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We establish that Polchinski’s equation for exact renormalization group (RG) flow is equivalent to the
optimal transport gradient flow of a field-theoretic relative entropy. This provides a compelling
information-theoretic formulation of the exact renormalization group, expressed in the language of
optimal transport. A striking consequence is that a regularization of the relative entropy is in fact an RG
monotone. We compute this monotone in several examples. Our results apply more broadly to other exact
renormalization group flow equations, including widely used specializations of Wegner-Morris flow.
Moreover, our optimal transport framework for RG allows us to reformulate RG flow as a variational
problem. This enables new numerical techniques and establishes a systematic connection between neural
network methods and RG flows of conventional field theories.
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I. INTRODUCTION

The renormalization group is one of the central ideas in
quantum field theory and statistical field theory, enabling us
to understand how the effective description of a physical
system changes as we tune the precision of our measure-
ment apparatus. There are many ways of mathematically
formulating the renormalization group (RG), although a
particularly illuminating way is via so-called exact renorm-
alization group (ERG) equations, pioneered by Wilson [1]
and refined by Polchinski [2] and many others [3–5]. ERG
equations are intrinsically nonperturbative and have been
used extensively in analytical and numerical investigations
of RG flow over the past 40 years [3–5].
Awidely used ERG equation is Polchinski’s [2], which is

a functional differential equation for RG flow in a natural
RG scheme. We show that Polchinski’s equation can be
recast as a gradient flow of a relative entropy. The gradient
here is with respect to a functional generalization of the
optimal transport metric (specifically, a version of the
Wasserstein-2 metric). The theory of optimal transport [6]
is presently less known to physicists, but it is a rich
subject which has had a profound impact on partial
differential equations and probability theory in mathemat-
ics, and optimization as well as machine learning in

computer science. We provide a review of the subject
for physicists. Our results show that optimal transport is
deeply ingrained in the theory of RG, enabling us to bring
powerful tools from optimal transport to bear on non-
perturbatively analyzing RG flows. For instance, we
precisely explain the manner in which RG flows generate
entropy and clarify how this interplays with scheme
dependence; we discover a new (nonperturbative) RG
monotone; and we develop a novel variational formula
for RG flow which can be applied in the design of
numerical methods for the renormalization group. Our
methods work for a more general class of ERG equations
beyond Polchinski’s, and moreover our framework pro-
vides an elegant explanation of otherwise unintuitive
features of popular ERG schemes [7–9].
Let us provide a brief sketch of our results in slightly more

detail. To illustrate the basic setup of ERG equations, we
consider a Euclidean scalar field theory on Rd. This means
thatwehave a probability functionalP½ϕðxÞ� ∝ e−S½ϕ�, where
ϕ∶ Rd → R and S½ϕ� is the Euclidean action. Suppose
that our measurement apparatus can only probe the
system down to some small distance scale l, corresponding
to a UV cutoff Λ ∼ 1=l on the largest momenta we can
access. Now let PΛ½ϕ� ∝ e−SΛ½ϕ� denote the probability
functional corresponding to an effective description of
our system given that we can only probe momentum scales
less than Λ. We are interested in how this effective
description changes as we tune the value of Λ, i.e. change
the precision of our measurement apparatus. An ERG
will address this in the form of a functional differential
equation
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−Λ
d
dΛ

PΛ½ϕ� ¼ F
�
PΛ½ϕ�;

δPΛ½ϕ�
δϕ

;
δ2PΛ½ϕ�
δϕδϕ

;…

�
: ð1:1Þ

The minus sign on the left-hand side indicates that we are
coarse graining PΛ½ϕ� in momentum space (which is done
on a log scale on account of the Λ d

dΛ). Also, the precise
form of the function F on the right-hand side is contingent
on the details of our RG scheme, or equivalently the
manner in which we coarse grain our description of the
physical system in order to provide an effective description
commensurate with the capabilities of our measurement
apparatus. Later on, we will precisely specify F for
common RG schemes.
One of our main results is that Polchinski’s equation can

be written as

−Λ
d
dΛ

PΛ½ϕ� ¼ −∇W2
SðPΛ½ϕ�kQΛ½ϕ�Þ; ð1:2Þ

where ∇W2
is a gradient with respect to a functional

generalization of the Wasserstein-2 metric, SðPkQÞ ≔R ½dϕ�P½ϕ� logðP½ϕ�=Q½ϕ�Þ is a functional version of the
relative entropy, and QΛ½ϕ� is a background probability
functional which essentially defines our RG scheme. We
emphasize that our formula has the flexibility of capturing
an enormous class of RG schemes. The ingredients of our
formula require further explanation, which we will provide
in detail later. Intuitively, (1.2) tells us that the coarse
graining of our theory is generated by a decrease in a
relative entropy. Wewill later see that the relative entropy is
in fact an RGmonotone; although this may seem clear from
the form of (1.2), a more detailed analysis is required which
involves unpacking the definition of the gradient.
The remainder of the paper is organized as follows. In

Sec. II we review ERG with an emphasis on Polchinksi’s
equation, as well as the theory of optimal transport. In
Sec. III we establishEq. (1.2) and a generalization pertaining
to a broader class of ERGequations. In Sec. IVwe prove that

the relative entropy appearing in our flow equations is in fact
a nonperturbative RG monotone. In Sec. V we compute
some explicit examples of the RG monotone for both a free
and interacting scalar field. In Sec. VI we leverage dual
formulations of optimal transport to develop a variational
formula for RG flows, and then explain how it can be
leveraged for new numericalmethods. Finally in Sec.VII we
conclude with a discussion.

II. REVIEW OF EXACT RG
AND OPTIMAL TRANSPORT

Here we review pertinent tools and results about the
exact renormalization group, as well as optimal transport
theory.

A. Exact RG

The ERG is a nonperturbative framework for implement-
ing the renormalization group in quantum and statistical
field theory [5]. In standard treatments of field theory, RG is
usually implemented perturbatively via an expansion in
small couplings. By contrast, ERG provides a means to
perform RG for all couplings including large couplings; in
practice this is often implemented by numerical approxi-
mation schemes, but sometimes analytic methods are
possible. We begin by reviewing one of the simplest
ERG equations due to Polchinski [2] which will be our
jumping off point for generalizations.

1. Polchinki’s equation

In the spirit of Polchinski’s analysis, we restrict ourselves
to scalar field theory for simplicity. We note that
Polchinski’s equation can be generalized to fermionic
theories [4,10,11] and gauge theories [10,12,13].
Let us recapitulate a version of Polchinski’s derivation

from [2]. Consider a Euclidean scalar field theory with a
source J. We will set ℏ ¼ 1 throughout. The partition
function is

ZΛ½J� ≔
Z

½dϕ�e−
1
2

R
ddp

ð2πÞdðϕðpÞϕð−pÞðp
2þm2ÞK−1

Λ ðp2ÞþJðpÞϕð−pÞÞ−Sint;Λ½ϕ�; ð2:1Þ

where Sint;Λ½ϕ� includes interaction terms (possibly includ-
ing quadratic terms which contribute to the explicit kinetic
term) and where KΛðp2Þ is a soft cutoff function, i.e. it is 1
for p2 ≲ Λ2 and ≈0 for p2 ≳ Λ2, and K−1

Λ ðp2Þ denotes
1=KΛðp2Þ. This soft cutoff function ensures that correlation
functions are regulated at high momentum. For our
purposes, it will be convenient for KΛðp2Þ to never equal
zero, even if it is extremely close to zero; this way K−1

Λ ðp2Þ
is never strictly infinite. An example of a soft cutoff
function is shown in Fig. 1. Also note that the mass m
appearing above in (2.1) is the bare mass, and the couplings
implicit in Sint;Λ½ϕ� are bare couplings.

We desire to consider some smaller scale ΛR < Λ, and
integrate out all modes down to ΛR. As such, we are only
interested in computing correlation functions below the
scale ΛR, and so let us assume that our source satisfies
JðpÞ ¼ 0 for p2 > Λ2

R − ε for some small ε > 0. It is
convenient to restrict jm2j ≪ ΛR, i.e. we are not integrating
out the mass scale.
Suppose that ΛR is infinitesimally smaller than Λ. Then

we would like for

−Λ
d
dΛ

ZΛ½J� ¼ CΛZΛ½J� ð2:2Þ
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for some constant CΛ only depending on Λ. This would
mean that as we change the cutoff scale Λ, which both
affects the kinetic term in the action in an explicit way and
the interaction terms in a way to be determined, any
correlation functions below the changed scale (i.e. gen-
erated by taking functional J derivatives) stay the same.
Expanding out the left-hand side we find

−Λ
d
dΛ

ZΛ½J�¼
Z

½dϕ�
�
1

2

Z
ddp
ð2πÞdϕðpÞϕð−pÞðp

2þm2Þ

×Λ
∂K−1

Λ ðp2Þ
∂Λ

þΛ
∂Sint;Λ½ϕ�

∂Λ

�
e−SΛ½ϕ;J�: ð2:3Þ

If we want (2.2) to hold, then Λ ∂Sint½ϕ;Λ�
∂Λ must have an

appropriate form to facilitate this. Remarkably, Polchinski
found such a sufficient form which corresponds to a
spatially local coarse graining of Sint;Λ½ϕ� upon Fourier
transforming to position space. In particular, we will
demand that Sint;Λ½ϕ� changes with respect to Λ via

−Λ
∂Sint;Λ½ϕ�

∂Λ
¼ 1

2

Z
ddpð2πÞdðp2þm2Þ−1Λ∂KΛðp2Þ

∂Λ

×

�
δ2Sint;Λ

δϕðpÞδϕð−pÞ−
δSint;Λ
δϕðpÞ

δSint;Λ
δϕð−pÞ

�
: ð2:4Þ

This is what is known as Polchinski’s equation, and it is
sometimes written as

−Λ
∂

∂Λ
e−Sint;Λ½ϕ� ¼1

2

Z
ddpð2πÞdðp2þm2Þ−1

×Λ
∂KΛðp2Þ

∂Λ
δ2

δϕðpÞδϕð−pÞe
−Sint;Λ½ϕ� ð2:5Þ

in order to resemble a functional version of the heat equation.

Note the appearance of Λ ∂KΛðp2Þ
∂Λ in both (2.4) and (2.5); this

is localized in momentum space around p2 ¼ Λ2, corre-
sponding to a smearing kernel with scale ∼1=Λ in position
space. See Fig. 2 for a depiction in momentum space.
Plugging (2.4) into (2.3) and simplifying, we find

−Λ
d
dΛ

ZΛ½J� ¼
�
−
1

2

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

δdð0Þ
�
ZΛ½J�

ð2:6Þ

which has the form of the desired transformation from (2.2).
While Polchinski’s equation (2.4) is formulated in terms

of a functional equation for Sint;Λ½ϕ�, it will be convenient
for us to recast it in terms of a functional equation for the
probability functional PΛ½ϕ� ¼ e−SΛ½ϕ�=ZΛ. Reprocessing
the above derivation we arrive at

−Λ
d
dΛ

PΛ½ϕ� ¼
1

2

Z
ddpð2πÞdðp2þm2Þ−1

×Λ
∂KΛðp2Þ

∂Λ
δ2

δϕðpÞδϕð−pÞPΛ½ϕ�

þ
Z

ddpΛ
∂ logKΛðp2Þ

∂Λ
δ

δϕðpÞðϕðpÞPΛ½ϕ�Þ;

ð2:7Þ

which has the form of a functional convection-diffusion
equation. To see the connection more clearly, we rewrite the
above as

−Λ
d
dΛ

PΛ½ϕ� ¼
1

2

Z
ddpð2πÞdðp2 þm2Þ−1

× Λ
∂KΛðp2Þ

∂Λ
δ2

δϕðpÞδϕð−pÞPΛ½ϕ�

þ 1

2

Z
ddpð2πÞdðp2 þm2Þ−1

× Λ
∂KΛðp2Þ

∂Λ
δ

δϕðpÞ

×

�
2ðp2 þm2Þ
ð2πÞdKΛðp2ÞϕðpÞPΛ½ϕ�

�
; ð2:8Þ

FIG. 1. Depiction of a smooth cutoff function KΛðp2Þ.
FIG. 2. The derivative Λ ∂

∂ΛKΛðp2Þ of the smooth cutoff
function.
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which formally takes the same form as the finite-dimen-
sional convection-diffusion equation

d
dt

ptðxÞ ¼ ∂i∂
iptðxÞ þ ∂iðviðxÞptðxÞÞ; ð2:9Þ

where we identify − logΛ with t. An example of a solution
to (2.7) [or equivalently (2.8)] is the free theory itself; that

is, PΛ½ϕ�¼ 1
ZΛ
expð−1

2

R ddp
ð2πÞdϕðpÞϕð−pÞðp2þm2ÞK−1

Λ ðp2ÞÞ
solves Polchinski’s equation.
Let us summarize the logic of Polchinski’s derivation.

We explicitly differentiated ZΛ½J� by Λ d
dΛ, and then found a

choice of Λ ∂Sint;Λ½ϕ�
∂Λ such that −Λ d

dΛZΛ½J� ¼ CΛZΛ is
satisfied for a constant CΛ. The suitable choice of

Λ ∂Sint½ϕ�
∂Λ , given by the functional differential equation in

(2.4), corresponds to changing Sint;Λ in a manner which is
localized in momentum space at scale Λ, and hence local in
position space at scale ∼1=Λ. While Polchinski’s inspired
Ansatz (2.4) does the job, there are in fact an infinitude of
other choices which have similar properties and also render
−Λ d

dΛZΛ½J� ¼ CΛZΛ. These other choices correspond to
alternative RG schemes than the one proposed by
Polchinski. We explore a large family of them via our
discussion of the Wegner-Morris flow equation below.

2. Wegner-Morris flow equation

Polchinski’s equation is a special case of the Wegner-
Morris flow equation [8,14–16]. The latter provides insights
into the structure of RG flows which are obscured by
Polchinski’s formulation. The Wegner-Morris equation is1

−Λ
d
dΛ

PΛ½ϕ� ¼
Z

ddx
δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�Þ ð2:10Þ

and implements ERG for a scheme determined by ΨΛ½ϕ; x�.
We note that ΨΛ½ϕ; x� will depend on PΛ½ϕ� in a nontrivial
way, which we explain below. At first glance (2.10) does not
appear to readily connect to RG flow, but its meaning will be
clear shortly.
To gain some intuition for (2.10), it is useful to compare

with a finite-dimensional analog. This would be the
equation for pt given by

d
dt

ptðxÞ þ ∂iðViðpt; xÞptÞ ¼ 0: ð2:11Þ

In this equation the vector field Vi, the analog of ΨΛ in the
Wegner-Morris flow, is chosen to depend not just on the
coordinate position x but also on the entire probability

distribution pt. It is natural for Vi to satisfy Viðpt; xÞ ¼
∂
iWðpt; xÞ, namely for Vi to have a potential W. This
gives us

d
dt

ptðxÞ þ ∂ið∂iWðpt; xÞptÞ ¼ 0: ð2:12Þ

We will find an analog of this potential in the Wegner-
Morris flow equation for many cases of interest.
Equation (2.10) has several features which illuminate its

meaning. First, performing the functional integral of both
sides of (2.10) with respect to ϕðxÞ and noting that
ΨΛ½ϕ; x�PΛ½ϕ� goes to zero for large ϕðxÞ, we immediately
see that −Λ d

dΛ

R ½dϕ�PΛ½ϕ� ¼ 0 and so the flow equation
preserves probability. More generally, the meaning of
(2.10) is that as the scale Λ changes the flow induces
the field reparametrization

ϕ0ðxÞ ¼ ϕðxÞ þ δΛ
Λ

ΨΛ½ϕ; x�: ð2:13Þ

This means that the probability functional is simply
reparametrized by the flow, and so probability is clearly
conserved and positivity of the probability density is
maintained. As explained in [16], essentially all RG
schemes (with a soft cutoff) can be cast into the form of
the Wegner-Morris flow equation above. In all schemes ΨΛ
instantiates field redefinitions which are localized in
momentum space near scale Λ, i.e. we are reparametrizing
the field at or near the cutoff scale. We will henceforth refer
to ΨΛ as the reparametrization kernel.
A common form of ΨΛ½ϕ; x� is given by [5,7–9,17,18]

ΨΛ½ϕ; x� ¼ −
Z

ddy
1

2
_CΛðx − yÞ δΣΛ½ϕ�

δϕðyÞ ; ð2:14Þ

where _CΛðx − yÞ is called the ERG kernel2 which satisfies
_CΛðx − yÞ ≥ 0, and

ΣΛ½ϕ� ≔ SΛ½ϕ� − 2ŜΛ½ϕ�; ð2:15Þ

where SΛ½ϕ� is the action appearing in PΛ½ϕ� ¼ e−SΛ½ϕ�=ZΛ
and ŜΛ½ϕ� is another action called the “seed action.” The
multiplicative factor of 2 in front of the seed action is
conventional. In its present form, the meaning of the seed
action is physically obscure. Fortunately, our optimal
transport analysis later on will elucidate its meaning.
Notice that ΨΛ½ϕ; x� is a gradient of ΣΛ½ϕ�, where
1
2
_CΛðx − yÞ plays the role of an inverse metric, and so in

this setting the Wegner-Morris flow equation (2.10) takes
the form of the finite-dimensional equation (2.12).

1We are in fact writing down a slight modification of the usual
Wegner-Morris equation; the original equation only implies
−Λ d

dΛZΛ ¼ 0, whereas we have modified the equation to allow
for −Λ d

dΛZΛ ¼ CΛZΛ.

2We have chosen a different sign convention than the usual
literature, namely _CΛ;us ¼ − _CΛ;them. This extra minus sign will
make some of our later formulas more intuitive.
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Importantly, we can reproduce the Polchinski’s equation
with the choices

_CΛðp2Þ ¼ ð2πÞdðp2 þm2Þ−1Λ ∂KΛðp2Þ
∂Λ

; ð2:16Þ

ŜΛ ¼ 1

2

Z
ddp
ð2πÞd ðp

2 þm2ÞK−1
Λ ðp2ÞϕðpÞϕð−pÞ; ð2:17Þ

here expressed in momentum space.3 Notice that Ŝ is just an
action for a free massive scalar field with the same initial
bare mass as our scalar field theory of interest.
An initially puzzling feature of Wegner-Morris flow is

that (2.13) can be inverted if ΨΛ½ϕ; x� is well enough
behaved. This would mean that the exact RG flow is
invertible. However, we often think of RG as being non-
invertible, perhaps the most famous example being
Kadanoff’s block spin decimation for spin systems (see
e.g. [19,20]). For continuum field theories, exact RG flows
are typically invertible, although the inversion is ill-
conditioned. As an example close in spirit to Kadanoff’s
block spin methods, suppose that our RG flow is prescribed
by the coarse graining4 PΛ½ϕ� ¼

R ½dψ �δ½ϕ − bΛ½ψ ��PΛ0
½ψ �,

where Λ0 is the initial RG scale and Λ ≤ Λ0. Here
bΛ½ψ �ðxÞ ≔

R
ddyfΛðx − yÞψðyÞ, where fΛðx − yÞ is a

smearing kernel with width ∼1=Λ in position space.
Perhaps fΛðx − yÞ is a Gaussian distribution, or a d-dimen-
sional unit box function (which has compact support). Sowe
are performing a continuum version of Kadanoff’s pro-
cedure. However, a key difference is that the smearingR
ddyfΛðx − yÞψðyÞ is invertible in the continuum as can be

seen by transforming to Fourier space to get fΛðpÞψðpÞ and
dividing by fΛðpÞ. Indeed, if fΛðx − yÞ is a Gaussian, then
so is its Fourier transform; dividing by a Gaussian is well-
defined, albeit ill-conditioned since we are dividing by very
small numbers in the tail regions. Likewise the Fourier
transform of a box function is the product of sinc functions,
and division by them is likewise ill-conditioned.5

More broadly, even when we perform exact versions of
the more standardWilsonian RG, the flow is only in general
invertible if we keep the infinitely many irrelevant terms in
the action generated by the flow.

B. Optimal transport

As discussed above, Polchinski’s equation for PΛ is an
infinite-dimensional convection-diffusion equation, which
can be thought of as a generalized form of heat flow. The RG
monotoneswe present later onwill be analogs of the entropy
of a distribution. The fact that the entropy of a distribution is
monotone along heat flows was already known to Gibbs.
However, the understanding that the entropy functional
generates heat flow under the Wasserstein metric required
a synthesis [21] of ideas about optimal transport. This
synthesis occurred relatively recently in the 1990s, in the
work of Otto, Benamou-Brenier, and many others. We will
review some of these developments here.
At a high level, the problem of optimal transportation is

to determine an optimal method for moving and rearrang-
ing a given mass distribution into a desired mass distribu-
tion, given a cost for moving mass across a specified
distance. In the next three subsections, we will review the
basic mathematical formalization, discuss fundamental
results about this problem, and explain how it connects
with heat flow. Beyond this connection, there is a rich
theory connecting optimal transport with probability theory
and mathematical physics, and we will provide a short
guide to relevant literature for interested readers.

1. Monge and Kantorovich formulations

Given a space X and a pair of probability or mass
distributions p, q on X, the Monge formulation of the
optimal transport problem asks to find a (measurable)
transport function T∶X → X such that:
(1) The pushforward of p under T is q, i.e. T�p ¼ q;

equivalently
R
T−1ðSÞ dxpðxÞ ¼

R
S dxqðxÞ for every

measurable set S; and
(2) The transport function minimizes the total cost

M½T� ¼
Z
X
dxpðxÞcðx; TðxÞÞ ð2:18Þ

for some cost function c∶X × X → R.
A natural choice for the cost function is cðx; yÞ ¼ dðx; yÞ2,
where d is a distance function on X. A depiction of the
mapping T�p ¼ q can be seen in Fig. 3.
The constraint T�p ¼ q is highly nonlinear, making the

existence of a solution nonobvious. For concreteness,

FIG. 3. Schematic of the probability mass distributions p and q
and the map T� between them.

3In the equation for _CΛðp2Þ, the right-hand side is greater than
or equal to zero. Since _CΛðp2Þ is continuous, Bochner’s theorem
implies that its Fourier transform _CΛðx − yÞ is likewise greater
than or equal to zero.

4This can be written in the form of the Wegner-Morris flow
equation (2.10), albeit with ΨΛ taking a form different from the
Ansatz class in (2.14), (2.15). See Ref. [5] for a discussion.

5Here we also need to be careful about dividing by zero at
isolated points, but this can be dealt with if the fields ψ belong to
a sufficiently nice function class. Relatedly, the invertibility of
block spin renormalization fails to apply to the discretized lattice
setting due the function class corresponding to latticized fields.
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suppose that X ¼ Rn and T is a smooth function. We let Tj

denote the jth coordinate output of T. Then the constraint
can be written as

qðTðxÞÞj detð∂iTjðxÞÞj ¼ pðxÞ: ð2:19Þ

This nonlinear constraint above makes it difficult to
establish the existence of solutions to the Monge problem
via methods from the calculus of variations. Worse,
solutions to the Monge problem no longer exist once the
distributions are not smooth: if the distributions p, q are
sums of delta functions, i.e. pðxÞ ¼ P

i piδðx − aiÞ while
qðxÞ ¼ P

i qiδðx − biÞ, then for generic choices of sup-
ports faig; fbjg, it is clear that no transport map T exists.
For instance, if p is supported on one point and q is
supported on two points, then there is no transport map T
such that T�p ¼ q.
To better understand the Monge problem, it is convenient

to first solve a relaxation known as the Kantorovich
problem. In the Kantorovich problem, one searches for a
positive measure π on X × X such that
(1) The pushforward of π to X is p, and the pushforward

of π to Y is q [i.e.
R
X dyπðx; yÞ ¼ pðxÞ andR

X dxπðx; yÞ ¼ qðyÞ]; and
(2) The measure π minimizes

KðπÞ ¼
Z
X×X

dxdyπðx; yÞcðx; yÞ: ð2:20Þ

The interpretation of dxdyπðx; yÞ is that it is the infinitesimal
amount of mass at x which is transported to y. If we set
πx;y ¼ pðxÞδðy − TðxÞÞ then it is clear that KðπÞ ¼ MðTÞ.
Thus, candidate solutions to the Monge problem give
candidate solutions to the Kantorovich problem. However,
the Kantorovich problem is much easier, as it is a problem
in infinite dimensional convex optimization. Indeed, the
function KðπÞ is a linear function on the convex cone of
positive measures on X × X and the constraints arising from
p and q are also linear. Discretizing this optimization
problem yields a familiar finite-dimensional linear program:
if pðxÞ ¼ P

i piδðx − aiÞ, qðyÞ ¼ P
j qjδðy − bjÞ, and

πðx;yÞ¼P
i;jπijδðx−aiÞδðy−bjÞ, then the Kantorovich

problem immediately reduces to

Minimize
X
i;j

πijcðai;bjÞ

subject to πij ≥ 0;
X
j

πij ¼pi;
X
i

πij ¼ qj: ð2:21Þ

Despite that fact that the Kantorovich problem is a
relaxation of the Monge problem, in a large class of cases
solutions to the Kantorovich problem actually arise from
solutions to the Monge problem:

Theorem 2.1. If pðxÞ and qðxÞ are smooth functions
having support on all of Rn, then the Monge problem with
cðx; yÞ ¼ jx − yj2 has a smooth solution; indeed, we have

TiðxÞ ¼ ∂ifðxÞ ð2:22Þ

for some smooth convex function f∶ Rn → R.
This result requires the development of a significant

amount of mathematics: it follows from a combination of
duality for the Kantorovich problem, Brenier’s theo-
rem [22], and Cafarelli’s regularity theory [23] for solutions
to the Monge-Ampère equation. To explain the proof of
this theorem would take us too far afield, although
[6, Chapters 2–4] gives a good introduction. We only note
that once the existence of a function satisfying (2.22) is
established by the duality theory, one concludes by the
constraint (2.19) that f satisfies the equation

det ðHess fðxÞÞ ¼ pðxÞ
qð∇fðxÞÞ ; ð2:23Þ

which is the form of the Monge-Ampère equation that
appears in this setting.

2. Wasserstein distance

Since we will be primarily interested in cases for which
the space X is a metric space (and often a Riemannian
metric space), we will henceforth denote the space by M.
For the quadratic cost cðx; yÞ ¼ jx − yj2 where x, y are
Cartesian coordinates on Euclidean space M ¼ Rn, the
optimum value of KðπÞ in the Kantorovich problem is
called the Wasserstein-2 distance W2ðp1; p2Þ. (This is
alternatively called the L2-Wasserstein distance.) The dis-
tance can be written as

W2ðp1; p2Þ ≔
�

inf
π∈Γðp1;p2Þ

Z
M×M

dxdyπðx; yÞjx − yj2
�

1=2

ð2:24Þ

where Γðp1; p2Þ is the space of probability distributions
πðx; yÞ on M ×M such that

R
M dyπðx; yÞ ¼ pðxÞ andR

M dxπðx; yÞ ¼ qðyÞ. This metric distance on the space
of probability distributions, and in particular various path
integral generalizations of it, will play a central role in our
analyses.

3. Otto calculus

To explain the connection between heat flow and optimal
transport, we first recall how to view heat flow as a gradient
flow with respect to the usual L2 metric.
Heat flow as gradient flow of Dirichlet energy.—For a

function F∶M → R on a Riemannian manifold M with
metric h·; ·i, the gradient of F at x0 ∈ M is the vector
∇Fðx0Þ such that
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d
dt

FðxðtÞÞ
����
t¼0

¼
	
∇Fðx0Þ;

∂

∂t
xðtÞ


����
t¼0

ð2:25Þ

for every curve xðtÞ ∈ M with xð0Þ ¼ x0.
For our purposes, we let M ¼ densðMÞ be the space

probability densities on a manifold M, where we suppose
M is equipped with a volume form dV. That is, densðMÞ is
an infinite-dimensional manifold defined by

densðMÞ ≔
�
p ∈ C∞ðMÞ

����p ≥ 0;
Z

dVp ¼ 1

�
: ð2:26Þ

The tangent space at p ∈ densðMÞ is

TpdensðMÞ ¼
�
η ∈ C∞ðMÞ

���� Z dVη ¼ 0

�
: ð2:27Þ

We can equip each tangent space TpdensðMÞ with a
Riemannian metric

hη1; η2iL2 ¼
Z

dVη1η2: ð2:28Þ

This corresponds to the L2 inner product on functions on
M. Defining the Dirichlet energy functional as

E½p� ≔ 1

2

Z
dVj∇pj2; ð2:29Þ

we can compute its gradient with respect to the infinite-
dimensional L2 metric in (2.28) using (2.25). In particular,
let ρðtÞ be a differentiable path through densðMÞ such that
ρð0Þ ¼ p. Then

d
dt

E½ρðtÞ� ¼
Z

dV∇ρ · ∇ ∂

∂t
ρ;

¼ −
Z

dVΔρ
∂

∂t
ρ;

¼
	
−Δρ;

∂

∂t
ρ



L2

: ð2:30Þ

Evaluating the above at t ¼ 0 and comparing with (2.25),
we read off that

∇L2E½p� ¼ −Δp: ð2:31Þ

It follows that the heat equation ∂

∂t p ¼ Δp is the negative
gradient flow of the Dirichlet energy functional E, namely

∂

∂t
pðx; tÞ ¼ −∇L2E½pðx; tÞ�: ð2:32Þ

This in fact implies that the Dirichlet energy monotonically
decreases along the heat flow.

Wasserstein distance and the gradient flow of entropy.—
Another monotone for the heat flow is given by the
differential entropy

S½p� ≔ −
Z

dVp logðpÞ: ð2:33Þ

We will have more to say about this quantity in Sec. III B.
By analogy with (2.32) above, we might ask if there is any
Riemannian metric g on densðMÞ such that the heat
equation can be written as ∂

∂t p ¼ ∇gS½p�? In other words,
is there some (natural) metric on the space of probability
distributions for which the heat equation is the gradient
flow of the differential entropy?
Remarkably, the answer yes—this was discovered by

Otto [21] and widely exploited by subsequent researchers
in partial differential equations and probability theory. In
fact, there are a large collection of entropylike monotones S̃
which have associated metrics g̃ on densðMÞ such that the
heat equation can be written as ∂

∂t p ¼ ∇g̃S̃½p�. All of these
metrics have deep connections to optimal transport. Since
we will be interested in the particular case of the differential
entropy, we will not discuss these related entropic gradient
flow formulations here.
We now turn to constructing themetric g on densðMÞ such

that ∂

∂t p ¼ ∇gS½p�. To write the metric in the most trans-
parent way, an isomorphism of the tangent spaceTpdensðMÞ
is required. Given a tangent vector η ∈ TpdensðMÞ, we can
solve for a η̄ satisfying

∇ · ðp∇η̄Þ ¼ η: ð2:34Þ

The solution is unique up to addition of a constant, and so
we get an identification η ↔ η̄ which we notate by the
isomorphism

TpdensðMÞ ≃ TpdensðMÞ
≔ fη ∈ C∞ðMÞg=fconstantsg: ð2:35Þ

Using this identification we define the Riemannian metric

hη1; η2iW2
≔

Z
dVp∇η̄1 ·∇η̄2 ¼ −

Z
dVη1η̄2

¼ −
Z

dVη̄1η2; ð2:36Þ

where the last two equalities can be checked via integration
by parts. This metric is in fact the infinitesimal form of the
Wasserstein-2 distanceW2. A rigorous argument establish-
ing this fact is given in [24] [Lemma 4.3]; we will explain
the heuristic connection in Appendix A.
Now let us show that ∇W2

S½p� ¼ Δp. Let ρðtÞ be a path
through densðMÞ with ρð0Þ ¼ p, and define η ≔ d

dt ρðtÞjt¼0
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which is definitionally an element of TpdensðMÞ. Let η̄ be
the corresponding solution to (2.34). Then we compute

d
dt

S½ρðtÞ�jt¼0 ¼ −
Z

dVηðlogpþ 1Þ;

¼ −
Z

dV∇ · ðp∇η̄Þðlogpþ 1Þ;

¼
Z

dV∇η̄ · ∇p;

¼ −
Z

dVη̄ · Δp;

¼ hΔp; ηiW2
;

¼
	
Δp;

∂

∂t
ρ



W2

����
t¼0

; ð2:37Þ

and so comparing with (2.25) we indeed find

∇W2
S½p� ¼ Δp: ð2:38Þ

Then the heat equation can be written as

∂

∂t
pðx; tÞ ¼ ∇W2

S½p�: ð2:39Þ

Thus, the heat flow is the gradient flow of the differential
entropy (2.33) with respect to the Wasserstein-2 metric.
While it was known to Gibbs that entropy is a heat flow
monotone, the above equation clarifies that in fact heat flow
is completely governed by the entropy, with optimal
transport playing a central role in this formulation.

4. A guide to further literature

In the rest of this paper, we will exploit formal, infinite-
dimensional analogs of the optimal-transport formulation
of heat flow to study the renormalization group. We expect
that that there are further profitable connections to be made
between the rich mathematics of optimal transport and the
structure of the renormalization group, and we view the
present work as an initial study.
The lecture notes [6] are a very readable mathematical

introduction to the subject of optimal transport, and the
original paper [21] remains full of geometric insight. The
papers [22,23,25] mentioned above are all fundamental.
The book [6] covers connections to Ricci curvature, while
the review article [26] summarizes applications in partial
differential equation (PDE) and applied mathematics. The
logarithmic Sobolev inequalities proven in [27] were
reproven using optimal transport in [28] and had a dramatic
impact on probability theory; they were originally moti-
vated by problems in constructive quantum field theory and
so it is not surprising that the ideas should come full circle.
Some very recent applications of Polchinski’s equation to
constructive quantum field theory can be found in [29,30].

We note also that ideas around the logarithmic Sobolev
inequalities together with the fact that Ricci flow is
renormalization group flow for a σ-model was a stated
motivation for Perelman’s work on the Poincarè conjecture
[31]; following this idea, McCann and Topping [32] began
an ongoing research program founding Ricci flow in ideas
based on optimal transport.

III. RG FLOW AS AN OPTIMAL TRANSPORT
GRADIENT FLOW

A. Deriving the optimal transport gradient flow
equation for RG

Since Polchinski’s equation (2.7) is a special case of the
Wegner-Morris flow equation (2.10), we find it prudent to
derive our optimal transport equation for the latter. Suppose
we intend to flow a Euclidean field theory with probability
functional PΛ½ϕ� ¼ e−SΛ½ϕ�=ZP;Λ. Recall the Wegner-
Morris flow equation

−Λ
d
dΛ

PΛ½ϕ� ¼
Z

ddx
δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�Þ;

where will adopt the functional forms in (2.14) and (2.15)
for the reparametrization kernel ΨΛ, namely

ΨΛ½ϕ; x� ¼ −
Z

ddy
1

2
_CΛðx − yÞ δΣΛ½ϕ�

δϕðyÞ ;

ΣΛ½ϕ� ¼ SΛ½ϕ� − 2ŜΛ½ϕ�;

where _CΛðx − yÞ ≥ 0. Now we define a Riemannian metric
on the tangent space to the space of probability functionals
which we will later explain is the infinitesimal version of a
functional W2 metric. We let

hδP1½ϕ�; δP2½ϕ�iW2
¼ 1

2

Z
½dϕ�P½ϕ�

Z
ddxddy _CΛðx − yÞ

×
δΦ1½ϕ�
δϕðxÞ

δΦ2½ϕ�
δϕðyÞ ; ð3:1Þ

where we define Φi½ϕ� for i ¼ 1, 2 via the functional
differential equations

δPi½ϕ� −
1

2

Z
ddxddy _CΛðx − yÞ δ

δϕðxÞ
�
P½ϕ� δΦi½ϕ�

δϕðyÞ
�

¼ 0:

ð3:2Þ

Analogous to the finite-dimensional heat flow setting,
the Φis are only specified by the above equation up to
additive functions not depending on ϕ. Note that since
_CΛðx − yÞ ≥ 0, the norm induced by the metric is auto-
matically greater than or equal to zero. Similar to Otto’s
calculation we can perform an integration by parts in (3.1)
to obtain the more compact expressions
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hδP1½ϕ�; δP2½ϕ�iW2
¼ −

Z
½dϕ�δP1½ϕ�Φ2½ϕ� ¼ −

Z
½dϕ�Φ1½ϕ�δP2½ϕ�: ð3:3Þ

Coopting the results of Otto [24] and generalizing them appropriately to our setting, we have that our metric is the
infinitesimal form of the distance

W2ðP1; P2Þ ≔
�

inf
Π∈ΓðP1;P2Þ

2

Z
½dϕ1�½dϕ2�Π½ϕ1;ϕ2�

Z
ddxddy _C−1

Λ ðx; yÞðϕ1ðxÞ − ϕ2ðxÞÞðϕ1ðyÞ − ϕ2ðyÞÞ
�

1=2
; ð3:4Þ

where ΓðP1; P2Þ is the space of probability functionals
Π½ϕ1;ϕ2� such that

R ½dϕ2�Π½ϕ1;ϕ2� ¼ P½ϕ1� andR ½dϕ1�Π½ϕ1;ϕ2� ¼ P2½ϕ2�. Above _C−1
Λ ðx; yÞ is the

inverse of the kernel _CΛðx; yÞ in the sense thatR
ddz _C−1

Λ ðx; zÞ _CΛðz; yÞ ¼ δdðx − yÞ; since in our setting
_CΛðx; yÞ ¼ _CΛðx − yÞ, in momentum space the kernel
_CΛðp2Þ has as its inverse _C−1

Λ ðp2Þ ¼ 1= _CΛðp2Þ. The
distance W2ðP1; P2Þ represents the minimum cost of
“transporting” P1 into P2 (or vice versa), where the cost
is given by an L2 penalty on rearranging field degrees of
freedom away from the spatial scale l ∼ 1=Λ.
We are now almost ready to state our main result

and then subsequently derive it. Define the probability
functional

QΛ½ϕ� ≔
e−2ŜΛ½ϕ�

ZQ;Λ
; ð3:5Þ

where ZQ;Λ ¼ R ½dϕ�e−2ŜΛ½ϕ� and let the functional relative
entropy be

SðP½ϕ�kQ½ϕ�Þ ≔
Z

½dϕ�P½ϕ� log
�
P½ϕ�
Q½ϕ�

�
: ð3:6Þ

Then we have the remarkable formula

−Λ
d
dΛ

PΛ½ϕ� ¼ −∇W2
SðPΛ½ϕ�kQΛ½ϕ�Þ; ð3:7Þ

whichisequivalent to theWegner-Morrisflowequation(2.10).
To establish this connection, we need to show that
−∇W2

SðPΛ½ϕ�kQΛ½ϕ�Þ equals
R
ddx δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�Þ.
For any F ½P½ϕ�� which takes probability functionals to

the real numbers, the differential-geometric definition of
the gradient ∇W2

F ½P� is given by

h∇W2
F ½P�; δPiW2

¼
Z

½dϕ� δF ½P�
δP

δP½ϕ�: ð3:8Þ

A slightly unusual feature of the right-hand side is that δF ½P�
δP

is not an ordinary functional derivative but rather a func-
tional-of-a-functional derivative, i.e. a derivative with

respect to the functional P½ϕ�. In our case, we choose
F ½PΛ� ≔ SðPΛkQΛÞ; then computing the right-hand side
of (3.8) we obtain

Z
½dϕ�ðlogPΛ½ϕ� þ 1− logQΛ½ϕ�ÞδP½ϕ�

¼
Z

½dϕ�ð−SΛ½ϕ�− logZPþ 1þ 2ŜΛ½ϕ� þ logZQÞδP½ϕ�;

¼
Z

½dϕ�ð−SΛ½ϕ� þ 2ŜΛ½ϕ�ÞδP½ϕ�;

¼−
Z

½dϕ�ΣΛ½ϕ�δP½ϕ�: ð3:9Þ

In going from the first to second line we usedR ½dϕ�δP½ϕ� ¼ 0 since this is a property of elements of
the tangent space to probability functionals so thatR ½dϕ�ðP½ϕ� þ δP½ϕ�Þ ¼ 1. Next we use (3.2) to rewrite
δP in terms of a Φ field, giving us

−
1

2

Z
½dϕ�ΣΛ½ϕ�

Z
ddxddy _CΛðx−yÞ δ

δϕðxÞ
�
PΛ½ϕ�

δΦ½ϕ�
δϕðyÞ

�
:

ð3:10Þ

Integrating by parts twice in the functional ϕ derivatives,
we obtain

−
Z

½dϕ�
Z

ddx
δ

δϕðxÞ

×

�Z
ddy

1

2
_CΛðx − yÞ δΣΛ½ϕ�

δϕðyÞ PΛ½ϕ�
�
Φ½ϕ�

¼
Z

½dϕ�
Z

ddx
δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�ÞΦ½ϕ�;

¼
	
−
Z

ddx
δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�Þ; δP



W2

; ð3:11Þ

where in the last line we have used (3.3). Comparing with
(3.8) this establishes
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−∇W2
SðPΛ½ϕ�kQΛ½ϕ�Þ ¼

Z
ddx

δ

δϕðxÞ ðΨΛ½ϕ; x�PΛ½ϕ�Þ;

ð3:12Þ

which implies our main result (3.7).

B. Comments and interpretation

Our result (3.7) provides a new way of thinking about the
renormalization group, and elucidates some key technical
aspects of Polchinski’s equation and the Wegner-Morris
flow equation more broadly. First let us discuss (3.7) itself.
The relative entropy SðPkQÞ, also called the Kullback-

Leibler divergence, is a core object in information theory
which provides a measure of similarity between two
probability distributions P, Q [33]. While it is not a metric
distance (for instance, it is not symmetric between P and Q
and does not satisfy the triangle inequality), it is positive
and enjoys a host of other properties; a useful discussion
aimed for physicists is [34]. Heuristically, the relative
entropy tells us how good Q is as a proxy for P. For
instance, the relative entropy quantifies how much addi-
tional memory is required to compress a list of samples
from P if we are only given just enough memory to
optimally compress a list of as many samples from Q.
There have been other works on RG flow which have
leveraged the relative entropy [35–45], albeit in a manner
which does not involve optimal transport.
A particular conceptual feature of the relative entropy is

worth commenting on. If we have a discrete probability
distribution pi, then its entropy is simply −

P
i pi logðpiÞ.

Passing to the continuum via pi → dxpðxÞ, the entropy
becomes −

R
dxpðxÞ logðdxpðxÞÞ. The dx inside the log-

arithm is somewhat pathological, and reflects that the strict
continuum limit of the entropy is ill-defined. Relatedly, if
we give dx units of length so that pðxÞ has units of inverse
length, then the quantity inside the logarithm must be
dimensionless, which is achieved by logðdxpðxÞÞ. To cure
the issue of a dx inside the logarithm, the continuum
entropy is obliged to have an alternative defining formula
which is partially divorced from its discrete version. A
common option is S½p� ¼ −

R
dxpðxÞ logðpðxÞÞ, which is

called the differential entropy. In the differential entropy,
the logðpðxÞÞ should be thought of as logðapðxÞÞ for
a ¼ 1, where a has “units” of length. Notably, the relative
entropy is free of the aforementioned issue. For suppose we
consider −

P
i pi logðqiÞ for some second discrete proba-

bility distribution qi and pass to the continuum limit in the
same way to get −

R
dxpðxÞ logðdxqðxÞÞ. Subtracting this

from −
R
dxpðxÞ logðdxpðxÞÞ, we obtain minus the relative

entropy

−SðpkqÞ ¼ −
Z

dxpðxÞ log
�
pðxÞ
qðxÞ

�
; ð3:13Þ

where in effect the unwanted dxs in the log have canceled
out. As such, we can think of minus the relative entropy as a
well-defined and meaningful replacement for the con-
tinuum entropy.
One interpretation of our result (3.7) is that the RG flow

of the probability functional PΛ seeks to minimize the
relative entropy between PΛ and QΛ according to the
appropriate W2 gradient. Minimizing the relative entropy
can be viewed as a proxy for maximizing the entropy of PΛ,
in light of the discussion in the preceding paragraph. This
makes intuitive sense: as we coarse grain due to RG flow,
there is a form of entropy production. But what is more
striking from (3.7) is that the entropy production is
precisely what determines the flow itself. An alternative
formulation of this statement is provided in Sec. VI where
we develop a variational formula for RG flow.
An interesting special case of (3.7) is Polchinski’s

equation for a free scalar field, corresponding to

−Λ
d
dΛ

Pfree
Λ ½ϕ� ¼ −∇W2

SðPfree
Λ ½ϕ�kQfree

Λ ½ϕ�Þ; ð3:14Þ

withPfree
Λ ½ϕ�¼e−Sfree;Λ½ϕ�=ZP;Λ andQfree

Λ ½ϕ�¼e−2Sfree;Λ½ϕ�=ZQ;Λ,
where we note the factor of 2 in the exponent. Using the
identities

−∇W2
SðPfree

Λ ½ϕ�kQfree
Λ ½ϕ�Þ ¼ −∇W2

SðPfree
Λ ½ϕ�kðPfree

Λ ½ϕ�Þ2Þ
¼ ∇W2

SðPfree
Λ ½ϕ�Þ; ð3:15Þ

where SðPÞ ¼ −
R ½dϕ�P½ϕ� logP½ϕ� is a functional analog

of the differential entropy, we find

−Λ
d
dΛ

Pfree
Λ ½ϕ� ¼ ∇W2

SðPfree
Λ ½ϕ�Þ: ð3:16Þ

Thus the free scalar field flows exactly according to its
differential entropy.
Another feature of (3.7) is that it explains the role of

“seed action” ŜΛ½ϕ� in (2.15). In particular, the seed action
(and its conventional prefactor of 2) provides us with
QΛ½ϕ� ¼ e−2ŜΛ½ϕ�=ZQ;Λ as per (3.5), which is the baseline
distribution in the relative entropy SðPΛkQΛÞ appearing in
the gradient flow. Indeed, the definition of the functional
W2 distance together with QΛ define our choice of RG
scheme. We emphasize that the seed action ŜΛ½ϕ� has a
prescribed Λ dependence, and does not itself need to satisfy
a flow equation.
Finally, we comment on the meaning of ΣΛ½ϕ�.

Suggestively rewriting it as

ΣΛ½ϕ� ¼ − logðPΛ½ϕ�Þ þ logðQΛ½ϕ�Þ − logðZP;ΛÞ
þ logðZQ;ΛÞ; ð3:17Þ
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we observe that ΣΛ½ϕ� ultimately enters into our formulas

only through its functional derivative δΣΛ½ϕ�
δϕ . As such, we are

free to redefine ΣΛ½ϕ� by adding ϕ-independent terms.
Thus, subtracting the constant terms off of (3.17) and
combining the residual logarithms, we can replace ΣΛ½ϕ� in
(2.10), (2.14) with

Σ̃Λ½ϕ� ¼ − log

�
PΛ½ϕ�
QΛ½ϕ�

�
; ð3:18Þ

where the tilde reminds us that we have made a modifi-
cation (albeit an innocuous one) to the original definition
without changing the resulting Wegner-Morris flow equa-
tion. Notice that this new quantity Σ̃Λ½ϕ� is information-
theoretically natural: it is minus the log likelihood ratio
between PΛ and QΛ, and so we can write

SðPΛkQΛÞ ¼ −
Z

½dϕ�PΛ½ϕ�Σ̃Λ½ϕ�: ð3:19Þ

Accordingly, we have repackaged the major ingredients in
the Wegner-Morris flow equation (and Polchinski’s equa-
tion as a special case) in terms of information-theoretic
quantities.

IV. RG MONOTONES

In this section we derive a nonperturbative RGmonotone
using our optimal transport flow equation in (3.7). There
have been previous attempts at formulating RG monotones
using the ERG framework but this has only been success-
ful in the local potential approximation, essentially
where we ignore higher-derivative contributions to the
action [46–49]. By contrast, our RG monotone holds
without any approximations.
Our proposed monotone for a PΛ solving (3.7) is

formally given by

MΛðPΛÞ ≔ SðPΛkQΛÞ − logðZQ;ΛÞ; ð4:1Þ

under the assumption that QΛ½ϕ� ¼ e−SQ;Λ½ϕ�=ZQ;Λ for

SQ;Λ½ϕ� ¼ C
Z

ddp
ð2πÞd K̂

−1
Λ ðp2ÞG−1ðp2ÞϕðpÞϕð−pÞ: ð4:2Þ

Here K̂Λðp2Þ is a smooth cutoff function which need not
equal KΛðp2Þ, and Gðp2Þ is the Green’s function of some
positive semidefinite elliptic differential operator [e.g.
Gðp2Þ ¼ 1=ðp2 þm2Þ]. Accordingly, our monotone per-
tains to Polchinski’s equation, as well as more generally the
Wegner-Morris flow equation with a quadratic seed action.
Due to interesting subtleties with orders of limits and

divergences, in Sec. IV B [see in particular (4.24)] we will
introduce a regulated version of MΛðPΛÞ. We will show

below that the quantity (4.1) is formally divergent, but it
can be regularized in a way that is independent of the
renormalization scheme. There is an extensive discussion in
Sec. IV B which provides appropriate context. The proof of
monotonicity below is unaffected.

A. Proof of monotonicity

Let us establish the monotonicity of the monotone. We
have

−Λ
d
dΛ

MΛðPΛÞ ¼ −
Z

½dϕ�Λ ∂PΛ

∂Λ
ðlogðPΛÞ − logðe−SQ;ΛÞÞ

−
Z

½dϕ�
�
Λ
∂PΛ

∂Λ
þ PΛ

∂SQ;Λ

∂Λ

�
: ð4:3Þ

Here we are differentiating under the integral sign by
bringing Λ d

dΛ into integrand of the functional integral. This
has some subtleties related to regularization of MΛðPΛÞ
which we treat in detail in Sec. IV B, but indeed we will
find that integrating under the integral sign is a good
prescription. Using (3.7) and dropping total derivative
terms, we findZ

½dϕ�
Z

ddx
δðΨΛPΛÞ
δϕðxÞ ðlogðPΛÞ − logðe−SQ;ΛÞÞ

−
Z

½dϕ�PΛΛ
∂SQ;Λ

∂Λ
: ð4:4Þ

Integrating by parts on the first term, we obtain

1

2

Z
½dϕ�PΛ½ϕ�

Z
ddxddy _CΛðx − yÞ δΣΛ

δϕðxÞ
δΣΛ

δϕðyÞ
−
Z

½dϕ�PΛΛ
∂SQ;Λ

∂Λ
: ð4:5Þ

The first term6 is manifestly positive semidefinite since
_CΛðx − yÞ ≥ 0. For the second term, we have

−
Z

½dϕ�PΛΛ
∂SQ;Λ

∂Λ

¼−
Z

ddp
ð2πÞdΛ

∂K̂−1
Λ ðp2Þ
∂Λ

G−1ðp2ÞhϕðpÞϕð−pÞiPΛ
: ð4:6Þ

Since −Λ ∂K̂−1ðp2=Λ2Þ
∂Λ ≥ 0 and hϕðpÞϕð−pÞiP ≥ 0, the entire

quantity is greater than or equal to zero. Accordingly, we
have established that

6It can also be written as functional generalization of the
relative Fisher information between PΛ and QΛ with background
metric hF½ϕðxÞ�;G½ϕðyÞ�i ¼ 1

2

R
ddxddy _Cðx− yÞF½ϕðxÞ�G½ϕðyÞ�.
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−Λ
d
dΛ

MΛðPΛÞ ≥ 0 ð4:7Þ

and so MΛðPΛÞ is an RG monotone.
A slight surprise about the definition of the monotone

(4.1) is the presence of the − logðZQ;ΛÞ. The necessity of
this term can be understood as follows. Suppose we did
not include − logðZQ;ΛÞ in the monotone, so that
−Λ d

dΛMΛðPΛÞ is just the relative entropy. This would
affect the left-hand side of (4.7) by adding the term

−Λ
∂ logðZQ;ΛÞ

∂Λ
¼ −Λ

1

ZQ;Λ

∂ZQ;Λ

∂Λ
: ð4:8Þ

Unfortunately this term is less than zero, and so can
interfere with the bound (4.7) if we include it. In particular,
as we raise the cutoff Λ, more modes are introduced in the
SQ;Λ action, with variances σ2 ≃ 1=ðp2 þm2Þ for p ∼ Λ;
the variances of these modes were formerly extremely
small before we raised the cutoff. Accordingly, the partition
function ZQ;Λ will increase when we raise the cutoff, and so

Λ ∂ZQ;Λ
∂Λ ≥ 0. This is why we have elected to define our

monotone to avoid this issue.
Note, however, that if we had a hard cutoff instead of a

soft cutoff, the story would be different. In the hard cutoff
setting, introducing more modes by raising the cutoff
would cause Λ ∂ZQ

∂Λ ≤ 0, and render (4.8) to be positive.
However, other subtleties with ERG in the hard cutoff
setting pertaining to changing the domain of path integra-
tion dissuade us from pursuing this direction at present.
Having defined a nonperturbative RG monotone

MΛðPΛÞ for quantum field theories, it is natural to inquire
about the finiteness of MΛðPΛÞ. This will become clearer
when we compute some examples below, but here we
overview some general structure. In our examples we will
find that

−Λ
d
dΛ

MΛðPΛÞ ¼ δdð0Þc1ðΛÞ; ð4:9Þ

where c1ðΛÞ is a finite quantity. Here the δdð0Þ divergence
comes from momentum space contact terms. If we con-
sidered a field theory on, say, a torus where the momenta
range over a lattice, then the δdð0Þwould be rendered finite.
Since the δdð0Þ is multiplicative on the right-hand side
of (4.9) it is essentially innocuous: the positivity of
−Λ d

dΛMΛðPΛÞ implies

c1ðΛÞ ≥ 0: ð4:10Þ

Then an appropriate antiderivative of c1ðΛÞ, namely a
C1ðΛÞ satisfying −Λ d

dΛC1ðΛÞ ¼ c1ðΛÞ, is evidently a
finite RG monotone since

−Λ
d
dΛ

C1ðΛÞ ≥ 0: ð4:11Þ

Our discussion above pertained to −Λ d
dΛMΛðPΛÞ

instead of MΛðPΛÞ itself. As we will see in in Sec. IV B
below, there are some subtleties in computing MΛðPΛÞ
directly. It can be done, however, with sufficient care.
Nonetheless, the derivative −Λ d

dΛMΛðPΛÞ can be com-
puted rather directly using the formula (4.5) which
automatically accounts for subtleties in the definition
of MΛðPΛÞ.

B. Differentiating under the functional integral
and regularization

In our derivation of the monotonicity of MΛðPΛÞ above,
we differentiated under the integral sign in (4.3). This
interchange of limits is particularly subtle in our path
integral setting as we will now show. Let us start with an
illuminating example before turning to generalities.

1. Order of limits in the setting of free field theory

Consider Polchinski’s equation in (2.7); a solution to this
is the free probability distribution, given by PΛ½ϕ� ¼
1
ZΛ
expð− 1

2

R ddp
ð2πÞdϕðpÞϕð−pÞðp2þm2ÞK−1

Λ ðp2ÞÞ. Plugging
this into our monotone MΛðPΛÞ defined in (4.1), there are
terms proportional to

Z
½dϕ�Pfree

Λ ½ϕ�Sfree;Λ½ϕ�

¼ 1

2ZP;Λ

Z
½dϕ�e−

1
2

R
ddp

ð2πÞdϕðpÞϕð−pÞðp
2þm2ÞK−1

Λ ðp2Þ

×
Z

ddp
ð2πÞd ϕðpÞϕð−pÞðp

2 þm2ÞK−1
Λ ðp2Þ;

¼ 1

2

Z
ddpδdð0Þ: ð4:12Þ

This is related to the fact that in the more ordinary

n-dimensional integral setting we have
R
dnx detðAÞ1=2

ð2πÞn=2 ×

e−
1
2
x·A·xð1

2
x · A · xÞ ¼ 1

2
, except that in the functional setting

we have a (momentum space) contact term δdð0Þ and a
residual

R
ddp integral at the end. From (4.12) we infer that

−Λ
d
dΛ

Z
½dϕ�PΛ½ϕ�Sfree;Λ½ϕ� ¼ 0: ð4:13Þ

But now let us perform the computation of (4.13) another
way by differentiating under the integral sign. In this setting
we have
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−
Z

½dϕ�Λ ∂

∂Λ
ðPfree

Λ ½ϕ�Sfree;Λ½ϕ�Þ ¼ −
Z

½dϕ�Λ ∂Pfree
Λ ½ϕ�
∂Λ

Sfree;Λ½ϕ� −
Z

½dϕ�Pfree
Λ ½ϕ�Λ ∂Sfree;Λ½ϕ�

∂Λ
: ð4:14Þ

The first term on the right-hand side is

−
Z

½dϕ�Λ ∂Pfree
Λ ½ϕ�
∂Λ

Sfree;Λ½ϕ� ¼
1

4ZP;Λ

Z
½dϕ�e−

1
2

R
ddp

ð2πÞdϕðpÞϕð−pÞðp
2þm2ÞK−1

Λ ðp2Þ
Z

ddp
ð2πÞd ϕðpÞϕð−pÞðp

2 þm2ÞK−1
Λ ðp2Þ

×
Z

ddq
ð2πÞd ϕðqÞϕð−qÞðq

2 þm2ÞΛ ∂K−1
Λ ðq2Þ
∂Λ

þ Λ
∂ logZP;Λ

∂Λ

Z
½dϕ�Pfree

Λ ½ϕ�Sfree;Λ½ϕ�;

¼
�
1

2

Z
ddpδdð0Þ

��
Λ
∂ logZP;Λ

∂Λ
−
1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

�
−
1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

: ð4:15Þ

To further simplify, we observe that for an infinitesimal
perturbation change of scale any PΛ½ϕ� changes as

PΛ−δΛ½ϕ� ¼ PΛ½ϕ� − δΛ ∂PΛ½ϕ�
∂Λ . Then integrating both sides

with respect to ϕ and using the normalization of the
probability functional we findZ

½dϕ�Λ ∂PΛ½ϕ�
∂Λ

¼ 0: ð4:16Þ

In the free setting,Z
½dϕ�Λ∂Pfree

Λ ½ϕ�
∂Λ

¼1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

−Λ
∂ logZP;Λ

∂Λ
¼0 ð4:17Þ

which implies

Λ
∂ logZP;Λ

∂Λ
¼ 1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

: ð4:18Þ

Plugging this into (4.15) we see that there is a helpful
cancellation which leaves us with

−
Z

½dϕ�Λ ∂Pfree
Λ ½ϕ�
∂Λ

Sfree;Λ½ϕ�

¼ −
1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

: ð4:19Þ

Turning to the second term on the right-hand side of (4.14),
a less elaborate computation yields

−
Z

½dϕ�Pfree
Λ ½ϕ�Λ∂Sfree;Λ½ϕ�

∂Λ
¼ δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

:

ð4:20Þ

Plugging (4.19) and (4.20) into (4.14), we finally find

−
Z

½dϕ�Λ ∂

∂Λ
ðPΛ½ϕ�Sfree;Λ½ϕ�Þ

¼ 1

2
δdð0Þ

Z
ddpΛ

∂ logKΛðp2Þ
∂Λ

: ð4:21Þ

Comparing (4.21) with (4.13), we see that surprisingly

− Λ
d
dΛ

Z
½dϕ�PΛ½ϕ�Sfree;Λ½ϕ�

≠ −
Z

½dϕ�Λ ∂

∂Λ
ðPΛ½ϕ�Sfree;Λ½ϕ�Þ; ð4:22Þ

and so evidently the order of limits does not commute. This
also holds more generally for RG flows of interacting
theories. In our proof of the monotonicity of MΛðPΛÞ, we
differentiated under the integral sign, and so apparently our
proof is contingent on a certain order of limits. To resolve
the ambiguity, let us define

MΛðPfree
Λ ½ϕ�Þ ≔ −

Z
logΛ0

logΛ
d logΛ0

�Z
½dϕ�Λ0 ∂

∂Λ0

�
Pfree
Λ0 ½ϕ�

× log

�
Pfree
Λ0 ½ϕ�

Qfree
Λ0 ½ϕ�

��
− Λ0 ∂ logðZQ;Λ0 Þ

∂Λ0

�
;

ð4:23Þ

where we assume Λ ≤ Λ0. In words, we are defining
MΛðPfree;Λ½ϕ�Þ as an antiderivative of the differentiated-
under-the-integral-sign quantity. This more fully specifies
what we mean by MΛðPfree;Λ½ϕ�Þ, and in particular the
manner in which its divergent terms depend on Λ.
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2. Order of limits in more general RG flows

In the general setting, by analogy to (4.23) we define

MΛðPΛ½ϕ�Þ ≔ −
Z

logΛ0

logΛ
d logΛ0

×

�Z
½dϕ�Λ0 ∂

∂Λ0

�
PΛ0 ½ϕ� log

�
PΛ0 ½ϕ�
QΛ0 ½ϕ�

��
− Λ0 ∂ logðZQ;Λ0 Þ

∂Λ0

�
; ð4:24Þ

where again we assume Λ ≤ Λ0. This is the true definition
of the monotone MΛðPΛÞ. Indeed, the proof of monoto-
nicity in Sec. IVA in fact implicitly uses this prescription.
We conclude this section by reiterating a useful formula

we used in our free analysis above. Equation (4.16) isR ½dϕ�Λ ∂PΛ½ϕ�
∂Λ ¼ 0, which holds for general PΛ½ϕ�, and so

Λ
∂ logZP;Λ

∂Λ
¼ −

Z
½dϕ�PΛ½ϕ�Λ

∂SP;Λ½ϕ�
∂Λ

; ð4:25Þ

which is just a generalization of (4.18). This identity (4.25)
will be useful for us in the section which follows.

V. EXAMPLES WITH SCALAR
FIELD THEORIES

Below we exhibit computations of our RG monotone in
some examples. First we consider free scalar field theory
which has an exactly soluble ERG flow; hence we can
compute our RG monotone exactly in this case. Next we
turn to scalar ϕ4 theory for which we can compute the RG
monotone perturbatively.

A. Free scalar field

Consider a free massive scalar field which evolves via
Polchinski’s equation in (2.7). Using the definition of
MΛðPfree

Λ ½ϕ�Þ in (4.23), we find

MΛðPfree
Λ ½ϕ�Þ ¼ −

3

2
δdð0Þ

Z
ddp log

�
KΛðp2Þ
KΛ0

ðp2Þ
�
; ð5:1Þ

where we suppose Λ ≤ Λ0. The integral
R
ddp logð KΛðp2Þ

KΛ0 ðp2ÞÞ
above is divergent, but its Λ derivatives can be finite. Upon
taking a Λ derivative, we find

−Λ
d
dΛ

MΛðPfree
Λ ½ϕ�Þ ¼ 3

2
δdð0Þ

Z
ddp

∂ logKΛðp2Þ
∂Λ

≥ 0: ð5:2Þ
Although the above is positive for any KΛðp2Þ that is a
smooth, monotonically decreasing cutoff function, it can be
infinite. There is a nice class ofKΛðp2Þ for which the above
is finite; this is explained in Appendix B.

B. Interacting scalar field

Now we perform some explicit perturbative computa-
tions of the derivative of the RG monotone MΛðPΛÞ in
(4.24) for massive scalar ϕ4 theory, namely where the
action is

SΛ¼Λ0
½ϕ� ¼ 1

2

Z
ddp
ð2πÞd ðp

2 þm2ÞK−1ðp2=Λ2
0ÞϕðpÞϕð−pÞ

þ λ

4!

Z
ddp1ddp2ddp3ddp4

ð2πÞ3d ϕðp1Þϕðp2Þ

× ϕðp3Þϕðp4Þδdðp1 þ p2 þ p3 þ p4Þ: ð5:3Þ

We have given the action at the initial value of the cutoff
Λ ¼ Λ0, where the RG flow is to be initiated. In other
words, we desire to study the flow equation for PΛ½ϕ� given
its initial condition at Λ ¼ Λ0. Recall that in the context of
Polchinski’s equation we have

_CΛðp2Þ¼ ð2πÞdðp2þm2Þ−1Λ∂KΛðp2Þ
∂Λ

;

ŜΛ ¼
1

2

Z
ddp
ð2πÞd ðp

2þm2ÞK−1
Λ ðp2ÞϕðpÞϕð−pÞ: ð5:4Þ

Equation (4.5) provides a nice expression for the
derivative of our RG monotone at Λ ¼ Λ0, namely

− Λ
d
dΛ

MΛðPΛÞ
���
Λ¼Λ0

¼ 1

2

Z
½dϕ�PΛ0

½ϕ�
Z

ddxddy _CΛ0
ðx − yÞ δΣΛ0

δϕðxÞ
δΣΛ0

δϕðyÞ

− 2

Z
½dϕ�PΛ0

½ϕ�Λ0

∂ŜΛ0

∂Λ0

: ð5:5Þ

Working in momentum space and plugging in (5.4) we find

1

2

Z
½dϕ�PΛ0

½ϕ�
Z

ddpð2πÞdðp2 þm2Þ−1

× Λ0

∂Kðp2=Λ2
0Þ

∂Λ0

δðSΛ0
− 2ŜΛ0

Þ
δϕðpÞ

δðSΛ0
− 2ŜΛ0

Þ
δϕð−pÞ

− 2

Z
½dϕ�PΛ0

½ϕ�Λ0

∂ŜΛ0

∂Λ0

: ð5:6Þ

We will compute this perturbatively to second order in the
quartic coupling λ.
To compress the form of our formulas, it is convenient to

define

K̃ΛðpÞ ≔ KΛðp2Þ 1

p2 þm2
ð5:7Þ

and also
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f0ðΛÞ ¼
Z

ddpΛ
∂ logðK̃ΛðpÞÞ

∂Λ
; ð5:8Þ

f1ðΛÞ ¼
Z

ddpΛ
∂ logðK̃ΛðpÞÞ

∂Λ
K̃ΛðpÞ

Z
ddq
ð2πÞd K̃ΛðqÞ;

ð5:9Þ

f2ðΛÞ ¼
Z

ddpΛ
∂ logðK̃ΛðpÞÞ

∂Λ
K̃ΛðpÞ

Z
ddq1
ð2πÞd

ddq2
ð2πÞd

× K̃Λðp − q1 − q2ÞK̃Λðq1ÞK̃Λðq2Þ; ð5:10Þ

which are all finite for appropriate choices of KΛðp2Þ (see
Appendix B). Above, we have written the ∂ logðK̃ΛðpÞÞ

∂Λ term to
make all the fiðΛÞ s have the same form, but it can also be
clarifying to simplify f1ðΛÞ and f2ðΛÞ using the identity
∂ logðK̃ΛðpÞÞ

∂Λ K̃ΛðpÞ ¼ ∂K̃ΛðpÞ
∂Λ . With our notation at hand, the

main quantities in (5.6) are	
−2Λ0

∂ŜΛ0

∂Λ0



PΛ0

¼ δdð0Þ
�
f0ðΛ0Þ þ

λ2

6
f2ðΛ0Þ þOðλ3Þ

�
;

ð5:11Þ	
2

Z
ddpð2πÞdΛ0

∂K̃Λ0

∂Λ0

δŜΛ0

δϕðpÞ
δŜΛ0

δϕð−pÞ



PΛ0

¼ δdð0Þ
�
2f0ðΛ0Þ þ

λ2

3
f2ðΛ0Þ þOðλ3Þ

�
; ð5:12Þ

	
−2

Z
ddpð2πÞdΛ0

∂K̃Λ0

∂Λ0

δSΛ0

δϕðpÞ
δŜΛ0

δϕð−pÞ



PΛ0

¼ δdð0Þ
�
−2f0ðΛ0Þ− λf1ðΛ0Þ−

2λ2

3
f2ðΛ0Þ þOðλ3Þ

�
;

ð5:13Þ	
1

2

Z
ddpð2πÞdΛ0

∂K̃Λ0

∂Λ0

δSΛ0

δϕðpÞ
δSΛ0

δϕð−pÞ



PΛ0

¼ δdð0Þ
�
1

2
f0ðΛ0Þ þ

λ

2
f1ðΛ0Þ þ

11λ2

24
f2ðΛ0Þ þOðλ3Þ

�
:

ð5:14Þ

Plugging these into (5.6) and simplifying (i.e. we just add
up the above four equations), we find

−Λ
d
dΛ

MΛðPΛÞ
���
Λ¼Λ0

¼ δdð0Þ
�
3

2
f0ðΛ0Þ−

1

2
λf1ðΛ0Þþ

7

24
λ2f2ðΛ0ÞþOðλ3Þ

�
:

ð5:15Þ

For perturbatively small λ, the above is greater than or equal
to zero as it ought to be.
Our above computation shows how the RG monotone

changes along an infinitesimal step of the flow,
Λ0 → Λ0 − δΛ. We could continue with the next perturba-
tive step along the flow, corresponding to computing
−Λ d

dΛMΛðPΛÞjΛ¼Λ0−δΛ. Thereafter we could continue on
from there to successively smaller cutoff scales, but we will
not pursue this here.

VI. VARIATIONAL FORMULATION
OF RG FLOWS

We have established that Wegner-Morris flow is equiv-
alent to the gradient flow of relative entropy with respect to
a Wasserstein-2 distance on the space of fields. In this
section, we show that this connection allows us to construct
a variational formulation of RG flow, which may be
amenable to numerical methods. Moreover, our analysis
here establishes a new and precise connection between RG
flows of conventional quantum field theories and numerical
methods based on neural networks, which has previously
only been established on a heuristic level.

A. Variational discretization of the renormalization
group flow

Consider Rn as a Riemannian manifold with the
Euclidean metric, and let F be a differentiable function
F∶ Rn → R. Then a solution to the gradient flow equation

d
dt

XðtÞ ¼ −∇FðXðtÞÞ; ð6:1Þ

with Xð0Þ ¼ X0 can be approximated by a sequence of
elements X0; Xτ; X2τ;… solving

Xðnþ1Þτ − Xnτ

τ
¼ −∇FðXðnþ1ÞτÞ: ð6:2Þ

For smaller τ, the approximation becomes better. We can
equivalently recast (6.2) as an optimization problem,

Xðnþ1Þτ ¼ argmin
X

�
1

2τ
jX − Xnτj2 þ FðXÞ

�
: ð6:3Þ

These considerations also apply to a more general
Riemannian manifold M and a function F∶M → R.
In this setting a candidate approximate solution to (6.1)
with Xð0Þ ¼ X0 is given by a sequence of elements
X0; Xτ; X2τ;… solving

Xðnþ1Þτ ¼ argmin
X

�
1

2τ
dðX;XnτÞ2 þ FðXÞ

�
; ð6:4Þ

where dðx; yÞ is the distance function on M. This implicit
Euler discretization scheme can be proven in many
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cases [50] to give approximate solutions that converge to
the solution to the gradient flow equation (6.1) in the
following sense. For any fixed time T > 0, if we let XðtÞ be
the unique solution to the gradient flow equation (6.1) with
Xð0Þ ¼ X0, then as τ → 0 we have

ErrorðτÞ ¼ sup
n¼0;…;bT=τc

dðXnτ; XðnτÞÞ → 0: ð6:5Þ

In this manner, we can often approximate a gradient
flow on a Riemannian manifold by a solution to a sequence
of optimization problems. The discussion in [51]
[Chapter 8.4] sketches the general scheme of proofs for
such results; a careful general discussion of several cases of
this convergence result, e.g. for geodesically convex func-
tionals F on nonpositively curved manifolds M, can be
found in [50].
Since we have recasted RG flow as a gradient flow of

relative entropy with respect to a Wasserstein-2 metric, it is
natural to ask if there is an approximation to RG flow along
the lines of (6.4). We will find that indeed there is such an
approximation, and that it is amenable to numerical
optimization methods. In the finite-dimensional context,
implicit gradient numerical methods, now called JKO
schemes, which simulate partial differential equations
arising from gradient flows of entropylike functionals,
were first proposed by the pioneering [52]. In particu-
lar, [52] proves that the implicit Euler scheme (6.4) in the
setting of the gradient flow of the entropy on Wasserstein
space converges to the heat equation, and thus establishes
the validity of this scheme in the finite-dimensional analog
of the setting of statistical field theory. For large gradient
steps τ, these methods require an efficient algorithmic
approximation of the Wasserstein distance, which is
available via the Sinkhorn algorithm [53]. Numerical
methods based on the JKO scheme are a topic of current
interest in the applied mathematics community [54–59],
and in particular a number of recent proposals are based
on approximating the Wasserstein distance by a neural-
network-based method [60–62], analogous to the method-
ology that we propose here. Below, we explain the basic
variational equations arising from the discretization of RG
flows, and propose a novel numerical algorithm to compute
the flow.
Recall from (2.13) that Wegner-Morris flow is in fact a

field reparametrization. Suppose our initial probability
functional is PΛ0

½ϕ� at some scale Λ0, and that we want
to flow it to PΛ0−t½ϕ�. Then the Wegner-Morris equation
says that this can be expressed as

PΛ0−t½ϕ� ¼
���� δRt½ϕ�

δϕ

����PΛ0
½Rt½ϕ�� ð6:6Þ

for some reparametrization Rt which takes fields to fields.

Note that j δRt½ϕ�
δϕ jPΛ0

½Rt½ϕ�� ¼ R−1
t� PΛ0

where R−1
t� PΛ0

is

the pushforward of PΛ0
by the compositional inverse R−1

t

of Rt.
For ease of notation, let us define

PR
Λ0
½ϕ� ≔

���� δR½ϕ�
δϕ

����PΛ0
½R½ϕ��

for an arbitrary reparametrization map R. Then we claim
that a solution PΛ½ϕ� to

−Λ
d
dΛ

PΛ½ϕ� ¼ −∇W2
SðPΛ½ϕ�kQΛ½ϕ�Þ ð6:7Þ

with initial probability functional PΛ0
½ϕ� satisfies

PΛ0−τ½ϕ� ≈ PRτ
Λ0
½ϕ� ð6:8Þ

for small τ, where

Rτ ¼ argmin
R

�
1

2τ
W2ðPR

Λ0
; PΛ0

Þ2 þ SðPR
Λ0
kQΛ0

Þ
�

ð6:9Þ

More generally, consider a sequence of reparametrizations
Rτ;R2τ;R3τ;… and define

R̃nτ ≔ Rnτ ∘ � � � ∘ R2τ ∘ Rτ: ð6:10Þ

Then we have

PΛ0−nτ½ϕ� ≈ PR̃nτ
Λ0

½ϕ� ð6:11Þ

if the Rns satisfy

Rðnþ1Þτ ¼ argmin
R

�
1

2τ
W2ðPR

Λ0
;PR̃nτ

Λ0
Þ2 þ SðPR

Λ0
kQΛ0−nτÞ

�
:

ð6:12Þ

Moreover, the approximation (6.11) should become
exact as τ → 0, by analogy to the finite dimensional
JKO scheme [52]. We emphasize that (6.12) is striking
since it provides a variational formulation of RG flow.
A natural question is if (6.12) defines theRnτs uniquely.

For simplicity, let us consider the n ¼ 1 case, given in (6.9).
A solution to (6.9) is supposed to provide us with an Rτ

such that PΛ0−τ½ϕ� ≈ PRτ
Λ0
½ϕ�, becoming exact in the τ → 0

limit. However, there exist many reparametrizations R0
τ

such that

PR0
τ

Λ0
½ϕ� ¼ PRτ

Λ0
½ϕ�: ð6:13Þ

The fact at play here is that given a fixed probability
distribution, there are many reparametrizations which
transform that distribution in the same way. Accordingly,
a solution to (6.9) is not unique, nor are solutions to (6.12).
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While this nonuniqueness may seem bothersome, we will
see shortly that the flexibility it provides is a virtue.
Examining the variational formulation of RG flow

in (6.12), an undesirable aspect in practice is that the

W2ðPR
Λ0
; PR̃nτ

Λ0
Þ2 term itself requires an optimization to

compute, on account of the infimum in (3.4). However,

we can get rid of this infimum in the following, interest-
ing way.
We begin by considering (6.9) as the n ¼ 1 case of

(6.12). RecastingW2ðPR
Λ0
; PΛ0

Þ2 in the Monge formulation
(i.e. with the plausible assumption that our Kantorovich
solutions are also Monge solutions), we find

W2ðPR
Λ0
; PΛ0

Þ2 ¼ inf
fF∶F �PΛ0¼PR

Λ0
g
2

Z
½dϕ�PΛ0

½ϕ�
Z

ddxddy _C−1
Λ ðx; yÞðϕðxÞ − F ½ϕðxÞ�ÞðϕðyÞ − F ½ϕðyÞ�Þ;

¼ inf
fF∶F �PΛ0¼PR

Λ0
g
MPΛ0

½F �; ð6:14Þ

where F is a reparametrization from fields to fields and
MPΛ0

is the analog of the Monge functional in our setting.
Thus we can rewrite (6.9) as

Rτ ¼ argmin
R

�
1

2τ
inf

fF∶F �PΛ0¼PR
Λ0
g
MPΛ0

½F � þ SðPR
Λ0
kQΛ0

Þ
�
:

ð6:15Þ

Next we observe that that for a fixedR, the infimum inside
the argmin on the right-hand side will pick out an F such
that F �PΛ0

¼ PR
Λ0
. As such, we can rewrite the above

equation as

Rτ¼argmin
R

inf
fF∶F �PΛ0¼PR

Λ0
g

�
1

2τ
MPΛ0

½F �þSðF �PΛ0
kQΛ0

Þ
�
:

ð6:16Þ

Since we are ultimately interested in having access to the
RG-flowed distribution PRτ

Λ0
and not necessarily Rτ itself,

the above equation suggests the following convenient
reformulation: we have

PΛ0−τ½ϕ� ≈ F τ�PΛ0
½ϕ�; ð6:17Þ

where F τ satisfies

F τ ¼ argmin
F

�
1

2τ
MPΛ0

½F � þ SðF �PΛ0
kQΛ0

Þ
�
: ð6:18Þ

Moreover this should become exact as τ → 0. This equation
is more convenient than (6.9) since it only has a

single minimization, i.e. we have successfully accommo-
dated for the reparametrization minimization and the
Wasserstein-2 minimization in one fell swoop.
Our reformulation of (6.9) into (6.18) can similarly be

applied to (6.12). In particular, let F τ;F 2τ;F 3τ;… be a
sequence of reparametrizations and define

F̃ nτ ≔ F τ ∘ F 2τ ∘ � � � ∘ F nτ: ð6:19Þ

Note the ordering of the composition relative to (6.10),
since we can think of the F s as acting inversely as the Rs.
Then we have

PΛ0−nτ½ϕ� ≈ F̃ nτ�PΛ0
½ϕ�;

¼ ðF nτ� ∘ � � � ∘ F 2τ� ∘ F τ�ÞPΛ0
½ϕ�; ð6:20Þ

where the F nτs satisfy

F ðnþ1Þτ

¼argmin
F

�
1

2τ
MF̃ nτ�PΛ0

½F �þSððF � ∘ F̃ nτ�ÞPΛ0
kQΛ0−nτÞ

�
:

ð6:21Þ

This is the desired generalization of (6.12) which only has a
single optimization.
In the next subsection, we will explore strategies for

solving (6.21) via numerical optimization. For the moment,
let us unpack (6.21) slightly, and write it in a more
convenient form. First, by iteratively changing integration
variables using the diffeomorphisms F nτ, we can rewrite
MF̃ nτ�PΛ0

½F � as

MF̃ nτ�PΛ0
½F � ¼ 2

Z
½dϕ�PΛ0

½ϕ�
Z

ddxddy _C−1
Λ ðx; yÞðF̃ nτ½ϕðxÞ� − ðF ∘ F̃ nτÞ½ϕðxÞ�ÞðF̃ nτ½ϕðyÞ� − ðF ∘ F̃ nτÞ½ϕðyÞ�Þ;

¼ E
PΛ0

½2
Z

ddxddy _C−1
Λ ðx; yÞðF̃ nτ½ϕðxÞ� − ðF ∘ F̃ nτÞ½ϕðxÞ�ÞðF̃ nτ½ϕðyÞ� − ðF ∘ F̃ nτÞ½ϕðyÞ�Þ�: ð6:22Þ
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In a similar fashion, we can write

SððF � ∘ F̃ nτ�ÞPΛ0
kQΛ0−nτÞ

¼
Z

½dϕ0�PΛ0
log ðPΛ0

=QF̃ nτ∘F
Λ0−nτ Þ;

¼ E
PΛ0

½log ðPΛ0
=QF̃ nτ∘F

Λ0−nτ Þ�: ð6:23Þ

This change of variables follows from iteratively utilizing
the infinite-dimensional analog of the reparametrization-
invariance of the relative entropy, which in finite dimen-
sions is the statement that Sðf�pkqÞ ¼ Sðp; kf−1� qÞ for
probability distributions p, q and a diffeomorphism f.
Combining (6.22) and (6.23), we can write (6.21) in the

form

F ðnþ1Þτ ¼ argmin
F

E
PΛ0

Loss½F ; F̃ nτ; PΛ0
; QΛ0−nτ�; ð6:24Þ

where Loss½F ; F̃ nτ; PΛ0
; QΛ0−nτ� is the function to be

minimized.7

B. Numerical applications of variational formulas

The variational characterization of RG flows discussed
above suggests new and interesting numerical methods for
(approximately) computing such flows. In particular, sup-
pose we have sample access to PΛ0

½ϕ�. For the purposes of
this section,wewill take our fields to be lattice discretized on
a finite volume domain; then we can sample from PΛ0

½ϕ� by
employing standard Monte Carlo methods. Equation (6.24)
tells us that such sampling access is sufficient in principle to
solve for F τ;F 2τ;…;F nτ. We will return shortly to the
problem of how the requisite minimizations can be imple-
mented in practice. For the moment, let us say we have
F τ;F 2τ;…;F nτ at hand, in which case we would like
to be able to sample from the RG-flowed distribution
PΛ0−nτ½ϕ� ≈ ðF nτ� ∘ � � � ∘ F 2τ� ∘ F τ�ÞPΛ0

½ϕ�. How can
we sample from such a distribution? Fortunately, sampling
is readily compatible with the pushforward operation, as
Algorithm 1 demonstrates.
Now we turn to the more interesting problem of numeri-

cally solving (6.24) for the reparametrizations F τ;F 2τ;….
A natural way to proceed is to let our reparametrizations
F nτ have a particular form that only depends on a finite-
dimensional vector of real parameters θn; we write this
dependence as F nτ ¼ F θn . Moreover, we define

F̃ θ1;…;θn ≔ F θ1 ∘ F θ2 ∘ � � � ∘ F θn : ð6:25Þ

In this setting, (6.24) becomes

θnþ1¼ argmin
θ

E
PΛ0

Loss½F θ;F̃ θ1;…;θn ;PΛ0
;QΛ0−nτ�: ð6:26Þ

If F θ is a differentiable function of θ, then we can bring to
bear techniques from machine learning to perform the
optimization in (6.26).
First we ask this: What is a good family of functionals

F θ to choose? There are certain requirements that the
family should have. For instance, if we work with a
translationally invariant field theory, then we would like for

F θ½ϕðyþ aÞ�ðxÞ ¼ F θ½ϕðyÞ�ðxþ aÞ ð6:27Þ

for all θ. This is an equivariance condition on F θ with
respect to translations. Moreover, in spatially local RG
schemes such as those we studied in the context of
Polchinski’s equation and the Wegner-Morris flow equa-
tion, we would also like F θ½ϕðyÞ�ðxÞ to only depend
strongly on values of ϕðyÞ near y ≈ x.
These properties imply that a good Ansatz for F θ is to let

it be a convolutional neural network [63] with weights θ.
Indeed, in the context of numerical algorithms, convolu-
tional neural networks are known [64] to give good Ansätze
for general, translationally invariant functionals of fields
such that the functional is spatially local in the sense we
discussed above. For concreteness, we remind the reader
that if ϕ is, for example, a lattice discretization ϕði; jÞ of a
two-dimensional field, then a convolutional neural network
of depth D would render F θ½ϕ� as having the form

F 0
θ½ϕ�ði; jÞ ¼ ϕði; jÞ; ð6:28Þ

F l
θ ½ϕ�ði; jÞ ¼ σ

� Xk
m;n¼−k

Al
m;nF l−1½ϕ�ðiþm; jþ nÞ

�
;

ð6:29Þ

FD
θ ½ϕ� ¼ F θ½ϕ� ð6:30Þ

for l ¼ 1;…; D where the Al
mn are 2k × 2k matrices

representing discrete convolutional kernels, while σðxÞ is
a nonlinear function such as σðxÞ ¼ 1

1þe−x. The parameters θ
of the neural network are the entries of the matrix kernels
A1;…; AD. We note also that k can depend on the “layer” l,
and that often one inserts intermediate “max-pool” or

Algorithm 1. Sampling from ðF nτ� ∘ � � � ∘ F 2τ� ∘ F τ�ÞPΛ0
.

Input: Reparametrizations F τ;F 2τ;…;F nτ, sample access
to PΛ0

Output: A sample ϕ̂ from ðF nτ� ∘ � � � ∘ F 2τ� ∘ F τ�ÞPΛ0

Sample ϕ ← PΛ0

Compute ϕ̂ ¼ ðF τ ∘ F 2τ ∘ � � � ∘ F nτÞ½ϕ�
return ϕ̂

7Calling this the “loss” function is standard in the computer
science literature.
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“average-pool” layers that downsample the intermediate
fields F l

θ ½ϕ�. For example, in average pooling, one replaces
F l

θ ½ϕ�ði; jÞ by a new function

gF l
θ ½ϕ�ði0; j0Þ ¼

1

jBði0; j0Þj
X

ði;jÞ∈Bði0;j0Þ
F l

λ ½ϕ�ði; jÞ; ð6:31Þ

where ði0; j0Þ runs over a lattice with fewer sites, and
Bði0; j0Þ is a subset of the indices of the ði; jÞ lattice, exactly
as in block spin renormalization.
With a particular neural network architecture for F θ in

mind, we examine how to solve (6.26). Observe that the
quantity to be minimized in that equation is an expectation
value over PΛ0

. Therefore, the gradient of this quantity with
respect to the variational parameter θ is also an explicit
expectation value over PΛ0

. Accordingly, if we have
sampling access to PΛ0

, then as is standard in stochastic
gradient descent, we can approximate EPΛ0

∇θLoss via a

Monte Carlo approximation, replacing the expectation
value with an evaluation of the gradient on a single sample
from PΛ0

. The nontrivial fact that the quantity to be
optimized is an expectation value over PΛ0

[which holds
due to the reparametrizations in (6.22), (6.23)] is needed to
even conceive of a plausible numerical algorithm in this
setting, since general integrals over the space of fields are
completely intractable. Indeed, the problem of turning this
variational formulation of RG flow into a tractable numeri-
cal method is rather interesting, and must involve the use of
several approximation techniques from neural networks
beyond the most basic formulation given above.8 We leave
to future work a comprehensive exploration of neural
network numerical methods based on the variational
formulation of RG flow.
In more detail, the stochastic gradient descent algorithm

for computing θnþ1 is found in Algorithm 2.
We note that the relative entropy contained in Loss½θ;ϕ�

is in fact finite due to our (hard) lattice cutoff and finite

volume domain. This is in contrast to our continuum
analysis of the relative entropy in Sec. IV, in which we
had to contend with divergences and associated subtleties
with orders of limits.
There is a wealth of ideas that have circulated about

connections between the renormalization group and
the hierarchical structure of convolutional neural net-
works [67–73]. These connections have at times informed
the theory and methodology around neural network train-
ing [74,75]. However, these considerations were largely
heuristic, and did not connect convolutional neural net-
works with any explicit renormalization group flow for any
particular theory. The formulation provided in this section
seems to be the first precise connection between an
optimization problem based on convolutional neural net-
works and an explicit instantiation of the renormalization
group in the standard setting of field theory.

VII. DISCUSSION

In this paper we have provided a new approach to the
exact renormalization group using the tools of optimal
transport theory. In so doing, we defined new, nonpertur-
bative RG monotones, developed a novel variational
formula for RG flows, and suggested new numerical
algorithms.
Going forward, it would be interesting to apply the

techniques in this paper to a richer class of field theories,
such as gauge theories (see e.g. [10,12,13]). Moreover, it
would be desirable to compute more examples of our RG
monotone in any setting. In the realm of scalar field
theories, a natural target would be to consider flows in
the neighborhood of the Wilson-Fisher fixed point.
Since we have defined RG monotones for a large class of

RG flows, it seems possible that for a judicious choice of
RG flow (for instance, a judicious choice of the seed action
ŜΛ½ϕ� in the Wegner-Morris formulation) one could use the
positivity of our monotone to constrain the signs of
couplings in effective field theory.

Algorithm 2. Stochastic gradient descent for computing θnþ1.

Input: Sampling access to PΛ0
, loss function

Loss½F θ; F̃ θ1;…;θn ; PΛ0
; QΛ0−nτ�≕ Loss½θ;ϕ�

parametrized as a neural network in a differentiable
parameter θ, initial θ value θinit,
maximum step number τmax, rate parameter r

Output: Approximation to θnþ1

Initialize θ ¼ θinit
for τ ¼ 1;…; τmax do
Sample ϕ ← PΛ0

Compute ∇θ Loss½θ;ϕ� via backpropagation
Replace θ → θ − r∇θ Loss½θ;ϕ�

end for
return θ

8In particular, the efficient discretization of the functional
determinant j δF θ ½ϕ�

δϕ j and its θ derivatives is tricky; the natural
lattice analog of the functional determinant is j det∇ϕij

F θj, which
does not make sense for RG flows which decrease the number of
effective lattice sites. The simplest solution is to let F θ be a
convolution that does not decrease the number of lattice sites, and
to utilize the RESNET technique [65]. This is a standard technique
in neural networks which involves the replacement
F θ → Idþ F θ, which for small θ forces the Jacobian to be an
invertible matrix, making the log-determinant nondegenerate.
This neural network architecture is also natural since F θ should
approximate a small renormalization group transformation,
which should be thought of as a perturbation of the identity
transformation. Finally, the log determinant and its gradient are
challenging quantities to compute efficiently when the dimension
is large; however, there are efficient tricks to analytically compute
log determinants of convolutions using circulant matrices [66],
which can also be utilized to force F θ to be a diffeomorphism.
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It would be very interesting to empirically investigate
numerical methods based on our proposal in Sec. VI B. The
initial neural-network-based proposal that we describe
connects nicely with recent advances in neural network
approaches to Wasserstein gradient flows [60,61]. The use
of specialized neural network algorithms [62], possibly
coupled with connections to fast approximations of the
Wasserstein distance [53], may allow one to robustly
approximate RG flows with relatively few discrete steps.
It is an important practical problem to make the initial
numerical method proposed above significantly more
numerically efficient using the wealth of ideas in the
machine learning literature on generative models and
normalizing flows; our proposal is only a first step towards
a practical numerical method.
Since RG allows one to determine PΛ for different scales

Λ, the variational formulation of RG may allow for
improved sampling algorithms via connections to recent
advances in neural network generative models [76], which
involve denoising procedures that are heuristically related
to the inversion of the renormalization group flow. A
related generalization would be to develop optimal trans-
port algorithms for continuous MERA (cMERA) tensor
networks [77–80], by leveraging and generalizing the
known connection between cMERA and ERG [81]. A
suggestive possibility is to implement a backwards gradient
flow to go from an IR cMERA Ansatz to a UV state. In a
similar vein, perhaps one could adapt the optimal transport
technology to study the RG flow of quantum states using
techniques from (see e.g. [82,83]).
More broadly, it seems that many more tools from

optimal transport, possibly combined with information
theory, can be brought to bear on the subject of ERG
via our present formulation. For instance, it appears likely
that our formulation of RG flow in this paper could be
synthesized with the approaches of [35–45] from the
physics community. Since the optimal transport community
has enormous analytical and numerical traction in the PDE
setting, it would be valuable to adapt these insights to the
functional generalizations appropriate for ERG flows.
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APPENDIX A: COMMENTS ON THE
INFINITESIMAL FORM OF THE

W2 METRIC

This Appendix summarizes a derivation of the infinitesi-
mal form of the Wasserstein metric from its finite-distance
definition, clarifying the inversion of the Riemannianmetric
that occurs when passing from the finite-distance form to the
infinitesimal form. An infinite-dimensional analog of this
computation leads to the functional Wasserstein metric
of (3.4).
For the purposes of this Appendix, it is useful to consider

a modified version of the heat equation

∂p
∂t

¼ Aijð∂i∂jpÞ; ðA1Þ

where Aij is positive semidefinite as a matrix. Throughout
this appendix, we will use Einstein index notation so that
Aij and Aij are inverses, i.e. AijAjk ¼ δki .
Let densðMÞ be the space of probability distributions

on M ¼ Rd so that the tangent space is TpdensðMÞ ¼
fη ∈ C∞ðRdÞ∶ R dxη̄ ¼ 0g for any p ∈ densðMÞ. For any
tangent vector η in TpdensðMÞ we have an associated η̄
obtained by solving

Aij
∂iðp∂jη̄Þ ¼ η: ðA2Þ

This solution η̄ is unique up to an additive constant; this
induces the identification η ↔ η̄ via an isomorphism

TpdensðMÞ ≃ TpdensðMÞ
≔ fη ∈ C∞ðMÞg=fconstantsg: ðA3Þ

With this isomorphism in mind, we can write down the
Riemannian metric

hη1; η2iW2
≔

Z
dxpAij

∂iη̄1∂jη̄2 ¼ −
Z

dxη1η̄2

¼ −
Z

dxη̄1η2: ðA4Þ

The last two equalities are obtained via integration by parts.
Using this Riemannian metric we have that the modified
heat equation in (A1) can be written as

∂p
∂t

¼ ∇W2
S½p�; ðA5Þ

since here ∇W2
S½p� ¼ Aijð∂i∂jpÞ. A rigorous argument

given in [24] [Lemma 4.3] establishes that (A4) is the
infinitesimal version of the Wasserstein-2 metric
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W2ðp0; p1Þ

≔
�

inf
π∈Γðp0;p1Þ

Z
dxdyπðx; yÞAijðxi − yiÞðxj − yjÞ

�
1=2

;

and here we will explain some heuristics for key parts of
the proof.
Recall that in Riemannian geometry, given a path xðuÞ

with u ∈ ½0; 1� in a Riemannian manifold, the length of that
path is given by

L½xðuÞ� ¼
Z

1

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aij∂uxiðuÞ∂uxjðuÞ

q
: ðA6Þ

The minimizers of the length functional L½xðuÞ� with fixed
boundary conditions at xð0Þ and xð1Þ are geodesics.
However, these minimizers are always nonunique because
the length functional is invariant under reparametrizations.
This high degree of nonuniqueness can be avoided by
instead considering the energy functional

E½xðuÞ� ¼ 1

2

Z
1

0

duAij∂uxiðuÞ∂uxjðuÞ: ðA7Þ

Its minimizers with fixed boundary conditions at xð0Þ and
xð1Þ are exactly geodesics with constant speed. [In essence,
the energy functional picks out a preferred “reparametriza-
tion” of xðuÞ]. Now using the Cauchy-Schwarz inequality,
we have

L½xðuÞ�2 ≤ 2E½xðuÞ� ðA8Þ

with equality exactly when jx0ðuÞj is constant in time, i.e.
xðuÞ is parametrized so it has constant speed. This implies
that

inf
fxðuÞ∶xð0Þ¼a;xðuÞ¼bg

L½xðuÞ�2 ¼ inf
fxðuÞ∶xð0Þ¼a;xð1Þ¼bg

2E½xðuÞ�;

ðA9Þ

namely that L½xðuÞ�2 and 2E½xðuÞ� have the same mini-
mizing values.
We will apply the above insights to study the

Riemannian metric (A4) on TpdensðMÞ. Suppose we have
a 1-parameter family of probability distributions pðuÞ for
u ∈ ½0; 1� where we take pð0Þ ¼ p0 and pð1Þ ¼ p1. We
emphasize that the u appearing in pðuÞ [which we will also
write as pðx; uÞ] is different from the time coordinate t
appearing in (A1). The t there corresponds to time
evolution, whereas the u here parametrizes a geodesic flow
in the space of probability distributions. With this in mind,
we define ϕðuÞ as a 1-parameter family of solutions to the
equations

∂

∂u
pðuÞ ¼ Aij

∂iðpðuÞ∂jϕÞ: ðA10Þ

The energy of the path pðuÞwith respect to the Riemannian
metric (A4) is given by

EW2
½pðuÞ� ≔ 1

2

Z
1

0

du
Z

dxpðuÞAij
∂iϕ∂jϕ: ðA11Þ

Writing Viðx; uÞ ¼ −Aij
∂jϕðx; uÞ, we can define a flow on

densðMÞ, namely

Φu�∶ densðMÞ → densðMÞ; u ∈ ½0; 1�; ðA12Þ

via the differential equation

∂

∂u
Φu ¼ VðΦu; uÞ; Φ0 ¼ Id: ðA13Þ

Let us check that pðuÞ ¼ Φu�p0. It suffices to show that

pðx; uþ duÞ ¼ pðΦ−duðxÞ; uÞj det ∂Φ−duj: ðA14Þ

We first note that

Φi
−duðxÞ ¼ xi − duVi;

¼ xi þ duAik
∂kϕðx; uÞ ðA15Þ

and also

∂jΦi
−duðxÞ ¼ δij þ duAik

∂j∂kϕðx; uÞ: ðA16Þ

It follows that

pðΦi
−duðxÞ;uÞ¼pðxiþduAij

∂jϕðx;uÞ;uÞ;
¼pðx;uÞþdt∂ipðx;uÞAij

∂jϕðx;uÞ; ðA17Þ

and accordingly

j det ∂Φ−duj ¼ 1þ duAij
∂i∂jϕðx; uÞ: ðA18Þ

Altogether we have

pðΦ−duðxÞ; uÞj det ∂Φ−duj
¼ pðx; uÞ þ duAij

∂iðpðx; uÞ∂jϕðx; uÞÞ;

¼ pðx; uÞ þ du
∂

∂u
pðx; uÞ; ðA19Þ

where we have used (A10) in going from the first line to the
second line. This establishes (A14).
Having checked that pðuÞ ¼ Φu�p0, we have the stan-

dard inequalities
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aijðx −Φ1ðxÞÞiðx −Φ1ðxÞÞj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AijðΦ0ðxÞ −Φ1ðxÞÞiðΦ0ðxÞ −Φ1ðxÞÞj

q
;

≤
Z

1

0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aij

�
∂

∂u
ΦuðxÞ

�
i
�
∂

∂u
ΦuðxÞ

�
j

s
: ðA20Þ

In words, this equality holds because the metric distance
between the end points of a curve is upper bounded by the
length of that curve. Combining this with the inequality
(A8), we obtain

Aijðx −Φ1ðxÞÞiðx −Φ1ðxÞÞj

≤
Z

1

0

duAij

�
∂

∂u
ΦuðxÞ

�
i
�
∂

∂u
ΦuðxÞ

�
j
: ðA21Þ

This inequality (A21) will be useful to us below.
Let us show that 1

2
W2ðp0; p1Þ2 ≤ EW2

½pðuÞ�. Using the
definition of W2ðp0; p1Þ, we have

1

2
W2ðp0; p1Þ2

¼ 1

2
inf

π∈Γðp0;p1Þ

Z
dxdyπðx; yÞAijðxi − yiÞðxj − yjÞ;

≤
1

2

Z
dxdyp0ðxÞδðy −Φ1ðxÞÞAijðxi − yiÞðxj − yjÞ;

¼ 1

2

Z
dxp0ðxÞAijðx −Φ1ðxÞÞiðx −Φ1ðxÞÞj: ðA22Þ

This inequality comes from making the particular choice of
πðx; yÞ ¼ p0ðxÞδðy −Φ1ðxÞÞ, which may not be the min-
imizing choice of πðx; yÞ. Next, we use (A21) to upper
bound the last line of (A22) as

1

2

Z
dxp0Aijðx−Φ1ðxÞÞiðx−Φ1ðxÞÞj

≤
1

2

Z
dx

Z
1

0

dup0Aij

�
∂

∂u
ΦuðxÞ

�
i
�
∂

∂u
ΦuðxÞ

�
j
: ðA23Þ

Using the definition of (A13) and the fact that Vðx; uÞ ¼
−Aij

∂jϕðx; uÞ, the right-hand side of the above inequality
equals

1

2

Z
dx

Z
1

0

dup0Aij
∂iϕðΦuðxÞ; uÞ∂jϕðΦuðxÞ; uÞ

¼ 1

2

Z
dx

Z
1

0

duΦu�p0Aij
∂iϕðx; uÞ∂jϕðx; uÞ;

¼ 1

2

Z
dx

Z
1

0

dupðuÞAij
∂iϕðx; uÞ∂jϕðx; uÞ;

¼ EW2
½pðuÞ�: ðA24Þ

Combining (A22), (A23), and (A24) we obtain the desired
inequality

1

2
W2ðp0; p1Þ2 ≤ EW2

½pðuÞ�: ðA25Þ

One works harder to show that, in fact,

1

2
W2ðp0; p1Þ2 ¼ inf

fpðuÞ∶pð0Þ¼p0;pð1Þ¼p1g
EW2

½pðuÞ�: ðA26Þ

Defining the length

LW2
½pðuÞ� ¼

Z
1

0

du
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAij

∂iϕ∂jϕ
q

ðA27Þ

and applying a similar logic as that which led to (A9), we
find

inf
fpðuÞ∶pð0Þ¼p0;pð1Þ¼p1g

LW2
½pðuÞ�2

≔ inf
fpðuÞ∶pð0Þ¼p0;pð1Þ¼p1g

2EW2
½pðuÞ� ðA28Þ

and thus

W2ðp0; p1Þ ¼ inf
fpðuÞ∶pð0Þ¼p0;pð1Þ¼p1g

LW2
½pðuÞ�: ðA29Þ

This establishes that the metric (A4) is in fact the
infinitesimal form of the Wasserstein-2 metric.

APPENDIX B: CONVENIENT
CUTOFF FUNCTIONS

In order for the derivative −Λ d
dΛMΛ of our RG mono-

tone quantity to be perturbatively or nonperturbatively
finite, we saw in Sec. V. 1 that we must haveZ

ddp
∂ logKΛðp2Þ

∂Λ
< ∞: ðB1Þ

This finiteness property does not hold for all cutoff
functions KΛðp2Þ; for instance, it fails to hold for

Kðp2=Λ2Þ ¼ 1þ e−a

1þ eaððp=ΛÞ2−1Þ
; ðB2Þ

where a is a constant, usually taken to be much greater
than one.
The reason that cutoff functions like (B2) lead to

divergent
R
ddp ∂ logKΛðp2Þ

∂Λ is that for such cutoff functions,
as one varies Λ, arbitrarily high scales are suppressed by a
multiplicative factor which does not decay appreciably
with p2. In particular, for any Λ, the logarithmic derivative
of the KΛ in (B2) is greater than 1=jpjd for all sufficiently

large p2, and so the integral
R
ddp ∂ logKΛðp2Þ

∂Λ diverges.
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The condition (B1) should thus be interpreted as requiring
that the factor by which one suppresses large frequencies as
one varies Λ infinitesimally should decay rapidly with p2.
This condition is readily satisfied in an infinite family of
cutoff functions.
In order to construct this desirable class of cutoff

functions, it is instructive to first understand what other
properties a cutoff function should have. First, we would
like KΛðp2Þ to decay faster than any polynomial as a
function of p2 for p2 ≳ Λ2 in order for perturbation theory
of our field theory to be sensible when the cutoff scale is Λ.
Second, KΛðp2Þ should be very close to one for p2 ≤
Λ2 − ε where ε > 0 is a small constant, and KΛðp2Þ should
drop off to near zero for p2 ≥ Λ2 þ ε. For simplicity, we
impose the following requirements:

1: KΛðp2Þ ¼ 1 for p2 ≤ Λ2;

2: KΛðp2Þ is monotonically decreasing for p2 ≥ Λ2;

3: KΛðp2Þ ≤ ε for p2 ≥ Λ2 þ ε;

4:
Z

ddp
∂ logKΛðp2Þ

∂Λ
< ∞: ðB3Þ

We will show that cutoff functions KΛðp2Þ satisfying these
requirements exist in abundance and can be chosen to take
somewhat simple forms.
For illustrative purposes, we find such a KΛðp2Þ explic-

itly. Recall that

BðxÞ ¼
�
exp ð1 − 1

1−x2Þ if jxj ≤ 1

0 if jxj > 1
ðB4Þ

is a bump function supported on ½−1; 1� such that Bð1Þ ¼
Bð−1Þ ¼ 0. Moreover, all higher derivatives of B at
x ¼ �1 equal zero as well. Let us fix some auxiliary scale
Λmax, which we take to be some scale larger than our initial
value of the UV cutoff Λ0. It will be convenient to specify
KΛðp2Þ in three regimes: (i) Λ ¼ Λmax, (ii) Λ < Λmax,
and (iii) Λ > Λmax.
At Λ ¼ Λmax, we fix KΛðp2Þ such that this function

satisfies conditions 1, 2, and 3 of (B3):

KΛ¼Λmax
ðp2Þ ¼

8>><>>:
1 p2 ≤ Λ2

max

ð1 − εÞBððp2 − Λ2
maxÞ=εÞ þ ε Λ2

max ≤ p2 ≤ Λ2
max þ ε

εe−ðp2−ðΛ2
maxþεÞÞ p2 > Λ2

max þ ε

: ðB5Þ

We then defineKΛðp2Þ for Λ < Λmax by requiring that the function satisfies conditions 1, 2, and 3 of (B3), being identically
ε from Λ2 þ ε up to Λ2

max þ ε, and then agreeing with the exponentially decaying tail of KΛ¼Λmax
ðp2Þ for all larger values

of p2:

KΛ<Λmax
ðp2Þ ¼

8>>><>>>:
1 p2 ≤ Λ2

ð1 − εÞBððp2 − Λ2Þ=εÞ þ ε Λ2 ≤ p2 ≤ Λ2 þ ε

ε Λ2 þ ε ≤ p2 ≤ Λ2
max þ ε

εe−ðp2−ðΛ2
maxþεÞÞ p2 > Λ2

max þ ε

: ðB6Þ

Finally, for Λ > Λmax, we define KΛðp2Þ by requiring that this function satisfies conditions 1, 2, and 3 of (B3), but cuts off
more sharply in the interval Λ2 ≤ p2 ≤ Λ2 þ ε such that for p2 ≥ Λ2 þ ε the function still agrees identically with the
exponentially decaying tail of KΛ¼Λmax

ðp2Þ:

KΛ>Λmax
ðp2Þ ¼

8>><>>:
1 p2 ≤ Λ2

ð1 − εe−Λ
2þΛ2

maxÞBððp2 − Λ2Þ=εe−Λ2þΛ2
maxÞ þ εe−Λ

2þΛ2
max Λ2 ≤ p2 ≤ Λ2 þ ε

εe−ðp2−ðΛ2
maxþεÞÞ p2 ≥ Λ2 þ ε

: ðB7Þ

The only condition of (B3) that remains to be verified is
the fourth one. However, with our choice of KΛðp2Þ
specified in (B5), (B6), and (B7) above, it is clear that
for each fixed Λ, the derivative ∂

∂ΛKΛðp2Þ is supported in

Λ2 ≤ p2 ≤ Λ2 þ ε. By the chain rule, the same holds for
∂

∂Λ logKΛðp2Þ, rendering this quantity integrable since it is
continuous and supported on a compact set. Thus condition
4 of (B3) is also satisfied. A schematic of the cutoff
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function specified by (B5), (B6), and (B7) is shown
in Fig. 4.
Recall from our discussion above that the condition (B1)

requires that the factor by which one suppresses large
frequencies as one infinitesimally varies Λ should decay
rapidly with p2. Thus, in the extreme but simple case of the
cutoff function KΛðp2Þ specified in (B5), (B6), and (B7),
large frequencies are not suppressed beyond the fixed initial
exponential suppression at frequencies above Λmax (see the
last case in each piecewise function definition). One can
construct cutoff functions which offer additional suppres-
sion of large frequencies by using Λ-dependent functions
more complicated than exponentials.
As an aside, we note that our explicit construction for

KΛðp2Þ above is not a differentiable function of p2 at
p2 ¼ Λ2 þ ε. However, the RG flows we considered in this
paper do not contain p derivatives of KΛðp2Þ, and so the
requirement of p2 differentiability is not necessary.
Nonetheless, by adding a small interpolating region before
the last case of each of (B5), (B6), and (B7), we can modify

KΛðp2Þ so that it is smooth everywhere at the cost of
somewhat more complicated formulas.
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RENORMALIZATION GROUP FLOW AS OPTIMAL TRANSPORT PHYS. REV. D 108, 025003 (2023)

025003-25

https://doi.org/10.2307/2373688
https://doi.org/10.2307/2373688
https://doi.org/10.1006/jfan.1999.3557
https://doi.org/10.1002/cpa.21926
https://doi.org/10.1002/cpa.21926
https://arXiv.org/abs/2205.01642
https://arXiv.org/abs/math/0211159
https://doi.org/10.1353/ajm.0.0110
https://doi.org/10.1007/s40766-020-00004-5
https://doi.org/10.1007/s40766-020-00004-5
https://doi.org/10.1103/PhysRevD.54.5163
https://doi.org/10.1103/PhysRevD.54.5163
https://doi.org/10.1103/PhysRevA.92.022330
https://doi.org/10.1103/PhysRevA.92.022330
https://doi.org/10.1016/j.physa.2011.08.014
https://doi.org/10.1088/1367-2630/17/8/083005
https://doi.org/10.1007/JHEP05(2015)104
https://doi.org/10.3390/e20010025
https://doi.org/10.1007/JHEP01(2019)219
https://doi.org/10.1007/JHEP01(2022)170
https://doi.org/10.1007/JHEP01(2022)170
https://doi.org/10.1142/S0217751X22501093
https://doi.org/10.1142/S0217751X22501093
https://doi.org/10.1103/PhysRevD.106.065013
https://doi.org/10.1103/PhysRevD.106.065013
https://doi.org/10.21468/SciPostPhys.12.1.041
https://doi.org/10.21468/SciPostPhys.12.1.041
https://doi.org/10.1103/PhysRevLett.71.2421
https://doi.org/10.1103/PhysRevLett.71.2421
https://doi.org/10.1016/0375-9601(94)90746-3
https://doi.org/10.1016/0375-9601(94)90746-3
https://doi.org/10.1016/0550-3213(94)90011-6
https://doi.org/10.1016/S0370-2693(97)00729-6
https://doi.org/10.1016/S0370-2693(97)00729-6
https://doi.org/10.1137/S0036141096303359
https://doi.org/10.1137/S0036141096303359
https://doi.org/10.1137/15M1010087
https://doi.org/10.1007/s00211-015-0781-y
https://doi.org/10.1137/15M1050264
https://doi.org/10.1137/15M1050264
https://doi.org/10.1016/j.jcp.2020.109449
https://doi.org/10.1016/j.jcp.2020.109449
https://doi.org/10.1007/s10208-021-09503-1 
https://doi.org/10.1007/s10208-021-09503-1 
https://doi.org/10.1051/cocv/2021029
https://doi.org/10.1051/cocv/2021029
https://arXiv.org/abs/2110.10972


E. Fox, and R. Garnett (Curran Associates, Inc., 2019),
Vol. 32.
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