—/ M? _
= exp [— /(a’“x)E\/;(—TPl (1+ agflg)R’

tree (7 MY\ 2 tree 7 I/ pIHVPC
_ﬁ2,2 (F;wF ) _ﬂ2,3F/wF/mR

M3, 1

1 —
4 (1 ), F™ —

II [g;w; R;wpm A’ (D]

= I[g/w; R/wpmA’ (I)] - IO [g;n/; R/wpo"A’ (I)}, (D38)
where the cosmological constant is omitted because it
cancels in the relative entropy. It should be noted that the
theory of I, does not include the interaction between ®
and A,, R, but the interaction between g, and ®. Note
that gravitational operators such as R,zw can be generated
from [,. Also, the Gauss-Bonnet combination, i.e.,
R,.,cR""° — 4R, R* 4+ R?, is a total derivative and van-
ishes in four dimensions. In this work, we focus on the
higher-dimensional operators generated from the interac-
tion between ® and A,, R, ;-

Similar to the SMEFT, when J[g,,; R,,,,. A,] does not
include the higher-derivative operators, there are two cases:
(@) J[9u03 Rusprs Ay o Fy P 0r R, and (i) 7[5 Ry
A, xA, or A A", Because of the same reason as the
SMEFT, we focus on the following case:

g0 = (d;;") g=0

oc / (d*x) g\/9F ,, F* or / (d*x)g\/gR.  (D39)

For each of the tree- and loop-level UV completion, the
constraints on the EFTs are evaluated as follows:
(i) Tree-level UV completion—Consider the EFT gen-
erated at the tree-level UV completion. Then, the
partition function is generally calculated as follows:

1
+ a5%)R +— (1 4+ a5 F,, F* — 5 (F,, F*)?

4

5 (F P’

_ _ 2 _
— exp [— / <d4x>E¢§(——R+—F o atef(l +—a§?ﬁ—2a3?s)<mwv>2

2 4"

tree tree tree\ (T FHV\2 tree
= B35 (1 +2a5% — 205%) (F F'7)* = B35

tree tree

2,1>

tree tree
where &%, &y,

1 -
(1+ 5085 - a3 ) Fu Pl ) |

5%, and B35 denote the second- or higher-order corrections for g. Note here that 3¢,

3

(D40)

tree
22

and 5% do not include the first-order correction for g because of Eq. (D39). According to the procedure in
Eqs. (47)—(49), the first-order correction for g is eliminated in a5% and @3. Since the gravitational operators only
involving the Riemann tensors can be removed by field redefinition, and the Riemann-squared operator can be
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dropped in four dimensions, we omit such terms. The background fields A’ , and Eﬂy denote the classical solutions of
the effective action of

1
W g/un /(d4 E\/_( (1 + atree)R + 4( + atree)FﬂyF,uu _ tzrﬁe(FﬂDFﬂu)z
— B (F P = BESF, F, R) (D41)

We choose the background field as follows:
7 174 tree tree A
Ay=1(1+5 5 | 300k — a3 A, (D42)

) 1 I 1 ree v
T = (1= 5087 ) g = (14 3055 )7~ (D43)

The effective actions of theories B and A are respectively obtained as follows:

1 2 _
Wg[g_m,,A] = /(d4 )Ef( R +4FﬂyF/‘u _ tree(l + 3atree 2at2re}g> (FWF””)Z

= 1 o
tree(l + zatree 2 tree)(FﬂyFﬂV)Z _ ﬁt2r,%e <1 + = 3 aare]g _ atzl‘?_s) FﬂDFpgRHl/Pa> , (D44)

=z 4 My s 1o o,
Wolguw. Al = [ (d*X)pVg| ——" R+ FuF*™ ), (D45)

where AM and g, include the effects of the higher-derivative terms. It should be noted that the first-order

correction for the higher-derivative terms vanishes in W, by using the equation of motion. Then, AW§E> =

W[ G- A] = WoG,. A] denotes the shift of the Euclidean effective action by the higher-derivative terms. Also, from

(569 g) ’ (da-gﬂy> 1)
y2% g9

(), o) Jeemnim () ().
- (aa_vg‘/) » =0, (D46)

where (dA’/dg),_o =0 and (dg,,/dg),, = 0 are used. From Eq. (5) or (B12), Eq. (D46) yields

AW <o, (D47)

Consequently, it is found that the relative entropy yields the negative shift of the effective action by the higher-
derivative terms generated at the tree level.
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(i) Loop-level UV completion—Next, consider the EFT generated by the loop-level UV completion. The partition
function is generally calculated as follows:

2,00 A) = [ dlgldlAd@e oA

M> 1
— [ digaiajexy {— (@013 (A}:;P T8 (14 R (1 a4 QS P

PP = PP P = PP o )|
o 4 — loop M 1231 loop loop\ o7 1 loop loop\ 77  ruv
=exp|— [ (d*xX)p\/ ¢ | Moo _TU +ax tag )R +Z(1 +ayy Tap ) F

— 5P (F F")? - 120313 (Fﬂyﬁ’w)z - ﬁlz(fgp F,,F ,,R"° + (correction from R and F MDF"”))]

(D43)
4 = loop M 1291 loop\ 5 1 loop\ &  Fuv loop/ & Fuv\2
=exp|— (d X)E\/§ Ao,cb _7(1 +ag )R +Z<1 +a )FuuF” — P (F}H/F” )
- ﬂlzfgp(Fﬂ,f”y)z — BYPF \ F ,,R*7° + (correction from R and FWFW)H , (D49)

loop _loop ploop ploop loop . . loop loop -
where oy ', ay B 1, Pry » and fi, 57 are the second- or higher-order corrections for g, a; ', and a; 5 are the first-

order corrections for g, and A})O_;f’ is the vacuum energy coming from ®. The last term of Eq. (D48) arises from loop
corrections of light fields in M3 R/2 and F W /4. Since these corrections do not depend on g, they cancel in
relative entropy. The background fields A’ , and Eﬂy denote the classical solution of the effective action of

M3 1
Wylgu- Al = / (d4x)E\/§<A};jgf — S+ o )R+ (L + o) + @y ) F,, P
— Ba (Fu F)? = 50 (F PP )2 ﬂlz‘fé’pF,wFpaR””””> : (D50)
We choose the background field as follows:

Al 1 4 00] 00] n
A, = (1 +5 (ga‘mp - a;FP> >AM, (D51)

- 1 — 1
To=(1-5080) g 7 = (145080 ) (052)

The effective action for the theory B and A are respectively obtained as follows:

_ M2 _ 1 _ _ _ =
_ _( 1 | | I 1
W!][gﬂl/’A] = /(d4x)E\/f_}<A0(?g>p - TPI (1 + aIO,(I)QP)R +Z(1 + alo,;p)FﬂvFW - 2(?(1)p(Fquﬂy)2 _ﬂZégp(F;wFﬂy)z
— BYPF,, F ,oR*7° + (correction from R and F WF’“’)), (D53)
Wolg. Al = [ (d* Gl AP M, RiLp puw ion from R and F,, F* D54
olgu-Al = [ (@*x)gV3| Ago - +Z wF" + (correction from R and F,, F*) |. (D54)
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Similar to the case of the tree-level UV completion, the first-order correction for the higher-derivative terms vanish in
W, by using the equation of motion. Also, from Eq. (D53), the first-order correction for g is calculated as

(de> B (OWQ)
dg g=0 ag g=0

_ (0W9>
ag g=0

loop

Jeanl () (5),

) (),

- @i~

1 do loop o
A FWFP”“>, (D55)

where (dA’ u/d9),—0 = 0and (d?w /dg),—o = 0 are used. Note here that the last term of Eq. (D53) does not depend

on g. From Eq. (5) or (B12), Egs. (D53)-(D55) yields

AWéE) < g- <Il>g:0 = WEOn-lin[gﬂb’A} - WO[g_ﬂwA] <0.

(D56)

Here, we define the effective action without the first-order corrections for g as follows:

— BYPF,, F ,xR*7° + (correction from R and F quW)>-

Therefore, Wirlin(g . A] — W[Go,u.Ag] denotes
the corrections from the higher-derivative terms to
the Euclidean effective action. It should be noted
that the one-loop correction from R and F, F*
cancels in Eq. (D56).

APPENDIX E: LOOPHOLE OF ENTROPY
CONSTRAINTS

We discuss the loophole of the entropy constraints. As
discussed in Refs. [20,30], positive perturbative corrections
to the Euclidean action can arise in some examples. We
show that the loophole arises because the entropy con-
straints are based on the saddle point approximation in the
Euclidean path integral method. First, we consider the
entropy constraints on tree-level UV completions, and
clarify a relation between this work and Ref. [12]. The
relative entropy of Eq. (1) is calculated as

S(Pol|P,) = /ﬁ d[®](PyIn Py — PyInP,)

— —InZ[f. 4] + InZ,[5. 4] +g/ﬂd[q’]P0'11

— —InZ[f. 4] + InZ,[6. 4]
= 1ol Do) — 1,[p.B,] > 0, (E1)

where in the third line we used [, d[®]P;-1; =0 at tree
level by using a suitable definition of @, in the last line the

P‘R+ F -

whonlinfg ]_/(d4x)E\/—( Aloep _ .

1 _
L E = B (Fy ) = G (F, )2

(D57)

saddle point approximation is used, and ®, and Cf)g are
classical solutions of I, and I,, respectively. By the
definition of ®, Iy[¢,0] = I,[h, Do) is satisfied. Then,
Eq. (E1) yields

Iy[¢9 O] = ]0[¢,0] = 10[45’&)0] > Ig[¢’(i)g]v (EZ)

where we used 7 [¢, 0] = I[¢, 0] similar to Ref. [12]. This
inequality has been provided in Ref. [12], and it is clear that
the entropy constraints by the relative entropy is a gener-
alization of Ref. [12]. The key point of derivation of
Eq. (E2) is that the relative entropy must be evaluated
around the local minimum of heavy degrees of freedom.
Otherwise, the saddle point approximation does not work
well, and the perturbative corrections to the Euclidean
effective action can be positive.

To see the loophole, let us consider following action in
Minkowski space:

1 1
M) — /d4x (—ZFWF’“’ + mi3 + M(;bAFﬂaFPo),
(E3)

where ¢, is an auxiliary field. The solution of the equation
of motion of ¢, is calculated as

~ 1
=———F, F". E4
¢A ZmAM 1774 ( )
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After integrating out ¢4, Eq. (E3) yields

o) _ 1 v 1 v
Lo —/d4x<_4FuuF” —W(FWF” )2> (ES)

In the Euclidean space, the second term in Eq. (E5)
increases the Euclidean effective action, and contradicts
the entropy constraints. This is because the solution of the
equation of motion of ¢, is not a local minimum of 7 in the
Euclidean space.

Next, let us consider a doublet of real, shift-symmetric,
massless scalar fields ¢;, i = 1, 2 in Minkowski space,

™) = /d4x (% (0,p:0" ;) + m3 (X, XH)
il
- GM (auﬁbiauﬁbl)X””) ; (E6)

where X, is an auxiliary field, and €' = —¢?' = 1. The
equation of motion of X, is calculated as

B el

X, = M (0,4:0,,). (E7)

After integrating out X, Eq. (E6) yields

1
Legr = /d4x <2 (0,0i0" ;)

OB 0o h) ). (D
Substituting a solution of the equation of motion of ¢;:
9,61 = (0,1,0,0),9,¢, = (0,0,1,0) into Eq. (E8), we
find that the second term of Eq. (E8) is negative as follows:

€' (0,10 ;) (9,10 1)
- 2((a;¢¢;laﬂ¢_)2)2 - (aygl;lauggl)(av§520y¢;2>)
— 2, (E9)

Therefore, the second term of Eq. (E8) increases the
Euclidean effective action, and a contradiction of the
entropy constraint arises. This is because X w 18 not a local
minimum of / in the Euclidean space, and the saddle point
approximation does not work well. Note here that the
negative shift of the Euclidean effective action arises when
the sign of the second term of Eq. (E6) is flipped.
Consequently, the loophole of entropy constraints can arise

from the classical solution of heavy degrees of freedom not
being the local minimum, where the path integral method in
the Euclidean space does not work.

APPENDIX F: CONDITIONS TO APPLY
ENTROPY CONSTRAINTS

We summarize the conditions to apply the entropy
constraints. For ease of understanding, we show the con-
ditions as a flowchart in Fig. 2. In this paper, the entropy
constraints mainly denote three inequalities. For each of the
inequalities, we explain the conditions as follows:

M g- (I, < AW <g- (1),

To derive the inequality (5), we impose condi-
tions: (a) the theories A and B are defined by /; and
I,=1y+g- 1, respectively, and the probability
distribution functions P, and P, are defined by
them, and (b) the tree-level corrections from the
heavy degrees of freedom to the Euclidean effective
actions W, and W/, arise from the local minimum of
1, and I, respectively. The condition (b) is relevant
to the loophole discussed above. Note here that, in
general, Eq. (5) does not depend on whether /;
represents the interactions between heavy and light
degrees of freedom. Since, however, in this paper,
we are interested in the constraints on higher-
derivative terms that arise from the interactions
between heavy and light degrees of freedom, we
suppose that /; represents the interactions between
heavy and light degrees of freedom.

(1) Positivity bounds on higher-derivative terms

To derive the positivity bounds on the Wilson
coefficients of higher-derivative operators, in addi-
tion to the conditions (a) and (b), we use a condition
(c), quantum corrections to nonhigher-derivative
terms can be absorbed by redefinitions of light
fields, and (d) J[¢] does not include the higher-
derivative operators. In general, the corrections
from the interactions contribute to the nonhigher-
derivative terms, but these conditions (c) and
(d) allow us to remove such corrections.

(iii) ((BS/@e)Mf2 >0

To derive the positive perturbative corrections
from the higher-derivative terms to thermodynamic
entropy at a fixed energy and charge, in addition to
the conditions (a), (b), (c), and (d), we impose
conditions (e) thermodynamics relations hold in
the system, and (f) the system is the weak-dynamics
theory, where O(e?) terms are negligible.
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NO
(a) theories A and B are defined by / and lg, andPy |
and P, are defined by them
YES NO
v
(b) leading contribution to the effective action arises |
from a local minimum of Euclidean action
YES
E
(8<I1>g < AWE, )< g<11>g=0)
NO

(c) corrections to non-higher derivative terms can be
absorbed by redefinition of light fields

and

(d) J[¢] does not include higher-derivative operators

YES

Gositivity bounds on higher derivative terms arisa

Theory A and B can not be defined, and
entropy constraints do not arise

)

Saddle point approximation does not work, and
entropy constraints can be broken

)

Positivity bounds on higher derivative terms
can be broken

(e) Thermodynamic relations hold

and

(f) O(e?) terms are negligible

No constraints on
> .
thermodynamic entropy

l YES

Perturbative corrections from higher-derivative terms to
thermodynamic entropy satisfies (9S/de),, o2 0

FIG.2. A flow chart for conditions of applicability of entropy constraints: Each step explains which conditions are necessary to use the

entropy constraints.

[1] S. Kullback and R. A. Leibler, On information and suffi-
ciency, Ann. Math. Stat. 22, 79 (1951).

[2] Hisaharu Umegaki, Conditional expectation in an operator
algebra. IV. Entropy and information, Kodai Math. Sem.
Rep. 14, 59 (1962).

[3] Alfred Wehrl, General properties of entropy, Rev. Mod.
Phys. 50, 221 (1978).

[4] Hal Tasaki, Jarzynski relations for quantum systems and
some applications, arXiv:cond-mat/0009244.

[5] Massimiliano Esposito, Katja Lindenberg, and Christian
Van den Broeck, Entropy production as correlation between
system and reservoir, New J. Phys. 12, 013013 (2010).

[6] Takahiro Sagawa, Second law-like inequalities with quan-
tum relative entropy: An introduction, Lectures on Quantum
Computing, Thermodynamics and Statistical Physics
(World Scientific, Singapore, 2012), pp. 125-190.

[7] Masanori Ohya, Some aspects of quantum information
theory and their applications to irreversible processes,
Rep. Math. Phys. 27, 19 (1989).

[8] Manuel Vogel, Quantum computation and quantum infor-
mation, by M. A. Nielsen and I. 1. Chuang, Contemp. Phys.
52, 604 (2011).

[9] V. Vedral, The role of relative entropy in quantum infor-
mation theory, Rev. Mod. Phys. 74, 197 (2002).

025011-32


https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://arXiv.org/abs/cond-mat/0009244
https://doi.org/10.1088/1367-2630/12/1/013013
https://doi.org/10.1016/0034-4877(89)90034-7
https://doi.org/10.1080/00107514.2011.587535
https://doi.org/10.1080/00107514.2011.587535
https://doi.org/10.1103/RevModPhys.74.197

ENTROPY CONSTRAINTS ON EFFECTIVE FIELD THEORY

PHYS. REV. D 108, 025011 (2023)

[10] H.-H. Hasegawa, J. Ishikawa, K. Takara, and D.J. Driebe,
Generalization of the second law for a nonequilibrium initial
state, Phys. Lett. A 374, 1001 (2010).

[11] Yevgeny Kats, Lubos Motl, and Megha Padi, Higher-order
corrections to mass-charge relation of extremal black holes,
J. High Energy Phys. 12 (2007) 068.

[12] Clifford Cheung, Junyu Liu, and Grant N. Remmen, Proof
of the weak gravity conjecture from black hole entropy,
J. High Energy Phys. 10 (2018) 004.

[13] Clifford Cheung, Junyu Liu, and Grant N. Remmen,
Entropy bounds on effective field theory from rotating
dyonic black holes, Phys. Rev. D 100, 046003 (2019).

[14] Gregory J. Loges, Toshifumi Noumi, and Gary Shiu,
Thermodynamics of 4D dilatonic black holes and the weak
gravity conjecture, Phys. Rev. D 102, 046010 (2020).

[15] Harvey S. Reall and Jorge E. Santos, Higher derivative
corrections to Kerr black hole thermodynamics, J. High
Energy Phys. 04 (2019) 021.

[16] Garrett Goon and Riccardo Penco, Universal Relation
between Corrections to Entropy and Extremality, Phys.
Rev. Lett. 124, 101103 (2020).

[17] Nima Arkani-Hamed, Lubos Motl, Alberto Nicolis,
and Cumrun Vafa, The string landscape, black holes and
gravity as the weakest force, J. High Energy Phys. 06 (2007)
060.

[18] Cumrun Vafa, The string landscape and the swampland,
arXiv:hep-th/0509212.

[19] Brando Bellazzini, Matthew Lewandowski, and Javi
Serra, Positivity of Amplitudes, Weak Gravity Conjecture,
and Modified Gravity, Phys. Rev. Lett. 123, 251103
(2019).

[20] Yuta Hamada, Toshifumi Noumi, and Gary Shiu, Weak
Gravity Conjecture from Unitarity and Causality, Phys. Rev.
Lett. 123, 051601 (2019).

[21] Jose C. Gaite and Denjoe O’Connor, Field theory entropy and
the renormalization group, Phys. Rev. D 54, 5163 (1996).

[22] Jacques Calmet and Xavier Calmet, Distance between
physical theories based on information theory, Mod. Phys.
Lett. A 26, 319 (2011).

[23] Vijay Balasubramanian, Jonathan J. Heckman, and
Alexander Maloney, Relative entropy and proximity of
quantum field theories, J. High Energy Phys. 05 (2015) 104.

[24] Horacio Casini, Eduardo Teste, and Gonzalo Torroba,
Relative entropy and the RG flow, J. High Energy Phys.
03 (2017) 089.

[25] Allan Adams, Nima Arkani-Hamed, Sergei Dubovsky,
Alberto Nicolis, and Riccardo Rattazzi, Causality, analy-
ticity and an IR obstruction to UV completion, J. High
Energy Phys. 10 (2006) 014.

[26] Grant N. Remmen and Nicholas L. Rodd, Consistency of
the standard model effective field theory, J. High Energy
Phys. 12 (2019) 032.

[27] Jeremie Quevillon, Christopher Smith, and Selim Touati,
Effective action for gauge bosons, Phys. Rev. D 99, 013003
(2019).

[28] Y. Nambu, Quantum electrodynamics in nonlinear gauge,
Prog. Theor. Phys. Suppl. E 68, 190 (1968).

[29] Qing-Hong Cao, Naoto Kan, and Daiki Ueda, Effective field
theory in light of relative entropy, arXiv:2211.08065.

[30] Nima Arkani-Hamed, Yu-tin Huang, Jin-Yu Liu, and Grant
N. Remmen, Causality, unitarity, and the weak gravity
conjecture, J. High Energy Phys. 03 (2022) 083.

025011-33


https://doi.org/10.1016/j.physleta.2009.12.042
https://doi.org/10.1088/1126-6708/2007/12/068
https://doi.org/10.1007/JHEP10(2018)004
https://doi.org/10.1103/PhysRevD.100.046003
https://doi.org/10.1103/PhysRevD.102.046010
https://doi.org/10.1007/JHEP04(2019)021
https://doi.org/10.1007/JHEP04(2019)021
https://doi.org/10.1103/PhysRevLett.124.101103
https://doi.org/10.1103/PhysRevLett.124.101103
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1088/1126-6708/2007/06/060
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1103/PhysRevLett.123.251103
https://doi.org/10.1103/PhysRevLett.123.251103
https://doi.org/10.1103/PhysRevLett.123.051601
https://doi.org/10.1103/PhysRevLett.123.051601
https://doi.org/10.1103/PhysRevD.54.5163
https://doi.org/10.1142/S0217732311034955
https://doi.org/10.1142/S0217732311034955
https://doi.org/10.1007/JHEP05(2015)104
https://doi.org/10.1007/JHEP03(2017)089
https://doi.org/10.1007/JHEP03(2017)089
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1007/JHEP12(2019)032
https://doi.org/10.1103/PhysRevD.99.013003
https://doi.org/10.1103/PhysRevD.99.013003
https://doi.org/10.1143/PTPS.E68.190
https://arXiv.org/abs/2211.08065
https://doi.org/10.1007/JHEP03(2022)083

