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We show that, for the purpose of quantum communication via a quantum field, it is essential to view the
field not only as a medium for transmission but also as a source of entanglement that can aid in the
communication task. To this end, we consider the quantum communication scenario where Alice is initially
entangled with an ancilla and intends to communicate with Bob through a quantum field, so as to make Bob
entangled with the ancilla. We find that if Alice and Bob communicate by directly coupling to the quantum
field, then they can generate negativity between Bob and the ancilla only at orders that are higher than
second perturbative order. We then present a protocol based on quantum teleportation in which Alice and
Bob consume entanglement that they obtained from the field via interaction or harvesting. We show that
this protocol can transfer negativity already to second perturbative order.
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I. INTRODUCTION

Conventional communication technologies focus on the
transfer of classical information. For the development of
quantum communication technologies it is important to
model not only the transfer of classical information but also
the transfer of quantum information, such as the transfer of
entanglement with an ancilla.
Here, we investigate protocols for transferring entangle-

ment with an ancilla, via an intermediary system such as a
quantum field. Such protocols can be important, for
example, for quantumly linking up smaller modules of a
larger quantum memory or processor.
Studies on communication through a quantum field have

already revealed several new phenomena that have no
analogs in classical communication. For example, it is known
that classical information can be transmitted through a
quantum field without transferring energy from a sender
to a receiver [1]. Since the receivermust provide energy to the
field to extract the encoded information, this protocol is
called quantum collect calling. Another protocol is quantum
shock wave communication [2]. A quantum shock wave can
be formed by using senders that emit from spatially separated
locations in spacetime, therebymimicking a single sender on
a superluminal trajectory. It was found that in this setup the
multiple emitters can not only be used for conventional beam
shaping (up to a classical shock wave pattern), but that it is
possible to further shape the beam, beyond classical limi-
tations, bypreparing the emitters in a suitably entangled state.
Of particular importance for our purposes here is the fact

that quantum fields quantum fluctuate, even in the vacuum
state. These quantum fluctuations represent a source of
noise for any quantum system that interacts with the

quantum field. The quantum fluctuations of a quantum
field therefore generally hinder classical and quantum
communication via a quantum field.
In [3], a method was introduced by which a receiver of

information from a quantum field can effectively reduce the
impact of the quantum noise in the field. The method is
based on the fact that the fluctuations of a quantum field at
different spacetime points are generally correlated [4,5].
This means that a receiver that employs multiple receiving
devices at different spacetime points is gaining some
additional ability to tell noise from signal and can therefore
effectively improve the signal to noise ratio.
The receiver’s devices can also be chosen spacelike

separated from the sender. Those receiving devices receive
no signal from the sender but they register quantum noise.
This quantum noise is correlated with the noise in those
receiving devices that also receive a signal. Therefore,
the noise-only receivers are still able to help reduce the
receiver’s overall signal to noise ratio. In this sense, the
classical channel capacity of communication through a
quantum field can be superadditive, as shown in [3].
The phenomenon that correlated auxiliary noise can be

used to improve the signal to noise ratio has been further
explored in a study with neural networks [6]. These results,
the so-called of “utilizing correlated auxiliary noise”
(UCAN) method, indicates opportunities for machine-
learned quantum error correction. In this case, the corre-
lated auxiliary noise consists of quantum fluctuations in
environmental degrees of freedom that have inadvertently
become entangled with the quantum processor.
For our purposes here, it is important to note that

the occurrence of correlations between quantum field
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fluctuations at different points is closely related to the
existence of entanglement in the vacuum state. For example,
consider two localized quantum systems that couple to a
field, i.e., so-called Unruh-DeWitt (UDW) detectors [7,8], or
detectors for short. Trivially, if two detectors are coupling to
the field at timelike or lightlike separation, they can become
entangled through interaction via the field. However, even if
the two detectors are coupling to the field in spatially
separated regions, they can nevertheless become entangled,
namely by extracting preexisting entanglement from the
field. This phenomenon, called entanglement harvesting,
has been extensively studied in flat and curved spacetimes
(see, e.g., [9–32]). For example, the harvested entanglement
can be used to detect spacetime curvatures and topol-
ogies [14,33–36]. Entanglement harvested from the field
can be used not only to detect spacetime structures but also to
improve the efficiency of communication. The quantum
channel of communication through a quantum field using
UDW detectors was introduced in [37]. In [38], it has been
shown that entanglement harvested or generated through a
quantum field can be used to enhance the average telepor-
tation fidelity. For an analysis of entanglement and transfer
fidelity in a wider context, see also [39].
In this paper, we study the ability of harvested entangle-

ment to improve communication efficiency. We analyze two
different scenarios (a) transmission and (b) teleportation. In
the former setup, a sender and a receiver, Alice and Bob,
communicate by simply coupling their detectors to the field.
In the latter case, Alice and Bob first prepare entanglement
through entanglement harvesting, and then they implement a
teleportation protocol by consuming it. As a quantifier of
communication, we adopt negativity with an ancillary
system that is transferred from Alice to Bob. In perturbative
analysis, we find that the negativity cannot be transmitted to
the second order in the coupling constant, while the neg-
ativity can be teleported of the second perturbative order.
This paper is organized as follows. In Sec. II, we explain

(a) transmission and (b) teleportation scenarios in more
detail to clarify their differences. In Sec. III, we prove a no-
go theorem in case (a), stating that no negativity is
transmitted to the second order of the coupling constant,
regardless of the details of the interaction and the initial
state. In Sec. IV, we analyze case (b). In Sec. IVA, we
briefly review the ordinary teleportation protocol [40]. In
Sec. IV B, we introduce a setup for entanglement harvest-
ing, which is commonly used in the literature. In Sec. IV C,
we propose a slightly adapted teleportation protocol. We
find that negativity can already be transferred to second
perturbative order in this case.
Throughout this paper, we adopt natural units in which

ℏ ¼ c ¼ 1.

II. SETUP

In this paper, we investigate the efficiency of transmitting
entanglement by communication through a quantum field.

Concretely, we consider the following setup: A sender,
Alice, has a qubit A, which is initially entangled with and
purified by an ancillary qubit Ã. The ancillary qubit is
assumed physically distant and will not take part in any
interactions. Alice’s task is to transmit the entanglement
that her system, A, possesses with Ã to the qubit, B, of the
receiver, Bob.
The ability to communicate entanglement in this way

could be very useful, for example, in order to create one
large (error-corrected) quantum processor or memory from
modules of smaller (error-corrected) quantum processors or
memories. This is because a set of quantum modules only
operates as one big unit; i.e., its Hilbert space dimension is
the product of the Hilbert space dimensions of the modules,
if entanglement can be spread at will across the modules so
that all of this large Hilbert space is accessible. To this end,
one needs to be able to communicate the entanglement that
a qubit possesses with other qubits, i.e., with an ancilla, at
will to qubits in other modules, for example, via the
electromagnetic field. Hence, our setup can be applied: a
qubit A (in one module) is purified by a system Ã (that may
be spread over one or multiple modules) and the goal is to
communicate the entanglement that A possesses with Ã to
some qubit B (in another module) via a quantum field such
as a photon or a phonon field.
We analyze two different scenarios: (a) Transmission:

Alice simply couples her qubit A to the field, and then Bob
tries to pick up the encoded information from the field
through the interaction between his qubit B and the field.
(b) Teleportation: Alice prepares another qubit A0. Alice
and Bob first harvest or generate entanglement between
qubits A0 and B by interacting with the field. Concretely, we
adopt the UDW detector model, which is most commonly
used in studies on entanglement harvesting. Alice and Bob
perform a quantum teleportation protocol, thereby con-
suming the noisy entanglement resource generated or
harvested through the field. Schematic images of these
setups are shown in Figs. 1 and 2.

Alice Bob

Time

Space

FIG. 1. A schematic picture for transmission. A detector A is
initially purified by another detector Ã. Quantum information of
A is encoded to the disturbance in the field by interaction, which
then propagates through the spacetime and is later captured by
another detector B. The arrows indicate the flow of disturbance
carrying information.
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As a quantifier of the efficiency of communication, we
adopt the negativity [41] between Ã and B. Since negativity
is an entanglement monotone, it does not increase by local
operations and classical communication. Furthermore,
negativity is a faithful entanglement measure for a bipartite
qubit system in the sense that it vanishes if and only if the
qubits are in a separable state [42].
We perturbatively calculate the negativity to the second

order in the coupling constant in both setups (a) and (b). In
case (a), we show that no negativity is transferred to the
second order regardless of the details of the interaction
Hamiltonian and the initial state. In case (b), we propose a
teleportation protocol as a variant of the ordinary telepor-
tation protocol [40]. Although no closed formula is
obtained in a general case, we find a condition under
which the teleported negativity is given by a simple
function of the Schmidt coefficient of the initial state of
ÃA and the state of the entanglement resource A0B. In
particular, when UDW detectors A0 and B are identical and
ÃA are initially maximally entangled, it is shown that the
negativity between Ã and B is precisely equal to the
negativity between A0 and B generated (or harvested)
entanglement to the second order in the coupling constant.
As a consequence, our protocol turns out to be optimal in
this case. Based on these results, we find that quantum
information, i.e., entanglement, is better teleported than
transmitted in communication through a quantum field.

III. NO-GO THEOREM FOR NEGATIVITY
TRANSMISSION

In this section, we analyze the efficiency of entanglement
transfer in a transmission protocol. We show that no
negativity is transferred to the second order in the coupling
constant for generic interaction and initial states.

Let us first clarify the setup again. A sender, Alice, has a
qubit A, which is initially purified by an auxiliary qubit Ã.
She encodes information of a qubit A into an intermediary
system f through interaction between A and f. The
intermediary system is arbitrary, but we call it a quantum
field for simplicity. The disturbance in the quantum field
caused by the qubit A propagates through spacetime. A
receiver, Bob, has a qubit B coupled to the field, which
picks up encoded information from the field.
The initial state of the total system is assumed to be

ρð0Þ
ÃABf

¼ jΨihΨjÃA ⊗ ρB ⊗ ρf; ð1Þ

where jΨihΨjÃA denotes a pure state for qubits ÃA, while
ρB and ρf are arbitrary states for qubit B and field f,
respectively. We assume that the qubits A and B do not
interact directly with each other and communicate only
through interactions with the field. The general interaction
Hamiltonian is given by

HIðtÞ ¼
X
i¼A;B

HiðtÞ ¼ HAðtÞ þHBðtÞ ð2Þ

in the interaction picture. Here, HiðtÞ denotes the inter-
action Hamiltonian between the field and the qubit i for
i ¼ A, B. We assume that each HamiltonianHi is scaled by
a coupling constant λi and that both are of the same order,
i.e., λi ¼ OðλÞ for i ¼ A, B for some parameter λ > 0. We
do not impose any further assumption on the interaction
Hamiltonian. For example, a general form of HAðtÞ is
given by

HAðtÞ ¼ λA
X
k

XðkÞ
A ⊗ IB ⊗ OðkÞ

f ð3Þ

for some Hermitian operators XðkÞ
A and OðkÞ

f on the qubit A
and the field f, respectively. Here, IB denotes the identity
operator.
As a perturbative series with respect to λ, the time-

evolution operator is given by the Dyson series:

U ¼ T exp

�
−i

Z
dt HIðtÞ

�
¼

X∞
n¼0

UðnÞ; ð4Þ

where

Uð0Þ ¼ I; ð5Þ

Uð1Þ ¼ ð−iÞ
X
i¼A;B

Z
∞

−∞
dtHiðtÞ; ð6Þ

Uð2Þ ¼ ð−iÞ2
X

i;j¼A;B

Z
∞

−∞
dt
Z

t

−∞
dt0HiðtÞHjðt0Þ ð7Þ

Bell measurement

Alice Bob

Local operation

Time

Space

Quantum
teleportation

Entanglement
harvesting
or generation

FIG. 2. A schematic picture for teleportation assisted by
entanglement generation or harvesting. Alice and Bob first make
detectors A0 and B entangled through interaction with the field.
By consuming this entanglement, they perform a quantum
teleportation protocol. The arrow with a dashed line represents
the transmission of measurement outcome through classical
wireless communication.
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to the second order in λ. The reduced state for ÃB is
expanded as

ρÃB ¼ ρð0Þ
ÃB

þ ρð1Þ
ÃB

þ ρð2Þ
ÃB

þOðλ3Þ; ð8Þ

where

ρð1Þ
ÃB

≔ TrAfðUð1ÞρÃABf þ ρÃABfU
ð1Þ†Þ; ð9Þ

ρð2Þ
ÃB

≔ TrAfðUð2ÞρÃABf þ ρÃABfU
ð2Þ† þUð1ÞρÃABfU

ð1Þ†Þ:
ð10Þ

Similarly, the partial transpose of the quantum state for
qubits ÃB is given by

ρ
⊤Ã

ÃB
¼ ρ

ð0Þ⊤Ã

ÃB
þ ρ

ð1Þ⊤Ã

ÃB
þ ρ

ð2Þ⊤Ã

ÃB
þOðλ3Þ; ð11Þ

where ⊤Ã denotes the partial transpose with respect to the
qubit system Ã.
The negativity N ðρÃBÞ of a bipartite system ÃB is

defined as the sum of the absolute values of negative

eigenvalues of the partial transposed matrix ρ
⊤Ã

ÃB
. We now

calculate the negativity perturbatively. Let

ρ
ð0Þ⊤Ã

ÃB
¼

X
pð0Þ∈σðρð0Þ⊤Ã

ÃB
Þ
pð0ÞΠpð0Þ ð12Þ

be the eigenvalue decomposition, where σðρð0Þ⊤Ã

ÃB
Þ denotes

the set of different eigenvalues of ρð0Þ⊤Ã

ÃB
and Πpð0Þ is the

projector on the eigenspace of ρð0Þ⊤Ã

ÃB
with an eigenvalue

pð0Þ. When the detectors are coupled to the field, the

eigenvalues of ρ⊤Ã

ÃB
are perturbatively expanded as

piðλÞ ¼ pð0Þ þ λpð1Þ
i þ λ2pð2Þ

i þOðλ3Þ; ð13Þ

where i is the label for the degeneracy of the eigenspace
associated with the eigenvalue pð0Þ. The negativity is
defined as

N ðρÃBÞ ¼
X

pi∈σðρ
⊤Ã
ÃB

Þ;pi<0

jpij: ð14Þ

When the detectors do not interact with the field, i.e., λ ¼ 0,
Ã and B are not entangled. Therefore, all eigenvalues pð0Þ

of ρð0Þ⊤Ã

ÃB
are non-negative. In this case, as is emphasized in

Ref. [43], pi ∈ σðρ⊤Ã

ÃB
Þ cannot become perturbatively neg-

ative unless pð0Þ ¼ 0. Therefore, we will only analyze the
perturbation of eigenvalues piðλÞ that vanishes if λ ¼ 0.

We use the perturbation theory of eigenvalues, which is

reviewed in Appendix A. The first-order corrections λpð1Þ
i

for pð0Þ ¼ 0 are given by the eigenvalues of the operator

Π0ðρð1Þ⊤Ã

ÃB
ÞΠ0 ð15Þ

that is restricted to the eigenspace of ρð0Þ⊤Ã

ÃB
with eigenvalue

pð0Þ ¼ 0. Similarly, the second-order corrections pð2Þ
i are

the eigenvalues of the following operator:

Π0ρ
ð2Þ⊤Ã

ÃB
Π0 − Π0ρ

ð1Þ⊤Ã

ÃB

X
pð0Þ∈σðρð0Þ⊤Ã

ÃB
Þnf0g

Πpð0Þ

pð0Þ ρ
ð1Þ⊤Ã

ÃB
Π0 ð16Þ

in the eigenspace of ρð0Þ⊤A

ÃB
with pð0Þ ¼ 0.

There are two key facts that we use in the perturbative

calculation. First, since ρð0Þ⊤Ã

ÃB
¼ ρ⊤̃

A
⊗ ρB and ρ⊤̃

A
is invert-

ible, we get

Π0 ¼ IÃ ⊗ πB; ð17Þ
where IÃ denotes the identity operator of system Ã and πB is
the projector on the kernel of ρB. Second, the partial
transpose operation ⊤Ã commutes with the projector
Π0 ¼ IA ⊗ πB, i.e.,

Π0ðO⊤Ã

ÃB
Þ ¼ ðΠ0OÃBÞ⊤Ã ;

ðO⊤Ã

ÃB
ÞΠ0 ¼ ðOÃBΠ0Þ⊤Ã ; ð18Þ

for any linear operator OÃB. See Appendix B for a proof.
By using Eq. (18), we have

Π0ðρð1Þ⊤Ã

ÃB
ÞΠ0 ¼ ðΠ0ρ

ð1Þ
ÃB
Π0Þ⊤Ã : ð19Þ

Since πBρB ¼ ρBπB ¼ 0, we have

Π0ρ
ð1Þ
ÃB
Π0 ¼ 0: ð20Þ

This means that all the eigenvalues of Π0ðρð1Þ⊤Ã

ÃB
ÞΠ0 vanish.

Therefore, the negativity vanishes to the first order in the
coupling constant.
Now, let us calculate the second-order corrections. By

using Eq. (18), we have

Π0ρ
ð2Þ⊤Ã

ÃB
Π0

¼ Π0TrAfðρð2Þ⊤Ã

ÃABf
ÞΠ0

¼ ðΠ0TrAfðρð2ÞÃABf
ÞΠ0Þ⊤Ã

¼
�
Π0TrAf

�Z
∞

−∞
dt
Z

∞

−∞
dt0HBðtÞρð0ÞÃABf

HBðt0Þ
�
Π0

�⊤Ã

:

ð21Þ
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In addition, we have

Π0ρ
ð1Þ⊤Ã

ÃB
¼Π0TrAfðρð1Þ⊤Ã

ÃABf
Þ

¼TrAfðIÃA⊗πB⊗ Ifρ
ð1Þ⊤Ã

ÃABf
Þ

¼ð−iÞ
Z

∞

−∞
TrAfðIÃA⊗πB⊗ IfHBðtÞρð0Þ⊤Ã

ÃABf
Þ ð22Þ

and

ρ
ð1Þ⊤Ã

ÃB
Π0¼ð−iÞ

Z
∞

−∞
TrAfðρð0Þ⊤Ã

ÃABf
HBðtÞIÃA⊗πB⊗ IfÞ: ð23Þ

Therefore, the operator in Eq. (16) is independent ofHAðtÞ.
This implies that the second-order corrections pð2Þ

i for
pð0Þ ¼ 0 are the same as those in the case whereHAðtÞ ¼ 0.
If HAðtÞ ¼ 0, the negativity between Ã and B vanishes to
all orders in λ. This implies that the negativity N ðρÃBÞ
vanishes to the second order for a general interaction
Hamiltonian in a transmission protocol.
So far, we have assumed that Ã, A, and B are qubits. The

proof of this section can be directly extended to a general
setup with any finite-dimensional quantum system instead
of qubits as follows: Without loss of generality, we can
assume that the auxiliary system Ã that is added to purify
the system A is initially in an invertible state. Therefore, the
projector Π0 is given by Eq. (17). Following the same
argument as in the above, we find that the negativity
vanishes to the second order in the coupling constant. In
this case, although the negativity is still an entanglement
measure, it is not faithful in general since there are
entangled states with vanishing negativity [42].

IV. ENTANGLEMENT TRANSFER BY
ENTANGLEMENT-HARVESTING-ASSISTED

COMMUNICATION

In this section, we analyze a quantum teleportation
protocol that makes use of the preexisting entanglement
of the field. It is shown that by consuming the entanglement
harvested from the field, negativity can be transferred to the
second order in the coupling constant.

A. Quantum state teleportation

Let us first review the quantum teleportation proto-
col [40], which enables us to transmit quantum information
perfectly by consuming a Bell state. As we shall see soon,
correlations, including entanglement, with an ancillary
system can also be transmitted by this protocol.
Suppose that a sender, Alice, wants to transmit the state

of a qubit A to a receiver, Bob. We assume that this qubit A
is initially purified by Ã. The quantum teleportation
protocol consists of the following four steps:

(1) First, Alice and Bob share qubits A0 and B in a Bell
state, given by

jΦ0iA0B ≔
1ffiffiffi
2

p ðjgiA0 jgiB þ jeiA0 jeiBÞ; ð24Þ

where jgi and jei denote the ground and excited
states, respectively. Here, the qubit A0 and the qubit
B are accessible to Alice and Bob, respectively.

(2) Alice performs a Bell measurement on AA0. Here,
the Bell measurement is the projective measurement
with respect to a Bell basis fjΦμiAA0g3μ¼0, defined by

jΦμiAA0 ≔ ðσμ ⊗ IA0 Þ 1ffiffiffi
2

p ðjϕgiAjgiA0 þ jϕeiAjeiA0 Þ;

ð25Þ

where fjϕgiA; jϕeiAg is an orthonormal basis for A.
We here defined σ0 ¼ I and the Pauli operators σ1 ¼
jϕeihϕgj þ jϕgihϕej, σ2 ¼ ið−jϕeihϕgj þ jϕgihϕejÞ,
and σ3 ¼ jϕeihϕej − jϕgihϕgj.

(3) The measurement result μ ¼ 0, 1, 2, 3 is transmitted
from Alice to Bob by classical communication.

(4) Bob performs a local operation σμ on his qubit B,
depending on the outcome μ.

Let us check that the state of the qubit A is perfectly
transferred to Bob in this protocol. Measurement operators
are given by

Mμ ≔ IÃ ⊗ jΦμihΦμjAA0 ⊗ IB: ð26Þ

The initial state of ÃA is assumed to be an arbitrary pure
state:

jΨiÃA ¼
X
i;j¼e;g

cijjiiÃjϕjiA; cij ∈ C: ð27Þ

After the measurement, the unnormalized selective post-
measurement state is given by

MμðjΨihΨjÃA ⊗ jΦ0ihΦ0jA0BÞM†
μ: ð28Þ

Note that

MμjΨiÃA⊗ jΦ0iA0B

¼ðIÃ ⊗ jΦμihΦ0jAA0 ⊗ IBÞIÃA⊗ σ⊤μ ⊗ IBjΨiÃA⊗ jΦ0iA0B

¼ðIÃ ⊗ jΦμihΦ0jAA0 ⊗ IBÞIÃAA0 ⊗ σμjΨiÃA⊗ jΦ0iA0B

ð29Þ

holds, where we defined σμ on the subsystem B with
respect to the energy eigenbasis fjgi; jeig. The reduced
state for ÃB is given by
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TrAA0 ðMμðjΨihΨjÃA ⊗ jΦ0ihΦ0jA0BÞM†
μÞ

¼ 1

4
ðIÃ ⊗ σμÞjΨihΨjÃBðIÃ ⊗ σμÞ ð30Þ

if the measurement result is μ ¼ 0, 1, 2, 3. Here, jΨiÃB is
defined by

jΨiÃB ¼
X
i;j¼e;g

cijjiiÃjjiB ð31Þ

with coefficients cij defined in Eq. (27). If Bob performs a
local unitary operation uμ on B depending on the outcome
μ, the reduced state is given by

ρÃB ¼ 1

4

X
μ

ðIÃ ⊗ uμσμÞjΨihΨjÃBðIÃ ⊗ σμu
†
μÞ: ð32Þ

For uμ ¼ σμ, the reduced state is given by

ρÃB ¼ jΨihΨjÃB; ð33Þ

implying that Bob recovers the state of the qubit A,
including the correlation with Ã.

B. Entanglement harvesting and generation

In the ordinary quantum teleportation protocol, it is
assumed that the sender and the receiver initially share a
maximally entangled state. In this paper, we explore a way
to enhance the efficiency of communication by entangle-
ment generated or harvested through interaction with a
quantum field.
Here,we review a common setupof entanglement harvest-

ing. Consider a scalar field ϕ in the (dþ 1)-dimensional
Minkowski spacetime. If the mass of the field ism, the field
operator is expanded as

ϕðt; xÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd2ωk

p ða†keiðωkt−k·xÞ þ ake−iðωkt−k·xÞÞ;

ð34Þ

where ωk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
. The creation and annihilation

operators satisfy

½ak; a†k0 � ¼ δðdÞðk − k0Þ; ½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0: ð35Þ

Suppose that Alice and Bob have qubits A0 and B,
respectively. These qubits play the role of an UDW
detector, which is locally coupled to the field. For sim-
plicity, we assume that the detectors are in inertial motion.
In the interaction picture, the interaction Hamiltonian is
given by

HIðtÞ ¼
X
i¼A0;B

HiðtÞ; ð36Þ

where

HiðtÞ ≔ λiχiðtÞμiðtÞ ⊗
Z

ddxFiðx − xiðtÞÞϕðt; xÞ: ð37Þ

Here, λi denotes the coupling constant, χiðtÞ is called the
switching function that describes the temporal characteri-
zation of the interaction, and FiðxÞ is called the smearing
function that characterizes the spatial extent of the detector
i ¼ A0; B, where xiðtÞ is the position of the center of mass
of the detector. The monopole moment operator μiðtÞ is
defined by

μiðtÞ ¼ jeihgjieiΩit þ jgihejie−iΩit; ð38Þ
where Ωi denotes the energy gap of the detector. Although
the UDW-type interaction is simple, this model is known to
be a good approximation of the light-matter interaction
between atoms and the electromagnetic field when the
exchange of angular momentum can be neglected [18,44].
We assume that the coupling constants for the detectors are of
the same order, parametrized by λ: λi ¼ OðλÞ for i ¼ A0; B.
The time-evolution operator is expanded as

U ¼ T exp

�
−i

Z
dtHIðtÞ

�
ð39Þ

¼ I þUð1Þ þ Uð2Þ þOðλ3Þ; ð40Þ

Uð1Þ ≔ −i
Z

∞

−∞
dtHIðtÞ; ð41Þ

Uð2Þ ≔ ð−iÞ2
Z

∞

−∞
dt
Z

t

−∞
dt0HIðtÞHIðt0Þ: ð42Þ

We assume that the initial state is given by

ρð0ÞA0Bf ¼ jgihgjA0 ⊗ jgihgjB ⊗ ρf: ð43Þ

The reduced state for the subsystems A0B is given by

ρA0B ¼ TrfðUρA0 ⊗ ρB ⊗ ρfU†Þ
¼ ρð0ÞA0B þ ρð1ÞA0B þ ρð2ÞA0B þOðλ3Þ; ð44Þ

ρð0ÞA0B ¼ jgihgjA0 ⊗ jgihgjB; ð45Þ

ρð1ÞA0B ¼ TrfðUð1Þρð0ÞA0Bf þ ρð0ÞA0BfU
ð1Þ†Þ; ð46Þ

ρð2ÞA0B ¼TrfðUð2Þρð0ÞA0BfþUð1Þρð0ÞA0BfU
ð1Þ†þρð0ÞA0BfU

ð2Þ†Þ: ð47Þ

For simplicity, we assume that the first moment of the
field vanishes. For example, the vacuum state, squeezed
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states, and thermal states with a quadratic Hamiltonian
satisfy this condition. In this case, ρð1ÞA0B vanishes.
From Eq. (47), the matrix representation of ρA0B in a

basis fjggiA0B; jgeiA0B; jegiA0B; jeeiA0Bg is given by

ρA0B ¼

0
BBB@

1 − LA0A0 − LBB 0 0 M�

0 LBB LA0B 0

0 LBA0 LA0A0 0

M 0 0 0

1
CCCA

þOðλ4Þ; ð48Þ

where we have defined

Lij ≔ λiλj

Z
∞

−∞
dt
Z

∞

−∞
dt0χiðtÞχjðt0Þ

× e−iðΩit−Ωjt0ÞWðt; xi; t0; xjÞ; ð49Þ

M ≔ −λA0λB

Z
∞

−∞
dt
Z

t

−∞
dt0

× ðeiðΩA0 tþΩBt0ÞχA0 ðtÞχBðt0ÞWðt; xA0 ; t0; xBÞ
þ eiðΩBtþΩA0 t

0ÞχBðtÞχA0 ðt0ÞWðt; xB; t0; xA0 ÞÞ; ð50Þ

Wðt; xi; t0; xjÞ

≔
Z

ddk
ð2πÞd2ωk

e−iωkðt−t0Þeik·ðxi−xjÞjF̃ðkÞj2; ð51Þ

and F̃ðkÞ ≔ R
ddxFðxÞeix·k.

Of the second order, there is a unique eigenvalue of ρ⊤A0
A0B

that can be negative, given by

E≔
1

2
ðLA0A0 þLBBÞ−

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLA0A0 −LBBÞ2þ4jMj2

q
: ð52Þ

Therefore, we get

N ðρA0BÞ ¼ N ð2ÞðρA0BÞ þOðλ3Þ; ð53Þ

N ð2ÞðρA0BÞ ≔ max f0;−Eg: ð54Þ

In particular, if LA0A0 ¼ LBB holds, the formula is
simplified and given by

N ð2ÞðρA0BÞ ¼ max f0; jMj − LA0A0 g: ð55Þ

Intuitively, the condition LA0A0 ¼ LBB means that A0 and B
are identical. The expression in Eq. (55) is commonly used
in numerical calculations in the literature on entanglement
harvesting. It has a simple physical interpretation: Since
LA0A0 depends only on λA0 , it is understood to be a
contribution describing a local noise that A0 picks up.
On the other hand, M depends on λA0λB and is therefore
related to a correlation between A0B generated by the

interaction. Equation (55) shows that the negativity
becomes positive when the correlation term M is greater
than the local noise term LA0A0 .
In the following subsection, we will use the quantum

state in Eq. (48) as a resource. We remark that this
expression is valid independently of whether A0 and B
are spacelike or causally separated. We will not further
explore the behavior of the negativity in Eq. (55) since this
has already been analyzed in various setups in the literature.

C. Quantum teleportation with noisy resource

Here we calculate the amount of negativity transmitted
by a quantum teleportation protocol by consuming an
entangled resource state given by Eq. (48).
We reviewed the ordinary teleportation protocol in

Sec. IVA, which perfectly transmits the entanglement by
consuming a Bell pair. Here, we propose a slightly adapted
teleportation protocol since our resource is noisy. Instead of
Step (1),

(1’) Alice and Bob extract or generate entanglement
from the field. As a consequence, they share a bipartite
qubit system A0B whose state is given by Eq. (48).

In addition, in our protocol, Bob performs a slightly
adapted local operation in the last step: Instead of Step (4),

(4’) Bob performs a local unitary operation

uμ ¼ σμvB; ð56Þ

where

vB ≔ e−iφjeihejB þ jgihgjB ð57Þ

and φ ∈ R is the argument of M, i.e., M ¼ jMjeiφ.
To perform the local operation in Step (4’), Bob has to

know the parameter φ, i.e., the argument ofM, in addition
to the measurement outcome μ. However, this is not
reducing the efficiency of our protocol. This is because
M is the matrix element of the density matrix of the two-
detector system right after the harvesting, and hence it is
fixed in every run of the setup if Alice and Bob agree
beforehand on exactly how they will couple to the field. For
comparison, we analyze the case where Bob does not know
the value of φ in Appendix D. We find that the amount of
teleported negativity is reduced if he implements (4) instead
of (4’).
The amount of teleported negativity depends on the

initial pure state jΨiÃA of ÃA. For example, the negativity
between ÃB is upper bounded by the initial negativity
between Ã and A since the negativity is an entanglement
monotone. To calculate the teleported negativity, we con-
sider the Schmidt decomposition of the initial pure state
jΨiÃA of ÃA, given by
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jΨiÃA ¼
X
i¼g;e

ffiffiffiffiffi
pi

p jψ iiÃ ⊗ jϕ0
iiA; ð58Þ

where fjψ iigi¼g;e and fjϕ0
iigi¼g;e are orthonormal bases. It

should be noted that in general, fjϕ0
iigi¼g;e can be different

from the basis fjϕiigi¼g;e used to define the Bell meas-
urement in Eq. (25).
After completing steps (1’), (2), (3), and (4’), the reduced

state for ÃB is given by

ξÃB ≔ 2
X
i;j¼g;e

ffiffiffiffiffiffiffiffiffi
pipj

p jψ iihψ jjÃ

⊗
� X

k;l¼g;e

hϕkjϕ0
iiAhϕ0

jjϕliAhkA0 jηA0BjlA0 i
�
; ð59Þ

where we have defined

ηA0B ≔

0
BBBBB@

1
2
− L 0 0 jMj
0 L ReðgLA0BÞ 0

0 ReðgLA0BÞ L 0

jMj 0 0 1
2
− L

1
CCCCCA

þOðλ4Þ; ð60Þ

L≔ðLA0A0 þLBBÞ=2, and gLA0B≔LA0Beiφ. See Appendix C
for the derivation.
For a general case, we do not have a closed formula for

the negativity of ηÃB since it is a complicated function
depending on the Schmidt coefficients fpigi, the inner
products fhϕijϕ0

kigi;k, and the contributions Lij and jMj
that originate from the noisy entanglement resource state.
For simplicity, we hereafter analyze the case where
fhϕijϕ0

kigi;k ¼ δik. This condition is satisfied when we
adopt the basis fjϕ0

iigi¼g;e that diagonalizes the initial state
of A as the basis fjϕ0

iigi¼g;e in the definition of the Bell
measurement. It should also be noted that this condition is
satisfied when ÃA are initially maximally entangled since
the initial state of A is diagonalized in any orthonormal
basis. In this case, we find that the negativity is given by

N ðξÃBÞ ¼ N ð2ÞðξÃBÞ þOðλ3Þ; ð61Þ

N ð2ÞðξÃBÞ ≔ maxf0;−E0g; ð62Þ

where

E0 ≔ L −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ð1 − 4pð1 − pÞÞ þ 4pð1 − pÞjMj2

q
: ð63Þ

Here, we defined p ≔ pg, which implies pe ¼ 1 − p.
Let us now check the consistency of our formula Eq. (61)

with the monotonicity of the negativity. We first remark that

N ðξÃBÞ ≤ N ðjΨihΨjÃAÞ ð64Þ

holds for λ ≪ 1 since the left-hand side is of the second
order in λ, while the right-hand side is independent of λ.
To prove

N ðξÃBÞ ≤ N ðρA0BÞ; ð65Þ

we consider two different cases: (1) When jMj2 < L2,

−E0 ≤
ffiffiffiffiffiffi
L2

p
− L ¼ 0; ð66Þ

where the equality holds for p¼0. Therefore,N ð2ÞðξÃBÞ¼0

and hence Eq. (65) holds. (2) When jMj2 ≥ L2, we have

−E0 ≤
ffiffiffiffiffiffiffiffiffiffiffi
jMj2

q
− L ≤ −E; ð67Þ

where the equality in the first inequality holds for p ¼ 1=2.
Therefore, Eq. (65) holds.
When Ã and A are initially in a maximally entangled

state, i.e., p ¼ 1=2, the formula in Eq. (62) is simplified
and given by

N ð2ÞðξÃBÞ ¼ max f0; jMj − Lg: ð68Þ

If the detectors A0 and B are identical, the formula is further
simplified and given by

N ð2ÞðξÃBÞ ¼ max f0; jMj − LA0A0 g; ð69Þ

implying that

N ð2ÞðξÃBÞ ¼ N ð2ÞðρA0BÞ: ð70Þ

Therefore, in this case, our protocol is an optimal way to
transmit the entanglement by consuming the harvested
entanglement. Furthermore, it also shows that the nega-
tivity extracted from the field in entanglement harvesting is
always useful in teleporting the entanglement to the second
order in the coupling constant.
It should be noted that our formula in Eq. (61) is valid as

long as the reduced state of the UDW detectors A0B is
given by Eq. (48) for some Lij andM. In other words, our
formula is independent of the details of Lij and M.
Therefore, our result here is applicable to more general
setups, e.g., a teleportation protocol using entanglement in
detectors that is generated or harvested through interaction
with a quantum field in a curved spacetime.

V. CONCLUSIONS AND OUTLOOK

In this paper, we investigated the efficiency of entangle-
ment transfer through an intermediate system, such as a
quantum field. Concretely, we considered the following
setup: a sender, Alice, possesses a qubit A, which is initially
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entangled with an auxiliary system Ã, while a receiver,
Bob, possesses a qubit B. The aim is to transfer the
entanglement that A initially possesses with Ã to B so
that then B possesses this entanglement with Ã. To this end,
Alice and Bob are allowed to each interact with an
intermediary system such as a quantum field. We compared
two different strategies that Alice and Bob may adopt,
namely (a) transmission and (b) teleportation. In case (a),
Alice and Bob only couple their qubits to the field. We
proved that, regardless of the details of the interaction
between the qubits and the intermediary system, in this way
no negativity can be generated between Ã and B to the
second order in the coupling constant. In case (b), Alice and
Bob first each use an UDW-type interaction to generate or
harvest entanglement via the quantum field. For this
purpose, Alice is using an additional qubit A0, rather than
her qubit A. Crucially, the negativity between the qubits
A0; B does become positive already to the second order in
the coupling constant. Alice and Bob then use a slightly
adapted version of the quantum teleportation protocol
which consumes this noisy resource of entanglement in
order to teleport some of the Alice entanglement with the
ancilla to Bob.
For the case where the initial state of A is diagonalized in

a basis that is used to define a Bell measurement, we were
able to derive a simple analytic formula for the amount of
transferred negativity, given by Eq. (62). The formula
shows that when the detectors A0 and B are identical and
ÃA are initially maximally entangled, then our protocol is
optimal in the sense that it transfers exactly the same
amount of negativity from the ÃA system to the ÃB system
as the amount of negativity that Alice and Bob’s A0B
system had obtained by interacting with the field.
In summary, if Alice tries to transmit some of her initial

entanglementwith an ancilla Ã toBob bymeans ofAlice and
Bob merely coupling to an intermediate quantum field, then
this can only succeed to higher than second order in the
coupling constant, irrespective of how they each interact
with the quantum field. Our finding is that, nevertheless, it is
possible for Alice to transfer some of her entanglement to
Bob through the quantum field already to second order in the
coupling constant. To this end, Alice and Bob can use the
fact that they become partially entangled when interacting
with the quantum field. They consume this entanglement to
teleport some of Alice’s entanglement with the ancilla to
Bob, which can be done already to second order. This result
is consistent with the result in [38], where it is shown that the
average teleportation fidelity is increased by consuming the
harvested entanglement.
The above results can be extended to the scenario in

which Alice distributes her entanglement with the ancilla Ã
to multiple Bobs, Bi, for i ¼ 1; 2;…; N. First, we notice
that no negativity can be transmitted to an ÃBi system to
second order in the coupling constant. This is because the
corresponding calculation for a single Bob, in Sec. III, still

applies. Second, the teleportation-based protocol still
applies and can transfer entanglement to second order
from the ÃA system to the ÃBi systems. Concretely, let us
assume that theN receiving devices are located in spacelike
separated regions. After the entanglement harvesting, the
reduced states of each of the bipartite systems A0Bi take
the form of Eq. (48), though the actual matrix elements will
differ for each i, except if the Bobs are distributed
symmetrically around Alice. After Alice performs the
Bell measurement, she classically transmits the outcome
to the N Bobs. Each Bob then performs the corresponding
local unitary operation defined in Eq. (56), and thereby
obtains an amount of negativity with Ã given by Eq. (62). It
should be very interesting to combine this result with the
entanglement monogamy constraint to derive nonperturba-
tive absolute upper bounds on the amount of entanglement
that can be harvested from quantum fields, as a function of
the type of field and the type of interaction between the
field and localized probes such as UDW detectors.
Our results in this paper show that, for the purpose of

transferring entanglement with an ancilla through a quan-
tum field, the direct method of transmission by simply
coupling the sender and receiver to the field, is not optimal.
We found that it is more efficient for Alice and Bob first to
use the field to either generate entanglement or to harvest
preexisting entanglement and then to use quantum tele-
portation while consuming this entanglement.
This indicates that, for the purpose of quantum commu-

nication through a quantum field, it is essential to view the
quantum field not only as a medium of propagation but also
as a means to generate or harvest entanglement that can
serve as a resource for the quantum communication.
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APPENDIX A: PERTURBATION
OF THE EIGENVALUES

Here we briefly summarize known results on perturbation
of eigenvalues that can be found, e.g., in [43,45]. For more
comprehensive and rigorous arguments, see, e.g., [46].
In this section, we summarize a perturbative method for

calculating the eigenvalues of a Hermitian operator. Let
SðtÞ be an Hermitian operator, which can be expanded as

SðtÞ ¼ Sð0Þ þ tSð1Þ þ t2Sð2Þ þOðt3Þ ðA1Þ

as t → 0. In the main text, SðtÞ corresponds to the partial
transpose of the density operator ρ⊤Ã

ÃB
ðλÞ, where λ is the

coupling constant.
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Let σðSð0ÞÞ denote the set of different eigenvalues of Sð0Þ.
The operator is decomposed as

Sð0Þ ¼
X

sð0Þ∈σðSð0ÞÞ
sð0ÞΠsð0Þ ; ðA2Þ

where Πsð0Þ denotes the projector on the eigenspace of Sð0Þ

with eigenvalue sð0Þ.
The eigenvectors and the eigenvalues of SðtÞ are

expanded as

jψ siðtÞi ¼ jψ ð0Þ
si i þ tjψ ð1Þ

si i þ t2jψ ð2Þ
si i þOðt3Þ; ðA3Þ

siðtÞ ¼ sð0Þ þ tsð1Þi þ t2sð2Þi þOðt3Þ; ðA4Þ

where i is the label for the degeneracy of the eigenspace of

Sð0Þ. We assume that fjψ ð0Þ
si igi forms an orthonormal basis

for the eigenspace of Sð0Þ with eigenvalue sð0Þ, i.e.,

hψ ð0Þ
sj jψ ð0Þ

si i ¼ δij; Πsð0Þ ¼
X
i

jψ ð0Þ
si ihψ ð0Þ

si j: ðA5Þ

From the eigenvalue equation, we have

ðSð0Þ − sð0ÞÞjψ ð0Þ
si i ¼ 0; ðA6Þ

ðSð1Þ − sð1Þi Þjψ ð0Þ
si i þ ðSð0Þ − sð0ÞÞjψ ð1Þ

si i ¼ 0; ðA7Þ

ðSð2Þ − sð2Þi Þjψ ð0Þ
si i þ ðSð1Þ − sð1Þi Þjψ ð1Þ

si i
þ ðSð0Þ − sð0ÞÞjψ ð2Þ

si i ¼ 0: ðA8Þ

From Eq. (A7), we have

hψ ð0Þ
si jSð1Þjψ ð0Þ

sj i ¼ sð1Þi δij; ðA9Þ

which implies that fsð1Þi gi are the eigenvalues of an
Hermitian operator Πsð0ÞS

ð1ÞΠsð0Þ that is restricted on the
eigenspace of Sð0Þ associated with the eigenvalue sð0Þ. In
addition, fjψ ð1Þ

si igi are the corresponding eigenvectors.
Furthermore, we have

hψ ð0Þ
s0j
jSð1Þ− sð1Þi jψ ð0Þ

si iþðsð0Þ0−sð0ÞÞhψ ð0Þ
s0j
jψ ð1Þ

si i¼ 0 ðA10Þ

for sð0Þ0 ∈ σðSð0ÞÞnfsð0Þg. Therefore, we have

jψ ð1Þ
si i¼

X
i

cð1Þsi jψ ð0Þ
si i

−
X

sð0Þ0∈σðSð0ÞÞnfsð0Þg

X
j

hψ ð0Þ
s0j
jSð1Þjψ ð0Þ

si i
sð0Þ0− sð0Þ

jψ ð0Þ
s0j
i; ðA11Þ

where cð1Þsi ∈ C are some coefficients, which are not
important for our purpose.
From Eq. (A8), we get

hψ ð0Þ
sj jSð2Þjψ ð0Þ

si i − sð2Þi δij

þ hψ ð0Þ
sj jðSð1Þ − sð1Þi Þjψ ð1Þ

si i ¼ 0: ðA12Þ

Since fjψ ð0Þ
si igi are eigenvectors of Πsð0ÞS

ð1ÞΠsð0Þ , we get

hψ ð0Þ
sj jðSð1Þ − sð1Þi Þjψ ð1Þ

si i

¼ −
X

sð0Þ0∈σðSð0ÞÞnfsð0Þg

X
j

hψ ð0Þ
sj jSð1Þjψ ð0Þ

s0j
ihψ ð0Þ

s0j
jSð1Þjψ ð0Þ

si i
sð0Þ0 − sð0Þ

:

ðA13Þ

Therefore,

sð2Þi δij ¼hψ ð0Þ
sj jSð2Þ−Sð1Þ

X
sð0Þ0∈σðSð0ÞÞnfsð0Þg

Πsð0Þ0

sð0Þ0− sð0Þ
Sð1Þjψ ð0Þ

si i:

ðA14Þ

This equation implies that fsð2Þi gi are the eigenvalues of

Πsð0Þ

�
Sð2Þ−Sð1Þ

X
sð0Þ0∈σðSð0ÞÞnfsð0Þg

Πsð0Þ0

sð0Þ0− sð0Þ
Sð1Þ

�
Πsð0Þ ðA15Þ

that is restricted on the eigenspace of Sð0Þ with eigen-
value sð0Þ.

APPENDIX B: A FORMULA
FOR THE PARTIAL TRANSPOSE

To prove Eq. (18), let us first consider the case where
OAB ¼ OA ⊗ OB. In this case, we have

ðOABIA ⊗ YBÞ⊤A ¼ ðOA ⊗ OBYBÞ⊤A

¼ O⊤
A ⊗ OBYB

¼ ðO⊤A
ABÞIA ⊗ YB: ðB1Þ

Similarly, ðIA ⊗ YBOABÞ⊤A ¼ IA ⊗ YBðO⊤A
ABÞ holds. Now,

note that any linear operator is expanded as OAB ¼P
i O

ðiÞ
A ⊗ OðiÞ

B . With the linearity of the partial transpose
operation, we complete the proof of Eq. (18).

APPENDIX C: DERIVATION OF EQ. (59)

We here explain the detailed derivation of Eq. (59). The
initial state of the total system is given by

jΨihΨjÃA ⊗ ρA0B; ðC1Þ
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where ρA0B is the state of detectors after the entanglement
harvesting, given in Eq. (48).
To implement quantum teleportation by consuming the

entanglement resource ρA0B, Alice performs the Bell meas-
urement on AA0. The unnormalized selective postmeasure-
ment state for ÃB is given by

ξÃBðμÞ ¼ TrAA0 ðMμjΨihΨjÃA ⊗ ρA0BM
†
μÞ; ðC2Þ

where

Mμ ≔ IÃ ⊗ jΨμihΨμjAA0 ⊗ IB

¼ IÃ ⊗ jΨμihΨ0jAA0 ðIA ⊗ σðA
0Þ

μ Þ ⊗ IB: ðC3Þ
Let

jΨiÃA ¼
X
i¼e;g

ffiffiffiffiffi
pi

p jψ iiÃjϕ0
iiA ðC4Þ

be the Schmidt decomposition, where fjψ iiÃgi¼e;g and
fjϕ0

iiAgi¼e;g are orthonormal basis. The state is expanded as

ξÃBðμÞ ¼
X
i;j¼g;e

ffiffiffiffiffiffiffiffiffi
pipj

p jψ ii hψ jjÃ ⊗ ðhΨ0jAA0IA ⊗ σðA
0Þ

μ

⊗ IBðjϕ0
iihϕ0

jjA ⊗ ρA0BÞIA ⊗ σðA
0Þ

μ ⊗ IBjΨ0iAA0 Þ:
ðC5Þ

After the measurement, Bob performs a unitary operation
uμ. The unnormalized state is given by

IÃ ⊗ uðBÞμ ξÃBðμÞIÃ ⊗ uðBÞμ

¼
X
i;j¼g;e

ffiffiffiffiffiffiffiffiffi
pipj

p jψ ii hψ jjÃ ⊗ ðhΨ0jAA0 jϕii hϕjjA

⊗ ðσðA0Þ
μ ⊗ uðBÞμ ρA0B ⊗ σðA

0Þ
μ ⊗ uðBÞμ ÞjΨ0iAA0 Þ: ðC6Þ

Summing over μ, we get

ξÃB ≔
X3
μ¼0

IÃ ⊗ uðBÞμ ξÃBðμÞIÃ ⊗ uðBÞμ

¼
X
i;j¼g;e

ffiffiffiffiffiffiffiffiffi
pipj

p jψ iihψ jjÃ ⊗
�
hΨ0jAA0 jϕ0

iihϕ0
jjA

⊗
�X3

μ¼0

σðA
0Þ

μ ⊗ uðBÞμ ρA0B ⊗ σðA
0Þ

μ ⊗ uðBÞμ

�
jΨ0iAA0

�
:

ðC7Þ
The entanglement resource state is given by

ρA0B ¼

0
BBB@

1 − LA0A0 − LBB 0 0 M�

0 LBB LA0B 0

0 LBA0 LA0A0 0

M 0 0 0

1
CCCA

þOðλ4Þ ðC8Þ

in a basis fjggiA0B; jgeiA0B; jegiA0B; jeeiA0Bg. Here, we
adopt uμ ¼ σμvB

uμ ¼ σμvB ðC9Þ

as Bob’s local unitary operation, where

vB ≔ e−iφjei hejB þ jgi hgjB ðC10Þ

and φ ∈ R is the argument of M, i.e., M ¼ jMjeiφ. The
operation vB eliminates the phase in M, i.e.,

IA0 ⊗ vBρA0BIA0 ⊗ v†B

¼

0
BBB@

1 − LA0A0 − LBB 0 0 jMj
0 LBB

gLA0B 0

0 gLA0B
� LA0A0 0

jMj 0 0 0

1
CCCA

þOðλ4Þ; ðC11Þ

where gLA0B ≔ LA0Beiφ. Since

1

4

X3
μ¼0

σðA
0Þ

μ ⊗ uμρA0Bσ
ðA0Þ
μ ⊗ uμ ¼ ηA0B ðC12Þ

holds for ηA0B defined in Eq. (60), we get Eq. (59).

APPENDIX D: ON THE ROLE OF vB

We here analyze the case where Bob implements Step(4)
instead of (4’). In other words, he performs σμ instead of
σμvB when he receives the measurement outcome μ from
Alice. In this case, ηA0B in Eq. (60) changes into

ηA0B ¼ 1

4

X3
μ¼0

σðA
0Þ

μ ⊗ σðBÞμ ρA0Bσ
ðA0Þ
μ ⊗ σðBÞμ ðD1Þ

¼

0
BBB@

1
2
− L 0 0 ReðMÞ
0 L ReðLA0BÞ 0

0 ReðLA0BÞ L 0

ReðMÞ 0 0 1
2
− L

1
CCCA

þOðλ4Þ: ðD2Þ

Similar to the result in the main text, we can explicitly
evaluate the teleported negativity if fhϕijϕ0

kigi;k ¼ δik.
Instead of Eqs. (61)–(63), we have

N ðξÃBÞ ¼ N ð2ÞðξÃBÞ þOðλ3Þ; ðD3Þ

N ð2ÞðξÃBÞ ≔ maxf0;−E00g; ðD4Þ
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where

E00 ≔ L −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ð1 − 4pð1 − pÞÞ þ 4pð1 − pÞðReðMÞÞ2

q
:

ðD5Þ

Since −E00 ≤ −E0, the teleported negativity decreases if
Bob performs σμ instead of σμvB. In other words, the phase-
eliminating operation vB makes it possible to transfer
negativity more efficiently.
If we further assume that Ã and A are initially maximally

entangled, i.e., p ¼ 1=2, we get

N ð2ÞðξÃBÞ ¼ maxf0; jReðMÞj − LA0A0 g: ðD6Þ

Therefore, unless jReðMÞj ¼ jMj, it holds

N ð2ÞðξÃBÞ < N ð2ÞðρA0BÞ: ðD7Þ

This fact highlights the difference from Eq. (70), showing
that the teleportation protocol is not optimal if Bob
performs σμ instead of σμvB.
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