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We investigate two types of excited oscillons. We first focus on spherical symmetry and find that there
are a tower of spherical oscillons with higher energies. Despite having multiple approximate “nodes”
in their energy density profiles, these oscillons are long-lived. We find that during the lifetime of an excited
oscillon it will cascade down all of the lower energy levels before its disintegration, with each level-
dropping period accompanied by a short burst of energy. We also point out the existence of excited
oscillons with higher approximate multipoles, which generally have shorter lifespans than the spherical
ones. Apart from performing nonlinear simulations with absorbing boundary conditions, we also apply a
perturbative method to analyze some features of these excited oscillons.
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I. INTRODUCTION

While topological defects such as sine-Gordon kinks
are easy to find in 1þ 1 dimensions, Derrick’s theorem
dictates that (smooth) localized static solutions are bound
to be unstable for a canonical scalar field with a potential in
more than 1þ 1 dimensions [1]. Stable localized solutions
do exist in higher dimensions, in the form of Q-balls [2–4],
if the scalar is endowed with an internal symmetry and
one settles to stationary solutions that are time periodic.
Nevertheless, even in the case of a real scalar field, there
are some localized objects that are like Q-balls but
quasiperiodic and live for a long time, nowadays known
as oscillons [5,6].
Oscillons commonly exist in models that admit potentials

with attractive self-interactions, which translates to some
relatively mild conditions on the flatness of the potential,
similar to the conditions for the Q-balls to exist [3,4]. The
properties of oscillons have been extensively studied over the
years; see, e.g., Refs. [7–42]. Indeed, the current cosmo-
logical observations indicate that the inflaton potential may
be very flat [43], and oscillons can be copiously generated in
the reheating period after inflation or in other similar

processes in the early Universe [44–57]. The presence of
oscillons can affect the big bang thermal history and lead to
an oscillon-dominated epoch. The production of oscillons
in the early Universe is often accompanied by stochastic
gravitational waves that characterize the energy scales and
other features of the underlying model [58–70]. The oscillon
preheating scenario has also been investigated in full
numerical relativity [38,56,69], and it was found that
primordial black holes can sometimes form from them in
the case of strong gravity effects [38,56]. Furthermore,
oscillons in 2þ 1 dimensions have been observed in
laboratories [71–73].
In this paper, we search for and investigate oscillons

that are excited in two “orthogonal” ways. First, we focus
on excited oscillons in spherically symmetry. We find that
there are excited oscillons with increasing levels of energy,
whose oscillation frequency decreases with the level of
energy. As the evolution of an oscillon is a process where
its (dominant) oscillation frequency adiabatically increases
until it reaches the upper limit and dissipates, these different
energy plateaus naturally appear in sequence in the evo-
lution history of a highly excited oscillon, forming a rather
intriguing cascade (see Fig. 1). These higher-energy oscil-
lons are solutions with increasingly more (approximate)
nodes, and the lifespans of these plateaus decrease with
their energies. We also provide a semianalytic computation
of the lifespans of the plateaus by simply approximating the
oscillon with a factorizable background plus the leading
perturbative radiation field, which matches the nonlinear
simulations rather well.
Excited spherical Q-balls with multinode structures

have been studied in Refs. [74–78]. The spherical
oscillons we study in this paper are actually different
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in spirit, apart from the difference between complex and
real scalars. The equivalent spherical oscillons similar to
those excited Q-balls can also be constructed, as we
briefly discuss in this paper, but those strongly multinode
spherical oscillons are much shorter lived than our
weakly multinode ones. This is most easily seen in the
perturbative construction where our spherical oscillons
can be approximated by an unexcited background plus a
leading multinode perturbation.
Second, we construct nonspherical oscillons that are

excited to have higher multipoles. These oscillons may
arise from anisotropic environments or from collisions of
oscillons, perhaps similar to the fact that astrophysical
black holes generally have spin. At any rate, these are
nonlinear localized objects with interesting properties that
are worth exploring. Nonspherical Q-balls, the counter-
parts for the case of a complex scalar field, were recently
studied in the form of charge-swapping Q-balls [79–81] or
spinning Q-balls and their generalizations in the presence
of gauge fields or strong gravitational effects [74,82–92].
Whereas one can construct aQ-ball with a fixed multipole,
this is impossible for an oscillon which, nevertheless (as
we will show), can have a dominant multipole supported
by some weak subdominant ones. Therefore, unlike a
Q-ball whose profile is factorizable into a radial part plus
a rotation phase, a multipolar oscillon is generally more
complex in nature.
To numerically construct a spinning oscillon, one can

take a factorized configuration as the input, and we see that
it can then relax to the spinning solution. We find that it is
imperative to prepare the initial configuration to at least
solve the background equation of motion. This suggests
that the “attractor basin” for spinning oscillons is relatively
small, compared to the spherical case, where one can obtain
excited oscillons from quite generic configurations. Also,
for higher multipolar oscillons, we only find spinning
oscillons but not the swapping ones. This is due to the
fact that for the case of oscillons the real scalar field only
has one component, while for the case of Q-balls the
complex field has two components. Because of this, the
latter can be intuitively viewed as two interconnected
oscillons, which allows one to arrange attracting,
opposite-charge lumps to form charge-swapping Q-balls
[79]. These results show that the similarities between
oscillons and Q-balls are also shared by their composite/
excited structures, with some major caveats as well.
The paper is organized as follows. In Sec. II we introduce

the model we focus on in this paper and the perturbative
expansion we use for the semianalytical computations later.
We describe the numerical codes we use for the fully
nonlinear simulations in Appendix A and some technical
details about the perturbative expansion in Appendix B.
In Sec. III we investigate properties of spherical cascading
oscillons including their evolution patterns, lifetimes,
insensitivity to initial conditions, and spectra. The efficient

spherical code used in this section is validated by the full-
blown Cartesian code in Appendix C. We also perform a
perturbative analysis to compute the lifespans of the various
energy plateaus of the cascading oscillons. In Sec. IV we
investigate another type of excited oscillons, which have
higher multipoles. The simulations in this section are
performed with a Cartesian code with absorbing boundary
conditions. We conclude and describe possible phenom-
enological implications in Sec. V.

II. MODEL AND SETUP

We focus on oscillons from the simplest model with only
one real scalar field φ that is invariant under reflection
φ → −φ. As we will see, this simple model already gives
rise to rich time evolutions and complex structures that are
quasistationary. From the modern, prevailing point of view
of effective field theory, such a theory in dþ 1 dimensions
is given by the action

S̃ ¼
Z

ddþ1x̃

�
−
1

2
∂μ̃φ∂

μ̃φ −
1

2
m2φ2 þ λφ4 − g0φ6

þ g1φ8 þ g2ð∂μ̃φ∂μ̃φÞ2 þ � � �
�
; ð1Þ

where m is the mass of the scalar and the mass dimensions
of the coupling constants are ½λ� ¼ 3 − d, ½g0� ¼ 4 − 2d,
½g1� ¼ 5 − 3d, ½g2� ¼ −d − 1, and so on. (One may add
terms like ∂4φ2 and ∂

2φ4, but these terms can be removed
by field redefinitions.) For simplicity, in this paper we
truncate to the order of φ6 in the Lagrangian. Making use of
dimensionless variables

xμ ¼ mx̃μ; ϕ ¼ ð2λÞ1=2φ
m

; g ¼ m2g0
2λ2

; ð2Þ

the truncated action can be rewritten as

S ¼ m3−d

2λ

Z
ddþ1xL

≡m3−d

2λ

Z
ddþ1x

�
−
1

2
∂μϕ∂

μϕ −
1

2
ϕ2 þ 1

2
ϕ4 −

1

2
gϕ6

�
:

ð3Þ

This leaves us with just one dimensionless free parameter g
in the model,1 and we explore the dependence of the
phenomena on this parameter. Results for models with
different hierarchies between m and λ can be extracted by
appropriate scalings. For the simple case with no hierarchy
betweenm and λ (say, m3−d ¼ 2λ), one can view the values

1In 2þ 1 dimensions, the φ4 term is relevant with λ having
mass dimension ½λ� ¼ 1 and the φ6 term is marginal, so S is
apparently renormalizable.
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of all of the dimensionful quantities in this paper as in units
of the mass of the scalar. The (rescaled) energy density
Legendre transformed from L is given by

H ¼ 1

2
_ϕ2 þ 1

2
ð∇ϕÞ2 þ 1

2
ϕ2 −

1

2
ϕ4 þ 1

2
gϕ6; ð4Þ

where the dot stands for the partial derivative with respect
to t, and the equation of motion is given by

ϕ̈ −∇2ϕþ ϕ − 2ϕ3 þ 3gϕ5 ¼ 0: ð5Þ

As discussed in the Introduction, the action (3) supports
quasistable oscillons, which are nonlinear, localized qua-
sisolitons that exist in many field theories having shallow
potentials. Unlike aQ-ball solution that exists in a complex
scalar theory, a spherically symmetric oscillon for a real
scalar does not simply factorize to a spatial profile and a
temporal oscillation. Rather, the oscillon solution Fourier
decomposes into a spectrum of multiple modes, although,
as we will see later, many of its interesting properties can
be described by the dominant one, with the higher-
frequency modes determining the decay rate of the
oscillon. We will also see that there exist a series of
excited spherical oscillons, which naturally emerge as
different phases that a highly excited oscillon goes
through during its entire lifetime. In addition to spheri-
cally symmetric oscillons, in Sec. IV we will see that
there are also complex oscillons that contain higher
multipoles and may be viewed as the real scalar counter-
parts of charge-swapping Q-balls [79–81] and spinning
Q-balls [74,82–92]. We will later construct and simulate
these solutions fully nonlinearly.
The simulation schemes we use in this paper are

explained in Appendix A. In Sec. III, where we focus
on spherically symmetric oscillons and perform multiple
parameter scans, we use a spherical grid code, which is
more efficient as it is essentially a 1þ 1D code whose
absorbing boundary conditions are easier to implement.
A spherical code, however, neglects the effects of non-
spherical perturbations. In Appendix C we compare a
typical evolution in the spherical code with that in the
Cartesian code, and show that the effects of nonspherical
perturbations are negligible for our case. On the other hand,
all of the simulations in Sec. IV are run with the Cartesian
code, as we will deal with higher multipolar configura-
tions there.
To help construct the complex, excited oscillons and

understand their properties semianalytically, we use the
following mode expansion that can capture many salient
features of these solutions in 2þ 1D:

ϕðt; r; θÞ ¼ Φl0ðrÞrl0 cosðωt − l0θÞ
þ

X
n>1;jlj>l0

Al
nðrÞrjlj cosðnωt − lθÞ; ð6Þ

where l0; l; n are integers (with n > 1 and l0 ≥ 0)2 and
we have factored out rl such that regularity at r ¼ 0
requires that

∂rΦl0ðr ¼ 0Þ ¼ 0; ∂rAl
nðr ¼ 0Þ ¼ 0: ð7Þ

This expansion for the l0 ¼ 0 case was previously adopted
in Ref. [93] for investigating the lowest-energy spherical
oscillons. As assumed in the mode expansion (6), which
will be verified later, an oscillon solution usually has a
dominant oscillation frequency ω, whose amplitude Φl0ðrÞ
can be viewed as the background amplitude, and the
perturbations around this factorizable background have
frequencies that are mostly multiples of the base frequency.
For a higher multipolar oscillon (l0 ≠ 0), as will be
explained later, the background mode needs to be spinning
in one direction, such as cosðωt − l0θÞ. By examining the
equations of motion explicitly (see Appendix B), one can
also show that when the background is spinning in one
direction, the opposite-spinning perturbative modes are
decoupled (and unexcited), so in Eq. (6) we can restrict
l to be l > l0 in the summation without loss of generality.
For later convenience, wewrite the nonlinear terms in the

equations of motion as FðϕÞ≡ −2ϕ3 þ 3gϕ5, and define
Cl
nðrÞ and Bl

nðrÞ as the coefficient functions in the
following expansions:

FðΦl0r
l0 cosðωt − l0θÞÞ ¼

X
i≥0

Cð2iþ1Þl0
2iþ1 ðrÞ cosðð2iþ 1Þωt

− ð2iþ 1Þl0θÞ; ð8Þ

F0ðΦl0r
l0 cosðωt − l0θÞÞ ¼

X
i≥0

B2il0
2i ðrÞ cosð2iωt − 2il0θÞ:

ð9Þ

For example, we have Cl0
1 ¼ − 3

2
r3l0ðΦl0Þ3 þ 15

8
gr5l0ðΦl0Þ5

and B0
0 ¼ −3r2l0ðΦl0Þ2 þ 45

8
gr4l0ðΦl0Þ4. Then, the back-

ground equation of motion is given by

∂
2
rΦl0 þ

2l0 þ 1

r
∂rΦl0 þ ðω2 − 1ÞΦl0 −

Cl0
1

rl0
¼ 0; ð10Þ

and the perturbative equations of motion are given by

∂
2
rAl

n þ
2lþ 1

r
∂rAl

n þ ðn2ω2 − 1 − B0
0ÞAl

n −
Cl
n

rl

−
1

2rl

�X∞
j¼2

Bjl0
j rlþjl0Alþjl0

nþj þ
Xn−2
j¼2

Bjl0
j rl−jl0Al−jl0

n−j

�
¼ 0:

ð11Þ

2Negative l0 is of course allowed, representing an opposite-
spinning background, but we restrict l0 to be non-negative for
simplicity since the theory is parity invariant.
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The presence of only a single angular momentum mode in
the background field implies that many of the perturbative
fields are actually unexcited. From the definitions ofCl

n and
Bl
n above [Eqs. (8) and (9)], we see that Cl

2i ¼ 0 and
Bl
2iþ1 ¼ 0, so the equations of motion for Al

2i are decoupled
from those of Al

2iþ1 and are unsourced (i.e., without the
inhomogeneous term in their equations of motion), leading
to Al

2i ¼ 0. Additionally, all of the Anl0þk
n modes with

nonzero k are unsourced, and are thus also unexcited. (The
equations of motion for Anl0þk

n with different k are
decoupled from each other, and only the Anl0

n modes are
sourced; see Appendix B for more details.)
The background field Φl0 and perturbative fields Al

n can
be solved with standard ordinary differential equation (ODE)
solvers. As Φl0 falls off to zero very fast asymptotically at

large r, going like e−
ffiffiffiffiffiffiffiffi
1−ω2

p
r=rð2l0þ1Þ=2, the background

equation (10) can be easily solved by a standard shooting
method, shooting from near r ¼ 0 to a large r. On the other
hand, from the perturbative equations of motion (11), we
see that the radiation field Al

n falls off to zero much
more slowly and oscillatorily at large r, going like HbðrÞ ∝
Jlð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2 − 1

p
rÞ=rl ∼ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2 − 1

p
r − ð2l þ 1Þπ=4Þ=

rlþ1=2, where Jl is the Bessel function of the first kind. (It is
also possible to have a solution that includes the Bessel
function of the second kind, but that only affects the solution
by a constant phase in the cosine, which does not affect the
radiation rate we are after in this paper.) Therefore, to
accurately solve Eq. (11), we use a shooting procedure
where we shoot from a small r to a relatively large r ¼ rb
and match the value of Al

nðrbÞ=∂rAl
nðrbÞ to the value of

HðrbÞ=∂rHðrbÞ at rb.

III. CASCADING OSCILLONS

In this section we focus on composite structures in
spherically symmetric oscillons. We will see that there are

excited oscillons whose energy decays cascadingly with
time, forming a series of descending steps, and we explore
their properties and explain this phenomena with a semi-
analytical mode expansion. In this section, since we are
interested in spherically symmetric solutions, we make
use of a spherical code, which makes it easier to set up the
absorbing conditions at the boundaries and is much
computationally cheaper. This of course has the danger
of neglecting nonspherical modes in the evolutions. In
Appendix C we validate our approach with full Cartesian
simulations and show that the nonspherical modes are
negligible in these simulations.

A. Cascading levels

To construct excited spherically symmetric oscillons, we
set up a (2D or 3D) spherical initial configuration:

ϕ ¼ Ae−
ðr2−aÞ2

σ2 ; _ϕ ¼ 0; ð12Þ

where A sets the amplitude of the field, σ is the thickness of
the spherical shell, and a determines the radius from the
center. This Gaussian-like initial setup is of course for
convenience (as excited oscillons can form starting from
more generic configurations), and it will initially relax
and shed a certain amount of energy, as we see in Fig. 1.
When excited oscillons are properly formed, they are more
radially complex, as we see in Figs. 2 and 3. Nevertheless,
the relaxed configuration still continuously radiates away
energy, and thus the absorbing boundary conditions dis-
cussed in Appendix A are useful to eliminate the unwanted
fluctuations in the simulation grid.
Figure 1 shows a typical evolution of the total energy E

[defined in Eq. (13)] of such an oscillon. Numerically, we
define the energy of the oscillons by integrating over the
energy density for all of the points within a radius of
R ¼ 20 from the center of the oscillon:
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FIG. 1. Cascading levels of the energy E [defined in Eq. (13)] and frequency ω [defined to be the (angular) frequency of a point in the
center of the oscillon] of a spherically symmetric oscillon. We can see multiple distinct energy plateau levels as the oscillon evolves,
and the frequencies of the levels increase as the energy steps down. The initial configuration is chosen to have A ¼ 1; a ¼ 81; σ ¼ 90,
and the coupling is g ¼ 0.60. We label the energy levels from the lowest (the first level) to the highest.
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EðtÞ ¼
Z
r<R

ddxHðt; rÞ: ð13Þ

The energy density of a spherical oscillon typically halves
at around r ≃ 2.5–5. We can see an interesting phenome-
non that the energy E of the oscillon cascades with time,
producing multiple levels/plateaus before settling down to
the most (quasi)stable level. We do not see a sudden decay
of the most stable level in the 2þ 1D simulations for this
particular model, but the oscillon does continuously
radiate slowly, which is well known (e.g., Ref. [6]). As
we can see in Fig. 1, the excited higher-energy levels live
for much shorter times, and (as will be explained shortly
in Figs. 2 and 3) they have increasingly more “nodes”
in their radial profile.3 We can also see that during the
evolution within an energy level the dominant (angular)
frequency of the oscillon ω is stable, where the frequency
ω is numerically defined as the frequency of the grid point
that initially has the largest field amplitude, i.e., a point in
the center of the oscillon. Also, the energy and frequency
levels match.
The higher-energy plateaus have more nodes. Take the

2þ 1D case, for example; in Fig. 2(a), we see that the radial
energy profile has one node at r ≃ 2.63, while in Fig. 2(d)

we have four nodes at r ≃ 1.13, 2.63, 3.62, 5.75. While
some nodes such as the outermost node are not moving
in the oscillation, conforming to the exact definition of a
node, some other nodes do move slightly and are less well
defined. Remarkably, the peak densities of the excited
plateau levels have roughly similar values, which are
noticeably greater than that of the first level. The increase
in energy from the second level to the fourth level is mainly
due to the oscillon being fatter for the higher levels.
Visually, in Fig. 2 we see that the evolution of the energy
density of the excited oscillons exhibits the effects of
breathing in and out. This is also technically true for the
first-level oscillon, due to the presence of a node, but it is
less visually obvious (it is more noticeable for the first-level
oscillon in the 3þ 1D case). Incidentally, for the setup in
Fig. 1, the energy levels are E ≃ 38, 22, 11, 6, which are
mostly twice of the “base” energy level E ≃ 6. For a
different coupling constant g, the gap between the first
level and the second level will change accordingly, but the
pattern of the gaps between the higher levels seems to
remain. This presumably is due to the fact that the higher-
energy levels come from the increase of the number of
nodes in the solution, i.e., from the energy density profile
becoming fatter, with the factor of 2 coming from the fact
that the spatial dimension is 2. In Fig. 3, we see that the
3þ 1D case is very similar. In the following, we focus on
the 2þ 1D case for simplicity.
In our model (3), there is only one theory parameter: the

coupling g. (To obtain the behaviors of the solution for
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FIG. 2. Evolution of the energy density Hðt; rÞ of the four plateau levels of the 2þ 1D oscillon in Fig. 1(a). T1, T2, T3, T4 are the
oscillation periods of the field ϕ at the center of the oscillon, respectively, with T1 being that of the first energy level. The oscillation
period of the energy density is half of the corresponding period of the field. The insets show the time evolutions of the energy density at
r ¼ 0.

3Here, the term “node” is used in a loose sense, and it is not the
point where the field profile remains zero at all times. By a node,
we mean a point in the energy density profile that visually
oscillates less than the surrounding points; see Figs. 2 and 3.
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different masses and φ4 couplings, we can simply scale the
units of the solution.) It is instructive to see how the excited
oscillons depend on this parameter. In Fig. 4, we plot the
dependence of the energy levels on the coupling g. We see
that for a larger coupling the excited energy levels exist
for much longer times, but the values of the energy levels
only vary slightly for different g. Nevertheless, upon careful
examination, we find that both the energy values and
lifetimes of the levels scale exponentially with g; see

Fig. 5. Numerically, we take the lifetime of a plateau of
the oscillon τ to be the difference between the end of the
plateau tend and the start of the plateau tstart:

τ ¼ tstart − tend: ð14Þ

For definiteness, tend is taken to be the time when the
energy decay rate PðtÞ is ten times the PðtÞ in the middle of
the level plateau and the start tstart is taken to be the time
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FIG. 3. Evolution of the energy density Hðt; rÞ of the three plateau levels of the 3þ 1D oscillon in Fig. 1(b). T1, T2, T3 are the
oscillation periods of the field ϕ at the center of the oscillon, respectively, with T1 being that of the first energy level. The oscillation
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when the energy decay rate PðtÞ is 10 times the PðtÞ in the
middle of the level plateau, where the energy decay rate
can be simply computed by numerically evaluating
PðtÞ ¼ jEðtþ dtÞ − EðtÞj=dt.
In Fig. 6 we plot how the lifetime of each level changes

for different A and g. As expected, we find that A has little
effect on the lifetime as long as the relevant plateau forms in
the evolution; the excess of the energy introduced by a
larger A is simply shed away in the initial relaxation. The
lifespans of the displayed energy levels also remain mostly
unchanged upon varying other initial conditions. In Fig. 7

we explore how the energies and lifetimes of the third and
fourth levels depend on the values of a and σ in Eq. (12).
We see that they are not sensitive to the initial a and σ
except near the boundary of the parameter space within
which oscillons can form. This is a reflection of the fact that
these energy levels are quasistable attractors of the system
and justifies our sloppy choice of the initial configuration in
Eq. (12), as the system will evolve to the attractor as long as
it is within the attractor basin. For the spherical oscillons,
the attractor basin is relatively sizable. It is possible to
have higher-energy levels should one fine-tune the initial
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conditions, which is not vigorously pursued in this study.
However, their lifetimes are much shorter.
It is also instructive to sample some Fourier spectra of the

different energy levels of the oscillon. An example of these
is shown in Fig. 8 where we plot the power spectra of the
scalar field at a point in the center of the oscillon:

P ¼ jϕ̃ðω;x0Þj2; where ϕ̃ðω;x0Þ ¼
Z

tb

ta

dte−iωtϕðt;x0Þ;

ð15Þ

where ta, tb are chosen to be within a flat part for each
plateau of the oscillon and tb − ta ¼ 500. It has a distinct
peak structure: there is a dominant base frequency, which
essentially determines the oscillation period of the oscillon,
followed by smaller peaks around odd multiples of the
base frequency. This justifies our semianalytical expansion
scheme (6), which we will use in the next subsection.
Turning the argument around, the reason why there are only
odd multiples of the base frequency can be seen in the
perturbative analysis (6); see the text below Eq. (11). Also,
we see that the dominant peak frequency decreases as the
energy of the level increases so that the most stable level,
the first level, has the highest dominant peak frequency.
The same is also true for the subleading peaks. Some kind
of structural differences between the most stable level and
the higher levels are also noticeable in both the frequencies
and the peak powers, with the three higher levels staying
more close to each other. This fits into the picture that the
evolution of the oscillon is a process where its base
frequency migrates to pass the limit of ω ¼ 1, whereffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
changes from a real value to an imaginary value

and the nature of the solution changes from oscillatory to

dissipative. For example, the far field changes from

ϕ ∼ e−
ffiffiffiffiffiffiffiffi
1−ω2

p
r=r1=2 to ϕ ∼ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
rÞ=r1=2, the latter

allowing an energy outflow. Thus, the different energy
plateaus can naturally appear in sequence during the entire
lifetime of an excited oscillon.

B. Perturbative analysis

In this subsection we use the expansion scheme (6) to
analyze some of the properties of the cascading oscillons
explored with lattice simulations above. In particular, we
semianalytically compute the lifespans of the energy levels.
The first order of business in the perturbative analysis

using the expansion scheme (6) is to nonlinearly solve the
background solution Φ0ðrÞ. The approximation of the
“background” oscillon with only a single mode is a rather
crude one, and yet, as we will see, at least for our particular
model this is rather a good approximation. In fact, to first-
order approximation, we view the oscillon as consisting of
this background plus a perturbative radiative field, which is
the first excited Al

n field (A0
3 in this particular case).

With the expansion scheme (6), obtaining the back-
ground solution is fairly easy, as it only involves solving the
following ODE:

∂
2
rΦ0 þ

1

r
∂rΦ0 þ ðω2 − 1ÞΦ0 þ

3

2
ðΦ0Þ3 −

15

8
gðΦ0Þ5 ¼ 0:

ð16Þ

This can be easily done by a standard shooting method,
shooting from near r ¼ 0 to a large r, as mentioned in the
last section. To the leading-order approximation, we simply
estimate the energies of the oscillon levels with the back-
ground solution

ϕðt; rÞ ≃Φ0ðrÞ cosωt: ð17Þ

To compare with the fully nonlinear solution of the last
subsection, we set the initial parameters to be A ¼ 1,
a ¼ 81, and σ ¼ 90, and choose g ¼ 0.60 as our fiducial
model in this subsection. TheΦ0 profiles for a few different
ω can be found in Fig. 9. A comparison between the
energies of the oscillons computed from this perturbative
approach (“perturbative energy”) and from the nonlinear
simulations in the last subsection (“nonlinear energy”) can
be found in Table I, showing good agreements between
the two.
With the background established, to determine the life-

times of the plateau levels, we need to estimate the decay
rate or radiation emission rate of the oscillon. To this end,
we include the perturbations or radiation fields A0

n in
Eq. (6), which are sourced by the background field. As
A0
2 vanishes [cf. the text below Eq. (11)], the lowest-order

radiation field is A0
3. We only take this next-to-leading-

order approximation. This is retrospectively justified by
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g ¼ 0.60, A ¼ 1.0, a ¼ 81, and σ ¼ 90, and the sampling times
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computing the quintuple contribution, or by simply inspect-
ing the spectra in Fig. 8 and noticing that the power of the
quintuple frequency is far weaker than that of the triple
frequency. Therefore, the perturbation equation that needs
solving is simply

∂
2
rA0

3 þ
1

r
∂rA0

3 þ ð9ω2 − 1 − B0
0ÞA0

3 ¼ C0
3 þOðA2Þ: ð18Þ

where B0
0 and C

0
3 are defined in Eqs. (9) and (8) and contain

sourcing and parametric enhancements from the back-
ground solution. As already mentioned in Sec. II, to
numerically solve this ODE, because it falls off relatively
slowly, one can use a shooting method that matches the
asymptotical solution of this equation at a large r to
improve the accuracy.
The decay rate of the oscillon can be obtained by

computing at a large r the 0r component of the energy-
momentum tensor of the scalar field, T0r, which is the
energy flux in the r direction. The background field Φ0

goes like e−
ffiffiffiffiffiffiffiffi
1−ω2

p
r=r1=2 for large r, so its contribution to T0r

can be safely neglected. To the leading-order approxima-
tion, we then have

T0rðt; r → ∞Þ ¼ ∂t½A0
3ðrÞ cosð3ωtÞ�∂r½A0

3ðrÞ cosð3ωtÞ�:
ð19Þ

Asymptotically, A0
3ðrÞ goes like A0

3ðrÞ¼AcosðkrþαÞ=r1=2,
where k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ω2 − 1

p
and A and α are constants. [The value

of A can be obtained by solving Eq. (18) and extracting
A ¼ maxðr1=2A0

3Þ at large r around r ¼ 60–100.] So,
T0rðt; rÞ in the far field can be further approximated by

T0rðt; r → ∞Þ ¼ ∂t

�
A

r1=2
cosðkrþ αÞ cosð3ωtÞ

�

× ∂r

�
A

r1=2
cosðkrþ αÞ cosð3ωtÞ

�
: ð20Þ

To compute the decay rate, we only include the outgoing
waves of the perturbative field A0

3, which leads to

TðoutÞ
0r ðt; r → ∞Þ ¼ ∂t

�
A

2r1=2
cosðkr − 3ωtþ αÞ

�

× ∂r

�
A

2r1=2
cosðkr − 3ωtþ αÞ

�
: ð21Þ

Averaging over a few temporal oscillations and integrating
over a circle at a large r, the energy decay rate of the oscillon
(energy radiated away in a unit time by the oscillon) in the
leading perturbative approximation is given by

PðωÞ ¼ 2πrhTðoutÞ
0r ðt; r → ∞Þit

¼ 3πωkA2

4
¼ 3πωk

4
½maxðr12A0

3Þ�2; ð22Þ

where the average hi is over time t. Therefore, for each
frequency ω, we can obtain an energy decay rate. In terms
of the energy decay rate, the reason for the existence of
the multiple energy plateaus is because there are multiple
frequencies (the frequencies of the levels identified in the last
subsection) where the decay rate is exponentially sup-
pressed. Having obtained the energy decay rate, one can
then compute the lifespan of an excited oscillon level when it
migrates from a lower frequencyω1 to a higher frequencyω2

by evaluating

τ12 ¼
Z

ω2

ω1

dEðωÞ=dω
PðωÞ dω; ð23Þ

where EðωÞ is the energy of the background solution for a
fixed ω, which can be obtained by integrating Eq. (16) for
various ω. So, if we want to evaluate the lifetime of, say, the
second energy plateau, we should let ω1 < ωsecond < ω2,
where ωsecond is the dominant frequency of the second level.
In this numerical evaluation, it is important to sample the
frequencies close to the plateau frequency such as ωsecond
very finely, as the decay rates at those frequencies are
significantly suppressed, which is precisely the reason to
have excited oscillons at those frequencies. In Fig. 10 we see
that the lifetimes of the excited oscillons computed from this

TABLE I. Comparison between the energy computed with only
Φ0ðrÞ and the energy obtained from nonlinear simulations in the
last subsection. The nth level refers to the nth energy plateau of
the oscillon. The nonlinear energies are only approximate values
because the energy does change slightly over the whole lifespan.
The parameter setup is the same as in Fig. 1.

Fourth level Third level Second level

Perturbative energy 39.67 23.22 11.75
Nonlinear energy ≈39 ≈22 ≈11

FIG. 9. Background profile Φ0ðrÞ for different ω. The param-
eters are the same as those in Fig. 1.
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perturbative approach match those of the previous full
nonlinear simulations rather well.
To estimate the accuracy of the perturbative analysis, we

compare the oscillon frequencies of the second and third
energy levels between the nonlinear simulations and the
perturbation results. The frequency ωp from the perturba-
tive analysis is extracted from the peak of the energy decay
rate, and that of the corresponding simulation ωnl is
obtained by averaging over the duration of the level.
The relative errors between the two are plotted in
Fig. 11 for various g, with the other simulation parameters
being A ¼ 1, a ¼ 81, and σ ¼ 90. Since properly formed
oscillons are insensitive to the initial condition parameters,
it is sufficient to survey the error dependence on g. As
shown in the figure, the relative errors are ≲1% for a
reasonably long-lived oscillon. A larger g corresponds to a
longer-lived oscillon, in which case the perturbative analy-
sis becomes more accurate; we see that the relative error

reaches 0.01% for the lowest nontrivial level when
g ≃ 0.64. When g reaches a threshold lower bound, which
is around g ≃ 0.4, the configuration is too short lived to be
regarded as an oscillon. All in all, as long as a long-lived
oscillon can form, the perturbative method prevails and the
higher orders of Al

n (n > 3) are highly suppressed, having
little influence on the decay of the oscillon.
Last, we would like to point out that the excited spherical

oscillons we study in this paper can be intuitively viewed as
a nodeless background plus a leading multinode perturba-
tion, in terms of the expansion (6). Here, the node does
conform to the usual meaning of a stationary point in the
field’s evolution. This underlies the difference between
the energy density profile of the first plateau and those of
the higher plateaus in Fig. 2. Solutions with a multinode
background also exist, which are closer to the excited
Q-balls studied in Refs. [74–78] and which we have also
explicitly constructed, but the lifespans of these solutions
are much shorter. For example, for the same setup as in
Fig. 1, the solution with a one-node background only exists
for a time duration of less than 400.

IV. MULTIPOLAR OSCILLONS

In the previous section we focused on the oscillons that
are spherically symmetric. We uncovered a tower of excited
spherical oscillons that have higher energies than the most
quasistable oscillon. These excited oscillons have shorter
lifespans as their energies increase, and can naturally
emerge in succession from the evolution of a dense lump
that is initially sufficiently close to these excited oscillons.
In this section, we explore oscillons that are complex in a
complementary direction, i.e., oscillons that are aniso-
tropic. That is, we will see that there exist quasistable
structures in real scalar theories that are multipolar. These
are similar to spinning Q-balls [74,82–92]. One major
difference is that, due to the realness of the scalar field in
the current case, a multipolar oscillon must contain multiple
multipoles, although one multipole can dominate its energy
density. Also, we are unable to find the equivalence of
charge-swapping Q-balls [79–81] in this real scalar case.

A. Dipolar oscillons

In the previous section, it was relatively straightforward
to construct excited spherical oscillons, as they seem to be
strong attractors that can easily arise from the relaxation
of some approximate spherical configurations. This is also
aided by the absorbing boundary condition which in the
spherical case is quite efficient at eliminating the radiation
emitted in the relaxation process. The numerical simula-
tions were then checked to a good approximation by the
semianalytical perturbative analysis. However, our strategy
in this section will be slightly different, as the multipolar
oscillons are less easier to construct. We prepare the initial
configuration of a multipolar oscillon with the perturbative
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method, although it is sufficient to include only the leading
background solution, and then numerically simulate its
evolution fully nonlinearly.
To construct an l0-pole oscillon, we assume that the

background field in Eq. (6) only has the l0th multipole and
does not have terms with l < l0. For a dipolar oscillon,
we have l0 ¼ 1 and the background field is given by

ϕðxÞ ¼ Φ1ðrÞr cosðωt − θÞ þOðAÞ; ð24Þ

which is rotating counterclockwise. We have factored out r
such that Φ1 has ∂rΦ1ðr ¼ 0Þ ¼ 0 as its boundary value at
r ¼ 0. The background field satisfies the following ODE:

∂
2
rΦ1 þ

3

r
∂rΦ1 þ ω2Φ1 ¼ Φ1 −

3

2
r2ðΦ1Þ3 þ

15

8
gr4ðΦ1Þ5:

ð25Þ

The rΦ1 profiles for a few different ω are shown in Fig. 12.
As already anticipated in the factorization of rΦ1, the
background field must vanish linearly in the center for
the dipole. Inputting these background multipole solutions
as the initial conditions in Cartesian simulations, we find
rotating dipolar solutions. Typical time evolutions of the
field values of the field and the energy density are shown in
Fig. 13. We see that the field rotates at the same period as
the field’s dominant oscillation, while the energy density

rotates at half of the period of the field’s dominant
oscillation. The energy density vanishes both in and far
away from the center of the oscillon.
However, we are unable to construct a nonrotating dipolar

oscillon. Nonrotating initial setups would only lead to two
repelling oscillons, as closely placed oscillating lumps in
antiphase repel each other [79]. This is different from a
complex scalar field with a U(1) symmetry, where it is
actually possible to have nonrotating multipolar solutions,
dubbed charge-swapping Q-balls [79]. In that case, due to
the luxury of a complex field that has two real components,
a Q-ball can be roughly thought of as two oscillons for
the two real components, respectively, which gives rise to
dipolar configurations where the dominant oscillons are
actually in phase (for a real scalar, they can only be in
antiphase). This provides attractive forces between the lumps
and allows nonrotating dipolar Q-balls to form.
As perhaps naturally expected, the lifespan of the dipolar

oscillon is less than that of the spherical oscillons, with all
parameters chosen equal; see Fig. 14. Recall that for the
same coupling constant g, we have not seen the most stable
oscillon decay in our simulations and, from Fig. 6, we see
that even the lifespan of the second or third energy level of
the spherical oscillon is significantly longer than that of
the dipolar oscillon. Additionally, the energy of a dipolar
oscillon is slightly higher than the highest-level spherical
oscillon we are able to construct. In Fig. 14 we also see that
what has been constructed is not a perfect dipole, with the
distance between the peak values of the field oscillating
slightly with time, especially in the first half of its
evolution. This is probably partly due to our method of
construction which only makes use of the zeroth-order
approximation with the background field. However, the
dipolar oscillon is not a factorizable solution, so some level
of multipole mixing is expected. The oscillation does
subside in a slow relaxation process. In our simulations,
the dipolar oscillon always ends with two lumps flying
away from each other, as we can see in Fig. 14.
We can also utilize the higher-order perturbative analysis

to estimate the decay rate of the dipolar oscillon, as we did
in Sec. III B. Again, since A2

2 vanishes, the lowest-order
radiation field is A3

3, whose equation of motion is given by
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FIG. 12. Background profile Φ1ðrÞ for different ω. The
coupling is chosen as g ¼ 0.64.
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∂
2
rA3

3 þ
7

r
∂rA3

3 þ ð9ω2 − 1 − B0
0ÞA3

3 ¼
C3
3

r3
þOðA2Þ; ð26Þ

where C3
3ðrÞ and B0

0ðrÞ are defined in Eqs. (9) and (8).
Going through similar steps as in the spherical case, we can
get that the decay rate of the dipolar oscillon is given by

PðωÞ¼ 2πrhTðoutÞ
0r ðt;r→∞;θÞit;θ ¼

3πωk
8

½maxðr12A3
3Þ�2;

ð27Þ

where here the average hi is over the time t and angle θ.
We can compare the decay rates from this perturbative
approach with those computed from the nonlinear simu-
lations, as shown in Fig. 15 for a range of frequencies. This
range of frequencies corresponds exactly to the evolution of
the dipole oscillon in Fig. 14 where the distance between
the peaks is stabilized.
It is also instructive to see the oscillation patterns of the

field at different parts of the dipolar oscillon. In Fig. 16 we
plot the Fourier power spectra of the field at the points
r ¼ 4.9 and r ¼ 81.9. (The dipolar oscillon is nonspheri-
cal, but its profile is spherically symmetric, with the
difference in the different directions being only in the
phase.) We can clearly see that the base frequency
dominates the spectrum near the center of the spinning
oscillon, while it is the third multiple of the base ω that
dominates far away from the center. This justifies the
approximation we use in the perturbative analysis above
using a background field with a base frequency and a
radiation field with three multiples of the base.
We would like to stress that the stability of dipolar

oscillons is rather sensitive to initial conditions. This is

0 2000 4000 6000 8000 10000 12000

t

0

20

40

60

80
E

n
e
rg

y

0

50

100

d
is

ta
n
c
e

FIG. 14. Evolution of the energy and distance between the
dipole peaks for a dipolar oscillon. The dipolar oscillon disinte-
grates into two lumps flying away from each other at its demise.
The parameter choices are the same as those in Fig. 13.
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different from the case of spherical/monopole oscillons,
whose ability to form is insensitive to the initial configu-
rations. Therefore, in order to construct a dipolar oscillon, it
is essential to solve the equation of motion of the back-
ground field (25) accurately and use it as the initial input. In
other words, the “attractor basin” of the dipolar oscillon is
much smaller than the monopolar oscillon. Also, the end
state of a dipolar oscillon is the dissipation of the dipolar
oscillon. For the case of a spherical oscillon, its evolution
can be tracked in the frequency space where the oscillon’s
frequency increases with time until the frequency reaches
the upper limit, which is the mass of the field, and then
the field oscillation is no longer supported, leading to the
oscillon disintegrating via dissipation. However, for the
dipolar oscillon, the end state is when the attraction
between the lumps of the dipole can not support its rotation,
and the two lumps fly away from each other. However, both
processes happen very quickly.

B. Higher-multipole oscillons

It is also possible to construct higher-multipole oscillons
by preparing the initial conditions with the leading back-
ground field solutions. For example, for the case of l0 ¼ 2,
we only need to consider the background

ϕðt; r; θÞ ¼ Φ2ðrÞr2 cosðωt − 2θÞ þOðAÞ; ð28Þ

where Φ2 satisfies the ODE

∂
2
rΦ2 þ

5

r
∂rΦ2 þ ω2Φ2 ¼ Φ2 −

3

2
r4ðΦ2Þ3 þ 15

8
gr8ðΦ2Þ5:

ð29Þ

This ODE again can be solved by a shooting method and,
using it as the initial condition, the initial configuration will
quickly relax to a quadrupolar oscillon, as shown in Fig. 17.
Quadrupoles usually have shorter lifetimes than dipoles.
Taking g ¼ 0.64 as an example, dipoles have lifetimes on
the scale of 104, while quadrupole lifetimes are on the scale
of 103. Similar to the dipoles, for the quadrupoles we have

observed so far, the final decay process is still disintegra-
tion via separation.
The lifetimes of even higher-multipole oscillons are

much shorter. By again preparing them with the back-
ground field method, we find that the sextuple oscillon
(l0 ¼ 3) only lives for a duration of about 102, which is just
dozens of periods of the underlying field oscillations. If we
plot the typical lifetime scales of different multipolar
oscillons, as shown in Fig. 18, we see that the lifetime
scale decreases exponentially with the number of the
multipole (l0). Of course, the lifespans of multipolar
oscillons are expected to depend on the potential, as they
do for the charge-swapping Q-balls [80,81]. While the
above results are quite general in the sense that the
polynomial potential we use is the leading approximation
in the presence of a rapidly converging Taylor expansion,
some other potentials such as the logarithmic effective
potential commonly arising from loop corrections may
lead to excited oscillons with longer lifespans. We leave
exploration of this for future work.
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FIG. 17. Evolution of the quadrupolar oscillon. The top row is the evolution of the ϕ field and the bottom row is the evolution of the
energy density. The rotation period of the ϕ field is denoted as T, while the rotation period of the energy density is T=2, where T ¼ 2π=ω
[see Eq. (28) for the definition of ω]. The coupling is chosen to be g ¼ 0.64.
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V. SUMMARY AND OUTLOOK

In this paper we investigated two types of excited
oscillons. The first type is spherically symmetric oscillons
with higher energies. As its energy increases, such an
excited oscillon has an increasingly lower oscillation
frequency and shorter lifetime than the unexcited one.
They are characterized by increasingly more (approximate)
nodes in their radial profiles. We also preliminarily sur-
veyed the parameter space for their lifetimes numerically.
The lifetimes can also be estimated semianalytically by
approximating the oscillon with a factorizable background
with a fixed frequency plus radiation fields with higher-
multiple frequencies. It is often sufficient to only include
the leading radiation field. One interesting feature is that,
starting from a higher-energy oscillon, it will cascade
through all of the lower-energy phases before the oscillon
dissipates, and the different phases of the oscillon are
connected by rapid bursts of energy radiation.
The existence of these higher-energy spherical oscillons

may also be seen by computing the decay rate of the oscillon,
by which one finds that there are oscillation frequencies
where the rate is exponentially suppressed, leading to these
metastable oscillons. Flipping the argument, the underlying
reason for the existence of the suppressed decay rates is that
there are approximate multinode oscillon solutions to the
equations of motion. The cascading feature of its evolution
might also be expected, as the evolution of the oscillon is
basically a process where the dominant frequency of the
oscillon slowly increases to higher values until reaching the
upper limit when the oscillon quickly disintegrates.
The second type of metastable oscillons we uncovered

are those with higher multipoles. Nonspherical structures
for Q-balls, which are cousins of oscillons, have been
investigated previously. Similar to the unexcited oscillon,
these multipolar oscillons are also not factorizable,
and there are necessarily many multipoles involved.
Nevertheless, typically, one multipole will dominate, mak-
ing the overall behavior similar to a multipolar Q-ball. As
the multipolar oscillons are more sensitive to the initial
conditions than the spherical ones, it is essential that one
prepares the initial configuration by the semianalytical
method so as to numerically construct these oscillons.
The multipolar oscillons we obtained are the counterparts

of the spinningQ-balls [74], in which the field profile rotates
in one direction. However, we were unable to construct the
counterparts of the charge-swapping Q-balls [79]. The
difference again originates from the fact that for oscillons
we have only a single component scalar field compared
with a complex field for Q-balls, so a multipolar oscillon
necessarily has multiple multipoles. For such configurations,
aligning the opposite rotating configurations cannot be
achieved for all of the multipoles simultaneously.
The lifespans of the multipolar oscillons are signifi-

cantly shorter than those spherical excited states. In
particular, for our polynomial model, we only found

reasonably long-lived oscillons up to the sextuple ones in
2þ 1D (l0 ¼ 3, with the multipole number l0 here
referring to the dominant mode), which only live for
tens of oscillations. However, multipolar oscillons may
be obtainable for other potentials such as logarithmic
ones, as we have seen very long-lived charge-swapping
Q-balls in a logarithmic potential [81].
As mentioned in the Introduction, the current cosmo-

logical data indicate that the inflaton potential is very
flat [43], which can lead to an oscillon-dominated epoch
after inflation [52]. The oscillons arise from the fragmenta-
tion of the inflaton condensate in the preheating period,
induced by parametric resonance, which is accompanied by
a stochastic gravitational-wave background [58]. This is a
rather random process, which suggests that the initially
formed oscillons are unlikely to be in the ground state, and
the excited oscillons will go through an energy-cascading
process (or in favorable circumstances higher-multipole
oscillons may form), as depicted here. In the watershed
moments where the energy of the oscillon steps down in the
levels, a burst of energy will be produced. A more interesting
scenario is when oscillons are produced at a lower energy
scale from some preheating-like mechanism, in which case
the gravitational-wave background might be observable by
the gravitational-wave detectors [61]. Indeed, particle phys-
ics models such as supersymmetry accommodate many
scalars with flat potentials, and field condensates can form
thanks to the Hubble expansion [94,95], which gives rise to a
preheating-like process well below the inflation scale. It is
interesting to investigate how the energy cascading of the
oscillons affects the thermal history and gravitational-wave
background around the reheating period and in late cosmic
epochs, which is left for future work.
On a different note, oscillons are a phenomenon that can

be generated in laboratory settings [71–73], in which case it
would be interesting to first observe the energy cascading
and the higher multipoles in laboratories, and then explore
possible applications of these novel nonlinear phenomena.
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APPENDIX A: NUMERICAL CODES

As mentioned, we make use of two separate codes to run
the nonlinear simulations in this paper: a spherical grid code
and a Cartesian code. Both are endowed with absorbing
boundary conditions, as we are interested in the lifetimes of
the oscillons.
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1. Spherical code

For the spherical code, symmetric boundary conditions
are introduced at the origin and absorbing boundary
conditions are introduced in the far field. For our purposes,
it is sufficient to use a grid with radius R ¼ 128, and to
choose the radial step size to be dr ¼ 0.25 and the temporal
step size to be dt ¼ 0.01dr. We use the Runge-Kutta
fourth-order method to evolve it temporally. The
Courant-Friedrichs-Lewy (CFL) factor is chosen to be
relatively small so as to improve convergence, but it is
still at least 2 orders of magnitude faster than the equivalent
Cartesian code.
For the spherical code, the absorbing boundary condition

can be implemented as follows. First, note that the equation
of motion in dþ 1 dimensions in the far field (large r) is
given by

∂
2ϕ

∂t2
−
∂
2ϕ

∂r2
−
d − 1

r
∂ϕ

∂r
þ ϕ ¼ Oðϕ2Þ; ðA1Þ

so the outgoing wave solution with frequency ω is given by
ϕ ≃ exp½ið

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
r − ωtÞ�=rðd−1Þ=2 at large r. For waves

whose frequencies are much greater than 1, it can be
approximated by ϕ ≃ exp½iðωr − 1

2ω r − ωtÞ�=rðd−1Þ=2. Such
outgoing waves are solutions of the differential equation

�
∂t∂r þ ∂

2
t þ

1

2
þ d − 1

2r
∂t

�
ϕ ¼ 0; ðA2Þ

while the ingoing waves are not. Therefore, we can
implement this as the boundary conditions at large r,
which will efficiently absorb outgoing waves whose
frequencies are larger than the mass of the field.

2. Cartesian code

The Cartesian code is used to cross-check with the
spherical code in the study of cascading oscillons and to run
simulations for multipolar oscillons. The code is paral-
lelized in the framework of LATfield2 [96]. The spatial
derivatives in the equation of motion are approximated by
fourth-order finite differences and the time evolution is
performed using the Runge-Kutta fourth-order method. We
make use of Higdon’s absorbing boundary conditions
[97,98] to absorb outgoing waves and reduce unphysical
wave reflections at the boundary. These conditions can
absorb waves with multiple fixed phase velocities com-
pletely and also absorb waves with a broad range of

mismatched phase velocities rather well, provided the
parameters of the fixed phase velocities are chosen judi-
ciously. A second-order Higdon’s condition implemented
at the boundaries in the xi direction is

�
∂
2

∂t2
� ðc1 þ c2Þ

∂

∂xi∂t
þ c1c2

∂
2

∂ðxiÞ2
�
ϕ

����
xi¼a

¼ 0; ðA3Þ

where þð−Þ indicates the condition to be applied at
the upper (lower) xi boundary and a is the location of the
boundary. The cj’s are tunable constants, which should be
chosen to be close to the phase velocities of the far-field
waves. In our case, we simply set c1 ¼ c2 ¼ 1. See Ref. [80]
for more details. For the other numerical setup, the spatial
grid is chosen to have 1024 × 1024 sites and the physical
spacing between adjacent sites is dx ¼ 0.2. The time step is
chosen to be dt ¼ 0.02 to satisfy the CFL condition.

APPENDIX B: DECOUPLING BETWEEN
DIFFERENT SETS OF Al

n MODES

In this appendix, we analyze the structure of the
perturbative equations of motion and separate out the
perturbative modes that are sourced by the background
from those that are decoupled from the background. These
decoupled modes include the Al

n modes with negative l.
Consider a counterclockwise-spinning background field

Φl0 (l0 > 0) supplemented with both positive and negative l
perturbative fields Al

n,

ϕðt; r; θÞ ¼ Φl0ðrÞrl0 cosðωt − l0θÞ
þ

X
n>1;jlj>l0

Al
nðrÞrjlj cosðnωt − lθÞ: ðB1Þ

The perturbation equation of motion takes the following
form:

∂
2
rAl

n þ
2jlj þ 1

r
∂rAl

n þ ðn2ω2 − 1 − B0
0ÞAl

n −
Cl
n

rjlj

¼ 1

2rjlj
X∞
j¼2

Bjl0
j

�
rjlþjl0jAlþjl0

nþj þ rjl−jl0jAl−jl0
n−j

	
; ðB2Þ

where Cl
n and Bl

n are defined by Eqs. (8) and (9),
respectively. Relabeling l as l ¼ nl0 þ k, where k is an
integer with jnl0 þ kj > l0, we can rewrite the above
equation as

∂
2
rA

nl0þk
n þ 2jnl0 þ kj þ 1

r
∂rA

nl0þk
n þ ðn2ω2 − 1 − B0

0ÞAnl0þk
n −

Cnl0þk
n

rjnl0þkj ðB3Þ

¼ 1

2rjnl0þkj
X∞
j¼2

Bjl0
j

�
rjðnþjÞl0þkjAðnþjÞl0þk

nþj þ rjðn−jÞl0þkjAðn−jÞl0þk
n−j

	
: ðB4Þ
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An immediate observation is that the above set of equations
separate into a number of subsets of equations that are
labeled by k, with the subsets decoupled from each other. In
other words, the Anl0þk

n modes with the same k are coupled,
while the Anl0þk

n modes with different k are decoupled from
each other. Also, Cnl0þk

n is nonzero only when k ¼ 0. That
is, all of the Anl0þk

n modes with nonzero k are unsourced;
the Anl0þk

n with the same nonzero k satisfies a system of
unsourced/homogeneous linear ODEs, and therefore these
modes are not excited by our background field Φl0 . These
unsourced modes include the modes where Al

n has l < 0.

APPENDIX C: CONVERGENCE STUDY OF
CASCADING OSCILLONS

In Sec. III we make use of a spherical code to simulate
cascading oscillons, which speeds up exploration of the
parameter space. The spherical code also allows imple-
mentation of more efficient absorbing boundary conditions,
but has the disadvantage of neglecting nonspherical modes,
which may contribute to the decay of the oscillons. The
generic expectation is that for a spherical oscillon the
dominant decay mode is the monopole mode. In this
appendix, we verify that this is indeed the case by
comparing a typical evolution in the spherical simulation
with the corresponding Cartesian simulations.
Figure 19 shows the evolution of a typical cascading

oscillon. We see that the lifetimes of the levels of the
oscillons in the (2þ 1D) Cartesian code converge to that in
the spherical code as the accuracy increases. Quantities
such as lifetimes are more difficult to determine numeri-
cally than quantities that can be measured at one time
instance, as numerical errors can accumulate with time in

the former case. Figure 19 highlights that the accuracy in
the Cartesian code needs to be higher than that in the
spherical code to converge to the actual result. For a
comparison of computing resources needed for the
matched runs in Fig. 19 (the spherical code and the most
accurate Cartesian code), the Cartesian code uses a grid of
1024 × 1024 points and requires more than 200 wall-clock
hours using 16 threads to reach t ¼ 1.4 × 105, while the
spherically symmetric code only needs a 256 × 2 grid and
takes about 3 wall-clock hours using 16 threads to reach
the same physical time, which is the reason we used the
spherical code to perform the parameter space survey. This
justifies the use of the spherical code to analyze the
properties of the spherical oscillons.
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