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In this paper we study the consequences of the introduction of a flat boundary on a four-dimensional
(4D) covariant rank-2 gauge theory described by a linear combination of linearized gravity and covariant
fracton theory. We show that this theory gives rise to a Maxwell-Chern-Simons-like theory of two rank-2
traceless symmetric tensor fields. This induced three-dimensional (3D) theory can be physically traced
back to the traceless scalar charge theory of fractons, where the Chern-Simons-like term plays the role of a
matter contribution. By further imposing time reversal invariance on the boundary, the Chern-Simons-like
term disappears. Importantly, on the boundary of our 4D gauge theory we find a generalized U(1)
Kag¢-Moody algebra and the induced 3D theory is characterized by the conservation of the dipole moment.
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I. INTRODUCTION

Fracton phases of matter represent a novel paradigm in
both condensed matter theory and high energy phys-
ics [1,2]. Although they have originally been discovered
in particular kinds of lattice models [3—6], fractons have
been unveiled in many different systems and frameworks,
ranging from elasticity [7-10], hydrodynamics [11-15],
and quantum scars [16-18], to quantum field theories
(QFTs) [19-29], curved space [30-33], and hologra-
phy [34]. These phases are characterized by constrained
dynamics, for which quasiparticle excitations are immobile
or move in subdimensional spaces. This exotic behavior
can be encoded into conservation of a multipole moment,
the simplest example being the dipole. Indeed, typically
fracton models are described in terms of a noncovariant
higher-rank tensor theory which shares many similarities
with the Maxwell theory [20,21,35]. They are written in
terms of a rank-2 symmetric tensor field A;;(x), whose
conjugate momentum is referred to as an “electriclike”
tensor field EY(x), which plays a key role for the
immobility constraint of fractons, which is recovered from
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a generalized Gauss law. For instance, in the so-called
“scalar charge theory of fractons” [20,21] this law appears
as 0;0;E" = p, which implies dipole (x'p) conservation,
which, in turn, implies that single charges cannot move in
isolation. Other possibilities are also allowed: for instance,
one can consider a “vector charge” model, where the nature
of the charge changes, becoming a vector p’(x), while the
“electric field” is always a symmetric rank-2 tensor. In that
case the constraint involves one derivative instead of two
0;E" = p' and the conservation concerns linear and angu-
lar momenta, which implies that the charges of the system
can only move along a line, thus being one-dimensional
particles (also called “lineons”). Mobility can be further
restricted in both scalar and vector charge models by
adding tracelessness E! =0 as an additional constraint.
In these cases the models are referred to as “traceless
(scalar/vector) fracton models.” In the scalar case the
elementary charges still can be identified as fractons, since
their motion is already maximally constrained by means of
the generalized Gauss law; however, now tracelessness also
implies the conservation of a component of the quadrupole
momentum, due to which the dipoles of the system are
bound to move only on a plane transverse to their direction,
thus becoming two-dimensional particles (also called
“planons”). On the contrary, in the vector charge model
the quasiparticles can move in one dimension, and the
tracelessness constraint on the electriclike field completely
restricts their motion making them proper fractons. These
novel gauge theories are intrinsically nonrelativistic, and
many ingredients have been introduced by hand in order to
implement the main characteristics of fractons, i.e. their
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restricted mobility. Examples of these inputs are, for
instance, the Maxwell-like Hamiltonian and the Gauss
law, introduced as an external constraint, and not derived
from an action principle. As a consequence, terms appear
with inhomogeneous numbers of derivatives, as remarked
in [36], and all these ad hoc introductions are justified
a posteriori, rather than deduced from first principles of
QFT. Despite their intrinsic noncovariance, these models
share remarkable similarities with both Maxwell theory
(Gauss law, Hamiltonian, electriclike field,...) [20] and
linearized gravity (LG) (symmetric rank-2 field, gauge
symmetry,...) [37], which, however, are fully covariant
theories. Motivated by these similarities, in [38—40] a
covariant four-dimensional (4D) fracton gauge theory
has been built, taking as unique ingredients locality,
power counting, and the covariant fracton symmetry
0A,, = 0,0,A. This made immediately apparent the cor-
respondence with LG, and all the analogies with the
Maxwell theory naturally came out. Embedding the ordi-
nary noncovariant theory of fractons in a larger covariant
theory led to recovering all the known results concerning
fractons [20,21,35]. Therefore, the coherent theoretical
framework of [39] allows one to apply standard QFT
techniques to fractons. As a nontrivial and physically
relevant example, in this paper we asked the question of
which might be the consequences of the introduction of a
flat spatial boundary in the 4D covariant fracton model [39].
In fact, the introduction of boundaries in QFT is known to
give rise to rich physical results. The most notable
examples come from topological field theories [41], which
represent the effective field theories of the bulk states of
topological phases of matter. In fact, when a boundary is
present, Chern-Simons (CS) theories in three-dimensional
(3D), O-terms in 4D, and BF models in any spacetime
dimensions give rise to the theoretical descriptions of the
edge states of quantum Hall fluids and topological insula-
tors, respectively [42-45]. However, also in nontopological
field theories the presence of a boundary has nontrivial
consequences. For instance, on the boundary of the
Maxwell theory in 3D and 4D [46,47] a Ka¢-Moody
(KM) algebra is observed, and a nontrivial theory is
induced on the lower-dimensional space. Similarly, the
topological #-term [48], which is a boundary term, gen-
erates the well-known Witten effect [49], relevant, for
instance, in topological insulators [50]. For what concerns
fractons, boundary contributions have been introduced
mainly as noncovariant CS-like terms coming from a
generalized topological-like #-term in the bulk [35,51,52],
inspired by the standard electromagnetic case. For instance,
in [35], as for the Maxwell case, a Witten-like effect is
observed, for which, due to the presence of the fractonic
O-term, the “electric” charge density at the right-hand side
of the Gauss law acquires an additional “magnetic” con-
tribution. Furthermore on the 3D boundary of [35] fracto-
niclike excitations seem to appear, in agreement with our

results, as we shall see. Moreover, in [2,53] it has been
speculated that certain kinds of higher-order topological
phases share some properties with fracton quasiparticles.
Another interesting example can be found in [54], where a
similar noncovariant CS-like term, built as a higher-spin
generalization of the standard topological one, gives some
insights into the context of dipolar behaviors of quantum
Hall systems. Therefore, boundary effects might be impor-
tant also in the framework of fracton theory, and the aim of
this paper is to study the consequences of the presence of a
flat boundary in the covariant theory of fractons, following
the QFT approach pioneered by Symanzik in [55].

The paper is organized as follows: in Sec. II we briefly
review the 4D covariant fracton theory of [39], where the
most general action invariant under the covariant fracton
symmetry 6A,, = 9,0,/ is identified as the combination of
two independent terms: LG and pure fractons. In Sec. III
the boundary is introduced in the action together with the
gauge fixing and the most general boundary term. From the
total action the equations of motion (EoM) and the most
general boundary conditions (BC) are computed. Because
of the presence of the boundary, the Ward identities of the
theory are broken, and this allows one to identify the
boundary degrees of freedom (DoF), represented by two
traceless symmetric rank-2 tensor fields. Moreover, the
broken Ward identities give rise to an algebraic structure,
which can be identified as a generalized KM algebra,
which, in Sec. IV, we interpret as canonical commutators of
a 3D action. In Sec. V the bulk/boundary correspondence is
obtained by requiring that the EoM of the induced 3D
action are compatible with the boundary conditions of the
4D bulk theory. This can be achieved by suitably tuning
the parameters appearing in the boundary conditions and in
the 3D action. To physically interpret the 3D theory we
found, in Sec. VI we study its EoM, which appear to be
Gauss and Ampere-like laws for the boundary tensor fields,
exactly as in the “ordinary” fracton theory. In particular, our
boundary theory can be identified with a traceless fracton
model. In Sec. VII we analyze the effect of taking into
account discrete symmetries such as parity (P) and time
reversal (7). Finally in Sec. VIII we discuss our results.

II. THE MODEL WITHOUT BOUNDARY:
FRACTONS AND LINEARIZED GRAVITY

Following [38—40], we start by considering the covariant
extension of the fracton symmetry in the scalar charge
theory

(SfractA/w = aﬂavA’ (21)
which identifies the most general 4D invariant action
Sinv = 91Stract + 925165 (22)

where
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1
Sfract = 8/ d4x FMDpFMDP’ (23)

1 1
SLG:/d4X <ZF”/4UFpp _EFM pFﬂDp)’ (24)

91> 9o are dimensionless constants, and F,,,(x) is the
covariant fracton field strength, defined as [39,56]

Fu.,=F,,=0A,+0dA, —20,A

p v

(2.5)

vpp

which has the following properties, compared with those of
the ordinary Maxwell field strength. The covariant sym-
metry (2.1) makes apparent the relation between fracton
theories and gravity, as already guessed in [37,57,58]. In
fact, S in (2.2), obtained at g; = 0, is the action of LG
written in terms of F,,,(x) [39], which is defined by the
more general infinitesimal diffeomorphism symmetry

adiffA;w = aﬂ‘fu + aufw (26)
of which (2.1) is a particular case, sometimes called
longitudinal diffeomorphisms [59]. The fracton action
Stact (2.3), instead, corresponds to the limit g, = 0, which
has been shown in [39] to yield all the results associated
with the scalar charge theory of fractons [1,2,20,21,35].
From the action S;,, (2.2) we get the EoM

55,
saep = 919 Fap+ 92 [naﬁauF M

1
- 5 (aaF”ﬂﬂ + 6ﬁF/‘W) - 0”Fa/jﬂ} - O, (27)

and the conjugate momentum

0£inv
a( atAaﬂ )

0% (gy, 95) =
= —glFaﬂO p) [W“ﬂF/m
1
_ z (,,IOaFIIAﬁ + ;,]OﬂFlia) _ Faﬁ():| , (28)

which in fracton theories plays a relevant role, since its
spatial components are identified with the “tensor electric
field” EY(x) [1,2,20,21,35]. The components of I1%(x) are

% — 0, (2.9)
. . 1 iy
Hlo — _g]Fl()O _ Eng../’, (210)
YV = =g, F'0 + g,(F7° = F %), (2.11)

with i, j={1,2,3}. Notice that for a particular combination
of g, and ¢, the trace of 1% vanishes

N1 =11, = —(g1 +202)F,° =0 if g; +2g, = 0.
(2.12)

This corresponds to the fact that, as already remarked

in [38], in this case the action Sj,, (2.2) does not depend on

the trace of the tensor field A, (x), thus further lowering the
number of DoF [40].

III. THE MODEL WITH BOUNDARY
A. The action

In view of introducing a planar boundary x* = 0, we use
the following conventions concerning indices:

@By, ... = {0,1,2,3}, (3.1)
ab.c,...={0,1,2}, (3.2)
A,B,C,... ={1,2}. (3.3)

Moreover, x* = (x°, x!,x*, x*) and X" = (x°, x!,x?) are

the bulk and boundary coordinates, respectively. We now
introduce the boundary by means of a Heaviside step
function in the action [60]

Shulk = /d4xe(x3){%prFmp

1 1
+ % <ZF””DF,,’” - EFW FW,,> } (3.4)

Notice that in what follows we cannot just set g; = 0 and
restrict our results to LG alone, because S;g (2.4) is
uniquely defined by the infinitesimal diffeomorphism
transformation (2.6), and not by its subset (2.1). The
transformations (2.6) and (2.1) differ in two aspects: the
first, (2.6), depends on a vector gauge parameter, while (2.1)
has a scalar gauge parameter; hence, the former is more
restrictive. Second, (2.6) and (2.1) depend on one and two
derivatives, respectively. This results in a mismatch in the
mass dimensions. In fact, since from the action (3.4) we
have [A,,] = 1, due to the double derivatives in (2.1) it must
be [A] = —1, which is an exotic dimension assignment for
the scalar gauge parameter. Moreover, on the x*-boundary,
the field A, (x) and its 0s-derivative must be treated as
independent fields [46,47,61,62]. Hence, on the boundary
we define

A/w = a3A;w|x3=0’ (35)
with [A ] = 2. We add to the invariant action S;,, (2.2) the
gauge-fixing term

5, = / dx0(3)bA . (3.6)
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where b¥(x) is a Nakanishi-Lautrup Lagrange multi-
plier [63,64] implementing the axial gauge condition

Ay =0. (3.7)

u3

As a consequence of the fact that the field and its
03-derivative on the boundary are independent quantities,
together with the usual external field J%°(x) coupled to
Agp(x), it is necessary to couple a source J%?(x) also to the
03-derivative of A,,(x) on the boundary. The external
source term is then

S, = / d*x[0(x*)J?P A, + 8(x°)TPA,).  (3.8)

The presence of a boundary in a QFT naturally raises the
question of which BC should be assigned to the quantum
fields and/or their derivatives. A possible way is to impose
them by hand, but one should worry about the dependence
of the results on the particular choice. This arbitrariness
affecting QFTs with a boundary has been elegantly solved
by Symanzik in his pioneering paper [55], where a scalar
QFT with a boundary was considered. According to
Symanzik’s approach, the BC are not imposed by hand,
but are determined by the theory itself. This is achieved by
adding a boundary term to the action, as the most general
one, satisfying the requests of locality, power counting, and
3D Lorentz invariance. The BC are then determined from
the EoM, modified by the boundary term

Spa = /d4x5(x3)[§0AabA“b + £1A A

+ 56™A 10 AL + EAT + E,AA], (3.9)
where, due to the gauge condition (3.7),

A=A, =n"Au; A=nA, =n"A,  (3.10)

and &; are constant parameters, whose mass dimensions are

Gol=1&l=1 [E]l=[&]=1[]=0 (3.11)

Notice that the general QFT requirements which constrain
S,q imply the presence of the CS-like &,-term, which can be
traced back to the covariant fractonic #-term [39]. In fact,
this latter is

Sy = / d4x«9(x3)€””P"0ﬂAMapA§, (3.12)
which, integrating by parts, reduces to
/d3Xe“h"AaiabAﬁ, (3.13)

which, on the gauge condition (3.7), coincides with the &,-
term in (3.9). The total action is then
Siot = Spuik + Sgr + 87+ Spa- (3.14)

B. Equations of motion and boundary conditions
The EoM for A,4(x) and A,(x) are

(3.15)

gjt:; = 9(x3){(91 - 32)0,FP" + g, [naﬂaﬂF/ﬂ - % (0°F M + aﬂFﬂW)] + 52T + % (b8, + bﬂﬁg‘)}
+6(x%) { (91 = 92) F*P + g5 [ﬂ“”Fﬂ’ﬁ - % (™ F M+ 11“&”“)]
+ 8302604 + &A™ + £ (e0,AL + €P10,AY) + 285m P A + éw“bil]} =0
and
535;; =0(x*) { (92=90)FP =g, [ﬂ“ﬂFﬂ"S —%(11“3F,,”’3 +11ﬂ3F,/‘“)] } +0(r) 3T+ E AP + Em™AY =0 (3.16)

The most general BC are obtained by applying lim,_, [¢ dx® to the EoM. From (3.15) we get

1
{(91 - 92)Faﬂ3 + g2 {ﬂaﬂF;/B ) (’7a3Fu”ﬂ + ’7ﬂ3FuW)}

+ 82, [280AT + ELAD + & (e 9,AL + €V1V0,A%) + 26 A + fwa”iﬂ} =0.

(3.17)

=0
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We observe that
(1) a = p =3 is trivially realized;

(i) a=3, f=0b:
gz(abA - aaAab))H:o = ngﬂ”b|x3zo =0; (3-18)
(i) a=a, p=b:

2
+ & (€Y 0,AY + €710,A9) + 2£3n°P A

+2 (5—4 - gz> n“bA] = 0.
2 =0

Going on-shell, i.e. at vanishing external sources J(x) = 0,
taking the lim,_ [¢ dx® of the EoM (3.16), we get

[ZfoA“h +2 (92 -g1+ é) Adb

(3.19)

15 (E1 A + E P A) oy = 0, (3.20)
and again we observe that
(1) a =3, p free, is trivially realized;
(i) a=a, f=0:
(E1AY + En™A) 5y =0. (3.21)

C. Ward identities and boundary degrees of freedom

The EoM (3.15) yields the following integrated Ward
identity:

oS,
[ v, = [ a0t (o -0
ab

+ 020,005 F,/° +0,0,J} =0,  (3.22)

where we used the BC (3.19) and the cyclic property of
F,,,(x) in Table 1. Integrating by parts we get

/ dx30(x*)0;0,J"7 = 2(g, — g1)0;0;AY — 2g,0,0'A| 5.
(3.23)

Analogously, from the EoM (3.16) we find

TABLEI Properties of the fracton and Maxwell field strengths.
Fractons Maxwell
Invariance OtractFup = 0 OgaugeFyw = 0
Cyclicity Fup+Fopu+Fp, =0 Fuo+F,=0
Bianchi €aupd FP =0 €upe® FP7 =0

58S
/ dx30,0, —2 = — / dx*0(x3)0,0,[2(g, — g1)0* A
503A 4
— 200" A] + 0,0,T%| 5

=0, (3.24)

where we used the BC (3.21). Integrating by parts
aiajjij|x3:0 =-2(g2— gl)aiainj +2920i0'Al . (3.25)

Notice that the second Ward identity (3.25), associated with
the A, (x) field on the boundary, is local and not integrated
as the first (3.23). The two Ward identities (3.23) and (3.25)
are analogous to those characterizing the Maxwell
theory with a boundary in both 3D and 4D [46,47]. At
vanishing external source J%(x) = 0, the Ward identity
(3.23) gives

aiaj[(QZ - g1)AY - gzﬂijA]x3:0 =0. (3-26)
In [38,40] it has been shown that, when g; = g, in the
invariant action Sj,, (2.2), it is possible to redefine the
components of A, (x) in such a way that the theory has no
kinetic term; hence, it is not dynamical. Therefore in what
follows we shall exclude the trivial case:

g1 = G- (3.27)
For g, # ¢, and g;, # 0, (3.26) implies
0;0;A"(X) =0, (3.28)
OA(X) = 0. (3.29)
Equation (3.28) is solved as follows [65,66]:
0;(0,A7) =0 = 9,AY = ¢™9,,C,,  (3.30)

where C,(X) is a generic 3D vector field. Equation (3.30),
in turn, gives

aj(A'ij_eiann) :O:>A'ij_€ijncn :Zejabaaabi7 (331)

where @,;(X) is a generic rank-2 tensor field. On the other

hand, A¥(x) is symmetric; hence C, = 0 and we have

AlU(X) = €0,a,) (X) + €/d,a, (X).  (3.32)

The tensor field @;;(X) represents the DoF on the boundary,
with [@,;;] = 1. Moreover, since A,;(x) =Aj;(x) has six
independent components, the boundary field @,;(X) must
be symmetric as well
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in order that the boundary DoF does not exceed the number
of components of its bulk ancestor A; ;(x). The solution
(3.32) is traceless,

A(X)| 332 =0, (3.34)
so that the condition (3.29) is automatically satisfied.
Analogously, from the local Ward identity (3.25) we have,
at vanishing external source J(x) = 0,

aiaj[(QZ - 91>AU - gz’lijA]x3:0 =0, (3-35)
whose solution is
A (X) = €a,a,/(X) + €/%0,a,'(X),  (3.36)

where a;;(X) = a;;(X) is the DoF on the boundary with
[a;] = 0. Let us now consider the two broken Ward
identities (3.23) and (3.25) and make functional derivatives
with respect to J™(X’) and J™(X'). Referring to
Appendix A1 for the details, we obtain the following
equal time commutation relations:

[AA(X), Aun (X)) oo = +idyon{8(x" = x)5(x* — x?)},
(3.37)

[AACX), Ay (XYoo = —id0 {80 = ¥)3(x2 = ¥2)},

(3.38)

where
AA =2(g, — 92)(0;AY + 0,A™) +2g,0°A,  (3.39)
AA=2(g; — 92)(0;A% + 0,A%) +2g,0°A.  (3.40)

Importantly, the commutation relations (3.37) and (3.38)
resemble the generalized U(1) KM algebra derived in [53]
for a 3D nonchiral bosonic theory that lives on the
boundary of a 4D dipolar fracton theory. Hence, the
theory described by the action S;,, (2.2) has an algebraic
structure on the boundary that is different from that of
topological field theories [60,62,67-77] and Maxwell
theory [46,47,78]. The reason for that lies in the structure
of the fracton symmetry (2.1), characterized by two
derivatives, which prevents the presence, at the right-hand
sides of (3.37) and (3.38), of the central charge term 95,
typical of the usual KM algebras. This leads us to guess that
a conserved current algebra might exist on the boundary
of LG, whose defining symmetry (2.6) depends on one
derivative only. This would be in agreement with the
conjecture concerning the existence of a KM algebra in
LG mentioned in [79].

IV. THE INDUCED 3D THEORY

A. Canonical variables
We look for the transformations of the boundary fields
a;;(X) and a;;(X) which preserve the solutions (3.32) and
(3.36). The most general ones are

5amn = 77mn¢ + amgrz + ané:m + amanﬂ; 5amn =0, (41)

6Zlmn = n”ln& + am%n + af’lém + amani; Samn = 0’ (4'2)
where A(X),A(X), p(X).$H(X),&(X), and E(X) are generic
local parameters. The solutions A;;(X) (3.32) and A;;(X)
(3.36) remain unchanged, ie. dA;; = SAU =0, if &, =
0,,& and Em = 0m.7§’, so that (4.1) and (4.2) reduce to

0l = Nun® + 0,0, 4;

Sety = 0, (4.3)

Samn = nmna) + aman;i’ Samn =0. (44)
We decompose the boundary fields a;;(X) and a@;;(X) in

terms of their trace and traceless contributions, i.e.

a;; = a;; + 3% (4.5)
. I S
a;; = a;; + 3% (4.6)

_ ij S i
where a =1n"a;;,a =n"a,
metric traceless fields

» and a;;(X), a;;(X) are sym-

’1”aij = ’7“551']' =0, (4-7)
which transform as
1 -
8,y = 0,,0,A — gnmna% éa,,, = 0, (4.8)
- | s
S8y = 0, 0pA — gnm,,a A, éay,, = 0. (4.9)

The solutions (3.32) and (3.36) depend only on the trace-
less components

A(X) = €P0,a,7 (X) + €/ 0,a, (X);
AV (X) = €a,a,/(X) + €/P0,a,, (X)), (4.10)
and the trace contributions disappear. The DoF of the
boundary theory are then described by the rank-2 traceless
tensor fields a;;(X) and &;;(X). This is consistent with the
fact that, as we showed, on the boundary the bulk fields
A;;(x) and A; ;(x) have only five components, exactly as the
3D boundary fields a;;(X) and &;;(X), which are symmetric
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and traceless. The solutions (4.10) highly simplify the
definitions of AA(X) (3.40) and AA(X) (3.39):
MNg 0" (4.11)

AA|(3.36) =4(g1 — g )e ONA >

AA[(33) = 4(g1 — g2)e™Noy0 ans.  (4.12)
where we observe that only spatial derivatives appear.
Considering the following combinations of the commuta-
tors (3.37) and (3.38) and their traces

~ 1
{AA» Ai)F ) WDF’?MNAMN]

i

= 5 (858 + 858 — 1 npr) 04046 (X = X'),

(4.13)

~ 1 ~
|:AA’A;)F - EWDFTIMNAI\/IN]
i
= =5 (G5 + 358 — M) 00N (X = X7), - (4.14)

and using the solutions (4.10), we can identify the follow-
ing two canonical commutation relations at the boundary
(the details can be found in Appendix A 2)

i
[QAB’P/CD} :§(5§55+5R5§—77CD’7AB)5(2) (X—X/)» (4~15)
- - i
(G, PP =3 (500 + R85~ Pnap)0® (X =X), (4.16)
where
1 M
gaB = AAB — E'IABG M> (4-17)
- 1 -
PP =29, <fCD° - EWCDfaa()) , (4.18)
N N Ly
gAaB = AAB — ETIABOC M> (4-19)
B 1
PP =291, <fCD° - EWCDfa“‘)), (4.20)
and
g2 = 2(91 - 92)- (4-21)

In analogy to F,,,(x) (2.5), fu.(X), and Fape(X) are
defined as
}abc = aa&bc + ab&ac - 2ac&ab’ (422)

fabc = aaabc + abaac - 2acaab‘ (423)

It is interesting to notice that a canonical commutator
similar to those we found in (4.15) and (4.16) appears
in [80], in the context of the traceless fracton mod-
els [20,21]. The aim of [80] is to build a non-Abelian
model for fractons in 2 + 1 dimensions. To do so the
Abelian traceless theory needs to be defined first. As for
any fracton theory [1,2,20,21], the “electric field” Eyy(x) is
the conjugate momentum of Ay(x), from which the
commutator holds

[EY, Apin] = (84605 + 836%). (4.24)

After that, the scalar Gauss constraints are imposed,
together with a tracelessness condition:

00,EY = p; E' =0, (4.25)

which imply three conservation equations:

/p = const; /)?p = const; /xzp = const, (4.206)

of charge, dipole, and a component of the quadrupole,
respectively. The main characteristic of fracton theories, i.e.
the limited mobility, is here translated to the fact that single
charges cannot move, while dipole bound states can only
move along their transverse direction. The constraints
(4.25) imply that the tensor field Apy(x) transforms exactly
as (4.3) and (4.4), which is a remarkable check of our
reasoning. However, while in our case it is natural to
identify the DoF of the theory with the traceless fields
a;;(X) and @;;(X), in [80] the tracelessness condition is
imposed as a kind of gauge fixing, while for us it comes
from the solutions (4.10). As a consequence, the definition
(4.24) of the canonical commutator is no longer valid (since
A" = E;' = 0 would not commute), and the commutator for
the traceless theory of fractons is defined as Dirac brack-
ets [81], which turns out to be identical to ours (4.15)
and (4.16).

B. The most general 3D action

The action of the 3D boundary theory is constructed as
the most general local integrated functional of the traceless
rank-2 symmetric tensor fields @;;(X) and &;;(X) compat-
ible with

(i) power counting [a] =0, [@] = 1;

(ii) symmetry 6S = 6S = 0, where 6 and & are defined in

(4.8) and (4.9);
(iii) canonical variables identified in (4.15) and (4.16):

Lyin __
= p.

In Appendix B we show that the most general 3D action
satisfying these three requests is
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2 N - -
S3p = /d3X <—§912(Pabc€0abc + (Usageahcfﬂdbc) (4.27)

where we defined

1
Pabe = Pbac = fabc ( 277abf de T nbcf da + nacf db)

1
= _zacaab + aaabc =+ abaac - nabadadc + Ei/lbcadada

1

+ Erlacadadb’

(4.28)
and, analogously, @,,.(X) in terms of &,,(X), with the
following properties:

Pave T Peap + Poea = 0= Pape + Deab T Poeas (429)

nab§0abc = nbc¢abc = nab¢abc = nbc¢abc =0. (430)
The ws term in (4.27) looks like a CS term, and the
similarity is even more evident if we make explicit the
@.,(X) dependence, since @le Py, x @lePC0),d,y.
Intriguingly, this CS-like term resembles the massless limit
of 3D self-dual massive gravity [59,82]. This theory
contains a 3D Fierz-Pauli mass term that breaks the gauge
invariance [83,84]. However, it has been shown [85] that it
is dual to linearized topologically massive gravity [86],
which is gauge invariant and contains the CS-like term
together with the linearized 3D Einstein-Hilbert action.
These two equivalent theories were originally proposed as a
viable way to describe a single propagating massive
graviton in 3D in contrast with the standard Einstein-
Hilbert theory, which is topological in 3D and does not
support any propagating spin-2 particle. In our case, the
linearized Einstein-Hilbert term is replaced by the tensorial
Maxwell-like term such that our boundary action still
supports a propagating “graviton.” Notice that a noncovar-
iant version of our CS-like term has also been considered
in [54,87] in the context of fractional quantum Hall effect
and chiral fractons. However, these noncovariant field
theories that can be seen as dual one to each other, do
not take into account any tensorial Maxwell-like terms.
Notice also that if ws = 0, it is possible to decouple the
fields. In fact, by defining

I
\/—A—/[%bm
(4.31)

auih = \/Maab + = \/M(pabc +

1 ~ +
\/—A_/Iaab = Pape

where M is a parameter with mass dimension [M] = 1 and
[a*] =1, the 3D action (4.27) becomes

g _
Sip = /dSX |:% ((pabc(p abc _ (p:hc(erabc)

MCOS
+d _ab +d _ab d gab
+ 1 (a e @y, — 205 € @+ o€ @) |

(4.32)
which for ws = 0 decouples:
S3D[a+,a_, w5 = 0] = S;D[a+] + S;D[a_} (433)
with
S=F 22 [ EXghaptr. (434)

As we shall show in Sec. VII, this second case keeps the
T -invariance of the boundary in agreement with the
T -symmetry of the bulk action (3.1).

V. THE BULK AND THE BOUNDARY:
HOLOGRAPHIC CONTACT

Once the most general 3D action (4.27) has been derived,
we have to establish the “holographic contact” between this
induced 3D theory and the 4D theory S, (3.14). This is
accomplished by requiring that the EoM of the 3D theory
coincide with the BC (3.18), (3.19), (3.21) of the 4D theory.
To do so we have at our disposal the &; parameters
appearing in S,; (3.9) and ws in S3p (4.27). The EoM
of S3p are

0S3p

—20120,™"* = 5.1
5amn 9120.9 (5.1)
where we used the cyclic property (4.29), and
oS
0 = 20120, + @5(€"F" o, + €V )
o,
=0. (5.2)

We now consider the BC of the bulk theory (3.18), (3.19),
and (3.21), which we write in terms of the solutions (4.10)
and of the definitions of ¢,,.(X), Pup.(X) (4.28)

1 L g
gaa(%ij%” + €pijpa") = 0, (5.3)
(& — g12) (€™ 9@"; + " ip,;)

(5.4)

2 . - 1
550(6“”(0}’1‘; +eMgty) + 3

- 2&260()00[70 =0,

¢

?1 (eviigh;; + ebiiga,) = 0. (5.5)
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The contact is governed by two coefficients: &;, which
appears in S,; (3.9), and ws in the action S;p (4.27). The
first—&;—is relevant because it determines the existence of
the BC (5.5), the second—ams—decouples the EoM of the
boundary fields a,;,(X), a,,(X), i.e. eliminates the CS-like
term from the action (4.27). Additionally, we remark that
@;;(X) appears only in the BC (5.4), coupled to (&, — gy,),
which should not vanish; otherwise no contact is possible.
To summarize, the constraints on the coefficients, up to
now, are

a#0 gn#0;

&1 # Gin- (5-6)

Therefore, depending on &, and ws, we distinguish the
following cases:
(1) & #0, w5#0: using (5.5) in (5.4) (or setting &, = 0),
we have

1 L .
3 (& = g12) (€ Q" + ")

— 250,97 =0, (5.7)

which coincides with the 3D EoM (5.2)
_29126a§0mna + s (emab¢nab + 6nab¢mab) =0 (58)

if

1
ws==(E—g12) #0; & =01, #0; & #0.

: (5.9)

Notice that setting ws = 0 would imply &; = g5,
which we excluded in (5.6). Up to a numerical
coefficient, we now consider the following sym-
metric combination of the curl of the BC (5.5):

0= €macac(5'5)z + €bacac(5'5)21

= 6ai§0bmi’ (510)
where we used the properties of tracelessness (4.30)
and cyclicity (4.29) of ¢,;.(X). We then use this
result in the BC (5.7), which becomes

1 . .
g(& —g12) (€@l + gpt;) =0, (5.11)
of which we compute again the curl
0 = €mac0°(5.11)% + €, 0°(5.11)%,
= 2(&1 ~ 912)9 Pimis (5.12)

which finally coincides with the 3D EoM (5.1)

—24,,0,3™ = 0. (5.13)

025009-9

(i)

Notice that this second contact is obtained without
the need of any additional constraint on the param-
eters, we just need (5.9). Taking into account (5.9),
the 3D action (4.27) becomes

1 .
S3p = g/ d3X[—2912€0abc€0abC

+ (&1 — 912) @2 P ape ). (5.14)

while the boundary term (3.9) now is

Spa= /d4X5(X3> [E0AupA +E\ A, A%
+ 912677 A 40 AL +E3(A%) + &AZA@], (5.15)

where the coefficients &,, &5, and &, are free and can,
for instance, be set to zero, while &; # {0, g1, }.
&1 #0, ws=0: the EoM of the 3D theory (5.1) and
(5.2) are

0,0™* =0; 09, =0, (5.16)
while, ignoring the first BC (5.3), which is auto-
matically solved by the third one (5.5), and using
(5.5) in (5.4), the remaining BC are

1 o - b
3 (&1 - 912)(6‘”1](/7[)1‘]‘ + eh”§0 ij) —28,0.¢ be =0,
(5.17)
g1 aij b bijpa ) — () 518
g(e @’ +eeh;) = 0. (5.18)
As in (5.10), we can again compute
0 = €ac0°(5.18)F + €4,c0°(5.18)4,
= 28,0 Ppmis (5.19)

which coincides with the first EoM of (5.16). If we
use this result (5.19) in (5.17) (analogous to setting
& =0) and consider the same combination as
(5.19), we obtain the second EoM of (5.16), and
thus we get the second matching between bulk and
boundary. In that case the 3D action (4.27) is

24912

S3D = —T d3X§0abC¢abC, (520)
while the boundary term S, (3.9) becomes
dez/d4X5(x3)[§0AabA“b+§1AabA“b

+&6eA L 0,AL+ &5 (AP +EALAY], (5.21)
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where the coefficients &, &, &3, and &, are free, i.e.
do not contribute to the contact between the bulk and
the boundary and can be set to zero without loss of
generality, provided that & # {0, ;> }. Therefore a
second holographic contact is possible if
ws=0; & #{0,912} (5.22)

This second result has a relevant consequence:

ws = 0 allows one to decouple the action, as seen

in (4.33).
We observe that the holographic contacts obtained in (5.9)
and (5.22) affect the boundary action S, (3.9) in different
ways, in particular in the first case (5.9) the number of free
parameters from five reduces to three, while in the second
case (5.22) it goes to four. Finally, if £, = 0, no complete
matching between BC and 3D EoM is possible, in fact setting
&, = 0, one of the BC (5.5) disappears. We are left with

1 - .
gaa(euijq)bl] + €ijpa”’) =0, (5.23)
2 aij b bij ya 912 ¢ _aij~b bij~a
550(6 @it e ‘Pij)—7(€ @i+ €% ))
— 20,0 = 0. (5.24)

For what concerns the parameter ws in (4.27), two cases are

possible

(1) @w5#0: the BC (5.24) coincides with the 3D EoM
5.2)
= 2G120,90™"

FOs(E P+ EGy) =0 (525)

if

9 . _ . —E 0

(05——?#0, SH=91#0; §=¢&=0; (526)

however, it is not possible to establish a link with the
other EoM (5.1).

(i) ws=0: the EoM of the 3D boundary theory are
given by (5.16). A matching is possible with the BC
(5.24) only if & = 0, and if we compute

0 = €mac0(5.24)% + €400°(5.24)°,

= 4800 Qomi — 29120' Ppmis (5.27)
which coincides with a combination of the two EoM
of the boundary. We see that also in this case a
complete holographic contact between 3D EoM and
bulk BC is not possible.

This enforces the fact that the &;-termin S, (3.9) plays a key

role in the holographic contact. The holographic contacts are

summarized in Table II.

TABLE II. Holographic contacts.
BC-EoM matching
61 #0, 05 #0 wsz%(fl—glzﬁfzzmz
5]#09605:0 CUSZO
£ =0 No contact

VI. PHYSICAL INTERPRETATION
OF THE 3D THEORY

To understand the physical content of the 3D theory
described by the action S3p (4.27), we study its EoM. The
first EoM (5.1) for m = n = 0 gives

0= 0,0" = —20,0"a" + 20,0°a@"° + 9,0,a*>.  (6.1)

Taking the dy-derivative of (5.1) for m = 0, n = N, we get

1
0= aNaa¢ONa = __aAaNpAN’

6.2
491, ( )

where we used (6.1), the cyclicity property (4.29) and
the definition of conjugate momentum in terms of

Epahc (X) (428)

pMN =241, (6.3)
We see that (6.2) is a Gauss-like equation, analogous to the
one related to the traceless scalar charge model of fractons
in vacuum [20,21], which is at the base of the limited
mobility property. We therefore realize that the induced 3D
theory shows fractonic properties. To analyze the second
EoM (5.2), we first compute the conjugate momentum
of &ab (X ):

=MN _ aESD
3 - -
= 2g1,0™MN0 — EwS(EOAMaNA + e9NGM ). (6.4)
The EoM for @,,(X) (5.2) atm =n=0is
00a _ 3?5 0AB S ~0
0, = —e"489, ", (6.5)

912

and, as in the previous case, taking the dy-derivative of (5.2)
at m =0, n = N we have

0 = ~29120,0x¢™ + 3w50x ("0, + ¥9,8°})
1

3
= —6M6N]3MN — 50)5€OAM6M&N&NA,

: (6.6)

where we used the cyclic property of ¢,.(X) (4.29) and
(6.5). Here again we find a Gauss-like equation for the
traceless scalar charge theory of fractons [20,21], but with a
matter contribution at the right-hand side,

025009-10



COVARIANT FRACTON GAUGE THEORY WITH BOUNDARY

PHYS. REV. D 108, 025009 (2023)

OO MY = s = wsp, (6.7)

where

p = 3e" Mg, 0.a, (6.8)
plays the role of charge. This gives an interesting inter-
pretation of the CS-like term in the induced 3D action
(4.27) as “internal” matter. Notice that this term coincides
with the charge identified by Pretko in [35], where a
noncovariant CS-like term is studied. In that case the CS
term comes from a noncovariant fractonic f-term in the
bulk, and it is written in terms of a spatial traceless tensor.
The charge p(X) (6.8) comes from a constraint generated
by a Lagrange multiplier that is inherited by the CS action
from the definition of the -term. We observe that this 5(X)
charge implies, by definition, a dipole conservation. The
3D theory (4.27) depends on two fields ;;(X) and a;;(X);
hence, the conjugate momenta are two as well (6.3) and
(6.4), which in fracton models play the role of electric
fields:

EMN

= pMN = 2g1,9™, (6.9)

EMN = i)MN

3
= 2g1,0™° - 5w5(€OAM&NA +€MNaM,), (6.10)

which satisfy the Gauss equations (6.2) and (6.7), which we
write

OO EMN = 0, (6.11)

OO EMN = ps. (6.12)
Concerning the corresponding magnetic fields for this
theory, inspired by the ordinary 4D electromagnetism,
where B; o e F/¥, it is natural to define

By = —ge"* B priap,

B™ = geoap@™; (6.13)

EM = _gGOAB

BV = fJGOABfPMAB; PMAB- (6.14)
Notice that, while in 4D fracton theories both electric and
magnetic fields are rank-2 tensors [39], in our 3D case, the
electric field is still a tensor, while the magnetic field is a
vector. Moreover, the definitions (6.13) and (6.14) are

consistent with the fact that in ordinary 3D electromag-
netism the electric field E(x) is a vector, while the magnetic
field is a pseudoscalar B = €"/F,; [88]. As we shall see,
our guess (6.13) and (6.14) will be confirmed by a
consistent physical interpretation of a fractonic “magnet-
iclike” behavior. In terms of a,;(X), &,,(X) the magnetic
fields read

1
BM = _3g€OAB <abdMA + zrlMAad&Bd>;

- 1
BM — _3§€0AB (GBaMA + El’]MAadGBd> . (615)
which imply
1
&)ABC — _ 37 (GOACBB + €OBCBA), (6.16)
9
1 - -
@BC = _3_~(€0ACBB + "BCRA), (6.17)
9
Due to tracelessness property (4.30), we get
OB = 008 — -3 OABR
. . 2
PAB = G008 — _3_g€OABBA' (6.18)
Notice that
M 3 A ~0B ~BC
OyBM = —EQEOAB‘) (0p@"® — 0.a"¢) # 0, (6.19)
M 3. 0B BC
0y BM = _§g€OABaA(00a — 0 ) +0, (6.20)

which would suggest the presence, in the 3D theory (4.27),
of a fractonic magneticlike vortex. Consistently with the
fact of having nonvanishing divergences of the magnetic
vector fields, we find also a broken Bianchi identity, which
also suggests the presence of a kind of magnetic fracton
vortex. This would imply that a part of our fracton fields
give rise to 2D fracton vortex defects that represent a lower-
dimensional version of the 3D fracton magnetic monopole
proposed in [35]. In fact, we have

3
€mbcam§0abc = _Eemacamadaai #0;
3
€mbcam¢abc = _Eemacamad&Cd #0, (621)

which for a = 0 give the nonvanishing divergences (6.19)
and (6.20). Setting instead a = A we find

1 1 3

EGOBA + 20 e™MBoEzp = EemAbamadabd + "0y Poas
£0, (6.22)

| R 1 ~ 9w 3

E()OBA + EeOMBaMEAB = 19—152 Maria + 5 €nap0" 0y

+ eMP0poap #0.  (6.23)
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which have nonvanishing right-hand sides. Nonetheless,
we have two scalar identities for ¢,;.(X) and @4p.(X):

3
€00 Py = =3 Emacd" 9040 =0, (6.24)

3
€00 Dape = =5 €macd" 90,3 = 0, (6.25)

Going back to the 3D EoM, we consider (5.1) at m = M,
n =N,

1
- 0tEMN
2912

1
_ 3_aA(e,OMABN + €0NABM)’
g

60¢MN0+0 ~MNA __
(6.26)

where we used the definitions (6.9) and (6.16). We thus
have

2
3, EMN _ %OA(e()MABN +ONABMY =0, (6.27)
9

which, remarkably, coincides with the traceless analog of
the Ampere equation of 3D fractons identified in Eq. (16)
of [7], where our (6.27) is obtained as an EoM from a 3D
Maxwell-like Hamiltonian defined ad hoc. Different from
our case, the 3D fracton theory in [7] is not traceless and, in
particular, E,* # 0. The aim of [7] is to study the so called
fracton-elasticity duality and, more specifically, the analog
of our (6.27) is used to investigate the effect of the creation
of defects as a consequence of the longitudinal motion of
dipoles, which in the traceless fracton theory is not present,
since dipoles only move along their transverse direction.
We keep considering the EoM (5.2) at m =M, n = N:

0 = —2g120,0™ + w5 (PPN ), + VPPN )

3

+2§12(3 ( ¢OMA BN +€ONABM)

+ 350, (€™MBay + ONBa), (6.28)

where we used the definitions (6.10) and (6.17). We have
=MN 2912 OMAPBN | ONABM) _ MN _  %MN
0,E —3—~8A € BY +¢€ B —js =605j s
g
(6.29)

which is analogous to the Ampere equation, in the presence
of a tensorial current, again related to the CS-like term in
(4.27), which behaves as a matter term

TN =3 | 00(ETNG +ONGY) 40, (M +P)
(6.30)
By computing d,,dy of (6.29), we also get
0ips = 0uOnT Y™, (6.31)

where we used the Gauss-like equation (6.12).
Equation (6.31) represents a continuity equation typical
of scalar fracton theories [20,21] if w5 # 0,
0,p — 00 TN =0 (6.32)
In 7MN (X) (6.30), the contribution associated with the time
derivative coincides with the one defined by Pretko
[Eq. (118) of [35]] as a “generalized Hall response.” As
in our case, it is derived from a CS-like term seen as a
boundary contribution originated by a fractonic 6-term in
the bulk. In particular, it comes from the dynamical part
of the action. From the action S3p (4.27) we can identify
both the current and the Ampere-like equation (6.29), to
which the current (6.30) contributes. Moreover, as already
mentioned for (6.27), this second equation (6.29) is
compatible with the traceful version identified in [7] in
the context of an analysis of 3D fracton-elasticity duality.
Since E,M = E,™ =0, by computing the trace of the
Ampere-like equations (6.27) and (6.29), we find

eMNg B =0, (6.33)
- 9
Mg B 3T Fu 2995 omg g (6.34)
4912 2 912

which consistently coincide with the EoM for m =n =0
(6.1) and (6.5) previously found, i.e.

0A — (), g,p% = 3os OABg 30

6.35
912 ( )

0,p

due to (6.18). The EoM of the 3D boundary theory may be
interpreted as a traceless tensorial extension of the standard
3D Maxwell equations [88], as summarized in Table III

where V B =¢%0,B, and the results are consistent with
what can be found in the fracton literature [7,20,21,35]. We
thus recovered, as EoM, the Gauss constraints related to the
mobility of the traceless fracton theory in 3D [20,21],
where the CS-like term contributes as a matter term through

p(X) (6.8), also identified by Pretko in [35]. This CS-like

term plays the role of a matter contribution also in the
fractonic Ampere equation (6.29), as a current 7VN(X)
(6.30). Here again the term is in accordance with the
literature, and in particular with what has been defined
as a generalized Hall response in [35]. The Ampere
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TABLE III. Comparison between EoM and 3D Maxwell.
Maxwell Boundary of LG and fractons

Fields Electric, Magnetic E.B EAB BA: EAB B
o In .Vacuum V.E=0 0AdB~EAB =0

With matter V.E= P 0,0, EMB = ps

- =
Ampére i)r:] .vacuum 0, é _ Z \B= 9 %EMN ; 2%/2 aA(GOM:% BN + eON:A BY) :NO
ith matter 0E-V ,B=1] 0,EMN _ 39_;0A(€0MABN + €ONABM) = FMN

equations (6.27) and (6.29), to which the current 7YN(X)
belongs, can be traced back to fracton theories as well, and,
more specifically, they have the same structure as the
fractonic Ampere equation used in [7] to study a duality
between the theory of fractons and the theory of elasticity.
However, the one considered in [7] refers to the traceful
theory of fractons, whose aim is to study defects as a
consequence of the longitudinal motion of dipoles, which
in the traceless fracton theory is not present since dipoles
only move along their transverse direction [20,21].
Therefore, it would be interesting to understand if a
fracton-elasticity duality also exists for the traceless model.
We also notice that in [87] a charge j(x), a current J 5 (x),
and a continuity equation as (6.32) are identified from a
CS-like theory with torsion T'(x), i.e. [d’xe"’e)Ts,. In
particular, the model coincides with the one proposed
in [35] for the noncovariant CS-like action for a specific
choice of vielbein e;;(x), and under the condition of “area-
preserving diffeomorphisms,” which seems to be strictly
related to fracton models, as also studied in [80]. This
intriguing role of torsion in 3D chiral fractons has recently
been extended to 4D fractons [39], where it has been shown
that a linearized topological term with torsion [89] gives
rise to the fracton f-term [35].

VIL. DISCRETE SYMMETRIES: PARITY
AND TIME REVERSAL

As extensively shown in the recent literature concerning
nonperturbative aspects of quantum field theories, discrete
symmetries play a central role in the identification of global
anomalies and anomaly inflow, which are related to
topological obstructions and impose strong constraints
on the renormalization group flows, massive boundary
states, quantum dualities, and the vacua of quantum field
theories [90-96]. Moreover, the anomaly inflow has also
been extended to certain noncovariant fracton models [51].
Thus, here we analyze some discrete symmetries, such as 7°
and P in the context of the induced theory derived in
the previous sections. In fact, we can further constrain the
induced 3D action by requiring a matching between the
discrete symmetries in the bulk and on the boundary. In
particular, under P and 7 the bulk fields transform as
follows:

T {A0:Aoa- Aag} = {A00> —Aoa Ass )3

T{AOO’AOA“AAB} = {AOO’ _AOA’AAB}7 (71)

P{Aoo, Ao Aag} = {Aco: —Aos- Aag )

P{Aoo. Aor, Axp} = {~Ao. Ao —Ass} (7.2)
TA=A; TA=A; PA=A; PA=-A. (7.3)

The bulk action (3.4) is invariant under 7. Instead, due to
the presence of the boundary x* = 0, the action is no longer
‘P-invariant. We now consider the boundary term (3.9), and
distinguish between space and time indices

Sha = / d*x3(x%)[£o (AgpA™ + 240, A% + AppA*T)

+ &1(AgA” + 24,,A% + A g AAB)
+ §2€0AB (AOiaAA{a - AAiaOAg + AAiaBAé))

+ &A% + E,AA] (7.4)
We then observe that
(1) PSpa = Spq if & = &4 = 0;

(1) TSpg = Spq if & = 0;

(iii) TPSpq = Spa if & =& =&, =0.
Under these considerations, we can update Table II of
holographic contacts with the discrete symmetries allowed
on the boundary term S,,. From Table IV we see that
imposing P on S, does not lead to a holographic contact,
since the & term, crucial for the existence of the induced
3D action, is not P-invariant. We also highlight a relation
between ws <> & < 7 in fact, 7 symmetry is possible
only when &, = 0, which is allowed only in the second
holographic contact (5.22), i.e. when ws is set to zero as

TABLE IV. Holographic contacts, constraints, and possible
symmetries on S,; (3.9).

Discrete
symmetries
BC-EoM matching of S,y
§#0, 05 %0 ws =%(& —912)ié = g1 No
£ #0, w5 =0 ws =0 T
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well [in the first case (5.9) the parameter &, is constrained
by (5.6)]. Therefore the CS-like terms must be absent both
in Sy, (3.9) and in Sy, (4.27), in order to have 7 symmetry
preserved on the boundary.

VIII. SUMMARY AND DISCUSSION

In this paper we studied the consequences of the
introduction of a flat boundary in the 4D covariant theory
of fractons and LG [39], with the aim of investigating
whether an induced 3D theory exists and, in that case,
which is its physical meaning. Tightly related is the
question of the existence of an algebraic structure on the
boundary. The theory we are dealing with is not topologi-
cal, and it is a common belief that only topological field
theories show nontrivial boundary physics. Moreover,
when a boundary is introduced in a QFT, the gauge
symmetry plays a fundamental role, since it is the breaking
of gauge invariance caused by the presence of the boundary
that gives rise to an algebraic structure on the boundary
which “holographically” induces a lower-dimensional
gauge theory. The fracton symmetry (2.1) is unusual,
due to the presence of a double derivative, and considering
a boundary on such a model a priori has a nontrivial
outcome. On the other hand, it would not be the first case of
a nontopological QFT exhibiting an induced theory on the
boundary. In fact, this also happens in the case of Maxwell
theory in 3D [46] and 4D [47], and we know that fracton
models share many similarities with the electromagnetic
theory [20,39]. Moreover, it has been shown that a fractonic
O-term, which is a pure boundary term when 6 is constant,
gives rise to a 3D CS-like term and a generalized Witten
effect [35], with important consequences in condensed
matter systems [2,53]. A noncovariant CS-like term was
studied in [54], where the higher-spin formalism is asso-
ciated with dipolar behaviors in the context of Hall systems.
An algebraic structure on the boundary does exist, indeed,
as a consequence of the breaking of the Ward identities, and
it can be interpreted as a generalization of the standard
U(1) KM algebra, characterized by a double derivative, as
it appears, for instance, also in [53]. From the two broken
Ward identities, the boundary DoF of the induced theory
are identified as two symmetric traceless rank-2 tensors
a;;(X) and @&;(X). It is worthwhile to remark that on the
boundary some DoF disappear, since the boundary tensor
fields turn out to be traceless. This might be due to the
presence of a hidden symmetry, a guess that should be
further investigated. The procedure to recover the induced
theory leads to the action S3p (4.27), which is composed of
a term similar to a higher-rank Maxwell contribution,
written in terms of traceless rank-3 field strengths, which
mixes both fields a;;(X) and @&;(X), with a coefficient
depending on the bulk constants g; and ¢,, and a CS-like
term for &;;(X) with a free coefficient. Concerning the
physical interpretation of our 3D induced theory S3p (4.27),
this can be identified with the “traceless scalar charge”

model of fractons [20,21,80]. In fact, the transformations of
the boundary fields, the canonical commutators, the trace-
less conjugate momenta, i.e. the electric fields, coincide
with what appears in the literature. This claim is confirmed
also by the EoM of the 3D induced theory, from which two
Gauss-like laws are derived, which imply the defining
property of the fracton quasiparticles, i.e. their limited
mobility. Thus, one of the main results of this paper is that a
nonstandard covariant 3D traceless fracton theory turns out
to be holographically induced from a 4D ordinary traceful
covariant fracton theory. This claim gets even stronger
confirmation from other components of the EoM, which
can be identified with the Ampere-like equations of
fractons [7], further stressing the relation of fracton models
with the Maxwell theory. Concerning this analogy, we
remark on a close resemblance of our 3D action S;p (4.27)
with Maxwell-Chern-Simons theory [97], of which it
appears to be a kind of spin-two generalization. A similar
observation can also be found in [85] in the context of self-
dual massive gravity, where an identical covariant CS term
appears, and whose relation with our 3D model is worth
being further investigated. However, different from the
standard Maxwell-Chern-Simons theory, in our paper all
the coefficients are dimensionless; hence no topological
mass can be identified. Therefore, to better analyze this
analogy, the study of the propagators would be helpful.
Notice also that the CS coefficient is free, and thus it can be
switched off. The choice of keeping the CS-like term or not
is relevant for the physical interpretation of the model: by
switching it off, the 3D action Ssp (4.27) can be decoupled
into two Maxwell-like terms, and the boundary theory is
compatible with 7 -symmetry, which characterizes the
phenomenology involved. For instance, the physics on
the boundary of the topological BF models [44,45,69,70] is
identified with the effective description of the edge states of
topological insulators, where 7 is preserved both on the
bulk and on the boundary. On the other hand, keeping the
CS-like term, i.e. relaxing the 7 constraint, the EoM get a
matter contribution. In particular, the CS-like term plays the
role of fractonic charge p(X) (6.8) and current J;;(X) (6.30)
in two of the Maxwell-like equations, in accordance
with [35]. Some final physical remarks are in order.
Different from the standard electromagnetic theory and
the 4D traceful fracton model, here the magneticlike
vectors B,(X) and B,(X) do not have zero divergence,
nor does a Bianchi identity exist for the traceless rank-3
field strengths @, (X), @upe(X), which suggests the pres-
ence of fractonic 3D vortices. Additionally, 3D fracton
models are known to be related to the elasticity theory of
topological defects through a duality [7]. For instance, the
traceful Ampere-like equation can be seen as describing the
motion of these defects. Under this respect, it would be
interesting to understand if and how our traceless boundary
theory can be related to topological defects. Finally, there
seems to be an interesting possible interpretation of the
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fractonic CS-like term as associated with torsion contribu-
tions, as in [87], which also would be worth further
analyzing.
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APPENDIX A: COMMUTATORS

1. The bulk: Generalized Kac-Moody algebra
Considering the first Ward identity (3.23)

/deH(x3)0,-0jJij = 2(92 - gl)ﬁlajA” - 2gzaiaiA|x3=0,

supported by the INFN Scientific Initiative GSS: “Gauge (A1)
Theory, Strings and Supergravity.” E. B. is supported by
MIUR grant “Dipartimenti di Eccellenza” (100020-2018-
SD-DIP-ECC_001). we compute 5]—5():’) (Al):
|
8°Z.[J., 7] Z[J.7]
0,,0,03) (X = X") = 2(gy — 1)0,0; ———— = — 2y1;0,0° ————Pt "
( ) (92 gl) i Jé.lmn(X/)Jij(X) 92771.) a Jmn( ,) ( )
Z.J.J]
=2((92 — 91)8:6; — 9011001 — -
SV, ( )7(X)
= 2i[(g, — 91)58; = ga1""mij] 0.0 (T (A0 (X)AV (X))
=2i[(g> — 91)88" — g (Tl Ar {0 0AT))
+2i[(g2 — 91)548 — gor*ni 1{[01AY (X). A, (X)]526(x — x°)
+ 0k ([AY(X), A, (X)) 6)5(x" = 1)) }
=2i[(gs = 91)(9;AY + 9,A%) = g20"A, A}, ]5(x" — x)
+ 2i00{[(92 gl)A + gZA Amn]5(x - x/O)} (A2)

where we used the conserved current equation (3.26).
Integrating over dx°, we finally get to the following equal
time commutators:

[AA (X) s Aon (X/)]x°=

0 =0, (A3)

[AA(X), An(X)] oo = oy O {B(x! — x5 (% — x2)}.
(Ad)
where we defined
AA =2(g) — g2)(0;AY + 0,A™) +2g,0°A.  (AS)

In the same way, we now compute =%~ (Al):
8%Z.J.J
! )aiajW%
8Z.[J.J]
sIm (X" (X)
=2i[(g2 — 91)(0,AY + 0,A™) — g,0°A, A}, ]6(x" — x)
+2i00{[(92 — 91)A” + 9,4, A}, 16(x° = x°)},  (A6)

0=2(g,

- 29277ijaa0a

|
where we used again the conserved current equation (3.26).
By integrating over time and using the definition (AS5), we
find the following equal time commutator:

[AA(X), A, (X)) o0 =0 (A7)
Taking the second broken Ward identity (3.25)
0,0; T = —2(g2 — 91)0;0;A7 +29,0,0'A] 5_.  (A8)
we compute (w,, )(AS)
8*Z,[J.7]
0= —2(92 - 91)01'5]'WW
77,7
+ 292’11‘]‘0‘10”5]:,,(};—%
==2i[(g— g1 )(5jA0j + aAAOA) - gzaoA,A;m]é(xo - x/o)

+=2i0p{[(92 = 91)A” + 92A. A, ]6(x" =x)}. (A9)

where we used (3.35). Integrating over dx” we find the
equal time commutator

[AA(X)’Amn(XI)}x“:x’O =0, (AIO)
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where AA(X) is defined as (AS5)

AA =2(g; — gz)(ajAOf + 0,A%) + 2¢,0"A. (A11)
We finally compute -7 — Jmn (A8)
8?Z.[J,J] 8%Z,.[J, 7]
0,,0,6%) (X = X') = =2(gy — 91)0;0; =" 4 20511;:0,0" .
( ) (92 = 91)9,9; ST (X0, (x) - 2920%4 S 1 (%)
= =2i[(g92 = 91)(9;AY + 0,A) — go0°A, A}, ]6(x" - x°)
+ 2100{[(92 - gl)AOO + ng Amn}é(x - X 0)} (A]Z)
|
where we used (3.35) and from which, integrating over dx°, [ ~
where wetsed (3:33) EEINE VLA oyl I = [MAX)] 3.3 Apr(X))3.30)
= aMaN[912(601\/11351131\1(X) + SONB&BM(X))v
~ , B
[AA(X), Aon (X')]o—y0 =0, (Al3) €pap0*@’p(X') 4 €pap@”a’y(X')],  (A20)
[—AAX), AN (X")]o—po = i0y0n{8(x" — x1)8(x* — x2)}. from which we can identify the following canonical
(A14) commutation relation:

2. The boundary: Canonical commutators

We take the commutator (3.37) and its trace, in the
following equal time combination:

~ 1
AA, A]/)F - E”DF”MNA{VIN

= (5M5N + SN — pMNppE) 0y 0P (X — X7).

5 (A15)

In terms of the solutions on the boundary (4.10) we have

ADF(X)|(3.36) = €DabaaabF(X) + eFabaaabD(X)’ (Al6)
™A (3.36) = 2€08c0%a% = Agp(X)| (336, (A17)
AA|(3.32) = aMaN[QIZ(e()MB&BN + €0NBaBM)]’ (A18)

where g, =2(g; — ¢»). As a consequence of the trace-
lessness of A;;(X), we can use (Al7) and write the
commutator (A3) for n = 0 as follows:

[AA(X)](332)> Aoo(X")|3.36)]

3
= [AA(X)|3.30)- ™M™ AN (X")|336)] = 0. (A19)

and then, using (A16), (A18), and (A19), the commutator
(A15) becomes

NN + SnoM 1
- (B3 g
(A21)
with
QN — QNm — (OMBg N | (ONBg v (ADD)
Ppr = Prp = g12(€pap0° @’ + €pap0°a’y), (A23)

and QM,, = PM,, = 0. We can go further, multiplying both
right- and left-hand sides of (A21) by egpya€e”™ =

S\i0h — O,

[GOMA QMN , €OFKPbF]

SUSN +oNsY 1

=i(5§5§—5&5§>< —nMNnDF> s (X -X"),

2 2
(A24)
for which
coma O™ = eoma (€™Pa" 4 B ™)
= —2a,N + &M, (A25)

which is the traceless spatial part of @,,,(X). Then
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K Ppr = g10[(8985 — 85K )0%a”, + €K egpad*a’s

- €OFK€ODBaOaBF]
= g12[2(0%a*, — 0*a’y,) 4 85(0*a%, — d°ay)].
(A26)
Finally, at the right-hand side we have
Oyoy + ooy 1
(8465 — ,6%) <f - EnMNnDF>
1
) (8185 — 630% — napn™™). (A27)

By properly raising and lowering the indices with 7P\,
we finally get

9122055 =A@\, 2(0°" - — 0™ ) + ¥ (0™ — %", )]

i
=5 (8805 + 8555 =1 nap) 5 (X = X'), (A28)
where the primed quantities depend on X’. At the right-
hand side we have the index symmetry A <> B and C <> D,
while at the left-hand side the symmetry is only for A <> B.
We thus symmetrize the result as follows:

1 D D
ﬂpmpﬁ]+pm““%

= 5 (5568 + 3865 — 1 Pnap)6P) (X = X). (A29)
obtaining
- 1 .
aAB — EnABaMMv —912(2f/CD0 - WCDfZ 0)
—4$$+$$ nPnag)d?® (X = X),  (A30)

t\)

where f,,.(X) is analogous to F,,,(x) (2.5), but referred to
Ay (X) . i.e.

fabc = aaabc + abaac - Zacaab' <A31)

From (A30) we can identify the new canonical variables as

1

GaB = Qpp — EnAB&MMv (A32)

- 1
HCD 2015 (fCDO 5 nCngaO)
—20°a“P)

— _2912[(0Ca0D + P’ _ nCDaaaOa]_

(A33)
Not surprisingly, starting from the commutator (3.38), and

proceeding as we just did, we land on an analogous result
(up to a sign) with a <> @ switched; i.e. we get

AB — EWABaMMa glz(zf/CDo - WCDﬂaO)
= 2 (35 + 3R05 ~ 1 Prae) V(X - X, (A3)
where £, (X) refers to @,,(X),
Fabe = 0ultpe + Opltae — 20004 (A35)

From (A34) we can identify another set of canonical
variables

dAB = OAB — EnABaMM’ (A36)
- 1 -
pCD =24, ( CDO _EI,ICDfaa())
=24g> [(aCaOD +oPa’c — 2a°aCD) - nCDaaaOa} . (A37)

We observe that the canonical variables g p(X) and
gap(X) in (A30) and (A34) depend on the traceless spatial
part of the fields &;;(X) and a;;(X).

APPENDIX B: THE MOST GENERAL ACTION

The most general action of the 3D boundary theory must
be compatible with
(i) power-counting [a] =0, [a] = 1;
(ii) symmetry 65 = 6S = 0, where 6 and & are defined in
(4.8) and (4.9);
(ii1) canonical variables, i.e. % = p, identified in (4.15)
and (4.16).
From the first two requests we have that the most general
action must be

3 3
S3D = /ng{a)l (acaabdca“b — Edcaabaaabc> + w»H (0caabacéab - Edcaabaa&bc)

- 30)36‘526‘“})00;}&561 - 30)4&26“')66;,@6‘1 - 30)5&2611[)00;,&661}

/dSX{ 6 Pape ™ + 3 %bcfﬂabc + 0308 P e + 0408 P ype + W5, TIEP Py, }

(B1)
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where w; are constants, (@] = [ws] =0, [w] = [wy] =1,
[w3] = 2, and we defined the tensor

1
Pabe = fabc + Z (_277abfddc + nbcfdda + nacfddb)
= _Zacaab + aaabc =+ abaac - nabadadc

1 1
+3 nbcadada + _nacadadlw (Bz)

2 2

and its analog @,,.(X) with respect to @&,,(X), with the
following properties:

Pabe = Pracs  Pabe = Phac (B3)

Pabe + Peab + Poca =0 = Pape + Peab + Pocas  (B4)
8Pape = 6Pape = 0, (B5)

1" Pave = 1" Pave = 1" Pave = 1" Pape = 0. (B6)

Notice that

y 1 1

~MNO _ FMNO _ 1 MN7F a0 _ MN B7

7 f 51" TR (B7)
1

1
MNO _ #MNO _ - ,MN g a0 _ _ HMN BS
@ f 51" fa 2P (B8)

We rewrite the fields a,,(X) and &,,(X) according to the
representation of the rotation group, as follows:

ag = —4y = ay, (B9)
Aps = Vas (B10)

aaB = 25AB — 21ABY
SAB E% (aAB _%ﬂABag> :%QABv (B11)

and

dog = —4p = az, (B12)
Qpp = Dy, (B13)

aap = 285 — 2BV
Sa = % (&AB - %WAB&B> = %ZIAB’ (B14)

in terms of which the commutators (4.15) and (4.16)
become

(253 29129/ °) =3 (5588 + 5305 — napn )3 (X~ X)),

(B15)
[2§AB7 —291240'CD0] = é (5§5§ +0R05 — ’7AB77CD)5(2) (X - X’)-
(B16)

Compatibility of the action S;p (Bl) with the first
commutator (B15), i.e.

oL
3D pAB

; s B17
0q aB ( )

requires

W] = W3 :a)4:0, (BIS)
and ws is left free. Finally, distinguishing between time and
space indices in the term of (B1) which has w, as a
coefficient, we have

s 3 . g g
Pape P = E(pOOA(pOOA + 200a89"*® + PAB0 @™
+ @ac®*C, (B19)
where we observed that ¢,gy = —%(pOOA (and the same for

Pa00)- Additionally, by using (B9), (B10), and (B11), we
have

Pooa = 60, + 0yv, + 0°qap. (BZO)

a0 = —200G B + 05V + 050, — Napd°vy,,  (B21)
1 D

PoaB = =200, + 0\ Vg + 0pgap + EWABa vy, (B22)

PaBc = —20cqaB + Ogqac + 0sqpc + 61MABOY
= 3nBcOAY — 3NacOsW

0 1 1
— 0" NaBVC — E’?ACUB - E”BCDA

1 1
-0 (ﬂABQDc - EWACQDB - 2ﬂBCQDA>- (B23)

The only terms containing ¢ contributions are related to
@apo and @oap; 1.e. in the 3D Lagrangian they only appear
in %2 (200" + @apo@""). Keeping in mind this,
consistently with its definition, for a traceless tensor in d
dimensions we have

ds,, 80+ 1
T T T s

O B24
0S5 2 d (B24)
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and the compatibility condition (B17) implies

3 oL
292" = Yinn 0
AB
_* (2 IPouN Zoun_, 9Pvno @MNO)
6 \ 99 94 B
_ % (=220 4 GOAB 4 GOBA)

due to the cyclicity of @,,.(X) (B4). We thus find
wy = —4g12, (B26)

from which the 3D action (B1) becomes

3
S3D = / d3X |:_4912 (acaabac&“b - Eacaabﬁ“&bc)
+ 3w5&g€“bcab(~1€d}
2 ~ 1 ~
= / d3X {—912 (_fabcfabc - _fuathCb)
3 2
+ ws@de f dbc:|

2 5 N -
= / X (— 5912%;;40”!” + wsageabcfﬂdbc)- (B27)

The second commutator (B16) yields the same result, with
a <> a. The two choices are alternative and equivalent; in
fact, by choosing the first (B15) we have g ~ a, p ~ &, while
the second (B16) corresponds to § ~ &, p ~ a. Something
similar also happens in the Maxwell theory [47].
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