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In this paper we study the consequences of the introduction of a flat boundary on a four-dimensional
(4D) covariant rank-2 gauge theory described by a linear combination of linearized gravity and covariant
fracton theory. We show that this theory gives rise to a Maxwell-Chern-Simons-like theory of two rank-2
traceless symmetric tensor fields. This induced three-dimensional (3D) theory can be physically traced
back to the traceless scalar charge theory of fractons, where the Chern-Simons-like term plays the role of a
matter contribution. By further imposing time reversal invariance on the boundary, the Chern-Simons-like
term disappears. Importantly, on the boundary of our 4D gauge theory we find a generalized U(1)
Kaç-Moody algebra and the induced 3D theory is characterized by the conservation of the dipole moment.
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I. INTRODUCTION

Fracton phases of matter represent a novel paradigm in
both condensed matter theory and high energy phys-
ics [1,2]. Although they have originally been discovered
in particular kinds of lattice models [3–6], fractons have
been unveiled in many different systems and frameworks,
ranging from elasticity [7–10], hydrodynamics [11–15],
and quantum scars [16–18], to quantum field theories
(QFTs) [19–29], curved space [30–33], and hologra-
phy [34]. These phases are characterized by constrained
dynamics, for which quasiparticle excitations are immobile
or move in subdimensional spaces. This exotic behavior
can be encoded into conservation of a multipole moment,
the simplest example being the dipole. Indeed, typically
fracton models are described in terms of a noncovariant
higher-rank tensor theory which shares many similarities
with the Maxwell theory [20,21,35]. They are written in
terms of a rank-2 symmetric tensor field AijðxÞ, whose
conjugate momentum is referred to as an “electriclike”
tensor field EijðxÞ, which plays a key role for the
immobility constraint of fractons, which is recovered from

a generalized Gauss law. For instance, in the so-called
“scalar charge theory of fractons” [20,21] this law appears
as ∂i∂jEij ¼ ρ, which implies dipole (xiρ) conservation,
which, in turn, implies that single charges cannot move in
isolation. Other possibilities are also allowed: for instance,
one can consider a “vector charge”model, where the nature
of the charge changes, becoming a vector ρiðxÞ, while the
“electric field” is always a symmetric rank-2 tensor. In that
case the constraint involves one derivative instead of two
∂jEij ¼ ρi and the conservation concerns linear and angu-
lar momenta, which implies that the charges of the system
can only move along a line, thus being one-dimensional
particles (also called “lineons”). Mobility can be further
restricted in both scalar and vector charge models by
adding tracelessness Ei

i ¼ 0 as an additional constraint.
In these cases the models are referred to as “traceless
(scalar/vector) fracton models.” In the scalar case the
elementary charges still can be identified as fractons, since
their motion is already maximally constrained by means of
the generalized Gauss law; however, now tracelessness also
implies the conservation of a component of the quadrupole
momentum, due to which the dipoles of the system are
bound to move only on a plane transverse to their direction,
thus becoming two-dimensional particles (also called
“planons”). On the contrary, in the vector charge model
the quasiparticles can move in one dimension, and the
tracelessness constraint on the electriclike field completely
restricts their motion making them proper fractons. These
novel gauge theories are intrinsically nonrelativistic, and
many ingredients have been introduced by hand in order to
implement the main characteristics of fractons, i.e. their
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restricted mobility. Examples of these inputs are, for
instance, the Maxwell-like Hamiltonian and the Gauss
law, introduced as an external constraint, and not derived
from an action principle. As a consequence, terms appear
with inhomogeneous numbers of derivatives, as remarked
in [36], and all these ad hoc introductions are justified
a posteriori, rather than deduced from first principles of
QFT. Despite their intrinsic noncovariance, these models
share remarkable similarities with both Maxwell theory
(Gauss law, Hamiltonian, electriclike field,…) [20] and
linearized gravity (LG) (symmetric rank-2 field, gauge
symmetry,…) [37], which, however, are fully covariant
theories. Motivated by these similarities, in [38–40] a
covariant four-dimensional (4D) fracton gauge theory
has been built, taking as unique ingredients locality,
power counting, and the covariant fracton symmetry
δAμν ¼ ∂μ∂νΛ. This made immediately apparent the cor-
respondence with LG, and all the analogies with the
Maxwell theory naturally came out. Embedding the ordi-
nary noncovariant theory of fractons in a larger covariant
theory led to recovering all the known results concerning
fractons [20,21,35]. Therefore, the coherent theoretical
framework of [39] allows one to apply standard QFT
techniques to fractons. As a nontrivial and physically
relevant example, in this paper we asked the question of
which might be the consequences of the introduction of a
flat spatial boundary in the 4D covariant fracton model [39].
In fact, the introduction of boundaries in QFT is known to
give rise to rich physical results. The most notable
examples come from topological field theories [41], which
represent the effective field theories of the bulk states of
topological phases of matter. In fact, when a boundary is
present, Chern-Simons (CS) theories in three-dimensional
(3D), θ-terms in 4D, and BF models in any spacetime
dimensions give rise to the theoretical descriptions of the
edge states of quantum Hall fluids and topological insula-
tors, respectively [42–45]. However, also in nontopological
field theories the presence of a boundary has nontrivial
consequences. For instance, on the boundary of the
Maxwell theory in 3D and 4D [46,47] a Kaç-Moody
(KM) algebra is observed, and a nontrivial theory is
induced on the lower-dimensional space. Similarly, the
topological θ-term [48], which is a boundary term, gen-
erates the well-known Witten effect [49], relevant, for
instance, in topological insulators [50]. For what concerns
fractons, boundary contributions have been introduced
mainly as noncovariant CS-like terms coming from a
generalized topological-like θ-term in the bulk [35,51,52],
inspired by the standard electromagnetic case. For instance,
in [35], as for the Maxwell case, a Witten-like effect is
observed, for which, due to the presence of the fractonic
θ-term, the “electric” charge density at the right-hand side
of the Gauss law acquires an additional “magnetic” con-
tribution. Furthermore on the 3D boundary of [35] fracto-
niclike excitations seem to appear, in agreement with our

results, as we shall see. Moreover, in [2,53] it has been
speculated that certain kinds of higher-order topological
phases share some properties with fracton quasiparticles.
Another interesting example can be found in [54], where a
similar noncovariant CS-like term, built as a higher-spin
generalization of the standard topological one, gives some
insights into the context of dipolar behaviors of quantum
Hall systems. Therefore, boundary effects might be impor-
tant also in the framework of fracton theory, and the aim of
this paper is to study the consequences of the presence of a
flat boundary in the covariant theory of fractons, following
the QFT approach pioneered by Symanzik in [55].
The paper is organized as follows: in Sec. II we briefly

review the 4D covariant fracton theory of [39], where the
most general action invariant under the covariant fracton
symmetry δAμν ¼ ∂μ∂νΛ is identified as the combination of
two independent terms: LG and pure fractons. In Sec. III
the boundary is introduced in the action together with the
gauge fixing and the most general boundary term. From the
total action the equations of motion (EoM) and the most
general boundary conditions (BC) are computed. Because
of the presence of the boundary, the Ward identities of the
theory are broken, and this allows one to identify the
boundary degrees of freedom (DoF), represented by two
traceless symmetric rank-2 tensor fields. Moreover, the
broken Ward identities give rise to an algebraic structure,
which can be identified as a generalized KM algebra,
which, in Sec. IV, we interpret as canonical commutators of
a 3D action. In Sec. V the bulk/boundary correspondence is
obtained by requiring that the EoM of the induced 3D
action are compatible with the boundary conditions of the
4D bulk theory. This can be achieved by suitably tuning
the parameters appearing in the boundary conditions and in
the 3D action. To physically interpret the 3D theory we
found, in Sec. VI we study its EoM, which appear to be
Gauss and Ampère-like laws for the boundary tensor fields,
exactly as in the “ordinary” fracton theory. In particular, our
boundary theory can be identified with a traceless fracton
model. In Sec. VII we analyze the effect of taking into
account discrete symmetries such as parity (P) and time
reversal (T ). Finally in Sec. VIII we discuss our results.

II. THE MODEL WITHOUT BOUNDARY:
FRACTONS AND LINEARIZED GRAVITY

Following [38–40], we start by considering the covariant
extension of the fracton symmetry in the scalar charge
theory

δfractAμν ¼ ∂μ∂νΛ; ð2:1Þ

which identifies the most general 4D invariant action

Sinv ¼ g1Sfract þ g2SLG; ð2:2Þ

where
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Sfract ¼
1

6

Z
d4xFμνρFμνρ; ð2:3Þ

SLG ¼
Z

d4x

�
1

4
Fμ

μνFρ
ρν −

1

6
FμνρFμνρ

�
; ð2:4Þ

g1, g2 are dimensionless constants, and FμνρðxÞ is the
covariant fracton field strength, defined as [39,56]

Fμνρ ¼ Fνμρ ¼ ∂μAνρ þ ∂νAμρ − 2∂ρAμν; ð2:5Þ
which has the following properties, compared with those of
the ordinary Maxwell field strength. The covariant sym-
metry (2.1) makes apparent the relation between fracton
theories and gravity, as already guessed in [37,57,58]. In
fact, SLG in (2.2), obtained at g1 ¼ 0, is the action of LG
written in terms of FμνρðxÞ [39], which is defined by the
more general infinitesimal diffeomorphism symmetry

δdiffAμν ¼ ∂μξν þ ∂νξμ; ð2:6Þ

of which (2.1) is a particular case, sometimes called
longitudinal diffeomorphisms [59]. The fracton action
Sfract (2.3), instead, corresponds to the limit g2 ¼ 0, which
has been shown in [39] to yield all the results associated
with the scalar charge theory of fractons [1,2,20,21,35].
From the action Sinv (2.2) we get the EoM

δSinv
δAαβ ¼ g1∂μFαβμ þ g2

�
ηαβ∂μFν

νμ

−
1

2
ð∂αFμ

μβ þ ∂βFμ
μαÞ − ∂

μFαβμ

�
¼ 0; ð2:7Þ

and the conjugate momentum

Παβðg1; g2Þ≡ ∂Linv

∂ð∂tAαβÞ

¼ −g1Fαβ0 − g2

�
ηαβFλ

λ0

−
1

2
ðη0αFλ

λβ þ η0βFλ
λαÞ − Fαβ0

�
; ð2:8Þ

which in fracton theories plays a relevant role, since its
spatial components are identified with the “tensor electric
field” EijðxÞ [1,2,20,21,35]. The components of ΠαβðxÞ are

Π00 ¼ 0; ð2:9Þ

Πi0 ¼ −g1Fi00 −
1

2
g2Fj

ji; ð2:10Þ

Πij ¼ −g1Fij0 þ g2ðFij0 − ηijFk
k0Þ; ð2:11Þ

with i;j¼f1;2;3g. Notice that for a particular combination
of g1 and g2 the trace of Παβ vanishes

ηαβΠαβ ¼ Πα
α ¼ −ðg1 þ 2g2ÞFλ

λ0 ¼ 0 if g1 þ 2g2 ¼ 0:

ð2:12Þ

This corresponds to the fact that, as already remarked
in [38], in this case the action Sinv (2.2) does not depend on
the trace of the tensor field AμνðxÞ, thus further lowering the
number of DoF [40].

III. THE MODEL WITH BOUNDARY

A. The action

In view of introducing a planar boundary x3 ¼ 0, we use
the following conventions concerning indices:

α; β; γ;… ¼ f0; 1; 2; 3g; ð3:1Þ

a; b; c;… ¼ f0; 1; 2g; ð3:2Þ

A; B; C;… ¼ f1; 2g: ð3:3Þ

Moreover, xμ ¼ ðx0; x1; x2; x3Þ and Xm ¼ ðx0; x1; x2Þ are
the bulk and boundary coordinates, respectively. We now
introduce the boundary by means of a Heaviside step
function in the action [60]

Sbulk ¼
Z

d4xθðx3Þ
�
g1
6
FμνρFμνρ

þ g2

�
1

4
Fμ

μνFρ
ρν −

1

6
FμνρFμνρ

��
: ð3:4Þ

Notice that in what follows we cannot just set g1 ¼ 0 and
restrict our results to LG alone, because SLG (2.4) is
uniquely defined by the infinitesimal diffeomorphism
transformation (2.6), and not by its subset (2.1). The
transformations (2.6) and (2.1) differ in two aspects: the
first, (2.6), depends on a vector gauge parameter, while (2.1)
has a scalar gauge parameter; hence, the former is more
restrictive. Second, (2.6) and (2.1) depend on one and two
derivatives, respectively. This results in a mismatch in the
mass dimensions. In fact, since from the action (3.4) we
have ½Aμν� ¼ 1, due to the double derivatives in (2.1) it must
be ½Λ� ¼ −1, which is an exotic dimension assignment for
the scalar gauge parameter. Moreover, on the x3-boundary,
the field AμνðxÞ and its ∂3-derivative must be treated as
independent fields [46,47,61,62]. Hence, on the boundary
we define

Ãμν ≡ ∂3Aμνjx3¼0; ð3:5Þ

with ½Ãμν� ¼ 2. We add to the invariant action Sinv (2.2) the
gauge-fixing term

Sgf ¼
Z

d4xθðx3ÞbμAμ3; ð3:6Þ
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where bμðxÞ is a Nakanishi-Lautrup Lagrange multi-
plier [63,64] implementing the axial gauge condition

Aμ3 ¼ 0: ð3:7Þ

As a consequence of the fact that the field and its
∂3-derivative on the boundary are independent quantities,
together with the usual external field JabðxÞ coupled to
AabðxÞ, it is necessary to couple a source J̃abðxÞ also to the
∂3-derivative of AabðxÞ on the boundary. The external
source term is then

SJ ¼
Z

d4x½θðx3ÞJabAab þ δðx3ÞJ̃abÃab�: ð3:8Þ

The presence of a boundary in a QFT naturally raises the
question of which BC should be assigned to the quantum
fields and/or their derivatives. A possible way is to impose
them by hand, but one should worry about the dependence
of the results on the particular choice. This arbitrariness
affecting QFTs with a boundary has been elegantly solved
by Symanzik in his pioneering paper [55], where a scalar
QFT with a boundary was considered. According to
Symanzik’s approach, the BC are not imposed by hand,
but are determined by the theory itself. This is achieved by
adding a boundary term to the action, as the most general
one, satisfying the requests of locality, power counting, and
3D Lorentz invariance. The BC are then determined from
the EoM, modified by the boundary term

Sbd ¼
Z

d4xδðx3Þ½ξ0AabAab þ ξ1ÃabAab

þ ξ2ϵ
abcAai∂bAi

c þ ξ3A2 þ ξ4ÃA�; ð3:9Þ

where, due to the gauge condition (3.7),

A≡ ημνAμν ¼ ηabAab; Ã≡ ημνÃμν ¼ ηabÃab; ð3:10Þ

and ξi are constant parameters, whose mass dimensions are

½ξ0� ¼ ½ξ3� ¼ 1; ½ξ1� ¼ ½ξ2� ¼ ½ξ4� ¼ 0: ð3:11Þ

Notice that the general QFT requirements which constrain
Sbd imply the presence of the CS-like ξ2-term, which can be
traced back to the covariant fractonic θ-term [39]. In fact,
this latter is

Sθ ¼
Z

d4xθðx3Þϵμνρσ∂μAνλ∂ρAλ
σ; ð3:12Þ

which, integrating by parts, reduces to

Z
d3XϵabcAaλ∂bAλ

c; ð3:13Þ

which, on the gauge condition (3.7), coincides with the ξ2-
term in (3.9). The total action is then

Stot ¼ Sbulk þ Sgf þ SJ þ Sbd: ð3:14Þ

B. Equations of motion and boundary conditions

The EoM for AαβðxÞ and ÃαβðxÞ are

δStot
δAαβ

¼ θðx3Þ
�
ðg1 − g2Þ∂μFαβμ þ g2

�
ηαβ∂μFν

νμ −
1

2
ð∂αFμ

μβ þ ∂
βFμ

μαÞ
�
þ δαaδ

β
bJ

ab þ 1

2
ðbαδβ3 þ bβδα3Þ

�

þ δðx3Þ
�
ðg1 − g2ÞFαβ3 þ g2

�
ηαβFμ

μ3 −
1

2
ðηα3Fμ

μβ þ ηβ3Fμ
μαÞ

�

þ δαaδ
β
b½2ξ0Aab þ ξ1Ã

ab þ ξ2ðϵaij∂iAb
j þ ϵbij∂iAa

j Þ þ 2ξ3η
abAþ ξ4η

abÃ�
�

¼ 0 ð3:15Þ

and

δStot
δ∂3Aαβ

¼ θðx3Þ
�
ðg2−g1ÞFαβ3−g2

�
ηαβFμ

μ3−
1

2
ðηα3Fμ

μβþηβ3Fμ
μαÞ

��
þδðx3ÞδαaδβbfJ̃abþξ1Aabþξ4η

abAg¼ 0: ð3:16Þ

The most general BC are obtained by applying limϵ→0

R
ϵ
0 dx

3 to the EoM. From (3.15) we get

�
ðg1 − g2ÞFαβ3 þ g2

�
ηαβFμ

μ3 −
1

2
ðηα3Fμ

μβ þ ηβ3Fμ
μαÞ

�

þ δαaδ
β
b½2ξ0Aab þ ξ1Ã

ab þ ξ2ðϵaij∂iAb
j þ ϵbij∂iAa

j Þ þ 2ξ3η
abAþ ξ4η

abÃ�
�

x3¼0

¼ 0: ð3:17Þ
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We observe that
(i) α ¼ β ¼ 3 is trivially realized;
(ii) α ¼ 3, β ¼ b:

g2ð∂bA − ∂aAabÞx3¼0 ¼ g2Fμ
μbjx3¼0 ¼ 0; ð3:18Þ

(iii) α ¼ a, β ¼ b:

�
2ξ0Aab þ 2

�
g2 − g1 þ

ξ1
2

�
Ãab

þ ξ2ðϵaij∂iAb
j þ ϵbij∂iAa

j Þ þ 2ξ3η
abA

þ 2

�
ξ4
2
− g2

�
ηabÃ

�
x3¼0

¼ 0: ð3:19Þ

Going on-shell, i.e. at vanishing external sources J̃ðxÞ ¼ 0,
taking the limϵ→0

R
ϵ
0 dx

3 of the EoM (3.16), we get

δαaδ
β
bðξ1Aab þ ξ4η

abAÞx3¼0 ¼ 0; ð3:20Þ

and again we observe that
(i) α ¼ 3, β free, is trivially realized;
(ii) α ¼ a, β ¼ b:

ðξ1Aab þ ξ4η
abAÞx3¼0 ¼ 0: ð3:21Þ

C. Ward identities and boundary degrees of freedom

The EoM (3.15) yields the following integrated Ward
identity:

Z
dx3∂a∂b

δStot
δAab

¼
Z

dx3θðx3Þfðg1−g2Þ∂a∂b∂3Fab3

þg2∂a∂a∂3Fμ
μ3þ∂a∂bJabg¼0; ð3:22Þ

where we used the BC (3.19) and the cyclic property of
FμνρðxÞ in Table I. Integrating by parts we get

Z
dx3θðx3Þ∂i∂jJij ¼ 2ðg2 − g1Þ∂i∂jÃij − 2g2∂i∂iÃjx3¼0:

ð3:23Þ

Analogously, from the EoM (3.16) we find

Z
dx3∂a∂b

δStot
δ∂3Aab

¼ −
Z

dx3θðx3Þ∂a∂b½2ðg2 − g1Þ∂3Aab

− 2g2ηab∂3A� þ ∂a∂bJ̃abjx3¼0

¼ 0; ð3:24Þ

where we used the BC (3.21). Integrating by parts

∂i∂jJ̃ijjx3¼0 ¼ −2ðg2 − g1Þ∂i∂jAij þ 2g2∂i∂iAjx3¼0: ð3:25Þ

Notice that the secondWard identity (3.25), associated with
the ÃabðxÞ field on the boundary, is local and not integrated
as the first (3.23). The twoWard identities (3.23) and (3.25)
are analogous to those characterizing the Maxwell
theory with a boundary in both 3D and 4D [46,47]. At
vanishing external source JabðxÞ ¼ 0, the Ward identity
(3.23) gives

∂i∂j½ðg2 − g1ÞÃij − g2ηijÃ�x3¼0 ¼ 0: ð3:26Þ

In [38,40] it has been shown that, when g1 ¼ g2 in the
invariant action Sinv (2.2), it is possible to redefine the
components of AμνðxÞ in such a way that the theory has no
kinetic term; hence, it is not dynamical. Therefore in what
follows we shall exclude the trivial case:

g1 ¼ g2: ð3:27Þ

For g1 ≠ g2 and g1;2 ≠ 0, (3.26) implies

∂i∂jÃ
ijðXÞ ¼ 0; ð3:28Þ

□ÃðXÞ ¼ 0: ð3:29Þ

Equation (3.28) is solved as follows [65,66]:

∂ið∂jÃijÞ ¼ 0 ⇒ ∂jÃ
ij ¼ ϵimn

∂mCn; ð3:30Þ

where CnðXÞ is a generic 3D vector field. Equation (3.30),
in turn, gives

∂jðÃij−ϵijnCnÞ¼0⇒ Ãij−ϵijnCn¼2ϵjab∂aãbi; ð3:31Þ

where ãijðXÞ is a generic rank-2 tensor field. On the other
hand, ÃijðxÞ is symmetric; hence Cn ¼ 0 and we have

ÃijðXÞ≡ ϵiab∂aãbjðXÞ þ ϵjab∂aãbiðXÞ: ð3:32Þ

The tensor field ãijðXÞ represents the DoF on the boundary,
with ½ãij� ¼ 1. Moreover, since ÃijðxÞ ¼ ÃjiðxÞ has six
independent components, the boundary field ãijðXÞ must
be symmetric as well

ãij ¼ ãji; ð3:33Þ

TABLE I. Properties of the fracton and Maxwell field strengths.

Fractons Maxwell

Invariance δfractFμνρ ¼ 0 δgaugeFμν ¼ 0

Cyclicity Fμνρ þ Fνρμ þ Fρμν ¼ 0 Fμν þ Fνμ ¼ 0

Bianchi ϵαμνρ∂
μFβνρ ¼ 0 ϵμνρσ∂

νFρσ ¼ 0
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in order that the boundary DoF does not exceed the number
of components of its bulk ancestor ÃijðxÞ. The solution
(3.32) is traceless,

ÃðXÞjð3.32Þ ¼ 0; ð3:34Þ

so that the condition (3.29) is automatically satisfied.
Analogously, from the local Ward identity (3.25) we have,
at vanishing external source J̃abðxÞ ¼ 0,

∂i∂j½ðg2 − g1ÞAij − g2ηijA�x3¼0 ¼ 0; ð3:35Þ

whose solution is

AijðXÞ≡ ϵiab∂aabjðXÞ þ ϵjab∂aabiðXÞ; ð3:36Þ

where aijðXÞ ¼ ajiðXÞ is the DoF on the boundary with
½aij� ¼ 0. Let us now consider the two broken Ward
identities (3.23) and (3.25) and make functional derivatives
with respect to JmnðX0Þ and J̃mnðX0Þ. Referring to
Appendix A 1 for the details, we obtain the following
equal time commutation relations:

½ΔÃðXÞ; AMNðX0Þ�x0¼x00 ¼ þi∂M∂Nfδðx1 − x01Þδðx2 − x02Þg;
ð3:37Þ

½ΔAðXÞ; ÃMNðX0Þ�x0¼x00 ¼ −i∂M∂Nfδðx1 − x01Þδðx2 − x02Þg;
ð3:38Þ

where

ΔÃ≡ 2ðg1 − g2Þð∂jÃ0j þ ∂AÃ
0AÞ þ 2g2∂0Ã; ð3:39Þ

ΔA≡ 2ðg1 − g2Þð∂jA0j þ ∂AA0AÞ þ 2g2∂0A: ð3:40Þ

Importantly, the commutation relations (3.37) and (3.38)
resemble the generalized U(1) KM algebra derived in [53]
for a 3D nonchiral bosonic theory that lives on the
boundary of a 4D dipolar fracton theory. Hence, the
theory described by the action Sinv (2.2) has an algebraic
structure on the boundary that is different from that of
topological field theories [60,62,67–77] and Maxwell
theory [46,47,78]. The reason for that lies in the structure
of the fracton symmetry (2.1), characterized by two
derivatives, which prevents the presence, at the right-hand
sides of (3.37) and (3.38), of the central charge term ∂δ,
typical of the usual KM algebras. This leads us to guess that
a conserved current algebra might exist on the boundary
of LG, whose defining symmetry (2.6) depends on one
derivative only. This would be in agreement with the
conjecture concerning the existence of a KM algebra in
LG mentioned in [79].

IV. THE INDUCED 3D THEORY

A. Canonical variables

We look for the transformations of the boundary fields
aijðXÞ and ãijðXÞ which preserve the solutions (3.32) and
(3.36). The most general ones are

δamn ¼ ηmnϕþ ∂mξn þ ∂nξm þ ∂m∂nλ; δãmn ¼ 0; ð4:1Þ

δ̃ãmn ¼ ηmnϕ̃þ ∂mξ̃n þ ∂nξ̃m þ ∂m∂nλ̃; δ̃amn ¼ 0; ð4:2Þ

where λðXÞ; λ̃ðXÞ;ϕðXÞ; ϕ̃ðXÞ; ξðXÞ, and ξ̃ðXÞ are generic
local parameters. The solutions AijðXÞ (3.32) and ÃijðXÞ
(3.36) remain unchanged, i.e. δAij ¼ δ̃Ãij ¼ 0, if ξm ¼
∂mξ

0 and ξ̃m ¼ ∂mξ̃
0, so that (4.1) and (4.2) reduce to

δamn ¼ ηmnϕþ ∂m∂nλ; δãmn ¼ 0; ð4:3Þ

δ̃ãmn ¼ ηmnϕ̃þ ∂m∂nλ̃; δ̃amn ¼ 0: ð4:4Þ

We decompose the boundary fields aijðXÞ and ãijðXÞ in
terms of their trace and traceless contributions, i.e.

aij ¼ αij þ
1

3
ηija; ð4:5Þ

ãij ¼ α̃ij þ
1

3
ηijã; ð4:6Þ

where a≡ ηijaij; ã≡ ηijãij, and αijðXÞ; α̃ijðXÞ are sym-
metric traceless fields

ηijαij ¼ ηijα̃ij ¼ 0; ð4:7Þ

which transform as

δαmn ¼ ∂m∂nλ −
1

3
ηmn∂

2λ; δα̃mn ¼ 0; ð4:8Þ

δ̃α̃mn ¼ ∂m∂nλ̃ −
1

3
ηmn∂

2λ̃; δ̃αmn ¼ 0: ð4:9Þ

The solutions (3.32) and (3.36) depend only on the trace-
less components

ÃijðXÞ≡ ϵiab∂aα̃b
jðXÞ þ ϵjab∂aα̃b

iðXÞ;
AijðXÞ≡ ϵiab∂aαb

jðXÞ þ ϵjab∂aαb
iðXÞ; ð4:10Þ

and the trace contributions disappear. The DoF of the
boundary theory are then described by the rank-2 traceless
tensor fields αijðXÞ and α̃ijðXÞ. This is consistent with the
fact that, as we showed, on the boundary the bulk fields
AijðxÞ and ÃijðxÞ have only five components, exactly as the
3D boundary fields αijðXÞ and α̃ijðXÞ, which are symmetric
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and traceless. The solutions (4.10) highly simplify the
definitions of ΔAðXÞ (3.40) and ΔÃðXÞ (3.39):

ΔAjð3.36Þ ¼ 4ðg1 − g2Þϵ0MN
∂M∂

AαNA; ð4:11Þ

ΔÃjð3.32Þ ¼ 4ðg1 − g2Þϵ0MN
∂M∂

Aα̃NA; ð4:12Þ

where we observe that only spatial derivatives appear.
Considering the following combinations of the commuta-
tors (3.37) and (3.38) and their traces

�
ΔÃ;A0

DF −
1

2
ηDFη

MNA0
MN

�

¼ i
2
ðδMD δNF þ δNDδ

M
F − ηMNηDFÞ∂M∂Nδð2ÞðX −X0Þ; ð4:13Þ

�
ΔA;Ã0

DF−
1

2
ηDFη

MNÃ0
MN

�

¼−
i
2
ðδMD δNF þδNDδ

M
F −ηMNηDFÞ∂M∂Nδð2ÞðX−X0Þ; ð4:14Þ

and using the solutions (4.10), we can identify the follow-
ing two canonical commutation relations at the boundary
(the details can be found in Appendix A 2)

½qAB;p0CD�¼ i
2
ðδCAδDb þδDAδ

C
b −ηCDηABÞδð2ÞðX−X0Þ; ð4:15Þ

½q̃AB;p̃0CD�¼ i
2
ðδCAδDBþδDAδ

C
B−ηCDηABÞδð2ÞðX−X0Þ; ð4:16Þ

where

qAB ≡ αAB −
1

2
ηABα

M
M; ð4:17Þ

pCD ≡ 2g12

�
f̃CD0 −

1

2
ηCDf̃a

a0

�
; ð4:18Þ

q̃AB ≡ α̃AB −
1

2
ηABα̃

M
M; ð4:19Þ

p̃CD ≡ −2g12
�
fCD0 −

1

2
ηCDfaa0

�
; ð4:20Þ

and

g12 ≡ 2ðg1 − g2Þ: ð4:21Þ

In analogy to FμνρðxÞ (2.5), fabcðXÞ, and f̃abcðXÞ are
defined as

f̃abc ≡ ∂aα̃bc þ ∂bα̃ac − 2∂cα̃ab; ð4:22Þ

fabc ≡ ∂aαbc þ ∂bαac − 2∂cαab: ð4:23Þ

It is interesting to notice that a canonical commutator
similar to those we found in (4.15) and (4.16) appears
in [80], in the context of the traceless fracton mod-
els [20,21]. The aim of [80] is to build a non-Abelian
model for fractons in 2þ 1 dimensions. To do so the
Abelian traceless theory needs to be defined first. As for
any fracton theory [1,2,20,21], the “electric field” EIJðxÞ is
the conjugate momentum of AIJðxÞ, from which the
commutator holds

½EIJ; AMN� ¼ iðδIMδJN þ δJMδ
I
NÞ: ð4:24Þ

After that, the scalar Gauss constraints are imposed,
together with a tracelessness condition:

∂I∂JEIJ ¼ ρ; EI
I ¼ 0; ð4:25Þ

which imply three conservation equations:

Z
ρ ¼ const;

Z
x⃗ρ ¼ const;

Z
x2ρ ¼ const; ð4:26Þ

of charge, dipole, and a component of the quadrupole,
respectively. The main characteristic of fracton theories, i.e.
the limited mobility, is here translated to the fact that single
charges cannot move, while dipole bound states can only
move along their transverse direction. The constraints
(4.25) imply that the tensor field AIJðxÞ transforms exactly
as (4.3) and (4.4), which is a remarkable check of our
reasoning. However, while in our case it is natural to
identify the DoF of the theory with the traceless fields
αijðXÞ and α̃ijðXÞ, in [80] the tracelessness condition is
imposed as a kind of gauge fixing, while for us it comes
from the solutions (4.10). As a consequence, the definition
(4.24) of the canonical commutator is no longer valid (since
AI

I ¼ EI
I ¼ 0would not commute), and the commutator for

the traceless theory of fractons is defined as Dirac brack-
ets [81], which turns out to be identical to ours (4.15)
and (4.16).

B. The most general 3D action

The action of the 3D boundary theory is constructed as
the most general local integrated functional of the traceless
rank-2 symmetric tensor fields αijðXÞ and α̃ijðXÞ compat-
ible with

(i) power counting ½α� ¼ 0, ½α̃� ¼ 1;
(ii) symmetry δS ¼ δ̃S ¼ 0, where δ and δ̃ are defined in

(4.8) and (4.9);
(iii) canonical variables identified in (4.15) and (4.16):

∂Lkin
∂ _q ¼ p.

In Appendix B we show that the most general 3D action
satisfying these three requests is
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S3D ¼
Z

d3X

�
−
2

3
g12φabcφ̃

abc þ ω5α̃
d
aϵ

abcφ̃dbc

�
; ð4:27Þ

where we defined

φabc ¼ φbac ≡ fabc þ
1

4
ð−2ηabfddc þ ηbcfdda þ ηacfddbÞ

¼ −2∂cαab þ ∂aαbc þ ∂bαac − ηab∂
dαdc þ

1

2
ηbc∂

dαda

þ 1

2
ηac∂

dαdb; ð4:28Þ

and, analogously, φ̃abcðXÞ in terms of α̃abðXÞ, with the
following properties:

φabc þ φcab þ φbca ¼ 0 ¼ φ̃abc þ φ̃cab þ φ̃bca; ð4:29Þ

ηabφabc ¼ ηbcφabc ¼ ηabφ̃abc ¼ ηbcφ̃abc ¼ 0: ð4:30Þ

The ω5 term in (4.27) looks like a CS term, and the
similarity is even more evident if we make explicit the
α̃abðXÞ dependence, since α̃daϵ

abcφ̃dbc ∝ α̃daϵ
abc

∂bα̃cd.
Intriguingly, this CS-like term resembles the massless limit
of 3D self-dual massive gravity [59,82]. This theory
contains a 3D Fierz-Pauli mass term that breaks the gauge
invariance [83,84]. However, it has been shown [85] that it
is dual to linearized topologically massive gravity [86],
which is gauge invariant and contains the CS-like term
together with the linearized 3D Einstein-Hilbert action.
These two equivalent theories were originally proposed as a
viable way to describe a single propagating massive
graviton in 3D in contrast with the standard Einstein-
Hilbert theory, which is topological in 3D and does not
support any propagating spin-2 particle. In our case, the
linearized Einstein-Hilbert term is replaced by the tensorial
Maxwell-like term such that our boundary action still
supports a propagating “graviton.” Notice that a noncovar-
iant version of our CS-like term has also been considered
in [54,87] in the context of fractional quantum Hall effect
and chiral fractons. However, these noncovariant field
theories that can be seen as dual one to each other, do
not take into account any tensorial Maxwell-like terms.
Notice also that if ω5 ¼ 0, it is possible to decouple the
fields. In fact, by defining

α�ab ≡
ffiffiffiffiffi
M

p
αab �

1ffiffiffiffiffi
M

p α̃ab ⇒ φ�
abc ¼

ffiffiffiffiffi
M

p
φabc �

1ffiffiffiffiffi
M

p φ̃abc;

ð4:31Þ

where M is a parameter with mass dimension ½M� ¼ 1 and
½α�� ¼ 1

2
, the 3D action (4.27) becomes

S3D¼
Z

d3X

�
g12
6
ðφ−

abcφ
−abc−φþ

abcφ
þabcÞ

þMω5

4
ðαþd

a ϵabcφþ
dbc−2αþd

a ϵabcφ−
dbcþα−da ϵabcφ−

dbcÞ
�
;

ð4:32Þ

which for ω5 ¼ 0 decouples:

S3D½αþ; α−;ω5 ¼ 0� ¼ Sþ3D½αþ� þ S−3D½α−� ð4:33Þ

with

S�3D≡ ∓ g12
6

Z
d3Xφ�

abcφ
�abc: ð4:34Þ

As we shall show in Sec. VII, this second case keeps the
T -invariance of the boundary in agreement with the
T -symmetry of the bulk action (3.1).

V. THE BULK AND THE BOUNDARY:
HOLOGRAPHIC CONTACT

Once the most general 3D action (4.27) has been derived,
we have to establish the “holographic contact” between this
induced 3D theory and the 4D theory Stot (3.14). This is
accomplished by requiring that the EoM of the 3D theory
coincide with the BC (3.18), (3.19), (3.21) of the 4D theory.
To do so we have at our disposal the ξi parameters
appearing in Sbd (3.9) and ω5 in S3D (4.27). The EoM
of S3D are

δS3D
δαmn

¼ −2g12∂aφ̃mna ¼ 0; ð5:1Þ

where we used the cyclic property (4.29), and

δS3D
δα̃mn

¼ −2g12∂aφmna þ ω5ðϵmabφ̃n
ab þ ϵnabφ̃m

abÞ

¼ 0: ð5:2Þ

We now consider the BC of the bulk theory (3.18), (3.19),
and (3.21), which we write in terms of the solutions (4.10)
and of the definitions of φabcðXÞ; φ̃abcðXÞ (4.28)

1

3
∂
aðϵaijφb

ij þ ϵbijφa
ijÞ ¼ 0; ð5:3Þ

2

3
ξ0ðϵaijφb

ij þ ϵbijφa
ijÞ þ

1

3
ðξ1 − g12Þðϵaijφ̃b

ij þ ϵbijφ̃a
ijÞ

− 2ξ2∂cφ
abc ¼ 0; ð5:4Þ

ξ1
3
ðϵaijφb

ij þ ϵbijφa
ijÞ ¼ 0: ð5:5Þ

BERTOLINI, MAGGIORE, and PALUMBO PHYS. REV. D 108, 025009 (2023)

025009-8



The contact is governed by two coefficients: ξ1, which
appears in Sbd (3.9), and ω5 in the action S3D (4.27). The
first—ξ1—is relevant because it determines the existence of
the BC (5.5), the second—ω5—decouples the EoM of the
boundary fields αabðXÞ; α̃abðXÞ, i.e. eliminates the CS-like
term from the action (4.27). Additionally, we remark that
α̃ijðXÞ appears only in the BC (5.4), coupled to ðξ1 − g12Þ,
which should not vanish; otherwise no contact is possible.
To summarize, the constraints on the coefficients, up to
now, are

g1 ≠ 0; g12 ≠ 0; ξ1 ≠ g12: ð5:6Þ

Therefore, depending on ξ1 and ω5, we distinguish the
following cases:

(i) ξ1 ≠ 0,ω5≠0: using (5.5) in (5.4) (or setting ξ0 ¼ 0),
we have

1

3
ðξ1 − g12Þðϵaijφ̃b

ij þ ϵbijφ̃a
ijÞ

− 2ξ2∂cφ
abc ¼ 0; ð5:7Þ

which coincides with the 3D EoM (5.2)

−2g12∂aφmnaþω5ðϵmabφ̃n
abþϵnabφ̃m

abÞ¼0 ð5:8Þ

if

ω5¼
1

3
ðξ1−g12Þ≠ 0; ξ2¼ g12 ≠ 0; ξ1 ≠ 0: ð5:9Þ

Notice that setting ω5 ¼ 0 would imply ξ1 ¼ g12,
which we excluded in (5.6). Up to a numerical
coefficient, we now consider the following sym-
metric combination of the curl of the BC (5.5):

0 ¼ ϵmac∂
cð5.5Þab þ ϵbac∂

cð5.5Þam
¼ 6∂iφbmi; ð5:10Þ

where we used the properties of tracelessness (4.30)
and cyclicity (4.29) of φabcðXÞ. We then use this
result in the BC (5.7), which becomes

1

3
ðξ1 − g12Þðϵaijφ̃b

ij þ ϵbijφ̃a
ijÞ ¼ 0; ð5:11Þ

of which we compute again the curl

0 ¼ ϵmac∂
cð5.11Þab þ ϵbac∂

cð5.11Þam
¼ 2ðξ1 − g12Þ∂iφ̃bmi; ð5:12Þ

which finally coincides with the 3D EoM (5.1)

−2g12∂aφ̃mna ¼ 0: ð5:13Þ

Notice that this second contact is obtained without
the need of any additional constraint on the param-
eters, we just need (5.9). Taking into account (5.9),
the 3D action (4.27) becomes

S3D ¼ 1

3

Z
d3X½−2g12φabcφ̃

abc

þ ðξ1 − g12Þα̃daϵabcφ̃dbc�; ð5:14Þ

while the boundary term (3.9) now is

Sbd¼
Z

d4xδðx3Þ½ξ0AabAabþξ1ÃabAab

þg12ϵabcAai∂bAi
cþξ3ðAa

aÞ2þξ4Ã
a
aAb

b�; ð5:15Þ

where the coefficients ξ0, ξ3, and ξ4 are free and can,
for instance, be set to zero, while ξ1 ≠ f0; g12g.

(ii) ξ1 ≠ 0, ω5¼0: the EoM of the 3D theory (5.1) and
(5.2) are

∂aφ
mna ¼ 0; ∂aφ̃

mna ¼ 0; ð5:16Þ

while, ignoring the first BC (5.3), which is auto-
matically solved by the third one (5.5), and using
(5.5) in (5.4), the remaining BC are

1

3
ðξ1 − g12Þðϵaijφ̃b

ij þ ϵbijφ̃a
ijÞ − 2ξ2∂cφ

abc ¼ 0;

ð5:17Þ

ξ1
3
ðϵaijφb

ij þ ϵbijφa
ijÞ ¼ 0: ð5:18Þ

As in (5.10), we can again compute

0 ¼ ϵmac∂
cð5.18Þab þ ϵbac∂

cð5.18Þam
¼ 2ξ1∂

iφbmi; ð5:19Þ

which coincides with the first EoM of (5.16). If we
use this result (5.19) in (5.17) (analogous to setting
ξ2 ¼ 0) and consider the same combination as
(5.19), we obtain the second EoM of (5.16), and
thus we get the second matching between bulk and
boundary. In that case the 3D action (4.27) is

S3D ¼ −
2g12
3

Z
d3Xφabcφ̃

abc; ð5:20Þ

while the boundary term Sbd (3.9) becomes

Sbd¼
Z

d4xδðx3Þ½ξ0AabAabþξ1ÃabAab

þξ2ϵ
abcAai∂bAi

cþξ3ðAa
aÞ2þξ4Ã

a
aAb

b�; ð5:21Þ
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where the coefficients ξ0, ξ2, ξ3, and ξ4 are free, i.e.
do not contribute to the contact between the bulk and
the boundary and can be set to zero without loss of
generality, provided that ξ1 ≠ f0; g12g. Therefore a
second holographic contact is possible if

ω5 ¼ 0; ξ1 ≠ f0; g12g: ð5:22Þ

This second result has a relevant consequence:
ω5 ¼ 0 allows one to decouple the action, as seen
in (4.33).

We observe that the holographic contacts obtained in (5.9)
and (5.22) affect the boundary action Sbd (3.9) in different
ways, in particular in the first case (5.9) the number of free
parameters from five reduces to three, while in the second
case (5.22) it goes to four. Finally, if ξ1 ¼ 0, no complete
matchingbetweenBCand3DEoMispossible, in fact setting
ξ1 ¼ 0, one of the BC (5.5) disappears. We are left with

1

3
∂
aðϵaijφb

ij þ ϵbijφa
ijÞ ¼ 0; ð5:23Þ

2

3
ξ0ðϵaijφb

ij þ ϵbijφa
ijÞ −

g12
3

ðϵaijφ̃b
ij þ ϵbijφ̃a

ijÞ
− 2ξ2∂cφ

abc ¼ 0: ð5:24Þ

For what concerns the parameter ω5 in (4.27), two cases are
possible

(i) ω5≠0: the BC (5.24) coincides with the 3D EoM
(5.2)

− 2g12∂aφmna

þ ω5ðϵmabφ̃n
ab þ ϵnabφ̃m

abÞ ¼ 0 ð5:25Þ

if

ω5¼−
g12
3

≠ 0; ξ2 ¼ g12 ≠ 0; ξ0¼ ξ1¼ 0; ð5:26Þ

however, it is not possible to establish a link with the
other EoM (5.1).

(ii) ω5 ¼ 0: the EoM of the 3D boundary theory are
given by (5.16). A matching is possible with the BC
(5.24) only if ξ2 ¼ 0, and if we compute

0 ¼ ϵmac∂
cð5.24Þab þ ϵbac∂

cð5.24Þam
¼ 4ξ0∂

iφbmi − 2g12∂iφ̃bmi; ð5:27Þ

which coincides with a combination of the two EoM
of the boundary. We see that also in this case a
complete holographic contact between 3D EoM and
bulk BC is not possible.

This enforces the fact that the ξ1-term in Sbd (3.9) plays a key
role in the holographic contact. The holographic contacts are
summarized in Table II.

VI. PHYSICAL INTERPRETATION
OF THE 3D THEORY

To understand the physical content of the 3D theory
described by the action S3D (4.27), we study its EoM. The
first EoM (5.1) for m ¼ n ¼ 0 gives

0 ¼ ∂Aφ̃
00A ¼ −2∂A∂Aα̃00 þ 2∂A∂

0α̃A0 þ ∂A∂bα̃
Ab: ð6:1Þ

Taking the ∂N-derivative of (5.1) for m ¼ 0, n ¼ N, we get

0 ¼ ∂N∂aφ̃
0Na ¼ −

1

4g12
∂A∂NpAN; ð6:2Þ

where we used (6.1), the cyclicity property (4.29) and
the definition of conjugate momentum in terms of
φ̃abcðXÞ (4.28)

pMN ¼ 2g12φ̃MN0: ð6:3Þ

We see that (6.2) is a Gauss-like equation, analogous to the
one related to the traceless scalar charge model of fractons
in vacuum [20,21], which is at the base of the limited
mobility property. We therefore realize that the induced 3D
theory shows fractonic properties. To analyze the second
EoM (5.2), we first compute the conjugate momentum
of α̃abðXÞ:

p̃MN ¼ ∂L3D

∂ _̃αMN

¼ 2g12φMN0 −
3

2
ω5ðϵ0AMα̃N

A þ ϵ0ANα̃M
AÞ: ð6:4Þ

The EoM for α̃abðXÞ (5.2) at m ¼ n ¼ 0 is

∂Aφ
00A ¼ 3ω5

g12
ϵ0AB∂Aα̃

0
B; ð6:5Þ

and, as in the previous case, taking the ∂N-derivative of (5.2)
at m ¼ 0, n ¼ N we have

0 ¼ −2g12∂a∂Nφ0Na þ 3ω5∂Nðϵ0AB∂Aα̃N
B þ ϵNab∂aα̃

0
bÞ

¼ 1

2
∂M∂Np̃MN −

3

2
ω5ϵ

0AM
∂M∂Nα̃

N
A; ð6:6Þ

where we used the cyclic property of φabcðXÞ (4.29) and
(6.5). Here again we find a Gauss-like equation for the
traceless scalar charge theory of fractons [20,21], but with a
matter contribution at the right-hand side,

TABLE II. Holographic contacts.

BC-EoM matching

ξ1 ≠ 0, ω5 ≠ 0 ω5 ¼ 1
3
ðξ1 − g12Þ; ξ2 ¼ g12

ξ1 ≠ 0, ω5 ¼ 0 ω5 ¼ 0
ξ1 ¼ 0 No contact
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∂M∂Np̃MN ¼ ρ̃5 ¼ ω5ρ̃; ð6:7Þ

where

ρ̃≡ 3ϵ0AM∂M∂Nα̃
N
A ð6:8Þ

plays the role of charge. This gives an interesting inter-
pretation of the CS-like term in the induced 3D action
(4.27) as “internal” matter. Notice that this term coincides
with the charge identified by Pretko in [35], where a
noncovariant CS-like term is studied. In that case the CS
term comes from a noncovariant fractonic θ-term in the
bulk, and it is written in terms of a spatial traceless tensor.
The charge ρ̃ðXÞ (6.8) comes from a constraint generated
by a Lagrange multiplier that is inherited by the CS action
from the definition of the θ-term. We observe that this ρ̃ðXÞ
charge implies, by definition, a dipole conservation. The
3D theory (4.27) depends on two fields αijðXÞ and α̃ijðXÞ;
hence, the conjugate momenta are two as well (6.3) and
(6.4), which in fracton models play the role of electric
fields:

EMN ≡ pMN ¼ 2g12φ̃MN0; ð6:9Þ

ẼMN ≡ p̃MN

¼ 2g12φMN0 −
3

2
ω5ðϵ0AMα̃N

A þ ϵ0ANα̃M
AÞ; ð6:10Þ

which satisfy the Gauss equations (6.2) and (6.7), which we
write

∂M∂NEMN ¼ 0; ð6:11Þ

∂M∂NẼMN ¼ ρ̃5: ð6:12Þ

Concerning the corresponding magnetic fields for this
theory, inspired by the ordinary 4D electromagnetism,
where Bi ∝ ϵ0ijkFjk, it is natural to define

BM ≡ gϵ0ABφ̃MAB; BM ≡ −gϵ0ABφ̃MAB; ð6:13Þ

B̃M ≡ g̃ϵ0ABφMAB; B̃M ≡ −g̃ϵ0ABφMAB: ð6:14Þ

Notice that, while in 4D fracton theories both electric and
magnetic fields are rank-2 tensors [39], in our 3D case, the
electric field is still a tensor, while the magnetic field is a
vector. Moreover, the definitions (6.13) and (6.14) are
consistent with the fact that in ordinary 3D electromag-
netism the electric field E⃗ðxÞ is a vector, while the magnetic
field is a pseudoscalar B ¼ ϵ0ijFij [88]. As we shall see,
our guess (6.13) and (6.14) will be confirmed by a
consistent physical interpretation of a fractonic “magnet-
iclike” behavior. In terms of αabðXÞ; α̃abðXÞ the magnetic
fields read

BM ¼ −3gϵ0AB
�
∂
bα̃MA þ 1

2
ηMA

∂dα̃
Bd

�
;

B̃M ¼ −3g̃ϵ0AB
�
∂
BαMA þ 1

2
ηMA

∂dα
Bd

�
; ð6:15Þ

which imply

φ̃ABC ¼ −
1

3g
ðϵ0ACBB þ ϵ0BCBAÞ; ð6:16Þ

φABC ¼ −
1

3g̃
ðϵ0ACB̃B þ ϵ0BCB̃AÞ: ð6:17Þ

Due to tracelessness property (4.30), we get

φA
AB ¼ φ00B ¼ −

2

3g̃
ϵ0ABB̃A;

φ̃A
AB ¼ φ̃00B ¼ −

2

3g
ϵ0ABBA: ð6:18Þ

Notice that

∂MBM ¼ −
3

2
gϵ0AB∂Að∂0α̃0B − ∂Cα̃

BCÞ ≠ 0; ð6:19Þ

∂MB̃M ¼ −
3

2
g̃ϵ0AB∂Að∂0α0B − ∂Cα

BCÞ ≠ 0; ð6:20Þ

which would suggest the presence, in the 3D theory (4.27),
of a fractonic magneticlike vortex. Consistently with the
fact of having nonvanishing divergences of the magnetic
vector fields, we find also a broken Bianchi identity, which
also suggests the presence of a kind of magnetic fracton
vortex. This would imply that a part of our fracton fields
give rise to 2D fracton vortex defects that represent a lower-
dimensional version of the 3D fracton magnetic monopole
proposed in [35]. In fact, we have

ϵmbc
∂mφabc ¼ −

3

2
ϵmac∂

m
∂dα

cd ≠ 0;

ϵmbc
∂mφ̃abc ¼ −

3

2
ϵmac∂

m
∂dα̃

cd ≠ 0; ð6:21Þ

which for a ¼ 0 give the nonvanishing divergences (6.19)
and (6.20). Setting instead a ¼ A we find

1

g
∂0BA þ

1

2g12
ϵ0MB

∂MEAB ¼ 3

2
ϵmAb∂

m
∂dα̃

bd þ ϵM0B∂Mφ̃0AB

≠ 0; ð6:22Þ

1

g̃
∂0B̃A þ

1

2g12
ϵ0MB

∂MẼAB ¼ 9

4

ω5

g12
∂
Mα̃MA þ 3

2
ϵmAb∂

m
∂dα

bd

þ ϵM0B
∂Mφ0AB ≠ 0; ð6:23Þ
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which have nonvanishing right-hand sides. Nonetheless,
we have two scalar identities for φabcðXÞ and φ̃abcðXÞ:

ϵmbc
∂m∂

aφabc ¼ −
3

2
ϵmac∂

m
∂
a
∂dα

cd ¼ 0; ð6:24Þ

ϵmbc
∂m∂

aφ̃abc ¼ −
3

2
ϵmac∂

m
∂
a
∂dα̃

cd ¼ 0: ð6:25Þ

Going back to the 3D EoM, we consider (5.1) at m ¼ M,
n ¼ N,

∂0φ̃
MN0 þ ∂Aφ̃

MNA ¼ 1

2g12
∂tEMN

−
1

3g
∂Aðϵ0MABN þ ϵ0NABMÞ; ð6:26Þ

where we used the definitions (6.9) and (6.16). We thus
have

∂tEMN −
2g12
3g

∂Aðϵ0MABN þ ϵ0NABMÞ ¼ 0; ð6:27Þ

which, remarkably, coincides with the traceless analog of
the Ampère equation of 3D fractons identified in Eq. (16)
of [7], where our (6.27) is obtained as an EoM from a 3D
Maxwell-like Hamiltonian defined ad hoc. Different from
our case, the 3D fracton theory in [7] is not traceless and, in
particular, EA

A ≠ 0. The aim of [7] is to study the so called
fracton-elasticity duality and, more specifically, the analog
of our (6.27) is used to investigate the effect of the creation
of defects as a consequence of the longitudinal motion of
dipoles, which in the traceless fracton theory is not present,
since dipoles only move along their transverse direction.
We keep considering the EoM (5.2) at m ¼ M; n ¼ N:

0 ¼ −2g12∂aφMNa þ ω5ðϵMabφ̃N
ab þ ϵNabφ̃M

abÞ

¼ −∂0ẼMN þ 3

2
ω5∂0ðϵ0BMα̃N

B þ ϵ0BNα̃M
B Þ

þ 2g12
3g̃

∂Aðϵ0MAB̃N þ ϵ0NAB̃MÞ

þ 3ω5∂Bðϵ0MBα̃N
0 þ ϵ0NBα̃M

0 Þ; ð6:28Þ

where we used the definitions (6.10) and (6.17). We have

∂tẼMN −
2g12
3g̃

∂A

	
ϵ0MAB̃N þ ϵ0NAB̃M



¼ J̃MN

5 ≡ ω5J̃
MN;

ð6:29Þ

which is analogous to the Ampère equation, in the presence
of a tensorial current, again related to the CS-like term in
(4.27), which behaves as a matter term

J̃MN≡3

�
1

2
∂0ðϵ0BMα̃N

Bþϵ0BNα̃M
B Þþ∂Bðϵ0MBα̃N

0þϵ0NBα̃M
0 Þ
�
:

ð6:30Þ

By computing ∂M∂N of (6.29), we also get

∂tρ̃5 ¼ ∂M∂NJ̃
MN
5 ; ð6:31Þ

where we used the Gauss-like equation (6.12).
Equation (6.31) represents a continuity equation typical
of scalar fracton theories [20,21] if ω5 ≠ 0,

∂tρ̃ − ∂M∂NJ̃
MN ¼ 0: ð6:32Þ

In J̃MNðXÞ (6.30), the contribution associated with the time
derivative coincides with the one defined by Pretko
[Eq. (118) of [35] ] as a “generalized Hall response.” As
in our case, it is derived from a CS-like term seen as a
boundary contribution originated by a fractonic θ-term in
the bulk. In particular, it comes from the dynamical part
of the action. From the action S3D (4.27) we can identify
both the current and the Ampère-like equation (6.29), to
which the current (6.30) contributes. Moreover, as already
mentioned for (6.27), this second equation (6.29) is
compatible with the traceful version identified in [7] in
the context of an analysis of 3D fracton-elasticity duality.
Since EM

M ¼ ẼM
M ¼ 0, by computing the trace of the

Ampère-like equations (6.27) and (6.29), we find

ϵ0MN
∂MBN ¼ 0; ð6:33Þ

ϵ0MN
∂MB̃N ¼ −

3

4

g̃
g12

J̃ M
5 M ¼ −

9

2

gω5

g12
ϵ0MN

∂Mα̃0N; ð6:34Þ

which consistently coincide with the EoM for m ¼ n ¼ 0
(6.1) and (6.5) previously found, i.e.

∂Aφ̃
00A ¼ 0; ∂Aφ

00A ¼ 3ω5

g12
ϵ0AB∂Aα̃

0
B; ð6:35Þ

due to (6.18). The EoM of the 3D boundary theory may be
interpreted as a traceless tensorial extension of the standard
3D Maxwell equations [88], as summarized in Table III

where ∇!⊥B≡ ϵ0ij∂JB, and the results are consistent with
what can be found in the fracton literature [7,20,21,35]. We
thus recovered, as EoM, the Gauss constraints related to the
mobility of the traceless fracton theory in 3D [20,21],
where the CS-like term contributes as a matter term through
ρ̃ðXÞ (6.8), also identified by Pretko in [35]. This CS-like
term plays the role of a matter contribution also in the
fractonic Ampère equation (6.29), as a current J̃MNðXÞ
(6.30). Here again the term is in accordance with the
literature, and in particular with what has been defined
as a generalized Hall response in [35]. The Ampère
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equations (6.27) and (6.29), to which the current J̃MNðXÞ
belongs, can be traced back to fracton theories as well, and,
more specifically, they have the same structure as the
fractonic Ampère equation used in [7] to study a duality
between the theory of fractons and the theory of elasticity.
However, the one considered in [7] refers to the traceful
theory of fractons, whose aim is to study defects as a
consequence of the longitudinal motion of dipoles, which
in the traceless fracton theory is not present since dipoles
only move along their transverse direction [20,21].
Therefore, it would be interesting to understand if a
fracton-elasticity duality also exists for the traceless model.
We also notice that in [87] a charge ρ̃ðxÞ, a current J̃ABðxÞ,
and a continuity equation as (6.32) are identified from a
CS-like theory with torsion TðxÞ, i.e. R d3xϵμνρeA

μTA
νρ. In

particular, the model coincides with the one proposed
in [35] for the noncovariant CS-like action for a specific
choice of vielbein eA

μðxÞ, and under the condition of “area-
preserving diffeomorphisms,” which seems to be strictly
related to fracton models, as also studied in [80]. This
intriguing role of torsion in 3D chiral fractons has recently
been extended to 4D fractons [39], where it has been shown
that a linearized topological term with torsion [89] gives
rise to the fracton θ-term [35].

VII. DISCRETE SYMMETRIES: PARITY
AND TIME REVERSAL

As extensively shown in the recent literature concerning
nonperturbative aspects of quantum field theories, discrete
symmetries play a central role in the identification of global
anomalies and anomaly inflow, which are related to
topological obstructions and impose strong constraints
on the renormalization group flows, massive boundary
states, quantum dualities, and the vacua of quantum field
theories [90–96]. Moreover, the anomaly inflow has also
been extended to certain noncovariant fracton models [51].
Thus, here we analyze some discrete symmetries, such as T
and P in the context of the induced theory derived in
the previous sections. In fact, we can further constrain the
induced 3D action by requiring a matching between the
discrete symmetries in the bulk and on the boundary. In
particular, under P and T the bulk fields transform as
follows:

T fA00; A0A; AABg ¼ fA00;−A0A; AABg;
T fÃ00; Ã0A; ÃABg ¼ fÃ00;−Ã0A; ÃABg; ð7:1Þ

PfA00; A0A; AABg ¼ fA00;−A0A; AABg;
PfÃ00; Ã0A; ÃABg ¼ f−Ã00; Ã0A;−ÃABg; ð7:2Þ

T A ¼ A; T Ã ¼ Ã; PA ¼ A; PÃ ¼ −Ã: ð7:3Þ

The bulk action (3.4) is invariant under T . Instead, due to
the presence of the boundary x3 ¼ 0, the action is no longer
P-invariant. We now consider the boundary term (3.9), and
distinguish between space and time indices

Sbd ¼
Z

d4xδðx3Þ½ξ0ðA00A00 þ 2A0AA0A þ AABAABÞ

þ ξ1ðÃ00A00 þ 2Ã0AA0A þ ÃABAABÞ
þ ξ2ϵ

0ABðA0i∂AAi
B − AAi∂0Ai

B þ AAi∂BAi
0Þ

þ ξ3A2 þ ξ4ÃA�: ð7:4Þ

We then observe that
(i) PSbd ¼ Sbd if ξ1 ¼ ξ4 ¼ 0;
(ii) T Sbd ¼ Sbd if ξ2 ¼ 0;
(iii) T PSbd ¼ Sbd if ξ1 ¼ ξ2 ¼ ξ4 ¼ 0.

Under these considerations, we can update Table II of
holographic contacts with the discrete symmetries allowed
on the boundary term Sbd. From Table IV we see that
imposing P on Sbd does not lead to a holographic contact,
since the ξ1 term, crucial for the existence of the induced
3D action, is not P-invariant. We also highlight a relation
between ω5 ↔ ξ2 ↔ T ; in fact, T symmetry is possible
only when ξ2 ¼ 0, which is allowed only in the second
holographic contact (5.22), i.e. when ω5 is set to zero as

TABLE III. Comparison between EoM and 3D Maxwell.

Maxwell Boundary of LG and fractons

Fields Electric, Magnetic E⃗; B EAB; BA; ẼAB; B̃A

Gauss
In vacuum ∇! · E⃗ ¼ 0 ∂A∂BEAB ¼ 0

With matter ∇! · E⃗ ¼ ρ ∂A∂BẼAB ¼ ρ̃5

Ampère
In vacuum

∂tE⃗ − ∇!⊥B ¼ 0 ∂tEMN − 2g12
3g ∂Aðϵ0MABN þ ϵ0NABMÞ ¼ 0

With matter
∂tE⃗ − ∇!⊥B ¼ J⃗ ∂tẼMN − 2g12

3g̃ ∂Aðϵ0MAB̃N þ ϵ0NAB̃MÞ ¼ J̃MN
5

TABLE IV. Holographic contacts, constraints, and possible
symmetries on Sbd (3.9).

BC-EoM matching

Discrete
symmetries

of Sbd

ξ1 ≠ 0, ω5 ≠ 0 ω5 ¼ 1
3
ðξ1 − g12Þ; ξ2 ¼ g12 No

ξ1 ≠ 0, ω5 ¼ 0 ω5 ¼ 0 T
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well [in the first case (5.9) the parameter ξ2 is constrained
by (5.6)]. Therefore the CS-like terms must be absent both
in Sbd (3.9) and in S3D (4.27), in order to have T symmetry
preserved on the boundary.

VIII. SUMMARY AND DISCUSSION

In this paper we studied the consequences of the
introduction of a flat boundary in the 4D covariant theory
of fractons and LG [39], with the aim of investigating
whether an induced 3D theory exists and, in that case,
which is its physical meaning. Tightly related is the
question of the existence of an algebraic structure on the
boundary. The theory we are dealing with is not topologi-
cal, and it is a common belief that only topological field
theories show nontrivial boundary physics. Moreover,
when a boundary is introduced in a QFT, the gauge
symmetry plays a fundamental role, since it is the breaking
of gauge invariance caused by the presence of the boundary
that gives rise to an algebraic structure on the boundary
which “holographically” induces a lower-dimensional
gauge theory. The fracton symmetry (2.1) is unusual,
due to the presence of a double derivative, and considering
a boundary on such a model a priori has a nontrivial
outcome. On the other hand, it would not be the first case of
a nontopological QFT exhibiting an induced theory on the
boundary. In fact, this also happens in the case of Maxwell
theory in 3D [46] and 4D [47], and we know that fracton
models share many similarities with the electromagnetic
theory [20,39]. Moreover, it has been shown that a fractonic
θ-term, which is a pure boundary term when θ is constant,
gives rise to a 3D CS-like term and a generalized Witten
effect [35], with important consequences in condensed
matter systems [2,53]. A noncovariant CS-like term was
studied in [54], where the higher-spin formalism is asso-
ciated with dipolar behaviors in the context of Hall systems.
An algebraic structure on the boundary does exist, indeed,
as a consequence of the breaking of the Ward identities, and
it can be interpreted as a generalization of the standard
Uð1Þ KM algebra, characterized by a double derivative, as
it appears, for instance, also in [53]. From the two broken
Ward identities, the boundary DoF of the induced theory
are identified as two symmetric traceless rank-2 tensors
αijðXÞ and α̃ijðXÞ. It is worthwhile to remark that on the
boundary some DoF disappear, since the boundary tensor
fields turn out to be traceless. This might be due to the
presence of a hidden symmetry, a guess that should be
further investigated. The procedure to recover the induced
theory leads to the action S3D (4.27), which is composed of
a term similar to a higher-rank Maxwell contribution,
written in terms of traceless rank-3 field strengths, which
mixes both fields αijðXÞ and α̃ijðXÞ, with a coefficient
depending on the bulk constants g1 and g2, and a CS-like
term for α̃ijðXÞ with a free coefficient. Concerning the
physical interpretation of our 3D induced theory S3D (4.27),
this can be identified with the “traceless scalar charge”

model of fractons [20,21,80]. In fact, the transformations of
the boundary fields, the canonical commutators, the trace-
less conjugate momenta, i.e. the electric fields, coincide
with what appears in the literature. This claim is confirmed
also by the EoM of the 3D induced theory, from which two
Gauss-like laws are derived, which imply the defining
property of the fracton quasiparticles, i.e. their limited
mobility. Thus, one of the main results of this paper is that a
nonstandard covariant 3D traceless fracton theory turns out
to be holographically induced from a 4D ordinary traceful
covariant fracton theory. This claim gets even stronger
confirmation from other components of the EoM, which
can be identified with the Ampère-like equations of
fractons [7], further stressing the relation of fracton models
with the Maxwell theory. Concerning this analogy, we
remark on a close resemblance of our 3D action S3D (4.27)
with Maxwell-Chern-Simons theory [97], of which it
appears to be a kind of spin-two generalization. A similar
observation can also be found in [85] in the context of self-
dual massive gravity, where an identical covariant CS term
appears, and whose relation with our 3D model is worth
being further investigated. However, different from the
standard Maxwell-Chern-Simons theory, in our paper all
the coefficients are dimensionless; hence no topological
mass can be identified. Therefore, to better analyze this
analogy, the study of the propagators would be helpful.
Notice also that the CS coefficient is free, and thus it can be
switched off. The choice of keeping the CS-like term or not
is relevant for the physical interpretation of the model: by
switching it off, the 3D action S3D (4.27) can be decoupled
into two Maxwell-like terms, and the boundary theory is
compatible with T -symmetry, which characterizes the
phenomenology involved. For instance, the physics on
the boundary of the topological BF models [44,45,69,70] is
identified with the effective description of the edge states of
topological insulators, where T is preserved both on the
bulk and on the boundary. On the other hand, keeping the
CS-like term, i.e. relaxing the T constraint, the EoM get a
matter contribution. In particular, the CS-like term plays the
role of fractonic charge ρ̃ðXÞ (6.8) and current J̃IJðXÞ (6.30)
in two of the Maxwell-like equations, in accordance
with [35]. Some final physical remarks are in order.
Different from the standard electromagnetic theory and
the 4D traceful fracton model, here the magneticlike
vectors BAðXÞ and B̃AðXÞ do not have zero divergence,
nor does a Bianchi identity exist for the traceless rank-3
field strengths φabcðXÞ; φ̃abcðXÞ, which suggests the pres-
ence of fractonic 3D vortices. Additionally, 3D fracton
models are known to be related to the elasticity theory of
topological defects through a duality [7]. For instance, the
traceful Ampère-like equation can be seen as describing the
motion of these defects. Under this respect, it would be
interesting to understand if and how our traceless boundary
theory can be related to topological defects. Finally, there
seems to be an interesting possible interpretation of the
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fractonic CS-like term as associated with torsion contribu-
tions, as in [87], which also would be worth further
analyzing.
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APPENDIX A: COMMUTATORS

1. The bulk: Generalized Kaç-Moody algebra

Considering the first Ward identity (3.23)

Z
dx3θðx3Þ∂i∂jJij ¼ 2ðg2 − g1Þ∂i∂jÃij − 2g2∂i∂iÃjx3¼0;

ðA1Þ

we compute δ
δJmnðx0Þ ðA1Þ:

∂m∂nδ
ð3ÞðX − X0Þ ¼ 2ðg2 − g1Þ∂i∂j

δ2Zc½J; J̃�
δJmnðX0ÞJ̃ijðXÞ

− 2g2ηij∂a∂a
δ2Zc½J; J̃�

δJmnðX0ÞJ̃ijðXÞ

¼ 2½ðg2 − g1Þδki δlj − g2ηklηij�∂k∂l
δ2Zc½J; J̃�

δJmnðX0ÞJ̃ijðXÞ
¼ 2i½ðg2 − g1Þδki δlj − g2ηklηij�∂k∂lhTðAmnðX0ÞÃijðXÞÞi
¼ 2i½ðg2 − g1Þδki δlj − g2ηklηij�hTðAmnðX0Þ∂k∂lÃijÞi
þ 2i½ðg2 − g1Þδki δlj − g2ηklηij�f½∂lÃijðXÞ; AmnðX0Þ�δ0kδðx0 − x00Þ
þ ∂kð½ÃijðXÞ; AmnðX0Þ�δ0l δðx0 − x00ÞÞg

¼ 2i½ðg2 − g1Þð∂jÃ0j þ ∂AÃ
0AÞ − g2∂0Ã; A0

mn�δðx0 − x00Þ
þ 2i∂0f½ðg2 − g1ÞÃ00 þ g2Ã; A0

mn�δðx0 − x00Þg; ðA2Þ

where we used the conserved current equation (3.26).
Integrating over dx0, we finally get to the following equal
time commutators:

½ΔÃðXÞ; A0nðX0Þ�x0¼x00 ¼ 0; ðA3Þ

½ΔÃðXÞ; AMNðX0Þ�x0¼x00 ¼ i∂M∂Nfδðx1 − x01Þδðx2 − x02Þg;
ðA4Þ

where we defined

ΔÃ≡ 2ðg1 − g2Þð∂jÃ0j þ ∂AÃ
0AÞ þ 2g2∂0Ã: ðA5Þ

In the same way, we now compute δ
δJ̃mnðx0Þ ðA1Þ:

0 ¼ 2ðg2 − g1Þ∂i∂j
δ2Zc½J; J̃�

δJ̃mnðX0ÞJ̃ijðXÞ

− 2g2ηij∂a∂a
δ2Zc½J; J̃�

δJ̃mnðX0ÞJ̃ijðXÞ
¼ 2i½ðg2 − g1Þð∂jÃ0j þ ∂AÃ

0AÞ − g2∂0Ã; Ã
0
mn�δðx0 − x00Þ

þ 2i∂0f½ðg2 − g1ÞÃ00 þ g2Ã; Ã
0
mn�δðx0 − x00Þg; ðA6Þ

where we used again the conserved current equation (3.26).
By integrating over time and using the definition (A5), we
find the following equal time commutator:

½ΔÃðXÞ; ÃmnðX0Þ�x0¼x00 ¼ 0: ðA7Þ

Taking the second broken Ward identity (3.25)

∂i∂jJ̃ijjx3¼0 ¼ −2ðg2 − g1Þ∂i∂jAij þ 2g2∂i∂iAjx3¼0; ðA8Þ

we compute δ
δJmnðx0Þ ðA8Þ:

0¼−2ðg2− g1Þ∂i∂j
δ2Zc½J; J̃�

δJmnðX0ÞJijðXÞ

þ 2g2ηij∂a∂a
δ2Zc½J; J̃�

δJmnðX0ÞJijðXÞ
¼−2i½ðg2− g1Þð∂jA0jþ ∂AA0AÞ− g2∂0A;A0

mn�δðx0 − x00Þ
þ−2i∂0f½ðg2 − g1ÞA00þ g2A;A0

mn�δðx0 − x00Þg; ðA9Þ

where we used (3.35). Integrating over dx0 we find the
equal time commutator

½ΔAðXÞ; AmnðX0Þ�x0¼x00 ¼ 0; ðA10Þ
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where ΔAðXÞ is defined as (A5)

ΔA≡ 2ðg1 − g2Þð∂jA0j þ ∂AA0AÞ þ 2g2∂0A: ðA11Þ

We finally compute δ
δJ̃mnðx0Þ ðA8Þ:

∂m∂nδ
ð3ÞðX − X0Þ ¼ −2ðg2 − g1Þ∂i∂j

δ2Zc½J; J̃�
δJ̃mnðX0ÞJijðXÞ

þ 2g2ηij∂a∂a
δ2Zc½J; J̃�

δJ̃mnðX0ÞJijðXÞ
¼ −2i½ðg2 − g1Þð∂jA0j þ ∂AA0AÞ − g2∂0A; Ã

0
mn�δðx0 − x00Þ

� 2i∂0f½ðg2 − g1ÞA00 þ g2A; Ã
0
mn�δðx0 − x00Þg; ðA12Þ

where we used (3.35) and from which, integrating over dx0,
we find

½ΔAðXÞ; Ã0nðX0Þ�x0¼x00 ¼ 0; ðA13Þ

½−ΔAðXÞ; ÃMNðX0Þ�x0¼x00 ¼ i∂M∂Nfδðx1 − x01Þδðx2 − x02Þg:
ðA14Þ

2. The boundary: Canonical commutators

We take the commutator (3.37) and its trace, in the
following equal time combination:

�
ΔÃ; A0

DF −
1

2
ηDFη

MNA0
MN

�

¼ i
2
ðδMD δNF þ δNDδ

M
F − ηMNηDFÞ∂M∂Nδð2ÞðX − X0Þ: ðA15Þ

In terms of the solutions on the boundary (4.10) we have

ADFðXÞjð3.36Þ ¼ ϵDab∂
aαbFðXÞ þ ϵFab∂

aαbDðXÞ; ðA16Þ

ηMNAMNjð3.36Þ ¼ 2ϵ0BC∂
Bα0C ¼ A00ðXÞjð3.36Þ; ðA17Þ

ΔÃjð3.32Þ ¼ ∂M∂N½g12ðϵ0MBα̃B
N þ ϵ0NBα̃B

MÞ�; ðA18Þ

where g12 ≡ 2ðg1 − g2Þ. As a consequence of the trace-
lessness of AijðXÞ, we can use (A17) and write the
commutator (A3) for n ¼ 0 as follows:

½ΔÃðXÞjð3.32Þ; A00ðX0Þjð3.36Þ�
¼ ½ΔÃðXÞjð3.32Þ; ηMNAMNðX0Þjð3.36Þ� ¼ 0; ðA19Þ

and then, using (A16), (A18), and (A19), the commutator
(A15) becomes

i
2
∂M∂Nf� � �gMN

DF ¼ ½ΔÃðXÞjð3.32Þ; ADFðX0Þjð3.36Þ�
¼ ∂M∂N½g12ðϵ0MBα̃B

NðXÞ þ ϵ0NBα̃B
MðXÞÞ;

ϵDab∂
aαbFðX0Þ þ ϵFab∂

aαbDðX0Þ�; ðA20Þ

from which we can identify the following canonical
commutation relation:

½QMN; P0
DF� ¼ i

�
δMD δ

N
F þ δNDδ

M
F

2
−
1

2
ηMNηDF

�
δð2ÞðX − X0Þ;

ðA21Þ

with

QMN ¼ QNm ≡ ϵ0MBα̃B
N þ ϵ0NBα̃B

M; ðA22Þ

PDF ¼ PFD ≡ g12ðϵDab∂aαbF þ ϵFab∂
aαbDÞ; ðA23Þ

and QM
M ¼ PM

M ¼ 0. We can go further, multiplying both
right- and left-hand sides of (A21) by ϵ0MAϵ

0FK ¼
δKMδ

F
A − δFMδ

K
A,

½ϵ0MAQMN;ϵ0FKP0
DF�

¼ iðδKMδFA−δFMδ
K
AÞ
�
δMD δ

N
F þδNDδ

M
F

2
−
1

2
ηMNηDF

�
δð2ÞðX−X0Þ;

ðA24Þ

for which

ϵ0MAQMN ¼ ϵ0MAðϵ0MBα̃B
N þ ϵ0NBα̃B

MÞ
¼ −2α̃A

N þ δNAα̃
M
M; ðA25Þ

which is the traceless spatial part of α̃mnðXÞ. Then
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ϵ0FKPDF ¼ g12½ðδ0aδKb − δ0bδ
K
aÞ∂aαbD þ ϵ0FKϵ0DA∂

Aα0F

− ϵ0FKϵ0DB∂
0αB

F�
¼ g12½2ð∂0αK

D − ∂
Kα0DÞ þ δKDð∂Aα0A − ∂

0αB
BÞ�:
ðA26Þ

Finally, at the right-hand side we have

ðδKMδFA − δFMδ
K
AÞ
�
δMD δ

N
F þ δNDδ

M
F

2
−
1

2
ηMNηDF

�

¼ 1

2
ðδNAδKD − δNDδ

K
A − ηADη

KNÞ: ðA27Þ

By properly raising and lowering the indices with ηDLηNB,
we finally get

g12½2α̃AB−ηABα̃
M
M;2ð∂0αKL−∂

Kα0LÞ0þηKLð∂Fα0F−∂
0αF

FÞ0�
¼ i
2
ðδKAδLBþδLAδ

K
B−ηKLηABÞδð2ÞðX−X0Þ; ðA28Þ

where the primed quantities depend on X0. At the right-
hand side we have the index symmetry A ↔ B and C ↔ D,
while at the left-hand side the symmetry is only for A ↔ B.
We thus symmetrize the result as follows:

1

2
ð½…AB;…CD� þ ½…AB;…DC�Þ

¼ i
2
ðδCAδDB þ δDAδ

C
B − ηCDηABÞδð2ÞðX − X0Þ; ðA29Þ

obtaining

�
α̃AB −

1

2
ηABα̃

M
M;−g12ð2f0CD0 − ηCDf0aa0Þ

�

¼ i
2
ðδCAδDB þ δDAδ

C
B − ηCDηABÞδð2ÞðX − X0Þ; ðA30Þ

where fabcðXÞ is analogous to FμνρðxÞ (2.5), but referred to
αabðXÞ, i.e.

fabc ≡ ∂aαbc þ ∂bαac − 2∂cαab: ðA31Þ
From (A30) we can identify the new canonical variables as

q̃AB ≡ α̃AB −
1

2
ηABα̃

M
M; ðA32Þ

p̃CD ≡ −2g12
�
fCD0 −

1

2
ηCDfaa0

�

¼ −2g12½ð∂Cα0D þ ∂
Dα0C − 2∂0αCDÞ − ηCD∂aα

0a�:
ðA33Þ

Not surprisingly, starting from the commutator (3.38), and
proceeding as we just did, we land on an analogous result
(up to a sign) with α ↔ α̃ switched; i.e. we get

�
αAB −

1

2
ηABα

M
M; g12ð2f̃0CD0 − ηCDf̃0aa0Þ

�

¼ i
2
ðδCAδDB þ δDAδ

C
B − ηCDηABÞδð2ÞðX − X0Þ; ðA34Þ

where f̃abcðXÞ refers to α̃abðXÞ,

f̃abc ≡ ∂aα̃bc þ ∂bα̃ac − 2∂cα̃ab: ðA35Þ

From (A34) we can identify another set of canonical
variables

qAB ≡ αAB −
1

2
ηABα

M
M; ðA36Þ

pCD≡2g12

�
f̃CD0−

1

2
ηCDf̃a

a0

�

¼2g12½ð∂Cα̃0Dþ∂
Dα̃0C−2∂0α̃CDÞ−ηCD∂aα̃

0a�: ðA37Þ

We observe that the canonical variables q̃ABðXÞ and
qABðXÞ in (A30) and (A34) depend on the traceless spatial
part of the fields α̃ijðXÞ and αijðXÞ.

APPENDIX B: THE MOST GENERAL ACTION

The most general action of the 3D boundary theory must
be compatible with

(i) power-counting ½α� ¼ 0; ½α̃� ¼ 1;
(ii) symmetry δS ¼ δ̃S ¼ 0, where δ and δ̃ are defined in

(4.8) and (4.9);
(iii) canonical variables, i.e. ∂Lkin

∂ _q ¼ p, identified in (4.15)
and (4.16).

From the first two requests we have that the most general
action must be

S3D ¼
Z

d3X

�
ω1

�
∂cαab∂

cαab −
3

2
∂cαab∂

aαbc
�
þ ω2

�
∂cαab∂

cα̃ab −
3

2
∂cαab∂

aα̃bc
�

− 3ω3α
d
aϵ

abc
∂bαcd − 3ω4α̃

d
aϵ

abc
∂bαcd − 3ω5α̃

d
aϵ

abc
∂bα̃cd

�

¼
Z

d3X

�
ω1

6
φabcφ

abc þ ω2

6
φabcφ̃

abc þ ω3α
d
aϵ

abcφdbc þ ω4α
d
aϵ

abcφ̃dbc þ ω5; α̃daϵabcφ̃dbc

�
ðB1Þ
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where ωi are constants, ½ω2� ¼ ½ω5� ¼ 0; ½ω1� ¼ ½ω4� ¼ 1;
½ω3� ¼ 2, and we defined the tensor

φabc ≡ fabc þ
1

4
ð−2ηabfddc þ ηbcfdda þ ηacfddbÞ

¼ −2∂cαab þ ∂aαbc þ ∂bαac − ηab∂
dαdc

þ 1

2
ηbc∂

dαda þ
1

2
ηac∂

dαdb; ðB2Þ

and its analog φ̃abcðXÞ with respect to α̃abðXÞ, with the
following properties:

φabc ¼ φbac; φ̃abc ¼ φ̃bac; ðB3Þ

φabc þ φcab þ φbca ¼ 0 ¼ φ̃abc þ φ̃cab þ φ̃bca; ðB4Þ

δφabc ¼ δ̃φ̃abc ¼ 0; ðB5Þ

ηabφabc ¼ ηbcφabc ¼ ηabφ̃abc ¼ ηbcφ̃abc ¼ 0: ðB6Þ

Notice that

φ̃MN0 ¼ f̃MN0 −
1

2
ηMNf̃a

a0 ¼ 1

2g12
pMN; ðB7Þ

φMN0 ¼ fMN0 −
1

2
ηMNfaa0 ¼ −

1

2g12
p̃MN: ðB8Þ

We rewrite the fields αabðXÞ and α̃abðXÞ according to the
representation of the rotation group, as follows:

α00 ¼ −4ψ ¼ αA
A; ðB9Þ

α0A ¼ vA; ðB10Þ

αAB ¼ 2sAB − 2ηABψ ;

sAB ≡ 1

2

�
αAB −

1

2
ηABα

D
D

�
¼ 1

2
qAB; ðB11Þ

and

α̃00 ¼ −4ψ̃ ¼ α̃A
A; ðB12Þ

α̃0A ¼ ṽA; ðB13Þ

α̃AB ¼ 2s̃AB − 2ηABψ̃ ;

s̃AB ≡ 1

2

�
α̃AB −

1

2
ηABα̃

D
D

�
¼ 1

2
q̃AB; ðB14Þ

in terms of which the commutators (4.15) and (4.16)
become

½2sAB;2g12φ̃0CD0� ¼ i
2
ðδCAδDB þδDAδ

C
B−ηABη

CDÞδð2ÞðX−X0Þ;
ðB15Þ

½2s̃AB;−2g12φ0CD0� ¼ i
2
ðδCAδDB þδDAδ

C
B−ηABη

CDÞδð2ÞðX−X0Þ:
ðB16Þ

Compatibility of the action S3D (B1) with the first
commutator (B15), i.e.

∂L3D

∂ _qAB
¼ pAB; ðB17Þ

requires

ω1 ¼ ω3 ¼ ω4 ¼ 0; ðB18Þ

and ω5 is left free. Finally, distinguishing between time and
space indices in the term of (B1) which has ω2 as a
coefficient, we have

φabcφ̃
abc ¼ 3

2
φ00Aφ̃

00A þ 2φ0ABφ̃
0AB þ φAB0φ̃

AB0

þ φABCφ̃
ABC; ðB19Þ

where we observed that φA00 ¼ − 1
2
φ00A (and the same for

φ̃A00). Additionally, by using (B9), (B10), and (B11), we
have

φ00A ¼ 6∂Aψ þ ∂0vA þ ∂
BqAB; ðB20Þ

φAB0 ¼ −2∂0qAB þ ∂AvB þ ∂BvA − ηAB∂
DvD; ðB21Þ

φ0AB ¼ −2∂BvA þ ∂AvB þ ∂0qAB þ 1

2
ηAB∂

DvD; ðB22Þ

φABC ¼ −2∂CqAB þ ∂BqAC þ ∂AqBC þ 6ηAB∂Cψ

− 3ηBC∂Aψ − 3ηAC∂Bψ

− ∂
0

�
ηABvC −

1

2
ηACvB −

1

2
ηBCvA

�

− ∂
D

�
ηABqDC −

1

2
ηACqDB −

1

2
ηBCqDA

�
: ðB23Þ

The only terms containing _q contributions are related to
φAB0 and φ0AB; i.e. in the 3D Lagrangian they only appear
in ω2

6
ð2φ0ABφ̃

0AB þ φAB0φ̃
AB0Þ. Keeping in mind this,

consistently with its definition, for a traceless tensor in d
dimensions we have

∂sμν
∂sαβ

¼ δαμδ
β
ν þ δανδ

β
μ

2
−
1

d
ηαβημν; ðB24Þ
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and the compatibility condition (B17) implies

2g12φ̃AB0 ¼ ∂L3D

∂ _qAB

¼ ω2

6

�
2
∂φ0MN

∂ _qAB
φ̃0MN þ ∂φMN0

∂ _qAB
φ̃MN0

�

¼ ω2

6
ð−2φ̃AB0 þ φ̃0AB þ φ̃0BAÞ

¼ −
ω2

2
φ̃AB0; ðB25Þ

due to the cyclicity of φ̃abcðXÞ (B4). We thus find

ω2 ¼ −4g12; ðB26Þ

from which the 3D action (B1) becomes

S3D ¼
Z

d3X
h
−4g12

	
∂cαab∂

cα̃ab −
3

2
∂cαab∂

aα̃bc



þ 3ω5α̃
d
aϵ

abc
∂bα̃cd

i

¼
Z

d3X
h
−g12

	2
3
fabcf̃

abc −
1

2
faabf̃

c
cb




þ ω5α̃
d
aϵ

abcf̃dbc
i

¼
Z

d3X
	
−
2

3
g12φabcφ̃

abc þ ω5α̃
d
aϵ

abcφ̃dbc



: ðB27Þ

The second commutator (B16) yields the same result, with
α ↔ α̃. The two choices are alternative and equivalent; in
fact, by choosing the first (B15) we have q ∼ α, p ∼ α̃, while
the second (B16) corresponds to q̃ ∼ α̃, p̃ ∼ α. Something
similar also happens in the Maxwell theory [47].
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