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General covariant unimodular gravity frameworks, based on the Henneaux-Teitelboim formulation, are,
in disguise, precisely 4-form field theories corrected with higher dimension operators. In the presence of
charged tensional membranes, any de Sitter space in all such theories is unstable and decays. If the fluxes
sourced by membranes are mutually incommensurate, de Sitter geometries comprise a very refined
discretuum of states. Whenever the 4-form sector is dominated by terms linear in flux the almost-
Minkowski space is the unique long-time attractor. As a result, a tiny cosmological constant is natural in all
such frameworks, without appealing to anthropic reasoning.
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I. SYNOPSIS

In this paper we demonstrate that general covariant
unimodular gravity frameworks, which naturally generalize
the Henneaux-Teitelboim formulation [1], are nothing other
than 4-form field theories corrected with higher (and lower)
dimension operators, after they are recasted in canonically
dual variables, analogous to the exchange of coordinates
and momenta in classical mechanics. Specifically, the
general 4-form theories take exactly the form of generalized
unimodular gravity when rewritten in terms of magnetic
4-form variables, as opposed to the more commonly
encountered electric variables.
When the theory is completed with the inclusion of

charged tensional membranes, entailing local gauge
symmetry, any de Sitter space in all such theories is
unstable and decays: de Sitter geometries comprise a
refined discretuum of unstable states, which decay by
nucleation of bubbles bounded by the membranes [2,3].
In the presence of multiple 4-forms and their associated
membrane towers, with at least some of the fluxes sourced
by charges being incommensurate, the de Sitter discretuum
is extremely finely grained, with cosmological constant
values arbitrarily close to zero. Whenever the energy of
the 4-form sector is dominated by leading linear terms in
4-form fluxes, an almost-Minkowski space is the unique
long-time attractor, in the statistical sense: almost-flat
regions greatly outnumber more curved ones [4–6].

As a result, a tiny cosmological constant becomes natural
in all such frameworks, without appealing to anthropic
reasoning. We discuss how this can be employed to address
the cosmological constant problem in our Universe, and
various aspects of cosmology.
In the interest of clarity, let us stress again that our main

new results here are
(1) establishing the 1-to-1 correspondence between

generic 4-form theories and a dynamical generali-
zation of unimodular gravity, which includes
charged membranes which source the fluxes that
screen the cosmological constant; in this vein, we
find that the standard covariantly formulated unim-
odular gravity [1] is interpreted as a Routhian
transform of the 4-form theories; this changes the
perspective on the theory and should affect how the
theory is UV-completed and quantized;

(2) demonstrating that for generic 4-form fluxes, the
presence of at least two systems of membranes that
source incommensurate contributions to the cosmo-
logical constant such that the terms linear in fluxes
dominate over higher powers, the attractor mecha-
nism discovered and elaborated in [4–6] remains
fully operational;

(3) confirming that quantum dynamics statistically
biases the distribution of vacua, dynamically ex-
ponentially favoring Λ → 0þ; other values of Λ are
possible, but dynamically suppressed,1 since the
linear flux terms, when dominant, allow only proc-
esses which have rates ≈ expð−24π2M4

Pl=ΛÞ; this is
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1Although [4–6] focus only on linear flux terms, it was noted
that more general examples will behave in the same manner,
which we show in detail here.
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a loophole around the more traditional approaches to
flux generated landscapes that have nearly uniform
distribution of vacua.

II. WHAT IS GENERAL RELATIVITY?

In 1915, Einstein [7] and Hilbert [8] laid foundations
of general relativity (GR). The former wrote the field
equations governing geometry sourced by stress energy
of dynamical matter. The latter formulated the simplest
action principle that the field equations can be derived
from. Enforcing locality and causality by imposing on the
theory to involve no more than two derivatives, and
encoding local gauge invariance via Bianchi’s identities,
dimensional analysis requires that gravity’s coupling
to matter is a dimensional constant, identified with
Newton’s constant GN ¼ 1=8πM2

Pl, where MPl is Planck
mass. Another dimensional constant Λ arises representing
the energy of the vacuum of the theory, which not only does
not need to be zero, but in quantum theory most likely
cannot be, thanks to the equivalence principle and quantum
uncertainty, as originally noted by Bronstein [9] and
Pauli [10], and formulated in more modern terms by
Zeldovich [11]. Since the engineering dimension of Λ is
four, it is often viewed as a quartic power of a UV cutoff
scale (or some symmetry breaking scale, such as shorthand
for supersymmetry (SUSY) and/or conformal symmetry).
Yet, since it sources gravity via Einstein’s equations, its
effect on the geometry is via inducing a vacuum curvature
H2 ¼ Λ=3M2

Pl. Thus inverting this, Λ can be viewed as a
square of an IR cutoff set by curvature, since at longer
distances the bending of space cannot be ignored.
Since both of these terms are constants it is tempting—

and common—to set them to their observed values from
the get-go, and treat them as given dimensional param-
eters of the theory, in both the field equations and the
action. Yet there is absolutely no à priori argument to
select their numerical values from first principles. On the
contrary, the hugely discrepant scales controlling these
numbers, and additionally their disparity with any of the
known scales in the matter sector, are commonly recog-
nized as the gauge hierarchy and cosmological constant
problems, respectively (see, e.g., [12,13]). However, a
careful examination of quantum field theory (QFT)
coupled to semiclassical gravity, specifically renormali-
zation and UV sensitivity of theory’s operator expansion,
clearly shows that in this limit there is no reason to
expect these numbers to be correlated [14]. Both are UV
sensitive, and, after renormalization, they both depend on
independent finite parts of the bare counterterms added to
cancel divergences. This, along with the naïve idea of
naturalness in effective field theory, suggests that the
cosmological constant problem, which can be loosely
phrased as

�
Λ
M4

Pl

�����
observed

≪ 1 versus

�
Λ
M4

Pl

�����
calculated

≫
�

Λ
M4

Pl

�����
observed

;

which is a “radiative instability”: quantum corrections
want to drive Λ up. Yet, without a UV completion
including gravity, this issue is moot, since in generic
cases renormalization introduces a separate counterterm
for each UV sensitive quantity with totally arbitrary finite
parts.2 Thus in a QFT, ð Λ

M4
Pl
Þjcalculated can be anything.

A generic theory does not fail to fix the counterterms, it
simply is not supposed to. That does not mean that there
is no cosmological constant problem. We will discuss this
subtle issue in more detail in what follows.
From the point of view of “canonical” GR based on

Einstein-Hilbert theory [7,8], this is particularly jarring.
After all, the canonical action does not even seem to
have the degrees of freedom that could accommodate
variation of Λ, and the many attempts to append them to
the theory in the effective field theory framework have
run into the wall of venerable Weinberg’s no-go theorem
[13] (see also [14]). Yet, only a few years after the
paper on formulating GR, Einstein proposed its, perhaps
most minimal, generalization [15], which today is
commonly dubbed unimodular gravity (see, e.g.,
[1,16–23]). In a nutshell, in this approach the cosmo-
logical parameter Λ is viewed as yet another free
parameter of the theory, which solves a field equation,
albeit trivially: ∂μΛ ¼ 0, and hence it is an arbitrary
constant. This follows from gauge invariance of the
theory: the local contributions to the metric determinant
detðgμνÞ are pure gauge, since all local propagating
metric modes cancel out of it. It can be set to any
value by a diffeomorphism, under which detðgμνÞ →
detðg0μνÞ ¼ detðgμνÞ½detð∂x=∂x0Þ�2. In particular one could
choose the gauge detðgμνÞ ¼ 1. This gauge fixes the
diffeomorphism transformations to only those with
j detð∂x=∂x0Þj ¼ 1 (hence the moniker “unimodular”3).
Since it is now fixed, one drops the field equation
obtained by detðgμνÞ variation. This amounts to retaining
only the traceless subset of Einstein’s equations.
However, Bianchi identities, which follow from local
gauge invariance, recover the trace, albeit under
a derivative [13]. The effective theory is split into
9þ 1 field equations,

2Symmetries can correlate them, but an example of such
symmetries that fits our Universe has not been found to date.

3This notion of unimodularity is somewhat of a distraction,
since gauge fixing can be altered at will; the one global gauge
invariant degree of freedom in

R
d4x

ffiffiffi
g

p
is completely unaffected

by it, as we discuss in what follows.

NEMANJA KALOPER PHYS. REV. D 108, 025005 (2023)

025005-2



M2
Pl

�
Rμ

ν −
1

4
Rδμν

�
¼ −

�
Tμ

ν −
1

4
Tδμν

�
;

∂μðM2
PlR − TÞ ¼ 0: ð1Þ

Integrating the last equation, and plugging the result
back into the traceless field equations, yields the
“rearranged” full set of 10 covariant equations valid
in any gauge

M2
Pl

�
Rμ

ν −
1

2
Rδμν

�
¼ −Tμ

ν − Λδμν; ð2Þ

where Λ is the integration constant arising from
∂μðM2

PlR − TÞ ¼ 0 (normalized to dim. 4). Thus the
only distinction between canonical GR with fixed GN
and Λ, and unimodular GR is the complete arbitrari-
ness of Λ in the latter interpretation, which is actually
more aligned with the description of renormalized QFT
dwelling on the background spacetime. The integration
constant Λ is precisely the required QFT counterterm
that subtracts the UV sensitive contribution from QFT
[14]. While this feature motivated some claims that as a
result cosmological constant problem is solved in
unimodular GR, this is manifestly not true [13]. The
physical cosmological constant that bends the spacetime
vacuum j0i is4

Λphys ¼ Λþ 1

4
h0jTμ

μj0i; ð3Þ

and so Λ can indeed be chosen such that Λphys is finite,
but its value, without additional ingredients (see, e.g.,
[14,24,25]), remains indeterminate (see also Sec. VII
of [13]).
This one parameter freedom arises because detðgμνÞ does

depend on a single global gauge invariant degree of
freedom: the spacetime volume Ω4 ¼

R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgμνÞj

p
is

gauge invariant (although often ill defined due to infinities)
[14,22,24,25]. Nevertheless, its Legendre dual is precisely
Λ, which can be treated as a regulated, gauge invariant,
global degree of freedom, of so-generalized GR.
Formulating the correct gauge invariant action principle

for unimodular gravity, however, took a while. Gauge-
fixing g ¼ detðgμνÞ ¼ 1 via a Lagrange multiplier in
Einstein-Hilbert action,

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT

�
− Λð ffiffiffi

g
p

− 1Þ
�
; ð4Þ

and treating Λ as a global variable (set to a constant to
satisfy Bianchi identities) reproduces (1) at the classical

level. However, the very last term violates gauge symmetry
(i.e., diffeomorphism invariance) and so, by itself, it
could compromise the gauge symmetry that enforces
Λ ¼ const in full quantum theory. However the manifestly
covariant formulation given by Henneaux and Teitelboim
in [1] precludes any such concerns. With our normaliza-
tions, the covariant unimodular action of Henneaux and
Teitelboim is5

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − Λ

�

þ 1

3M2
Pl

ϵμνλσð∂μΛÞAνλσ

�
: ð5Þ

HereAνλσ is an auxiliary 3-form gauge potential that serves
as a Lagrange multiplier. Variation of this action with
respect to the metric yields the standard GR equations with
a “free function” Λ, which is constrained to a constant by
the field equation ∂μΛ ¼ 0 arising from Aνλσ variation.
Finally, variation with respect to Λ itself yields a “specta-
tor” equation ϵμνλσ∂μAνλσ ¼ −3M2

Pl
ffiffiffi
g

p
. If we introduce a

“spectator” 4-form F μνλσ ¼ 4∂½μAνλσ� (where ½…� denotes
antisymmetrization), then we can invert this equation

to F μνλσ ¼ M2
Pl
2

ffiffiffi
g

p
ϵμνλσ .

Note, that this 4-form flux does not gravitate directly
since it is completely decoupled from the metric. Yet, it
points to an interesting link between unimodular gravity
and theories with 4-forms, already noted in Sec. VII of [13],
but otherwise being an apparently as yet untold story. We
will unveil this link in detail in the next section, after we
give a straightforward generalization of the Henneaux-
Teitelboim action (5). But first, let us remark that it has
been proven that the action (5), which is clearly classically
identical to conventional GR in every respect except that Λ
is an arbitrary integration constant, preserves this identity in
quantum theory, both in the semiclassical limit [21] and in
the loop expansion as a QFT [22,23].
To conclude this section, we first slightly rewrite (5) by

redefining Λ ¼ M2
Plλ; the action becomes

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R −M2

Plλ − LQFT

�

þ 1

3
ϵμνλσð∂μλÞAνλσ

�
: ð6Þ

One can readily verify that this action is identical to a subset
of actions recently discussed in [4–6], in connection to the
cosmological constant relaxation toward zero (neglecting
for the moment the boundary terms in the actions in [4–6]).

4The vacuum expectation h0jTμ
μj0i projects Tμ

μ to only its
constant part.

5In [1], the authors mostly use the vector Hodge dual to the 3-
form potential, Aμνλ ¼ ffiffiffi

g
p

ϵμνλσT σ , but they do identify the dual
relationship explicitly in their Eqs. (23)–(26).
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Now, viewing λ as the independent variable, it immediately
leaps to the eye that the “bulk” term M2

Plλ could be viewed
as a truncation of some more general “Lagrangian” LðλÞ to
the leading term in Taylor expansion. Indeed, if one is to
compute the cosmological constant contributions from LQFT

using some regulator μ, one will find that the loop expansion
yields ΛQFT ¼ c0μ4 þ c1μ2m2 þ c2m4 þ c3m6=μ2 þ � � �,
up to logarithms of the regulator μ, where m is the mass
describing local QFT degrees of freedom. In this instance,
one can take μ ¼ MPl in order to include graviton loops as
well as those from the QFT.
It is thus only natural to generalize (5) to

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LðλÞ − LQFT

�

þ 1

3
ϵμνλσð∂μλÞAνλσ

�
; ð7Þ

where6

LðλÞ ¼ M4
Pl

�
c1

λ

M2
Pl

þ 2c2
λ2

M4
Pl

þ 4c3
λ3

M6
Pl

þ…

�
: ð8Þ

At the classical level and without charges, however, this
generalization is trivial, since it is merely replacing the
integration constant M2

Plλ by a more general function LðλÞ
in the gravitational field equations, which can be undone
with a field redefinition.7 However, when we transition to
the dual variables and add charged discrete degrees of
freedom that can change λ, the real purpose of this
generalization will become manifest. We now turn to these
issues.

III. UNIMODULAR GRAVITY
IN DUAL VARIABLES

To illustrate the dualization procedure, let us consider
a simple harmonic oscillator, with the Hamiltonian
H ¼ p2=2þ q2=2. Clearly, p and q are canonical varia-
bles, whose Hamilton’s equations are _q ¼ ∂pH ¼ p and
_p ¼ −∂qH ¼ −q. The equivalent second order equation
is q̈þ q ¼ 0. However, consider now the change of
variables P ¼ q;Q ¼ −p. In terms of those variables,
the Hamiltonian is H ¼ P2=2þQ2=2, and the equations
of motion retain the same structure as before: _Q ¼ ∂PH,
_P ¼ −∂QH. Indeed, as is well known, the symplectic
transformations of generalized coordinates are dynamical
symmetries and, in our example, comprise a canonical
transformation of the theory. Either set of variables is as

good a description, since no information about the dynam-
ics is neither “lost” nor “found.” The only question is,
which of the variables is more convenient to address a
specific application of the theory.
The same is true for other dynamical structures. Given a

dynamical system with its set of generalized coordinates
and momenta, we are free to rename and reshuffle variables
at will provided that we preserve the canonical structure of
the theory—i.e., that the transformations are canonical in
the sense of Hamiltonian mechanics. We are particularly
interested in applying such transformations to the theories
involving 4-forms, which have a long history in the pursuit
of mechanisms to address the cosmological constant
problem [2,3,26–40]. We look below at a few examples
and eventually at the general case.

A. Quadratic 4-form

A most common example encountered in the past works
is a theory given by the bulk action

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R − LQFT −

1

48
F 2

μνλσ

�
; ð9Þ

where F μνλσ ¼ 4∂½μAνλσ� for some 3-form A, ignoring for
the moment the membranes charged under A. Rather than
discussing the field equations, we cut to the chase and
dualize this theory using the standard techniques explained
in, e.g., [40–43]. That trick will make the connection of (9)
to unimodular gravity quickly and clearly. The idea is to
reformulate (9) as a first-order theory, by adding the
Lagrangian constraint 1

12
λϵμνλσðF μνλσ − 4∂μAνλσÞ, and then

integrating out F . This is most simply illustrated with the
path integral

Z ¼
Z

…½DA�½DF �½Dλ�eiSþ2i
R

λðF−dAÞ…; ð10Þ

where the total action is (with a boundary term to be added
below)

Stotal ¼ Sþ 2

Z
λðF − dAÞ;

¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT −

1

48
F 2

μνλσ

�

þ 1

12
λϵμνλσðF μνλσ − 4∂μAνλσÞ

�
: ð11Þ

Defining a new independent degree of freedom

F̃ μνλσ ¼ F μνλσ − 2λ
ffiffiffi
g

p
ϵμνλσ; ð12Þ

and recalling that the translation of variables as in (12) do
not change the path integral measure since the functional
Jacobian is unity, we rewrite the action (sans the subscript),

6We ignore c0M4
Pl in the expansion since that term can be

absorbed away by a finite renormalization of ΛQFT. Normalizing
powers of 2 are for later convenience.

7To be discussed in more detail shortly.

NEMANJA KALOPER PHYS. REV. D 108, 025005 (2023)

025005-4



S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − 2λ2 −

1

4
F̃ 2

μνλσ

�

−
1

3
λϵμνλσ∂μAνλσ

�
: ð13Þ

Since F̃ does not appear anywhere else, the integration
over it yields a factorizable Gaussian normalization factor,

Z ¼
Z

…½DF̃ �…e…þi
R

d4x
ffiffi
g

p ð− 1
48
F̃ 2

μνλσÞ…; ð14Þ

which can be dropped. Then adding the boundary
term for the 4-form sector, required by intrinsic con-
sistency of the variational principle [32,41], which is justR

1
3
ϵμνλσ∂μðλAνλσÞ, our action, in terms of the new dual

variable λ, becomes

S¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R−LQFT− 2λ2Þþ 1

3
ϵμνλσ∂μðλÞAνλσ

�
:

ð15Þ

Note that the signs came up as they do due to ϵμνλσϵ
μνλσ ¼

−4! in Lorentzian signature.
This is precisely the action (7) with LðλÞ ¼ 2λ2. The

actual normalizing factor of λ2 does not matter when we
ignore the membranes charged under A, since it can be set
to an arbitrary value by rescaling λ and A (with charges
present, this involves a finite rescaling of charges as well).
However, the important point is that the bulk 4-form
theory is nothing other than a variant of unimodular gravity
without charges. It has been noticed by Weinberg that
4-form flux energy behaves like a unimodular gravity
cosmological counterterm (see Sec. VII of [10]), but in
fact we will argue here that this connection is more than just
an analogy. The precise map linking these pictures is that a
theory with 4-forms and tensional membranes becomes
a unimodular gravity in the decoupling limit, when the
membrane tension is taken to infinity.

B. Linear+quadratic

It is obvious that these statements are true for more
general examples of LðλÞ, or in other words for actions that
include a variety of powers of Fμνλσ. The dualization
procedure is more complicated, but it amounts to perform-
ing a dual transformation F ↔ �λ, and replacing L̂ðF Þ by
its Legendre transform LðλÞ [35,40,44]. As an illustration,
let us first dualize

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT −

1

48
F 2

μνλσ

�

−
α

24
ϵμνλσF μνλσ

�
: ð16Þ

Such a combination of 4-form terms can be found in, e.g.,
[26]. Here, α is a fixed 4-form theory coupling parameter
that can be induced by nontrivial CP-breaking effects [26].
Following the same steps as outlined above (and adding the
boundary term

R
1
3
ϵμνλσ∂μðλAνλσÞ to (16))

S ¼
Z � ffiffiffi

g
p �

M2
Pl

2
R − LQFT −

1

48
F 2

μνλσ

�
−

α

24
ϵμνλσF μνλσ

þ 1

12
λϵμνλσF μνλσ þ

1

3
ϵμνλσ∂μðλÞAνλσÞ

�
: ð17Þ

Defining a new variable F̃ μνλσ ¼ F μνλσ − ð2λ − αÞ ffiffiffi
g

p
ϵμνλσ

and integrating out F̃ , after a straightforward algebra we
find

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − 2

�
λ −

α

2

�
2
�

þ 1

3
ϵμνλσ∂μðλÞAνλσ

�
: ð18Þ

Note that LðλÞ ¼ 2ðλ − α
2
Þ2 is precisely the Legendre

transform of L̂ðF Þ ¼ 1
48
F 2

μνλσ þ α
24
ffiffi
g

p ϵμνλσF μνλσ. Indeed,

defining the variable8 F ¼ 2ð 1
4!
ffiffi
g

p ϵμνλσF μνλσÞ and using

the identity F 2
μνλσ ¼ −3!F 2, it follows that λ and F are

related by

λ≡ ∂L̂ðF Þ
∂F

¼ −
F
4
þ 1

2
α; ð19Þ

and solving it to eliminate F ¼ 2ðα − 2λÞ, we find the
Legendre transform of LðF Þ to be

LðλÞ ¼ L̂ðF Þ − λF ≡ 2

�
λ −

α

2

�
2

: ð20Þ

C. General unimodular case: Multiple powers
of the 4-form

The same procedure works for a general L̂ðF Þ. In
Eq. (17), all we do is replace 1

48
F 2

μνλσ þ α
24
ffiffi
g

p ϵμνλσF μνλσ

with L̂ðF Þ, and define the variable F̃ μνλσ ¼ F μνλσ −
2λ

ffiffiffi
g

p
ϵμνλσ which is guaranteed to gather all the F -

dependent pieces (and produce the leftover ∝ λ terms),
which can then be integrated out in the path integral. What
remains is the dual action for the new variable λ, which
will take the form of (18), with 2ðλ − α

2
Þ2 replaced by the

8This shows that the odd powers of F in the action may
be viewed as integrals over an alternative measure F ¼
1
4!
F μνλσdxμdxνdxλdxσ , as opposed to

ffiffiffi
g

p
d4x, as noted in [4,5]

and also in, e.g., [17,45–47].
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Legendre transform of L̂ðF Þ: defining the variable F ¼
2ð 1

4!
ffiffi
g

p ϵμνλσF μνλσÞ, one can show that

λ≡ ∂L̂ðF Þ
∂F

; LðλÞ ¼ L̂ðF Þ − λF : ð21Þ

Thus the magnetic dual representation of any 4-form theory
is precisely the general form of unimodular gravity action
introduced in the previous section. We repeat it here for
clarity:

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − LðλÞ

�

þ 1

3
ϵμνλσ∂μðλÞAνλσ

�
: ð22Þ

Obviously, this procedure is in general invertible, and so
starting with the theory (22), we can rewrite it as a theory of
a 4-form

S ¼
Z � ffiffiffi

g
p �

M2
Pl

2
R − LQFT − L̂ðF Þ

�
þ 1

12
λϵμνλσðF μνλσ

− 4∂μAνλσÞ þ
1

3
ϵμνλσ∂μðλAνλσÞ

�
: ð23Þ

We stress again, that despite appearances (22) and (23)
represent the same theory. Note also that in all cases of
interest to us we have assumed that the bulk action only
depended on F ¼ dA, which means that A is the field
theory analogue of cyclic coordinates in mechanics. This
means that our procedure of trading the “conserved”
quantity F for its “integral of motion” λ is really the
procedure of replacing the Lagrangian L̂ðF Þ by the
Routhian LðλÞ.

D. Linear limit

Before proceeding with adding the charged membranes
to (22), (23), let us briefly discuss the special limit when L
is a linear function of λ—i.e., precisely the Henneaux-
Teitelboim example, which was augmented with charged
tensional membranes in [6]. It is immediately clear that the
Legendre transformation (21) breaks down in this case: if,
e.g., L̂ðF Þ ¼ cF , λ ¼ c and LðλÞ≡ 0. In turn, this is not
surprising at all since, as is well known, Legendre trans-
formation establishes a relation between a family of
tangents to a curve that is the envelope of this family of
straight lines. When the curve is a straight line, it has a fixed
tangent—i.e., itself—which is its own envelope. This
shows that the linear example is a degenerate limit of
the general case. To see it, we can start with a general L̂ðF Þ
and truncate it for simplicity to only quadratic terms,

L̂ðF Þ ¼ α

2
F −

c
8
F 2 þ…: ð24Þ

The Legendre transform rules (21) yield

λ ¼ α

2
−
c
4
F þ…; LðλÞ ¼ 2

c

�
λ −

α

2

�
2

þ…: ð25Þ

In the first equation of (25), the ð…Þ terms depend on
higher powers of c, while in the second, the ð…Þ terms
depend on higher powers of 1=c. Clearly, the limit c → 0,
which reduces (24) to a linear term only is singular.
Yet note that without charges a field redefinition exists

(as remarked earlier),

λ̃ ¼ LðλÞ; Ãνλσ ¼
1

∂λLðλÞ
Aνλσ; ð26Þ

which completely removes the nonlinearities, since the
functional Jacobian of this redefinition is unity,

J ¼ det
∂ðλ̃; ÃνλσÞ
∂ðλ;AνλσÞ

¼ det

 
∂λLðλÞ 0

− Aνλσ

∂
2
λLðλÞ

1
∂λLðλÞ

!
¼ 1: ð27Þ

Although this shows that the singularity c → 0 can
be sidestepped, it also points that the procedure is non-
commutative since, if we took the limit c → 0 before
dualizing, it would be unclear how to trade variables. This
is because the steps involve formally divergent contribu-
tions to the cosmological constant which should be
regulated and subtracted away. This problem was circum-
vented in [4–6] by promoting M2

Pl into a flux of a second
4-form and dualizing the theory using bilinear terms.
Note however that when charged membranes are

included, they obstruct the field redefinition (26), because
the couplings change.9 Hence with membranes included,
purely linear theory and higher power theories are physi-
cally distinct. In any case, in what follows we will mostly
work with the quadratic truncation of L, which is practi-
cally indistinguishable for our purposes whenever the linear
term dominates.

IV. CHARGING UP

So far we have been working with unimodular gravity/
4-form theory without charged membranes. However, a
theory of 4-forms is a gauge theory, describing dynamics of
membranes charged under A. What is more, the “brane-
less” theory of 4-forms, in addition to usual local gauge
symmetries A → Aþ dω also has generalized global
3-form symmetry, associated with the “current conserva-
tion” d�F ¼ 0 [48]. The lore that QG does not permit

9Analogously to the change of basis from interaction to
propagation eisgenstates in the theory of flavor oscillations.
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global symmetries [49,50] (see also [51] for a review) is
simply incorporated by breaking the generalized global
symmetry by adding objects charged under A—the mem-
branes, precisely. For our purposes, in the semiclassical
limit, this means that we should enhance (22), (23) with the
inclusion of membrane contributions and boundary terms
required to properly provide junction conditions across the
membrane walls. Working with the λ variables for con-
venience, the action becomes

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R − LQFT − LðλÞ

�

þ 1

3
ϵμνλσ∂μðλÞAνλσ

�
−
Z

d3ξ
ffiffiffi
γ

p
M2

Pl½K�

− T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A; ð28Þ

where T A and QA are the membrane tension and charge,
respectively, the term ∝ K is the Israel-Gibbons-Hawking
term for gravity which encodes boundary conditions across
membrane walls, and ½…� is the jump across a membrane.
The coordinates ξ are coordinates along membrane world
volume, embedding it in spacetime. The charge terms are

Z
A ¼ 1

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ: ð29Þ

As is customary, T A > 0 to avoid problems with negative
energies.
Classically, membranes can be added to the spacetime as

sources of the gauge fields. Their number is fixed, and the
location can change by their interactions among themselves
and also with other sources of gravitational fields. Quantum
mechanically, however, the membranes can nucleate in
background fields [2,3]. Such processes change the dis-
tribution of sources and their number, and lead to nontrivial
transitions in the background geometry. The classical
“superselection sectors” (with a fixed number of mem-
branes) now all mix up.
This induces the evolution in the space of geometries due

to the variation of λ. In particular, such transitions change
the local value of the cosmological “constant,” which
unlike in chargeless unimodular gravity is not a constant
anymore. It can change discretely by quantum creation of
membranes. Thus, if we start with a given de Sitter space
with an initial value of cosmological constant, it will evolve
by membrane production into a geometry that is locally de
Sitter, but where the cosmological constant varies from
bubble to bubble. This will look like the original “old
inflation” of Guth [52], but with a huge number of
discretely separated false vacua.
We have initiated a study of those phenomena in [4–6]

for the special case of linear LðλÞ ¼ M2
Plλ. Here, we will

redo this analysis for the general case, and extract the

salient features of such “unimodular,” or pancosmic,
landscapes.

V. DE SITTER INSTABILITY

The quantum membrane discharge in the semiclassical
limit can be described by the action (28) in Euclidean time.
This action controls the nucleation processes and sets their
rates, Γ ∼ e−SE [53–55]. Here we follow the same steps as
in [4–6]: first, we Wick rotate the action using t ¼ −ix0E,
which gives −i

R
d4x

ffiffiffi
g

p
LQFT ¼ −

R
d4xE

ffiffiffi
g

p
LE
QFT. Next,

with the convention A0jk ¼AE
0jk, Ajkl ¼ AE

jkl we get

F μνλσ ¼FE
μνλσ. In addition ϵ0ijk ¼ ϵE0ijk and ϵ0ijk ¼−ϵ0ijkE .

The tension and charge terms transform to−iT A

R
d3ξ

ffiffiffi
γ

p ¼
−T A

R
d3ξE

ffiffiffi
γ

p
and iQA

R
Ai ¼ −QA

R
Ai. The scalars do

not change (but if they include time derivatives, those terms
change accordingly). We define Euclidean action by
iS ¼ −SE. Our Euclidean action is

SE ¼
Z

d4xE

� ffiffiffi
g

p �
−
M2

Pl

2
REþLðλÞþΛQFT

�

þ 1

3
ϵμνλσE ∂μðλÞAE

νλσ þ
Z

d3ξ
ffiffiffi
γ

p
M2

Pl½KE�

þT A

Z
d3ξE

ffiffiffi
γ

p
A−

QA

6

Z
d3ξEAE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE :

ð30Þ

From here on we drop the index E.
We then restrict our attention to “vacuum evolution”: we

only consider transitions between locally maximally sym-
metric backgrounds. Those have local Oð4Þ symmetry
and so dominate in semiclassical limit since they have
minimal Euclidean action [53–55]. Therefore we set
hLE

QFTi ¼ ΛQFT, with ΛQFT the regulated matter sector
vacuum energy to an arbitrary loop order. We can further
imagine that the divergent parts in the limit where regulator
decouples are subtracted away by the counterterm LðλÞ,
whose finite part is still completely arbitrary. From the
QFT/gravity couplings, we infer, as before [4–6], that
ΛQFT ¼ M4

UV þ…≡M2
PlλQFT, where M4

UV is the QFT
UV cutoff and ellipsis denote subleading terms [56,57].
This means that we can write the total cosmological
constant in any patch as

Λtotal ¼ ΛQFT þ LðλÞ ¼ M2
PlλQFT þ LðλÞ; ð31Þ

where λ can vary from patch to patch across mem-
brane walls.
The transitions induced by nucleations of a single

membrane, which are dominant channels here, can be
approximated by geometries with Λtotal out=in glued
together along a membrane, where the subscripts out/in
denote parent and offspring geometries (exterior and
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interior of a membrane, respectively). Both of the out/in
geometries are described with the metrics

ds2E ¼ dr2 þ a2ðrÞdΩ3; ð32Þ

where dΩ3 is the line element on a unit S3. The Euclidean
scale factor a is the solution of the Euclidean “Friedmann
equation,”

3M2
Pl

��
a0

a

�
2

−
1

a2

�
¼ −Λtotal; ð33Þ

which follows because the bulk metric-dependent part of
(30) is structurally the same as in standard general
relativity. The prime designates an r derivative. From here
on, we will drop the subscript “total.”
To construct these geometries, we need to assemble

together two patches, each with a local metrics given
by (32) but with different Λ, and then use the junction
conditions to connect the patches. The boundary conditions
induced on a membrane follow from (30) by varying with
respect to A. Similarly, the boundary conditions on the
metric follow from Israel-Gibbon-Hawking junction con-
ditions. Summarizing [4–6],

aout ¼ ain; λout − λin ¼
QA

2
;

M2
Pl

�
a0out
a

−
a0in
a

�
¼ −

T A

2
; ð34Þ

in the coordinate system where the outward membrane
normal vector is oriented in the direction of the radial
coordinate; r measures the distance in this direction. The
discontinuities in λ and a0 follow since a membrane is a
Dirac δ-function source of charge and tension.

The next step is to solve (33) for a0 ¼ ζj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa2

3M2
Pl

q
, with

ζj ¼ �1 designating the two possible branches of the
square root, and rewrite the discontinuous junction con-
ditions in a more convenient form, as in [4–6]. Using
a02out − a02in ¼ −a2ðΛout − ΛinÞ=3M2

Pl, which follows from
(33), and the last equation of (34), we can extract an
equation for a0out þ a0in. Then, adding and subtracting those
two equations, we solve for a0out=in. Finally, we solve for
a0out=in from (33) to obtain

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s
¼ −

T A

4M2
Pl

�
1 −

4M2
Pl

3T 2
A

ðΛout − ΛinÞ
�
a;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s
¼ T A

4M2
Pl

�
1þ 4M2

Pl

3T 2
A

ðΛout − ΛinÞ
�
a: ð35Þ

Here ζi ¼ � can be viewed as discrete conserved charges.
They pick one of two possible branches of the square root

of ða0aÞ2 − 1
a2 ¼ −Λ=3M2

Pl. The configurations that result
from gluing together sections of exterior and interior
metrics (32) are therefore counted by the variations of
the sign of Λ and the branches of solutions (ζj ¼ �1)
of Euclidean Friedmann equation (33). The taxonomy of
allowed solutions is presented in detail in [4–6], and
follows the steps described by [2,3]. Here we focus on
the novel ingredients that follow from the generalized
theory (28).
The main new ingredient is that from (31), Λout −

Λin ¼ LðλoutÞ − LðλinÞ. Combining this with our last
remaining junction condition from (34), λout − λin ¼ QA

2
,

yields

Λout − Λin ¼ LðλoutÞ − L
�
λout −

QA

2

�
: ð36Þ

This equation has important consequences. To see this,
first off, we can check that, in the linear limit, L ¼ M2

Plλ,

this yields Λout − Λin ¼ M2
PlQA

2
. Plugging this into Eqs. (35)

precisely reproduces the formulas found in [4–6], since the
right-hand side (rhs) of (35) becomes ∓ T A

4M2
Pl
ð1∓ qÞ,

where q ¼ 2M4
PlQA

3T 2
A
.

When L is quadratic, L ¼ 2λ2, we obtain10

Λout − Λin ≃ 4λΔλ ¼ 2λQA, and so the terms control-
ling the boundary conditions (35) on the rhs are

≃∓ T A

4M2
Pl
ð1∓ 8M2

PlλQA

3T 2
A

Þ. This is precisely the behavior found
in [2,3], and later also encountered in, e.g., [36]. The
implications for the dynamics are crucial, since these
terms control the selection rules that allow or prohibit a
specific type of instanton that mediates transitions of initial
de Sitter.
In the linear case, the point is that for jqj < 1 the

only allowed instantons are those where the rhs has a
fixed sign: (−) in the first and (þ) in the second equation.
Since T A > 0, this uniquely fixes the signs of ζout=in:
ζout ¼ −1; ζin ¼ þ1. Thus only instantons that have
ðζout; ζinÞ ¼ ð−;þÞ are allowed. Specifically, for the tran-
sitions of de Sitter to de Sitter, completely independently of
the initial and final value of cosmological constant, there is
a unique allowed process, described by the instanton in
Fig. 1; all other possibilities are prohibited.11

In contrast, in the quadratic case, the boundary condition

depends on ð1∓ 8M2
PlλQA

3T 2
A

Þ and therefore on the parent value
of the 4-form flux λ ¼ −ð 1

48
ffiffi
g

p ϵμνλσF μνλσÞ. This means that,

for a fixedQA, when the fluxF is small the signs on the rhs
will again uniquely fix ζout; ζin, allowing only the instanton
of Fig. 1. However, for large flux, which is generically

10For a small QA, the difference between λout=in is much
smaller than either one, and we can ignore the subscript here.

11There is only one more process, whereby dS → AdS [4,5].
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required to screen a large QFT contribution to cosmological
constant ΛQFT [36], the situation is reversed: the instanton
of Fig. 1 is disallowed, since the large F limit corresponds
to jqj > 1. Instead, only ðζout; ζinÞ ¼ ðþ;þÞ or ð−;−Þ can
occur. The dominant instanton in this case is given in Fig. 2.
The reason this instanton dominates follows from the
membrane nucleation rates, Γ ∼ e−Sbounce [53–55]. To com-
pute them, we need the bounce action, which is defined by
SðbounceÞ ¼ SðinstantonÞ − SðparentÞ. A precise
calculation then yields [2–5]

Sðbounce; aÞ ¼ 2π2a3T A − 2π2

 
Λin

Z
a

North Pole
da
�
a3

a0

�
in
þ 3M2

Pla
2ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s !

þ 2π2

 
Λout

Z
a

North Pole
da

�
a3

a0

�
out

þ 3M2
Pla

2ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s !
: ð37Þ

In this formula, the “outside” contributions to the integrals
coming from the parent geometry completely cancel
between the instanton and the “parent reference” actions.
The only contributions from the parent come from the
complement of the outside geometry of the instantons
[2,3,53]. In the ðþ;þÞ instanton, this means that the parent
contributions to the bounce action are small, comparable in
size to the “offspring” contribution. As a result, the integral
is dominated by the area surrounding the membrane, since
the contributions from the polar regions are small. This is in
contrast to the ð−;þÞ instanton of Fig. 1, where the
complement of the parent section of the instanton geometry
is most of the initial de Sitter, and so the bounce action will
be dominated by the Euclidean–de Sitter parent area—i.e.,
precisely the Gibbons-Hawking action, as we will show in
detail below.
Whenever the ðþ;þÞ instanton dominates, asΛ becomes

smaller, the action for the ðþ;þÞ instantons converges to
(see [2–5,53–55] and many other papers)

Sbounce ≃
27π2

2

T 4
A

ðΔΛÞ3 : ð38Þ

Hence, the decay rate saturates as the cosmological con-
stant decreases and, as a result, while any initial de Sitter
space will steadily evolve towards lower cosmological
constant values (easily reaching Λ < 0), all values of Λ
will be approximately equally likely, and, below some
critical value, very long lived. It thus seems that as long as
these instantons dominate, the only way to argue that the
terminal cosmological constant induced by transitions is
small and nonnegative is to invoke anthropics. This is the
reason we think the alternative framework where the only
allowed instanton is ð−;þÞ of (1) is preferred.

This conclusion remains valid for more general cases,
when L includes more powers of λ as in the Taylor series
(8),LðλÞ ¼ c1M2

Plλþ 2c2λ2 þ 4c3 λ3

M2
Pl
þ � � �. The equations

look more involved, but the physical outcome is similar to
the two simple limits above: generically, for small fluxes
the instanton (1) is the only one allowed, whereas for large
fluxes the instanton (2) dominates. This means, that in the
absence of the linear term, all theories with higher powers
of 4-form flux behave like pure F 2. However, when the
linear term is present, it dominates for all sub-Planckian
fluxes F=M2

Pl < 1 [assuming c1 ∼Oð1Þ]. The simplest
case L ¼ c1M2

Plλþ 2c2M2
Plλ

2, which we elaborated upon
above, serves as a clear example. Since Λout − Λin ¼
c1
2
M4

PlQA þ 2c2M2
PlλQA þOðQ2

AÞ, the junction condi-
tions (35) to leading order become

FIG. 2. A large flux instanton mediating dS → dS.

FIG. 1. A jqj < 1 instanton mediating dS → dS.
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ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s
¼ −

T A

4M2
Pl

�
1 −

2M4
PlQA

3T 2
A

×

�
c1 þ 4c2

λ

M2
Pl

��
a;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s
¼ T A

4M2
Pl

�
1þ 2M4

PlQA

3T 2
A

×

�
c1 þ 4c2

λ

M2
Pl

��
a: ð39Þ

Hence whenever c2 ∼ c1 and the flux is sub-Planckian,
λ < M2

Pl, the flux contribution to the junction conditions
(39) is subleading. Ergo, the large sub-Planckian fluxes
might only influence the nonperturbative physics selection
rules initially, at scales close to MPl, but their influence
quickly wanes. In natural theories where it is not prohib-
ited, the linear term does all the driving.
This persists for general L. After a straightforward

manipulation, one finds to linear order in Δλ

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s
¼ −

T A

4M2
Pl

�
1 −

2QA

3T 2
A

∂LðλÞ
∂ðλ=M2

PlÞ
�
a;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s
¼ T A

4M2
Pl

�
1þ 2QA

3T 2
A

∂LðλÞ
∂ðλ=M2

PlÞ
�
a: ð40Þ

This means that as long as

jQj < 1; Q ¼ 2QA

3T 2
A

∂LðλÞ
∂ðλ=M2

PlÞ
; ð41Þ

the only instantons that can facilitate dS → dS transitions
(in the limit Δλ=λ ≪ 1) are those of Fig. 1. This equation
generalizes jqj < 1 and is always satisfied when the linear
term dominates12 L.
From here on, for simplicity we will assume that (41)

holds and approximate L by the linear term. To proceed, we
can solve Eqs. (35) for a2:

1

a2
¼ Λout

3M2
Pl

þ
�

T A

4M2
Pl

�
2

ð1 −QÞ2

¼ Λin

3M2
Pl

þ
�

T A

4M2
Pl

�
2

ð1þQÞ2: ð42Þ

As noted in [4–6], using this we discern two regimes of
membrane nucleations. When a2 is comparable to de Sitter

radii, from Eq. (42), a2 ∼ ð1 − Λja2

3M2
Pl
Þ1=2 ≪ 1 and so the

bounce action is approximately

Sbounce ≃ −
12π2M4

PlΔΛ
ΛoutΛin

: ð43Þ

In this regime the transitions are fast because Sbounce < 0.
The reverse processes increasing Λ are suppressed because
their bounce action is the sign reversed (43) and so they are
rarer. Every once in a while de Sitter space is given a push
up. But mostly it decays to flatter space, decreasing Λ.
This lasts as long as Λout ≫ 3M2

Plð T A

4M2
Pl
Þ2.

Once Λ decreases to Λ≲ 3M2
Plð T A

4M2
Pl
Þ2, the discharge

nucleations proceed via production of small bubbles, which
have the bounce action [5]

Sbounce ≃
24π2M4

Pl

Λout

�
1 −

8

3

M2
PlΛout

T 2
A

�
; ð44Þ

and Sbounce > 0 because Λ < 3M2
Plð T A

4M2
Pl
Þ2. This action is

remarkable: as Λout → 0 the action diverges. Perhaps this is
not entirely surprising: as Λ decreases the geometric

entropy SGH ≃ 24π2M4
Pl

Λout
grows, and the ensuing “chaos”

takes over. The decay towards Minkowski then simply
looks like the enforcement of the second law of thermo-
dynamics. As a result the bubbling rate Γ ∼ e−Sbounce has an
essential singularity atΛout → 0, where the rate goes to zero
[4–6]. Hence when jQj < 1, small cosmological constants
become very long lived, and the closer the geometry gets to
a locally Minkowski space, the more stable it becomes to
discharges. If it ends up with zero cosmological constant,
then further discharge stops.
Hence we see that as a result of augmenting unimodular

gravity with charged membranes, de Sitter spaces of the
theory are immediately rendered unstable. Membranes will
nucleate quantum mechanically, with the dominant trend
being the discharge of the cosmological constant in their
interior. When the membrane charge and tension in any

generalized unimodular gravity satisfy j 2QA

3T 2
A

∂LðλÞ
∂ðλ=M2

PlÞ
j < 1 of

Eq. (41), which can be realized, for example, when L is
dominated by a term liner in λ for jλj < M2

Pl, the discharge
can only occur via a single channel controlled by the
instanton of Fig. 1. In this case, when the back-
ground cosmological constant decreases below Λcritical ≃
3M2

Plð T A

4M2
Pl
Þ2, the subsequent transitions are slow, since the

bounce action is approximately given by the parent
geometry horizon area (44) [59,60]. The deluge of bubbles
bounded by membranes eventually comes down to a
trickle, clearly favoring Minkowski space as an asymptotic
attractor. In the next section we discuss how close to
Minkowski this evolution gets, and how it can provide a
means to address the cosmological constant problem.

12One may ask how this compares to the “weak gravity
conjecture.” Transliterating the inequalities of [58], Weak Gravity
Conjecture (WGC) requires QA=T A > 1=MPl. Combining this
and (41) yields 1

M2
Pl

∂LðλÞ
∂ðλÞ < 3

2
T A

M3
Pl
. Thus for sub-Planckian tension

membranes this will be satisfied if L ¼ cM2
Plλ with c < 3

2
T A

M3
Pl
< 3

2
.

This might be realized by, e.g., strong dynamics effects and
SUSY breaking below the Planck scale [26]. Suffice it to say for
now that the bound does not appear prohibitive.
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VI. RELAXATION OF THE COSMOLOGICAL
CONSTANT

The discussion above shows that
(1) de Sitter space is unstable in braney unimodular

gravity,
(2) the evolutionary trend is towards decreasing Λ, and
(3) when the flux sector is such that j 2QA

3T 2
A

∂LðλÞ
∂ðλ=M2

PlÞ
j < 1,

which is most simply realized when LðλÞ is domi-
nated by the linear term, as in [4–6], the Minkowski
space Λ=M4

Pl → 0þ is the unique attractor.
These evolutionary trends go in the right direction.
Nevertheless, this mechanism of cosmological constant
relaxation requires additional ingredients if it is to be
employed to address the cosmological constant problem.
The first issue is the question of how close does the

evolution get to Minkowski. On the one hand, the obser-
vations imply that the “terminal” achievable value of Λ
should be in the range Λ=M4

Pl ≲ 10−120 or so. On the other
hand, the evolution of the fluxes by the nucleation of
membranes shows that variable λ is quantized, changing in
units of QA=2 [61,62]

λ ¼ N
QA

2
: ð45Þ

Here, as we include general operators F n; n ¼ 2; 3;… and
not only the linear terms, we have set the possible “back-
ground value” λ0 to zero imposing the Dirac quantization
condition [61,62] amounting to the addition of magnetic
monopole sources. Previously, working with strictly linear
theory (in the action) in fluxes [4–6], we kept λ0 explicitly,
but since we could absorb it into the cosmological constant
counterterm, it was of no consequence. This means that the
total cosmological constant in the theory is

Λtotal ¼ M2
PlλQFT þ L

�
N
QA

2

�

¼ M2
Pl

�
λQFT þ Nc

QA

2
þ…

�
; ð46Þ

where λQFT includes all the contributions to Λtotal which
are not sourced by membranes. The last equality follows
since we are assuming that the linear term dominates in L.
Ergo, since the membrane nucleations can only change
Λtotal in the units of QA=2, it means that a sequence of
bubbles can evolve an initial Λtotal to a terminal value
Λ=M4

Pl ≲ 10−120 only if either (1) the initial value is tuned
to be 10−120M4

Pl þ NinitialcM2
Pl

QA
2

or (2) cM2
Pl

QA
2

<
10−120M4

Pl [2–6]. The first option is a clear fine-tuning,
and the second is not only theoretically dubitable, but
cosmologically problematic since it leads to the empty
universe problem, to be discussed in the next section.
To get around the fine tuning problem, in [4–6] a second

system of forms and membranes was introduced, which

looked exactly the same as the theory ofA and itsmembranes.
Since the second formsector is completely degeneratewith the
first one, the total cosmological constant is now13

Λtotal ¼ M2
PlðλQFT þ cλþ ĉ λ̂þ…Þ

¼ M2
Pl

�
λQFT þ

QA

2
ðcN þ ĉ N̂ ωÞ þ…

�
: ð47Þ

Hereω ¼ Q̂Â=QA is the ratio of membrane charges. In [4–6]
we worked in the linear limit with c ¼ ĉ ¼ 1, having
renormalized the charges QA; Q̂Â. This means that, to get
arbitrarily close to Λ → 0þ, the charge ratio ω needs to be an
irrational number [49,63]. If so, there exist integersN; N̂ such

thatN þ N̂ω is arbitrarily close to− 2λ2QFT
QA

. The set of values of

λQFT þ cλþ ĉ λ̂ is discrete but it is dense in a set of reals, with
values arbitrarily close to any real number including zero
[49,63]. Moreover, there exist many sequences of discharging
membranes, which will arrive to N; N̂ at which point the
cosmological constant is arbitrarily close to zero, and the
underlying nearly flat space is very long lived, due to the pole
of the bounce action, Eq. (44). We illustrate this in Fig. 3.
To reach this conclusion, what is really required is that

the ratio of the energy densities that individual fluxes
contribute to Λtotal should be irrational. If charges are
mutually irrational, and LðλÞ is dominated by linear terms
this follows, but in general other options might occur.

FIG. 3. A discharge cascade in the cosmological constant
discretuum. Starting with some initial state given by a black
line, the evolution will reduce Λ to a level where the black and
green lines are degenerate, and subsequent evolution can proceed
on the green ladder with the terminal step coming arbitrarily close
to zero.

13In [4–6] we had c ¼ ĉ ¼ 1. Here we keep them arbitrary, in
principle.
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The respective flux energies might be mutually irrational
due to compactification effects, if dual 4-forms arise from
dimensional reduction, and/or due to strong coupling
effects in some gauge theory, or thanks to higher powers

in L; e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
¼Pk

Γð3=2Þ
k!Γð3=2−kÞ x

2 will map integers

into irrational numbers. We will not delve here into the
specific details of how irrational variations can arise,
deferring that for later work. For the rest of the current
paper, we will restrict to linear terms, and treat cQA; ĉQ̂Â
as mutually incommensurate, for simplicity’s sake.
In this case, as Fig. 3 shows, given that the bounce action

(44) has a pole at vanishing Λ, the quantum attractor of the
evolution, as we will now explain [4–6], is

Λ
M4

Pl

→ 0þ: ð48Þ

Recall the previous approaches with at least quadratic
flux contributions to the total cosmological constant
[2,3,30–33,36]. For a natural cosmological constant
jΛQFTj ∼M4

Pl, by Eq. (31), this means that L ∼ F 2 ∼M4
Pl

and F ∼M2
Pl. In the pure quadratic theory, this forces

λ ∼M2
Pl. Hence the variable Q of Eq. (41), which con-

trols which instanton the transition goes by, is jQj ∼
MPlλ
T A

jMPlQA
T A

j ≫ 1 for typical cases where membrane charges

and tensions are sub-Planckian.14 Thus in this case the
only transitions which occur are those mediated by the
instanton of Fig. 2, whose bounce action saturates at (38).
The transition rate from one value of Λ to another is
independent of Λ, and so all values will be approximately
equally likely. As a result, with a uniform distribution of
initial values, the resulting dynamical distribution of values
ofΛwill remain uniform, since “anything goes” at the same
rate when the instantons of Fig. 2 are allowed. To favor a
small positive cosmological constant, one then needs to
invoke the anthropic principle [65].
The addition of the linear term in F changes this pic-

ture dramatically [4–6]. When cosmological constant is
ΛQFT < MPl

4, linear term will dominate when jQj < 1 and
the only processes which allow subsequent discharges
of Λ are those mediated by the instanton of Fig. 1.
Hence when the cosmological constant reduces to below
Λcritical ≃ 3M2

Plð T A

4M2
Pl
Þ2, their bounce action is approximated

by the exponent of the Gibbons-Hawking action (44), and
the further decay progressively slows down; the evolution

relaxes Λ to 0þ by quantum Brownian drift, and it
exponentially slows down as Λ → 0þ. This means, as long
as Λ > 0 and there are smaller values, eventually regions of
smaller Λ will be created inside the parent region. The most
stable universes are those with the smallest value of the
positive cosmological constant.
Further, as long as the cosmological constant is not

exactly zero, one further decay to Λ < 0 or an up jump to a
large positive Λ are possible. In the former case, the
evolution completely stops. If there is reheating and normal
matter in the Universe, then this region will collapse into a
black hole surrounded by the parent geometry. It is a
terminal sink. On the other hand, if there is an up jump,
then the sequence of discharges will repeat, seeking to find
an ever smaller Λ once again. This gives the universe with a
larger Λ yet another chance to discharge it by going first up
and then discharging toward Λ → 0þ. The process may be
extremely slow, but that does not really matter as long as it
can occur. As a result, the smaller values of Λ will also be
statistically more likely.15 The posterior distribution of Λ
including the tunneling dynamics effects will not be uni-
form even if the prior (number frequency) distribution is
flat. This dynamics favors smallest values.
Of course, to make sure that arbitrarily small values of

cosmological constant can be approached, as we noted
above there must be at least two sets of membranes, with
incommensurate fluxes. In this case the configurations with
tiny positive cosmological constant will accumulate, over-
whelming other outcomes. Thus finding a tiny positive Λ is
natural without anthropics. Rather interestingly, this can be
achieved already with the simple linear þ quadratic actions
mentioned in [26]. Still we stress that this assumes no phase
transitions at late times, in the matter sector after inflation,
and it does not immediately lead to a prediction of current
cosmic acceleration.
So we see that the likeliest values of the cosmological

constant are small as opposed to large, addressing the
“why is the cosmological constant not huge?” part of the
problem. However we would be too hasty to declare victory
at this point. Besides the obvious point that observations
suggest that Λ

M4
Pl
∼ 10−120 instead of zero, in our analysis of

the evolution we have treated ΛQFT as a fixed number,
ignoring any possible phase transitions in a late universe.
This is an issue, since while the early evolution favors the
tiniest values of Λtotal, the membrane nucleation processes
that lead to it slow down tremendously when the local value
of Λ becomes smaller than Λcritical ≃ 3M2

Plð T A

4M2
Pl
Þ2. Indeed,

14In the examples of [36], QA ∼M3
11=MPl and T A ∼M3

11,
where M11 ≪ MPl is the 11D Planck scale, and so
jQj ∼ MPlλ

M3
11

≫ 1, as claimed. Note also that this yields QA
T A

∼ 1
MPl

and so the setup of [36] can marginally satisfy the weak gravity
conjecture, as does the present work (see footnote 12). The recent
paper [64], while generally confirming our observations from
[5,6] and the present work, claims the opposite.

15If the bounce action is sufficiently big, a universe with a
positive cosmological constant larger than observed may still be
very long lived. But that is not the issue: with evolution driven by
the instantons of Fig. 1, it will not be typical. There will be many
more longer lived universes that have a smaller cosmological
constant, and where subsequent cosmology could produce
structures regardless of anthropics.

NEMANJA KALOPER PHYS. REV. D 108, 025005 (2023)

025005-12



from a practical point of view, we need to worry about a
framework where the early evolution sets Λtotal to almost
zero, and then at a much later stage a phase transition in the
matter sector occurs, changing the QFT vacuum energy
dramatically, and by a large value. A region of the universe
where this occurs would typically develop a large negative
energy density, which would force it to stop expanding and
recollapse, presumably at least forming a large black hole.
Note, that we can solve this problem immediately by going
back to anthropics to fix the very late value of the
cosmological constant [66].
On the other hand, this also points towards a toy model

universe where the cosmological constant could be com-
pletely solved using our mechanism, although it is not our
Universe. Imagine a universe where all but one matter
sector phase transitions occur very early at very high energy
scales that are above the critical energy density controlling
membrane decoupling and the scale of inflation. Quantum
dynamics would favor vacua with nearly vanishing energy
density, and after membranes stop being nucleated these
regions could inflate in slow roll regime, reheat, and
undergo radiation and matter evolution. If then a new
phase transition occurs at a very low scale, it would
typically induce a net negative cosmological constant.
However if the theory also contains an ultralight field
(an “axion”), which develops a potential, its potential
energy due to misalignment could compensate the negative
vacuum energy and make the expansion rate of this region
start to accelerate while the axion is away from its
minimum (see Fig. 4) [67]. This looks like an approxima-
tion to our Universe, except for the fact that it does not
contain electroweak and QCD phase transition.
The discussion above however points to an important

difference in how the real cosmological constant problem
manifests in our framework, and also other frameworks
that strive to address it using dynamical decay—i.e.,
adjustment. Some of these points have been already raised
in [65]. Here we will revisit them and elaborate some
aspects further. First, note that the oft-encountered phras-
ing of the cosmological constant problem in terms of the
UV sensitivity of Λtotal is in fact misleading: the fact that
the cosmological constant might get a large contribution

from a very heavy field is only an issue if such a field
exists. On the other hand, there are many fields in our
Universe whose mass scales are much greater than the
observed scale of vacuum energy. What this shows is that
the cosmological constant problem really is not a UV
problem (“why is it not huge?“) or an IR problem (“why
is it tiny but not zero?”) per se—it is really an all
scales problem, or at least, all scales where we find
massive fields (which means at least most of the stuff
coming from the Standard Model, and possibly from dark
matter sectors). In [65], Polchinski argued compellingly
that to get all those contributions to conspire to cancel
each other down to 10−120M4

Pl in local QFT seems well
nigh impossible.
Despite some brave forays in the literature exploring

alternatives to local QFT, we share the view of [65], which
adheres to more conventional physics, whereby the cos-
mological constant decays via a de Sitter instability is a
more palatable avenue. In this approach, regardless of the
diversity of contributions from various scales, since they all
add to the cosmological constant in the same way thanks to
equivalence principle, they all get screened by bubble
nucleation by which de Sitter decays.

VII. COSMIC CONNECTIONS

Our mechanism is a cosmological constant adjustment
mechanism, albeit not one mediated by a smooth field, but
by a discretely varying flux of a set of 4-forms. It shares
some features with the adjustment mechanism proposed by
Abbott in a very insightful paper [68]. Abbott proposed a
field-theoretic adjustment mechanism using a scalar with a
linear potential which is degenerate with the cosmological
constant so that the scalar was screening away the cosmo-
logical term. Near the zero value of the cosmological
constant, Abbott proposed that strong-coupling nonpertur-
bative corrections arise, like for an axion. They catch the
scalar and stop further rolling (see Fig. 5). However since
the adjustment is continuous, the scalar must dominate the
Universe at least until the cosmological constant were
nearly zero. In such a Universe, inflation does not end until
the Hubble parameter decreases to ≃10−34 eV, and so the

FIG. 4. A toy model universe with the cosmological constant problem completely solved.
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universe never reheats.16 In contrast, in our case this empty
universe problem is averted since the relaxation of Λ
involves jumps by large charges Qj: the cosmological
constant jumps by a large step ∝ M2

PlQj. The tiny terminal
Λ arises from the misalignment of the large fluxes sourced
by charges. As a result, the cosmological constant does
not always dominate, but just early on [4–6,36]. Before
the universe jumps to tiny Λ, it had a large cosmolo-
gical constant, and so immediately after its decay it can
inflate and reheat using a standard slow roll stage [69].
The discrete adjustment also bypasses Weinberg’s no-go
theorem [13].
In striking contrast to what we would expect if an

adjustment were based on a smooth variation of a field,
the evolution does not completely wipe out the future of the
information about the ancestry of the final near-Minkowski
space. If the adjustment were via a smooth field, the
universe everywhere would transition to the final near
Minkowski at roughly the same time (as Abbott explained
that would have to be about now). Instead, discrete
adjustment happens locally. In each terminal bubble the
interior geometry will preferentially be nearly flat.
However those regions are separated from each other by
highly curved spacetime, with large cosmological constant
values, which are still bubbling.
This image of global structure of spacetime is just like

the multiverse of eternal inflation (for reviews, see, e.g.,
[70,71]). After a moment’s thought, this is not surprising in
the least. In a setup where the net cosmological constant
includes a contribution from a background flux, and where
the 4-form gauge fields are sourced by charged tensional
membranes, the discharge processes analogous to
Schwinger particle production are inevitable [2,3]. Since
they change the cosmological constant locally, inside a
membrane, given some “initial” parent geometry (by this
we mean any patch without bubbles at an arbitrarily
selected moment of observation) it will start to convert
into the bubbles of other vacua. However, since the parent
is de Sitter, the descendant bubbles will not percolate, just

like in the original “old inflation” of Guth [52]. In most of
the bubbles, the cosmological constant will be smaller, but
in some it will be (much) larger than the parent’s [72,73]. In
those regions inflation will restart itself. In our case, since
we look at models with two systems of charged membranes
with mutually irrational fluxes, there will be a huge number
of different vacua, since the values of the cosmological
constant span a discretuum like in [36], instead of only a
few types usually encountered in simple models of false
vacuum inflation.
Amusingly, our adjustment mechanism could address a

critique directed at inflation in [74]. The authors of this
work open up with the assertion that “inflationary theory
has for some time had two skeletons in its cupboard.” They
elaborate that one problem is the selection of the initial
conditions for the inflaton sector, required to start inflation,
and the other is the cosmological constant, which they
argue is troublesome since inflation happens because it is
supported by cosmological constant which in turn must be
canceled. The authors infer that both of “these issues point
to severe fine-tunings”. In our picture, both of these
problems could be addressed with the help of eternal
inflation.
Indeed, as long as there is even a single region of the

universe with Λ > 0, it can happen that an empty universe
with a nearly vanishingΛ “restarts” itself by a rare quantum
jump which increases the cosmological constant [75,76]. In
subsequent evolution back to Λ → 0, the repeated process
of membrane discharges reducing Λ back toward zero can
scan for an inflationary stage [76]. This suggests that the
natural “ground state” of the theory is near Minkowski,
which is a dynamical attractor of the evolution, similar to
the proposal of [77,78] (motivated by the ideas about
reformulating inflationary initial conditions selection). If
we follow this path, inflation seems a priori rare. However
repeated “recycles” allow for filling up the phase space, and
so even a “rare” event will be found eventually. As Guth
points in [79], “once inflation starts, it generically con-
tinues forever, creating an infinite number of ‘pocket’
universes.” The only difference here is that this eternal
self-reproduction does not require a scalar field and its large
quantum fluctuations. The large discrete variations of the
cosmological constant come from the quantized flux which
sources vacuum energy.
Guth also stresses the need for the beginning of inflation,

due to the past incompleteness theorem [80]. However, as
[70,78] note, it is possible that some quantum creation
event may have initiated the whole process. We will set this
issue aside for now, and only note that it should be possible
to embed a standard late cosmology in the present
framework.
Finally, one can consider specific predictions and impli-

cations for observations [81], among which might be a past
record of colliding with other bubbleworlds [82–84], appli-
cations to particle physics hierarchies [85,86], and maybe

FIG. 5. A schematic of Abbott’s adjustment mechanism.

16This also happens in the adjustment mechanism employing a
single 4-form when the value of charge QA is selected to be tiny,
as noted in [2,3].
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even late time variations of cosmological parameters, as in,
e.g., [87,88]. These questions warrant further scrutiny.

VIII. SUMMARY

An established view of general relativity is that it is a
theory of gravity with fixed values of GN and Λ. This
description is incredibly successful for explaining a huge
host of observed phenomena, and passes a number of tests
and bounds with flying colors. However from the theo-
retical point of view, this description runs into a quandary
when we ask questions about the reasons why the values of
GN and Λ are what they are.
Here, and also earlier, in [4–6], we have considered an

approach that “liberates” these gravitational parameters
and allows them to be treated as global gauge invariant
degrees of freedom. Focusing on the cosmological con-
stant, this leads to a generalized unimodular gravity
theory, which is locally completely indistinguishable from
GR, classically and as a quantum field theory [21–23]. We
showed that this theory is a theory of 4-forms in disguise,
and to make sure that the gauge symmetry is properly
encoded, we added a system of charged tensional mem-
branes for each form present. It then follows that cosmo-
logical constant is unstable to quantum-mechanical,
nonperturbative, discharge of membranes. This is because
the 4-form fluxes are degenerate with the cosmological

constant by covariance and construction. Cosmological
constant decays toward Λ=M4

Pl → 0, which is a dynamical
attractor when the theory is dominated by terms linear in
4-form flux, at least in the statistical sense, once charge to
tension ratio is fixed to (41). This is an avatar of Coleman
and De Luccia’s “gravitational stabilization” of flat space
to nonperturbative instabilities. This addresses a part of
the cosmological constant problem in our Universe: it
shows why the cosmological constant is not huge without
using anthropics.
The postinflationary phase transitions in the matter

sector—the electroweak and the QCD ones—obscure the
full solution at the moment. It would be interesting to
explore this issue further. It is also of interest to determine
precisely how to connect our mechanism with slow roll
inflation, and how to accommodate current observed
cosmic acceleration (by a very late phase transition?).
We plan to return to these questions elsewhere.
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