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In a seminal paper, Unruh and Wald showed that the detection of a Rindler particle by a linearly
uniformly accelerated detector coupled to a Klein-Gordon field in the Minkowski vacuum corresponds
to the creation of a Minkowski particle from the inertial viewpoint. In this paper, we revisit the situation
studied in that work, but now consider, addition what happens once the detector has been excited
somewhere along its world line. From an orthodox point of view, the change in the state of field induced
by the measurement is nonlocal and affects both in the left and right Rindler wedges. If one relies on a
semiclassical treatment of gravity and takes it to be applicable to this context, this situation seems to
open the possibility for designing superluminal communication protocols between two spacelike
separated observers confined respectively to the right and left Rindler wedges respectively. We discuss
the possible ways in which physics could prevent such measurement-induced, faster-than-light signaling
protocols.
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I. INTRODUCTION

The Unruh effect is often succinctly described as the
fact that from the point of view of a uniformly accelerated
observer the Minkwoski vacuum looks like a thermal
state at a temperature proportional to their proper accel-
eration [1–3]. This is the Unruh temperature, given by
TU ¼ a=ð2πÞ in natural units. The study of the Unruh
effect continues to be of great interest in theoretical
physics, see, e.g., [4] for a study of the problem as return
to equilibrium, [5] for the characterization of thermal-
ization time for the Unruh effect, [6] in the context of
entanglement harvesting. The intimate relationship
between the Unruh effect and Hawking radiation by
black holes in equilibrium, which indeed originally
motivated Unruh’s work [3], is by now well established
(see, e.g., [[7], Chap. 5]), and can be seen very explicitly
in two-dimensional situations [8]. References [9,10]
include thorough discussions of the Unruh effect, includ-
ing applications and structural properties. Very recently a
concrete experimental proposal has been put forward
in [11] to detect for the first time the analogous Unruh

temperature along uniformly accelerated circular
motions. This is an analogous circular Unruh effect, see,
e.g., [12–14].
Sitting at the heart of the Unruh effect is the fact that the

Minkowski vacuum state restricted to, say, the right Rindler
wedge of Minkowski spacetime, jtj < x, can be formally
represented as thermal mixture of so-called Fulling-Rindler
particles supported on the right Rindler wedge. These
are nothing but particles defined in the Fulling-Rindler
quantization in flat spacetime, for which the notion of
positive energy is defined with respect to Lorentz boosts,
ba ¼ aðx∂at þ t∂axÞ, which generate the natural notion of
time evolution for linearly accelerated observers.
Following this observation, in 1984 Unruh and Wald

wrote a seminal paper [15] where they clarified what
occurs when a linearly uniformly accelerated observer
detects a Rindler particle: From the point of view of an
inertial observer in Minkowski spacetime, the absorption
of a Rindler particle—modeled as a two-level detector
excitation—corresponds to the emission of a Minkowski
particle. The paper [15] is remarkable in that not only did
it illustrate the relativity of the notion of a particle,
detection and emission, but clarified the fact that working
in terms of quantum fields (and taking the notion
of particle to have a contextual and relative meaning)
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is fully consistent with the basic ideas underlying the
equivalence principle.
Furthermore, [15] has served as the starting ground for

further developments. For example, the study of bremsstrah-
lung as seen from the point of view of accelerated observers
[16,17], the analysis of the decay of accelerated protons, and
the finding that such behavior approaches that of accelerated
neutrons, as themass scale characterizing that acceleration—
i.e., the corresponding Unruh temperature—increases, and
disappears exponentially as that quantity grows beyond the
value of the proton-neutronmass gap [18,19].More recently,
it has been studied how linearly uniformly accelerated atoms
can produce a squeezed entangled pair of photons, which are
predominantly “localized” in opposite Rindler wedges, by
becoming excited in [20]. In that same work the analogous
phenomenon in black holes spacetimes is studied, which
continues to draw parallels between the Unruh and Hawking
effects, but furthermore gives stimulating perspectives in the
field of analog gravity.
In any case, there are three central issues that are

addressed in [15]. The first one is to analyze the unitary
evolution of the joint field-detector system when the field
is initially in the Minkowski vacuum state and the two-
level detector, initially switched off and prepared in the
ground state, follows a linearly uniformly accelerated
trajectory in the right Rindler wedge. This is done using
perturbation theory in the interaction picture up to first
order. (Second order contributions were further studied
in [21].) The second question is to see what the updated
state of the field is, assuming the detector has in fact
detected a Rindler particle after some interaction time has
elapsed, namely a one-particle state in the Minkowski
folium, and to obtain the updated stress-energy tensor. It
is found that, since the updated field state is a one-particle
state, the energy of the field has increased upon detection.
The third question addressed in [15] is whether detecting
Rindler particles can be used as a mechanism for
extracting an unbounded amount of energy from the field
or to send a superluminal signal from the right to the left
Rindler wedges. In both cases, the analysis leads to a
negative answer.
The motivation of the present work is two-fold:
(i) First, we wish to revisit the three central questions

discussed in [15]. Concerning the first one, we note
that the calculation in [15] is performed by exploit-
ing an analogy with the situation of a detector
interacting with a field in a thermal state that
describes a proper mixture [22], i.e., such that the
actual state of the system is pure, but there is a
degree of ignorance as to what the state of the system
actually is, which is encoded in weights accounting
for a probability distribution of the possible (pure)
states the system might be in. This results in a mixed
state description of a pure state due to ignorance.
On the other hand, the most natural description for

the Minkowski vacuum from the point of view of an
accelerated observer is that of a thermal state as an
improper mixture [22] (see footnote 2 for more
details), as the left Rindler wedge degrees of free-
dom must be traced out, yielding a reduced mixed
state. In Sec. II we will carry out the calculation from
the improper-mixture viewpoint. While the results
coincide mathematically, as they should, we think
that this treatment is conceptually clearer.

We then proceed to calculate the updated expect-
ation value of the stress-energy tensor once the
detector has clicked, which ties in with the second
central question in [15]. We obtain expressions in
both the right and the left Rindler wedge, adding to
the result displayed in [15] for the right Rindler
wedge, as we show in Sec. II. Concerning the third
central question addressed in [15], on the point of
energy extraction, we agree with the no-go argument
presented by Unruh and Wald: while the energy is
not conserved for a single measurement, it is
conserved on average for very many successive
measurements. We then address the question of
superluminal communication, which ties in with
the second motivation of this paper.

(ii) Here we shall raise the point that there is a potential
issue after a single measurement has been carried
out, if one is to trust the semiclassical approximation
of quantum gravity “before” and “after” the meas-
urement has been performed and assumes that the
state measurement induces a state collapse along a
Cauchy surface in spacetime. The point will be that
in semiclassical gravity the expectation value of the
stress-energy tensor can be used to actually source
geometry, see Eq. (35) below. Thus, an abrupt
change of this quantity along a Cauchy surface in
this setting might be expected to be detectable by an
experiment on the gravitational sector. Where and
how this abrupt change occurs, i.e., where and how
the state of the field can be seen as collapsing upon a
measurement of the detector is most likely to play a
role on how to prevent this apparent paradox from
occurring, but our current understanding of these
questions is fuzzy—hence the use of quotation
marks around the words before and after. Thus, it
seems to us that the resolution of this puzzling
situation is likely connected with the full resolution
ofmeasurement problem of quantum theory. Wewill
in fact offer at the end what we think is a rather
exhaustive list of possibilities for preventing such
superluminal signals.

On this point we wish to emphasize that Unruh and Wald
point out in their discussion in [[15], Sec. IV] that the
presence of a detector (switched on or otherwise) in the
right Rindler wedge has no influence on the left Rindler
wedge. Their argument is based on the Heisenberg-picture
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observation that the effects of the detector can only affect
the causal future of the coupling region between the
detector and the field. In fact, this observation does not
even depend on the details of the detector or the field
observables, see, e.g., [23] for a precise statement in some
generality. The limitation of that argument is that it remains
fuzzy as to the what actual measurement the detector does,
which is typically described as a projection onto the out-
state in the interaction picture. This is a central difference
between the above mentioned work and the posture
explored in this paper.
We should mention that in the context of nonrelativistic

quantum mechanics the no-signaling theorem shows that
entanglement between two separated systems cannot be used
for superluminal signaling. This result has, at this time, no
counterpart in QFT where how to deal with measurement
processes, is under development. Furthermore, in this case
we will be considering the problem within the semiclassical
context for the treatment of gravitation. Moreover the no-
signaling theorem involving joint measurements or manip-
ulations made at one “time” on both components of the
entangled system. The situation envisioned in this work
concerns, as we will see, waiting arbitrarily large times for a
detector to get excited and alsowaiting arbitrarily large times
for the manifestation of an effect on the other side.
The organization of this paper is as follows: Concerning

the paper’s first motivation, in Sec. II we describe the
evolution of the field-detector system using a left and right
doubled Fock space representation for the field, and we
obtain the stress-energy tensor after a Rindler particle has
been measured. In doing so, we do not make any assump-
tions on the details of the coupling of the detector and the
field, in particular we do not assume a long-time limit for
the interaction, other than assuming that the coupling is
week, which allows us to conform ourselves with first-
order effects in the coupling. We then discuss the non-
conservation of energy upon measurements in Sec. IV in a
simplified setting, for the sake of clarity. We then proceed
to study our second motivation. The possibility of faster
than light signaling, its implications and potential paths for
their avoidance appear in Sec. V. Discussions and con-
clusions appear in Sec. VI.

II. WHAT HAPPENS ONCE AN ACCELERATING
OBSERVER HAS DETECTED A

RINDLER PARTICLE?

Consider as in [15] a particle detector coupled to a Klein-
Gordon field in Minkowski spacetime following a linearly
uniformly accelerated trajectory with acceleration a in the
right Rindler wedge. In other words, the particle detector
follows the integral curve generated by the boost ba ¼
aðx∂at þ t∂axÞ. While currently the pointlike Unruh-DeWitt
detector [5,24,25] is the most prominent detector model
used in studies about the relativistic quantum information
and QFT in curved spacetime literature, we shall model our

detector as Unruh and Wald have in [15] to stay closer to
their original treatment.
The detector is a two-level system with Hilbert space C2

spanned by energy eigenstates j↑i and j↓i. The detector
Hamiltonian is ĤD ≔ ΩÂ�Â, where Â and Â� are raising
and lowering operators, and Ω > 0 is the energy of the
excited state, i.e., ĤDj↑i ¼ Ωj↑i and ĤDj↓i ¼ 0.
The coupled detector-field theory is described by the

interaction Hamiltonian

Ĥ ¼ ĤD ⊗ 1þ 1D ⊗ ĤΦ þ ĤI; ð1Þ

where ĤΦ is the Klein-Gordon Hamiltonian and the
interaction Hamiltonian is defined by

ĤIðτÞ ¼ ϵðτÞ
Z
Σ
e2aξdξdydz

h
ψðξ; y; zÞÂðτÞ

þ ψ̄ðξ; y; zÞÂ�ðτÞ
i
⊗ Φ̂ðτ; ξ; y; zÞ; ð2Þ

where Φ̂ is the Klein-Gordon field, ψ ∈ C∞
0 ðΣÞ defines

the profile of the spatial extension of the detector and ϵ ∈
C∞
0 ðRÞ is a switching function that controls the interaction

between the detector and the Klein-Gordon field along the
linearly uniformly accelerated trajectory of the detector. We
shall assume that the interaction between the detector and
the field is weaker than any other scale in the problem and
that it takes place for sufficiently long times.
The coupling takes place in the right Rindler wedge,

where the flat metric can be written in terms of Rindler
coordinates

t ¼ 1

a
eaξ sinhðaτÞ; x ¼ 1

a
eaξ coshðaτÞ: ð3Þ

It takes the form

ds2 ¼ −e2aξðdτ2 − dξ2Þ þ dy2 þ dz2: ð4Þ

Furthermore, in the right Rindler wedge, the Klein-
Gordon field can be written as

Φ̂ðτ; ξ; y; zÞ ¼
Z
Rþ×R2

d3κðvIκ⃗ðτ; ξ; y; zÞâRκ⃗
þ vIκ⃗ðτ; ξ; y; zÞâ�Rκ⃗Þ; ð5Þ

with κ⃗ ¼ ðω; κy; κzÞ, and where the right Rindler modes can
be written in terms of the modified Bessel function of the
second kind or MacDonald’s function,

vIκ⃗ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπωa Þ
4π4a

r
Kiω=a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2y þ κ2y þm2

q
a

eaξ

�

× e−iωτþiðyκyþzκzÞ ð6Þ
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and the formal sharp-momentum annihilation and creation
operators are âRκ⃗ ≔ âðvRκ⃗Þ and â�Rκ⃗ ≔ â�ðvRκ⃗Þ respec-
tively. The annihilation operator annihilates the right
Fulling-Rindler vacuum, ΩR, while creation operators
create Rindler particles.
A fully analogous description of the quantum theory

holds in the left Rindler wedge. Introducing the left Rindler
coordinates

t ¼ 1

a
eaξ̃ sinhðaτ̃Þ; −x ¼ 1

a
eaξ̃ coshðaτ̃Þ ð7Þ

the field in the left Rindler wedge takes the analogous form

Φ̂ðτ̃; ξ̃; y; zÞ ¼
Z
Rþ×R2

d3κ
�
vIIκ⃗ðτ̃; ξ̃; y; zÞâLκ⃗

þ vIκ⃗ðτ̃; ξ̃; y; zÞâ�Lκ⃗
�
; ð8Þ

where the left Rindler modes have an identical form to the
right modes (6) upon the replacement of τ and ξ by τ̃ and ξ̃.
It is very well known that the Minkowski vacuum restricted
to the (right or left) Rindler wedges looks like a thermal
mixture of (right or left, resp.) Rindler particles. See
Appendix A for details.
In any case, in the case at handwe consider that the state of

the system is prepared initially (before the switch-on of ϵ) as
the tensor product

js−∞i ¼ j↓i ⊗ jΩMi: ð9Þ

In the interaction picture, the late-time state of the system
(after the switch-off of ϵ) is given by

js∞i ¼ T

�
e−i

R
R
dτĤI

�
js−∞i

¼ js−∞i þ
�
−i

Z
R
dτĤI þOðϵ2Þ

�
js−∞i; ð10Þ

under the assumption that the coupling is weak. To first order
in perturbation theory, the late-time state of the system is

js∞i ¼ j↓i ⊗ jΩMi − ij↑i ⊗
Z
Rþ×R2

d3κ
Z
I
dvolðxÞζðxÞ

×

�
vIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗

�
jΩMi; ð11Þ

where the volume element in the right Rindler wedge is
locally dvolðxÞ ¼ e2aξdτdξdydz and

ζðxÞ ≔ eiΩτεðτÞψðξ; y; zÞ: ð12Þ

In [15] the assumption has been made that εðτÞ is
nearly constant, physically representing a long interaction

between the detector and the field, such that switching
effects are negligible. In this case, the τ integral can be
performed directly and one obtains a factor proportional
to δðΩ − ωÞ that indicates that only the modes vIκ⃗ with
frequency highly localized around Ω will contribute to first
order in Eq. (10). This makes perfect sense, after a long
interaction time the only modes that get excited from the
vacuum state are those whose energy coincides with the
frequency gap of the detector.
Let us however digress at this point and not make

this approximation. The reason is that in our case
we are interested in postmeasurement effects for
measurements carried out after a finite time of interaction
between the field and the detector. On the assumption
that the detector clicks, the updated state for the field
becomes

jfi ¼ −iN
Z
Rþ×R2

d3κ
Z
I
dvolðxÞζðxÞ

×

�
vIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗

�
jΩMi; ð13Þ

where the normalization N is given by

N ¼
�Z

Rþ×R2

d3κ
Z
I
dvolðxÞ

Z
I
dvolðx0ÞζðxÞζðx0Þ

×

�
vIκ⃗ðxÞvIκ⃗0 ðx0Þ
1 − e−2πω=a

þ vIκ⃗ðxÞvIκ⃗0 ðx0Þ
e2πω=a − 1

��
−1=2

ð14Þ

as can be seen in Appendix B.
We are interesting in the change in the expectation value

of the stress-energy tensor of the field in the updated state,
i.e., we are interested in

ΔTab ≔ hfjT̂abðxÞfi − hΩMjT̂abΩMi ð15Þ

in the right and left Rindler wedges. (Note that imposing
hΩMjT̂abΩMi ¼ 0, we have that ΔTab ¼ hfjT̂abðxÞfi.)
To this end, if we use a point-splitting prescription for
renormalizing the stress-energy tensor the object of interest
is to obtain the two-point function in the left and right
Rindler wedges. It follows from the calculations in appen-
dices C and D that the two-point function in the updated
state takes the form

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi þ ΔRðx; x0Þ
in the right Rindler wedge and; ð16Þ

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi þ ΔLðx; x0Þ
in the left Rindler wedge: ð17Þ
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Here, ΔR and ΔL are real, smooth, symmetric bi-functions given by

ΔRðx; x0Þ ¼ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0Þ ζðyÞζðy0Þ

ð1 − e−2πωp=aÞð1 − e−2πωκ=aÞ

×

�
vIp⃗ðyÞvIκ⃗ðxÞvIp⃗ðx0Þ vIκ⃗ðy0Þ þvIκ⃗ðyÞvIκ⃗ðxÞvIp⃗ðx0ÞvIp⃗ðy0Þe−2πωκ

þvIp⃗ðyÞvIκ⃗ðxÞvIp⃗ðx0ÞvIκ⃗ðy0Þe−2πωp þ vIκ⃗ðyÞvIκ⃗ðxÞvIp⃗ðx0ÞvIp⃗ðy0Þe−2πωκe−2πωp

�
þ c:c:; ð18Þ

ΔLðx; x0Þ ¼ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ e−πωp=ae−πωκ=a

ð1 − e−2πωp=aÞð1 − e−2πωκ=aÞ

×

�
vIp⃗ðyÞvIIκ⃗ðxÞṽIIp⃗ðx0ÞṽIκ⃗ðy0Þ þ vIp⃗ðyÞṽIIp⃗ðxÞvIIκ⃗ðx0ÞṽIκ⃗ðy0Þ

þvIp⃗ðyÞvIIκ⃗ðxÞṽIIp⃗ðx0ÞṽIκ⃗ðy0Þ þ vIp⃗ðyÞ ṽIIp⃗ðxÞ vIIκ⃗ðx0ÞṽIκ⃗ðy0Þ
�
þ c:c:; ð19Þ

where in Eq. (19) the tilde on the modes denotes a parity
operator in the orthogonal direction to the Rindler wedges,
i.e., ṽIκ⃗ ≔ vIðωκ ;−κ⊥Þ and similarly for ṽIIκ⃗.
Let us now compute the expectation value of the stress-

energy tensor in the state jfi. Note that a difference with the
calculation in [15] is that we do not treat the state of the
system as an improper thermal mixture in the right Rindler
wedge, but rather as a pure state defined in the right and left
Rindler wedges, which allows us to obtain the renormalized
expectation value of the stress energy tensor for points in
the right and left Rindler wedges.
Here we use the terminology introduced by d’Espagnat

[22] to clarify that the same mathematical object, a density
matrix, can be used to represent two very different physical
situations: (1) The case in which one is interested in an
ensemble of identical quantum systems, each one of which is
in one pure and definite quantum state among a list possible
such states fjiig and where the fraction of such states in the
ensemble is given by a certain classical distribution function
fðiÞ, and (2) the case in which a system of interest S is a
subsystem of a larger system Sþ Ewith the latter in a given
pure quantum state, but with our interest focused just on S
which can therefore be characterized in terms of the reduced
density matrix obtained after tracing over the degrees of
freedomofE. For the first case one reserves the name “proper
mixture” and says the density matrix represents such proper
mixture, and for the second case one reserves the name
“improper mixture,” and equally indicates the density matrix
is to be understood as representing the impropermixture.We
note that another situation one might want to consider, is one
in which one is dealing with a single quantum system S
which is in a pure state, which however is not completely
known, and forwhich one has information about the classical
probability pðiÞ of the system being in each one of the
quantum states. For such situation one can often use the
characterization provided by case (1) by considering a

corresponding imaginary ensemble, in which the fraction
is arranged to match the given probability i.e., fðiÞ ¼ pðiÞ.
That situation one also talks by extension about a proper
mixture, even though the state of the system is pure, and thus
its “properness” (or the fact thatwe do not express the state as
a pure one) is just a result of our ignorance. Finally, as is
usual, a density matrix is characterized as thermal if its
representation in the energy basis has the standard thermal
weights. Thus a thermal density matrix can be proper or
improper.

III. THE CHANGE IN THE STRESS-ENERGY
TENSOR

In order to compute the stress-energy tensor in the
updated state, hfjT̂abðxÞfi, in the right/left wedge we
apply the point-splitting operator

T ab ≔ gbb
0∇a∇b0 −

1

2
gabgcd

0∇c∇d0 −
1

2
gabm2; ð20Þ

where gaa
0
is the parallel-transport propagator, toΔR=Lðx; x0Þ

given by Eq. (C12), and then take the coincidence limit as

hfjT̂abðxÞfi ¼ lim
x0→x

T abΔR=Lðx; x0Þ: ð21Þ

It is useful to locally express the parallel-transport
components in Rindler coordinates by using the formula
gμμ

0 ðx; x0Þ ¼ eIμðxÞeμ
0

I ðx0Þ in terms of the soldering form
and its inverse. We then have that in the right Rindler
wedge the parallel-transport propagator has components
gηη

0 ðx; x0Þ ¼ eaξe−aξ
0
, gξξ

0 ðx; x0Þ ¼ eaξe−aξ
0
, gyy

0 ¼ 1 and
gzz

0 ¼ 1, with all other components vanishing.
We are chiefly concerned with changes in the left Rindler

wedge, which is causally disconnected from the detector
that clicks. Inserting (19) into Eq. (21) we have that the in
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the left Rindler wedge stress-energy tensor in the updated state takes a diagonal form and the form it takes can be read
directly from (21). For instance, for the energy density of a massless field we have in the left Rindler wedge

hfjT̂ηηðxÞfi ¼ ℜN 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ e−πωp=ae−πωκ=a

ð1 − e−2πωp=aÞð1 − e−2πωκ=aÞ

×

�
vIp⃗ðyÞ∂ηvIIκ⃗ðxÞ∂ηṽIIp⃗ðxÞṽIκ⃗ðy0Þ þ e2aξ

X3
i¼1

giivIp⃗ðyÞ∂ivIIκ⃗ðxÞ∂iṽIIp⃗ðxÞṽIκ⃗ðy0Þ

þ vIp⃗ðyÞ∂ηṽIIp⃗ðxÞ∂ηvIIκ⃗ðxÞṽIκ⃗ðy0Þ þ e2aξ
X3
i

giivIp⃗ðyÞ∂iṽIIp⃗ðxÞ∂ivIIκ⃗ðxÞṽIκ⃗ðy0Þ

þ vIp⃗ðyÞ∂ηvIIκ⃗ðxÞ∂ηṽIIp⃗ðxÞṽIκ⃗ðy0Þ þ e2aξ
X3
i

giivIp⃗ðyÞ∂ivIIκ⃗ðxÞ∂iṽIIp⃗ðxÞṽIκ⃗ðy0Þ

þvIp⃗ðyÞ∂ηṽIIp⃗ðxÞ∂ηvIIκ⃗ðxÞṽIκ⃗ðy0Þ þ e2aξ
X3
i

giivIp⃗ðyÞ∂iṽIIp⃗ðxÞ∂ivIIκ⃗ðxÞṽIκ⃗ðy0Þ
�
; ð22Þ

where ℜ denotes the real part and with g11 ¼ e−2aξ and
g22 ¼ g33 ¼ 1. In the massive case, one adds the term

1

2
m2e2aξΔLðx; xÞ ð23Þ

to the right-hand side of Eq. (22).
Similar expressions can be obtained for the components

hfjT̂ξξðxÞfi, hfjT̂yyðxÞfi, and hfjT̂zzðxÞfi in the left
Rindler wedge, and for the four nonvanishing components
in the right Rindler wedge.
Instead of spelling out in detail all of the remaining

components, we point out that Eq. (22) suffices to a central
point of the paper, which is that a measurement that occurs
in the right Rindler wedge has nontrivial effects on the
causally disconnected left Rindler wedge. It is natural to
ask “when” or “where” in spacetime the state collapses
after a detector has detected a Rindler particle. This is far
from obvious, but a natural assumption seems to be that
the state collapses along a Cauchy surface of spacetime
(see [26]) intersecting the “detection event” on the right
Rindler wedge and extending into the left Rindler wedge.
We should emphasize that regardless of “how big” this

change might be, it is a principled statement that by
including state collapses with semiclassical gravity has
produced an abrupt change in the a region causally
disconnected from where the measurement took place, in
this case by means of a detector click.
One can see by direct inspection of (22) and (23) that for

high accelerations there exists spacetime regions in the left
Rindler wedge where the expectation value of the energy
density becomes large. For example, for sufficiently small
ξ̃, say ξ̃ ∼ 1=a, the Rindler modes do not exhibit the large-
argument suppression of the MacDonald function, but the
integrand factors e−πω=a=ð1 − e−2πω=aÞ exhibit the behavior

e−πω=a

1 − e−2πω=a
¼ 1

2 sinhðπω=aÞ ¼
a
2ω

þOðω=aÞ: ð24Þ

This observation is consistent with what one would
expect in the long interaction time limit case presented
in [15], as can be seen from Eq. (3.29) in that paper in the
small β ¼ 2π=a regime.

IV. ENERGETIC CONSIDERATIONS

In this section we revisit some of the energetic consid-
erations discussed in [15] but focusing on the various
possible individual outcomes of the “detection attempts,”
rather than on the ensemble averages of detector measure-
ment outcomes, which are the quantities considered in most
of the discussion of said reference.
Following [15] and to simplify the discussion we will

consider the case of (ensembles of) harmonic oscillators,
and entangled pairs of harmonic oscillators instead of
quantum fields. There is no loss of conceptual clarity in
doing so, but the treatment is mathematically less involved.
Consider a harmonic oscillator with energy eigenstates

fjnig with renormalized energies nϵ (i.e., we removed the
zero point or ground state energy for simplicity of analysis),
and a detector with two states j↓i and j↑i with energy
levels 0 and ϵ respectively. Let us assume that the initial
state of the combined system is

jΨi ¼ N

�
j0i ⊗ j↓i þ 1ffiffiffi

α
p jni ⊗ j↑i

�
; ð25Þ

with N2 ¼ 1=ð1þ α−1Þ. The expectation value of the
energy is hEiΨ ¼ nϵ

1þα.
If an observer finds the detector in the unexcited state

j↓i, the value of the energy becomes hEiunex ¼ 0, and the
probability for this is Punex ¼ N2. On the other hand, if they

GARCIA-CHUNG, JUÁREZ-AUBRY, and SUDARSKY PHYS. REV. D 108, 025002 (2023)

025002-6



find the detector in the excited state, the energy becomes
hEiex ¼ nϵ and the probability for this is Pex ¼ N2=α. The
average result is of course hEi ¼ nϵ

1þα, which is the same as
hEiΨ. We note however that in each specific case (i.e., for
each specific outcome of the observation) the actual value
of the energy differs from hEiΨ, the expectation value of the
initial state of the combined system. This is of course not
surprising, given that the state jΨi is not an eigenstate of the
total energy operator.
As has been argued in [27], the relevant issue regarding

energy conservation is not its conservation “on average,”
but its conservation on each single individual instance of
any experiment. In this sense the possibility of preparing a
state such as jΨi and to make the observations described
above already set serious doubts about the general validity
of anything like a law of “energy conservation” in the
quantum setting.

A. Proper mixture

Consider now the case of a system in thermal equilib-
rium at temperature T. We take the system in question once
again to be a simple harmonic oscillator. This corresponds,
as is traditionally treated on statistical mechanic textbooks,
to an ensemble (a canonical ensemble) of identical particles
and might be described by the proper mixture:

ρ ¼ NΣ∞
n¼0e

−βnϵjnihnj; ð26Þ

where N ¼ 1 − e−βϵ is a normalization constant ensuring
Trρ ¼ 1. The mean energy is then hEiT ¼ ϵe−βϵ

1−e−βϵ. Let us
now consider a two level detector (as in the previous
discussion) initially in the un-excited state (and vanishing
energy) and make it interact with our thermal ensemble (for
this purpose we in fact consider an ensemble of identical
detectors). The initial situation will thus be described by the
density matrix:

ρ⊗ j↓ih↓j¼½ð1−e−βϵÞΣ∞
n¼0e

−βnϵjnihnj�⊗ j↓ih↓j: ð27Þ

After letting the system interact for a suitably long time
we will find a result analogous to that encountered in the
Eq. (3.25) of [15]. That is:

ρlate ¼ NlateΣ∞
n¼0e

−βnϵ½jni⊗ j↓i− iγ
ffiffiffi
n

p jn− 1i⊗ j↑i þ…�
× ½hnj⊗ h↓j þ iγ

ffiffiffi
n

p hn− 1j⊗ h↑j þ…� ð28Þ

where γ is a small parameter representing the strength and
time duration of the interaction and Nlate is a normalization
constant ensuring Trρlate ¼ 1.

B. Improper mixture

Consider now the situation in which we are informed that
the detector is excited. To do this we simply compute a

partial trace after applying the corresponding projector
j↑ih↑j. The resulting density matrix up, to first order in the
expansion is

ρpost ¼ NpostΣ∞
n¼1e

−βnϵnjn − 1ihn − 1j; ð29Þ

where Npost ¼ ð e−βϵ

ð1−e−βϵÞ2Þ−1 is still another normalization

constant ensuring Trρpost ¼ 1.
We note that the absence of the first term ought be

considered to be the result of both the measurement of
the excitation level of the exited detector and the post
selection within the ensemble in which the elements
containing the unexcited detector state were removed. In
other words, we have that in going from Eq. (28) to
Eq. (29) actually modifies the set of systems composing
the ensemble itself.
The next observation is that the resulting ensemble,

represented by the density matrix (29) is not longer thermal,
which in turn implies that the expectation value of the
energy

TrðĤρpostÞ ¼ NpostΣ∞
m¼0e

−βðmþ1Þϵðmþ 1Þmϵ¼ 2ϵe−βϵ

ð1− e−βϵÞ :

ð30Þ

differs slightly from that of a truly thermal ensemble
(hEiT ¼ ϵe−βϵ

1−e−βϵ). We note again that even after adding the
energy of excitation of the detector ϵ the expectation value
of the energy has changed as the result of the measurement
(and postselection).
Finally let us consider the case of a single pair of

entangled harmonic oscillators with “thermal weights.”
That is the case of a pure state, which upon consideration
of the reduced density matrices for each oscillator would
result in a thermal density matrix, but of course one of an
improper nature. Let us add a detector arranged to interact
just with the harmonic oscillator (II) and which is initially
prepared in the unexcited state, so the state of the complete
system is

jΨiðTÞinitial ¼AinitialΣ∞
n¼0e

−βnϵjniðIÞ⊗ jniðIIÞ ⊗ j↓i; ð31Þ

where Ainitial ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2βϵ

p
. After letting the system

interact for a suitably long time, the state of the system
will be

jΨiðTÞlate ¼ AlateΣ∞
n¼0e

−βnϵjniðIÞ
⊗ ½jniðIIÞ ⊗ j↓i − iγ

ffiffiffi
n

p jn − 1iðIIÞ ⊗ j↑i þ…�:
ð32Þ
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If we project on the subspace corresponding to the excited
detector (ignoring the irrelevant factor i and ensuring that
the final state is normalized) we find:

jΨiðTÞpos−tsel¼Apost−selΣ∞
n¼0e

−βnϵjniðIÞ⊗ ½ ffiffiffi
n

p jn−1iðIIÞþ…�;
ð33Þ

where in this case Apost−sel ≈ ð e−2βϵ

ð1−e−2βϵÞ2Þ−1=2.
Now the expectation values of the energy of the harmonic

oscillator I is hEiI ¼ ϵð1þe−2βϵÞ
ð1−e−2βϵÞ , which is different from that of

a purely thermal state, while the expectation value of the
harmonic oscillator II is hEiII ¼ 2ϵe−2βϵ

ð1−e−2βϵÞ. Note that if we add
the energy of the excited detector, ϵ, we have that
hEiII þ ϵ ¼ hEiI .On the other hand the expectation energies
of both cases have definitely changed as a result of the
“projection.”
At this point we might find nothing seriously puzzling

because we have been dealing with systems that are not
initially in energy eigenstates. The change in the case of the
harmonic oscillator II in the above example, is of course a
bit puzzling due to the fact that this oscillator has not been
made to directly interact with a detector to bring about the
“projection,” however this is nothing more than the usual
change occurring as a result of quantum entanglement with a
second system which has been subjected to a measurement.
It is worth noting that, in dealing with mixed states it is

only when the expectation of the energy momentum is
extracted from an improper mixture (and thus, indirectly
from a pure state) that it make sense to use it in semi-
classical gravity. If this is done with a proper mixture what
we would obtain is indeed an average value of that quantity
over some ensemble (such as in the case of the many
realizations involved in stochastic gravity) and then self
consistency will be in doubt.1

The situation considered in Sec. IV is, however a bit
more troublesome as it seems to have the potential for a
serious violation of our fundamental ideas about relativity,
in particular, the potential to offer a path for superluminal
communication.

V. FASTER THAN LIGHT SIGNALING?

For the remainder of this section, and as we have
specified in the introduction, we make the assumption that
a measurement of the detector leads to a state collapse
along a Cauchy surface. We emphasise that the super-
luminal puzzle that will be discussed does not rely on a
particular choice of a Cauchy surface, but rather occurs for

any such choices. We next offer our motivations for taking
this point of view.
Let us stress that when adopting a purely “operational

interpretation” of quantum states, in which they merely
encode “information” about a system, as is done in [23,28],
the framework would lie outside the scope of our assump-
tions. On the other hand, there are good reasons to assume
that quantum states contain more information than mere
subjective knowledge about the system, and that measure-
ments are more than mere updates of that state of knowl-
edge, most notably the aforementioned PBR theorem [29].
Moreover, it is interesting to examine the consequences

of a Cauchy collapse measurement modeling, since it is
assumed, implicitly or explicitly, in many discussions on
quantum field theory. Let us explain: When describing the
quantum theory for a physical system, the most straightfor-
ward procedure is to consider all degrees of freedom of the
system, and work with the quantum state of the complete
system as vectors (more precisely rays) on that Hilbert
space. When one is interested in just a few degrees of
freedom, one might trace over the other degrees of freedom,
obtaining a reduced density matrix, corresponding to an
improper mixture according to d’ Espagnat’s terminology
discussed above. In the case of quantum fields in globally
hyperbolic spacetimes, quantum states are generically
thought of as associated to Cauchy surfaces. Indeed, global
hyperbolicity, and the foliation by Cauchy surfaces is used
explicitly in the construction of QFT in curved spacetimes,
see for instance the first paragraph of Sec. 4. 2 in [7]. That
states are associated with Cauchy surfaces in many QFT
treaties of the more “particle physics” flavor becomes quite
evident when working in the interaction picture, which, in
curved spacetimes, becomes generalized by the Tomonaga-
Schwinger formalism: Given a globally hyperbolic space-
time and ΨΣ a state on the Cauchy surface Σ, the state on
the surface Σ0 obtained from Σ by deforming it to enclose
between the two the infinitesimal four volume δV around
the event x is given by

iδjΨΣi ¼ lim
δV→0

jΨ0
Σi − jΨΣi
δV

¼ HðxÞδVjΨΣi ð34Þ

where HðxÞ is the interaction Hamiltonian density.
Often the used wording indicates one is associating

states to spacelike surfaces, without specifying that such
surfaces are implicitly taken to be Cauchy spacelike
surfaces. That is illustrated by the fact that the states
one talks about are pure states. As previously noted, in
discussions concerning for instance the Unruh effect and
related topics, when considering states associated with
spacelike surfaces that fail to be Cauchy, the state should
correspond to an improper mixture, indicating that one is
dealing with a partial characterization of a pure state
associated with a full Cauchy surface.

1In fact, we do not know what it means to make averages over
collections of space-times and the nonlinearity of GR clearly
casts serious doubts that, say, Einstein’s equations would be
preserved under any kind of averaging one might want to
consider.
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The association of states of quantum fields with Cauchy
surfaces is quite evident, for instance, in the analysis of the
black hole information problem (see for instance: [30]
or [31]). In this case, when one restricts consideration to
surfaces that are not really Cauchy ones, one finds, as
previously noted, states that are improper mixtures.2

In view of these considerations, we are motivated to
consider sates of quantum fields as associated with Cauchy
surfaces, and thus, to take the updating of states as a result
of measurements (or spontaneous collapses) to take place
on Cauchy surfaces. As we will see, however, this rather
natural posture seems to be at the core of the problem we
shall discuss in the present section. We note that the
association of states of quantum fields with Cauchy
surfaces is also explicitly referred to in previous works
involving discussions on superluminal communication and
measurements, e.g., [34–38]. In this sense, this work adds
to this existing literature.
At the root of the possibility of even asking oneself

whether superluminal signaling is possible, is the, by now
rather well understood fact, that our world contains some
nonlocal features. This is reflected in the violations of
Bell’s inequalities [39], which have been experimentally
confirmed in multiple experiments [40–44].3
Nevertheless, there are a number of arguments, and a

general widespread conviction that such non-locality can-
not be exploited to communicate superluminally. Indeed,
the nonlocality present in the situation examined by Bell
does not allow for superluminal communication. Faster-
than-light communication would force us to revise the very
foundations of special relativity—and of physics as a
whole. The widespread posture in the physics community
is that somehow nature contains features that prevent the
nonlocal nature of the quantum state (which, as noted,
cannot be taken as being purely epistemic, as per the PBR
theorem [29]) from being used for superluminal signaling.
In any case, “textbook” quantum mechanics do not seem to
offer paths that allow for faster-than-light communication.4

This is captured by the set of results known as the
no-signaling theorem.

Things become more complicated in the context of
quantum field theory, as the question of what quantities
(represented by, say, self-adjoint operators), can be mea-
sured or not is one where there is no complete and generally
accepted answer, see [47] and a possible resolution [48].
The situation we study here involves yet another aspect that
seems problematic.
Under the Cauchy collapse assumption, the change that

we have noted in the expectation value of the stress-energy
tensor in the left Rindler wedge (region II) due to
measurements taking place in the right Rindler wedge
(region I)—if detectable—however seems to provide a path
for superluminal communication, which we describe in the
following gedankenexperiment:

Gedankenexperiment: Suppose a linearly uniformly
accelerated observer in the right Rindler wedge, say
Alice, is equipped with a highly-efficient detector, for
which it is highly probable to detect a Rindler particle.
This enables Alice to affect the expectation value of
the stress-energy tensor in the left Rindler wedge by
choosing to turn her detector on or not. A causally-
disconnected observer, say Bob, in the left Rindler
wedge, who can probe, either the state of the field, or
more specifically, the expectation value of stress-
energy tensor (for example by probing the gravita-
tional field with a torsion balance), would then be able
to infer whether Alice has or has not turned on her
detector in the right Rindler wedge. This seems to be a
path for achieving superluminal communication be-
tween Alice and Bob as all events in the world line of
one are spacelike separated from all events of that of
the other.

A simple protocol for superluminal signaling relying
on the above Gedankenexperiment can be thought of as
follows.
Alice and Bob are given instructions that Alice could

send to Bob a signal (for instance that she has decided on
something and the answer is “yes”) by turning her detector
on. She would not turn her detector at all if the answer is
“no”. Bob will then monitor the value of the expansion
of nearby geodesics by, say, looking at the freely falling
particles he is continuing releasing. Bob must be careful to
ensure that nothing he does generates in his surroundings
any energy momentum tensor that could mimic that
associated with the change in the state resulting from a
detection of a quantum field by Alice’s detector. If, at any
time in his world line, he detects the corresponding
geodesic expansion he would know Alice’s decision is
“yes”. The point is that no matter when, along his world
line, that would happen, the communication would be
superluminal, as Alice and Bob are never in causal contact.
This is, of course, a rather poor quality signaling protocol
because Bob could eventually know if Alice’s decision is
“yes”, but he would never know if Alice’s decision is “no”.
This can be remedied by having Alice, use two different

2As discussed in [32,33] that outcome is quite natural and
involves—as argued in both Wald’s and Maudlin’s works—no
paradox, unless one assumes that quantum gravity effects not
only cure the singularity, but remove the need to add anything,
like a boundary, to the spacetime manifold, and that, somehow, at
least some sense of global hyperbolicity is restored.

3Some even simpler theoretical settings, such as the GHZ
construction [45] (which have not been experimentally realized
due to technical difficulties), are expected to provide further, and
even more transparent evidence, for nonlocality. See for instance
the discussion about the GHZ scheme in [46].

4This feature is shared by most alternatives being considered in
connection with the quest to resolving the conceptual difficulties
afflicting quantum theory related to “the measurement problem.”
In the present work, we will not enter—except for a few
comments—into the discussion involving those issues, a matter
that will be left for future studies.

WHAT HAPPENS ONCE AN ACCELERATING OBSERVER HAS … PHYS. REV. D 108, 025002 (2023)

025002-9



kind of detectors (with, say, vastly different energies of
excitation), which could produce two different changes
in the energy momentum tensor at Bob’s location. The
detection of one of the two changes would indicate if
Alice’s answer is “yes” or “no”, thus corresponding to a
complete 1- bit signaling.
The efficacy of this protocol depends on the magnitude

of Alice’s and Bob’s absolute accelerations aA and aB and
the change on the state of the quantum field induced by the
excitation of Alice’s detector, which we can modify by
selecting, say, the detector’s internal energy gap, Ω.
Ignoring switching effects, reasonably good performance
for the detector could be achieved by setting the energy gap
near the Unruh temperature (in natural units), since for
long-time interactions the transition probability of the
detector should behave as a Planckian distribution [5],
while at the same time, Ω could be made arbitrarily large.
On the other hand, the distance DA along a surface
orthogonal to ξ from Alice’s world line and the bifurcating
surface of the Killing Horizon is determined by aA, and
decreases as the later increases. So for larger DA the
protocol becomes poorer. Optimization of the protocol
performance with respect to aB will have to balance the fact
that the analogous distance from Bob to the bifurcating
horizon decreases with increasing aB and the detailed
functioning of the device he uses in detecting the changes
in the expectation value of the energy momentum tensor of
the field.
It is worth pointing out that, as the signaling protocol

relies on Bob’s measurements of the expectation value of
stress-energy tensor in region II, one must consider what
such measurement implies. On one hand, and as is
generally the case when considering expectation values,
their measurement involves making several projective
measurements of the quantity of interest, and then taking
suitable averages of the corresponding results. In the case at
hand, one could imagine Bob carrying out the multiple
measurements over a period of time, but, of course, as the
situation is not stationary (the effects of interest would not
be the same at all points along Bobs world-line), one could
be concerned that here one faces a serious impediment.
This concern seems to us to be misguided, as there is no
reason5 that Bob could not “renormalize” the results of each
experiment in an appropriately differential manner, accord-
ing to the point on his world line at which each piece of data
is taken,6 and only then, proceed to make the corresponding
average. Moreover, Bob could, instead, carry out the
measurements all at once by using a large number of the
appropriate devices. Here, one might worry about the effect

one device could have on the others, or the effect that each
device could have on the state of the quantum field itself.
We think these concerns could be addressed, for instance,
by choosing to rely on the so called weak measurement
schemes in which the effect of each probe on the state of
the system under measurement can be made arbitrarily
small [49]. So, it is not clear to us that such considerations
would be enough to prevent the measurement in question
with enough accuracy, for Bob to distinguish whether the
changes induced by Alice actions have taken place or not.
Finally, and in what was the original consideration behind
this manuscript, one could consider the setting in a semi-
classical gravity context in which it would be the expect-
ation value of the energy momentum tensor what dictates
how the spacetime is curved, a context in which, as noted
earlier, Bob could directly observe, say, the impact by
Alices decision, on the Ricci tensor, a quantity that, at the
classical level, can be measured directly via the geodesic
deviation among nearby geodesics. In the end, while all
these questions are clearly relevant, the central point is that
a serious problem would arise even if the tiniest amount of
information is transmitted superluminally. Namely, even if
the only thing the protocol manages to achieve is to modify
Bobs probability assessment (which in the absence of any
new information was 1=2) regarding Alices choice to turn
her detector on or not, we would face a serious conceptual
conundrum.
There seems to be no trivial or evident obstacle for the

protocol to work at some level of reliability, and, as noted,
any nonzero value of that would represent the opening of a
door for superluminal communication. Indeed, there exist
currently serious proposals to measure the gravitational
field with very high precision, e.g., [50] what would be
opening the path for an experiment relying on the semi-
classical path. We will discuss further down the manuscript
what seem to be the most natural possibilities by which
nature might prevent, in principle, the working of such
protocol.

A. Possible obstacles faced by the superluminal
signaling protocol

The possibility of Alice signaling to Bob in a super-
luminal way should be considered quite problematic in
view of the implications that would have for our under-
standing of the world. In fact, the situation is aggravated by
the fact that, even if the detector does not detect a particle,
there are higher-order effects (in the coupling constant) that
induce changes in the stress-energy tensor on the left
Rindler wedge [51].7

Thus, it seems imperative to consider the caveats that
might provide a path to avoid such a problematic commu-
nication protocol. Before we start, let us make some

5Assuming, for instance, that he is aware of Alices world line,
and the only thing he does not know beforehand is whether or not
she would decide to turn her detector on.

6Bob is supposed to know what Alice’s world line would be,
and only lacks knowledge on whether she would decide to turn on
her detector or not.

7Although it is not clear if the effect when no particle is
absorbed is an artifact of perturbation theory.
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observations regarding semiclassical gravity. Semiclassical
gravity is a formalism in which the gravitational field is
taken as dynamical but treated in classical terms as the
metric of a spacetime ðM; gabÞ in general relativity, while
the matter is treated in the language of quantum fields on
such spacetime. The metric is taken to satisfy the semi-
classical version of Einstein’s field equations

GabðxÞ ¼ 8πGhTren
ab ðxÞi; ð35Þ

with hTren
ab i, the expectation value of the matter’s quantum

stress-energy tensor in a suitable quantum state, while the
quantum matter obeys the dynamics of QFT. See, e.g., [52]
for a review.
In incorporating state collapses in the semiclassical

gravity context, we remark that there is an issue, which
we have touched on briefly above. The point is that once
something like state reduction is considered (be it in the
Copenhaguen approach or in any of the spontaneous
collapse theories models, e.g., [53–64]), one has the
ambiguity of which state should be employed in computing
the right-hand side of Eq. (35). In other words, it seems
natural that, if we are interested in the value of the left-hand
side of Eq. (35) at a point x, the right-hand side should be
computed using a state associated with a Cauchy surface
that passes through x, but, of course, there are infinite such
surfaces, and the proposal to consider Eq. (35), even as an
approximation, must be completed with a detailed pre-
scription in this regard, in order to, at least, have a well-
defined proposal [65–69]. We should emphasize, however,
that, no matter what Cauchy surface is used, a portion of the
Cauchy surface must extend to the left Rindler wedge.
Thus, assuming that the collapse occurs along any arbitrary
Cauchy surface, the left Rindler wedge must include a
“precollapse” and a “postcollapse” region with different
spacetime geometry—according to semiclassical gravity.
Let us now offer, and briefly discuss, what we think is the

list of serious set of options to be considered, that could
help in avoiding the conclusion of superluminal signaling:

(i) Strong enough departures from semiclassical grav-
ity, at least in region II (this would concern only the
semiclassical detection path discussed above):

(ii) Existence of effects that are indistinguishable from
observations of the change in the stress-energy in
region II:

(iii) A fundamental undetectability of the change of the
state in region II, and, in particular, that of expect-
ation value of the stress-energy tensor in said
region:

(iv) Some fundamental impediment of the construction of
the set up.

Let us now briefly discuss the options (i)–(iv) consid-
ered above.

(i) First, and in order to address the issue, wemust clarify
what is meant by thewords “strong enough.”We take

that to indicate that as a result of someunknownaspect
of physics (originating, say, in aspects of quantum
gravity), the validity of Eq. (35) with the right-hand
side in the updated state, cf. the discussion of Sec. III,
would be violated to such a large degree that, for any
design of Bob’s measuring instrument, the expected
result will be modified by a factor of at least the same
order ofmagnitude.Aswehave pointed out inSec. III,
it is possible to make the expectation value of the
stress-energy tensor at points in region II8 arbitrarily
large in the post-collapse state by increasing the
detector gap. However, it must be acknowledged that,
ifΩ becomes large enough, our modeling of the state
collapse in semiclassical gravity along a Cauchy
surface could be questioned on the basis that a large
violation of conservation of the stress-energy tensor
along a Cauchy surface is too strong a deviation from
the semiclassical regime. Thus, one might argue that,
although one could trust semiclassical gravity before
and after the state collapse, there is no way to model
the system “during” the state collapse in semiclassical
terms, and a more refined understanding of how to
model state collapses in semiclassical gravity could be
required. We note, however, that, even if that is the
case, such conclusion will not prevent the super-
luminal signaling, as all we need is for Bob to detect
the effect at any time.

On the other hand, it seems rather unlikely that
arbitrarily large departures of semiclassical gravity
will be associated with such a simple, and rather
common, situation. The full analysis of the question
thus requires consideration of the means by which
Bob might detect the corresponding change in the
spacetime metric in region II.9 As it seems clear that a
modification of the spacetime curvature might, in
principle, be measured by the study of the geodesic
deviation equation, and, in particular, the expansion of
the congruence of geodesics in that region, it appears
that the question will have to be connected at least to
some fundamental limitation on the validity of the
notion of test point particles following geodesics of

8It is worth noting that our faster-than-light signaling protocol
does not really require the validity of semiclassical gravity during
the measurements. The only real requirement is that Bob be able
to measure every once in a while the expectation value of the
energy momentum tensor by any means. As such, this result
seems to contradict the so called no signaling theorems. However,
the particular experimental situation we are considering does not
fall under the hypothesis of such theorems which concerns finite
time measurements. We will discuss this issue further in this
paper.

9Wewill not study here in any detail the detection method to be
employed by Bob, but just point out that interesting ideas to
measure small gravitational effects have been used in say
searches for deviation of the universality of free fall, and also
note a recent proposal to look for Plank scale dark matter [70].
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the underlying metric. There are, of course, some
limitations on that arising from simple quantum
considerations about the description of the so called
free point particles,which, in fact negate, the notion of
well defined trajectories.
Moreover, as discussed in [71], the standard quan-

tummechanical minimal de-localization of a quantum
particle (characterized, for instance, by its Compton
wavelength) implies such particle ought not to be
considered as pointlike, and as is well known, in
general, even at the classical level, extended objects
fail to follow geodesics. It is unclear at this point if
these kind of considerations will be enough to dismiss
our example, given the fact that, as noted, the effect
could be made as large as one wants, and the time
available for Bob to make the measurement is arbi-
trarily large.
Finally, one can raise the issue of whether one

should not trust semiclassical gravity in any situation
in which the quantum fluctuations (i.e., the quantum
uncertainties) in the energy momentum tensor are
larger in magnitude than the expectation value of the
energy momentum tensor. Considering that such a
restriction would imply that semiclassical gravity
cannot be used in the case of Minkowski vacuum, it
seems to us that the use of such a generic prohibition
would rule out the use of semiclassical gravity in,
essentially, all situations. That, it seems to us,would be
a very drastic and unwarranted conclusion.

(ii) Here, we must consider the existence of other effects
that might not be effectively distinguished from the
changes resulting from the collapse. Those might be
intrinsically associated with the gravitational effects
of either the measuring devices that Bob would be
introducing in order to detect the changes in the
spacetime metric in region II. They also might be
associated with the mere existence of (the non-
vanishing stress-energy tensor corresponding to)
Alice and her detectors, whose own gravitational
effects we have been neglecting so far, although,
classically, these effects will, in principle, propagate
causally and should not affect region II. It is likely
that deviations fromMinkowski spacetime reflect on
the nonlocal state of the field from a semiclassical-
gravity viewpoint in such a way that the quantum
state of the field cannot be, in principle, the
Minkowski vacuum state to begin with. Moreover,
the stress-energy of Alice and her apparatus must be
considered in the constraints of the theory, and the
spacetime will have a non-vanishing ADM mass,
reflected in the asymptotic behavior in all spacetime
directions.
Another possibility is to consider that the model

used for Alice’s detector, although standard in the
literature, is a local model (in Region I) of the

detector. Treating Alice’s detector as a quantum field
yields a detector model with support in both Regions
I and II. In the Heisenberg picture, we know that the
existence of a field-like detector for Alice will only
affect the dynamics in the causal future of the
coupling region between Alice’s detector (or probe)
and the quantum field considered as a system. This
can also be formalized in the algebraic QFT lan-
guage [23]. However, as emphasized in [23], a local
and covariant measurement scheme is only able to
describe the probe-system measurement chain under
the assumption that somewhere, someone knows
how to measure something. Thus, it seems that the
issue of sending a faster-than-light signal by the “act
of measurement” cannot be resolved by simply
changing the detector model. Sorkin has pointed
out, in his “impossible measurements” protocol [47]
that the existence of spatially extended detectors
would make faster than light signaling almost
unavoidable. See, however [48].

(iii) This possibility could result from a variety of reasons.
For instance, it might be that the appropriate way to
evaluate expectation value of the stress-energy tensor,
at any point, is taken on states associated with
3-surfaces which would not incorporate the change
in the state resulting from a collapse or ameasurement
on region I. One such option would require to take the
expectation value of the stress-energy tensor at x to be
computed using the state corresponding to something
like the surface ∂J−ðxÞ (the boundary of the causal
past of x), and that, at the same time, the detailed
theory characterising the measurement (i.e., some-
thing like the spontaneous collapse theories consid-
ered in [72–74]) is such that the state associated with
∂J−ðxÞ is unaffected. A scheme of that kind would
ensure that the measurement of Alice would have
no consequences at spacelike-separated events. Such
proposal is notwithout difficulties, one ofwhich is the
fact that, in general, ∂J−ðxÞ is not a Cauchy surface,
and another is that it is not smooth at x. The first
difficulty might be resolved if one has some good
reason to consider that there is a certain initial state
associated with an initial Cauchy surface Σin, which
might be considered as the initially “prepared” state,
or perhaps the initial state of the universe or some-
thing like that, and then to consider computing the
expectation values of quantities of interest at x, using
the state associated with the surface ðIþðΣinÞ ∩
∂J−ðxÞÞ ∪ ðΣin − J−ðxÞÞ, while the second problem
might be dealt with an adjustment of the recipe based
on the taking of appropriate limits of a succession of
smooth Cauchy surfaces that have as a limit (in a
suitable sense), the surface indicated above. The issue
is, however, quite delicate as illustrated by the dis-
cussions in [65], the pursuit of which lies outside the
scope of the present work.

GARCIA-CHUNG, JUÁREZ-AUBRY, and SUDARSKY PHYS. REV. D 108, 025002 (2023)

025002-12



An argument in favor of the impossibility of
detecting the signal is the following. One can assume
that stress-energy conservation must hold, on aver-
age, i.e., for successive measurements, which pre-
vents one from extracting arbitrarily large amounts of
energy from the quantum field by detector measure-
ments, as argued in [15]. Thus, an arbitrarily efficient
detector must produce arbitrarily small changes for
the stress-energy tensor when it detects a Rindler
particle. The issue now becomes whether there exists
an “engineering window” where the efficiency of the
detector and the amplitude of the signal can be
compensated, such that a faster-than-light signal is
measurable by Bob, and that such a signal can be sent
with sufficient certainty by Alice. On this point, it
follows, from the inequalityΔEΔT ≥ ℏ, that, in order
to detect such a small signal, Bob requires a large
amount of time. On the other hand, in principle, Bob
has an infinite time to measure an arbitrarily small
signal, for he can orbit along a Killing vector boost
orbit in the left Rindler wedge, and one could argue
that such engineering window can always be found.
However, any physical signal sent by Alice must
decay as it approachesIþ. Thus, it is expected that the
signal will become weaker as Bob’s proper time
elapses, and this might render the signal “effectively
undetectable ”.

(iv) Finally, there could be aspects of the set up that
would make it simply unfeasible. One possibility we
should consider is the following. In order for Bob to
be sure that the change in the energy momentum he
observes corresponds indeed to a signal that was sent
by Alice, he must be sure that similar signals are not
reaching him coming from elsewhere. That is, he
must be quite sure that the state of the quantum field
prior to Alice’s manipulation of her detector is the
Minkowski vacuum, and, as he must be ready to
receive Alice’s signal at any point in his world line,
he must be sure that such characterization of the state
of the quantum field must be the appropriate one up
to arbitrarily distant regions of “space”. So, there
must be a preparation of the initial state of the
quantum field on an extremely large spatial region
occurring well before the whole protocol is even
started (and if we want to ensure Bob has, in effect,
an arbitrarily long time to make the detection, it
seems the preparation of the state ought to encom-
pass a full Cauchy surface. However, as already
noted, the simultaneous (in some reference frame)
measurements of observables associated with such
extended spatial regions—say, as a means of state
preparation—are known to be rather problematic in
their own right as argued by Sorkin [47] (again, see
however [48]). Furthermore, such a global prepara-
tion seems to contain non-local elements that are
similar to those occurring in Sorkin’s Impossible

measurements example, and might be subjected to
similar questionings. Moreover, one might argue
that, as we need to include Alice, Bob and their
measuring devices then, the state of the field could
not possibly be, strictly speaking, the Minkowski
vacuum. It would be surprising if such concerns
could not be overcome, even in principle. Needless
is to say that a rather general argument along such
lines is not available at this time as far as we know.

In any case, such arguments must be considered with
care, because, in principle, even a very unreliable commu-
nication protocol which allows faster than light commu-
nications would be quite problematic. We think these ideas
deserve much deeper exploration.

VI. FINAL REMARKS

We have revisited the issue of detection of a Rindler
particle by an accelerator detector confined to the right
Rindler wedge, focusing attention on the implications of
the reduction of the state associated with the actual
detection or what is often referred to as the measurement
part of the process. We have noted that the concomitant
modification of the state of the quantum field, imply
changes in the (expectation value of the renormalized)
stress-energy tensor in both Rindler wedges, under the
assumption that a measurement induces a state collapse
along a Cauchy surface.
Concerning the right Rindler wedge, it is interesting that

the resulting state and stress-energy tensor expectation
values become non-thermal which is, in a sense, easy to
understand as result of the disruption brought by the
interaction with the detector. Of course, one expects that
in the long run further interaction between the field and
detector or among the field modes themselves will bring the
system to a new state of thermal equilibrium.
Concerning the left Rindler wedge, however, the

change in the stress-energy tensor expectation value is
more problematic, as it seems to open a possibility for faster
than light communication, under the assumptions here
contemplated. We have noted some of what we see as
the most natural possibilities to avoid such conclusion, but
further studies of these issues are required in order to get to
more definite and solid conclusions.
For the moment, we can only stress that the fuzziness in

the theoretical characterization of the act of measuring
in quantum theory can bring about complications even in
apparently innocuous circumstances, such as in the context
of the detection of a Rindler particle in Minkowski
spacetime. Despite being overlooked in many practical
applications in physics, the literature on the measurement
problem is quite large, and the positions taken in its face are
quite varied. We do not intend to discuss them in detail. It
suffices for us to mention that the paths to overcome
the measurement problem have been classified by
Maudlin [75] as follows: It is internally inconsistent to
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hold simultaneously the following three propositions about
a quantum theory:

(i) The description of a physical system as provided by
the quantum state or wave function is complete.

(ii) The evolution of the quantum state is always
dictated by the Schrödinger equation (or its relativ-
istic generalizations).

(iii) Individual experiments produce definite (even if
often unpredictable) results.

Thus, one must negate at least one of (i)–(iii) above.
Negating (i) leads down, in general, the path of the so-
called hidden variable theories, of which the de Broglie-
Bohm theory is the best known example [76]. Negating
(ii) implies that the collapse or reduction of the wave
function plays a central role, as in the Copenhaguen
textbook interpretation, as well as in so-called spontaneous
collapse or dynamical state reduction theories, such as
GRW, CSL, Penrose-Diósi, etc [72–74,77–80]. The neg-
ation of (iii) leads to many-worlds- or many-minds-type
interpretations [81,82].
In any case, we should restate that the superluminar

tension relies on the application of two central hypotheses
in this work. The first one is that measurements induce the
collapse of the wave function, and that such collapse occurs
on a Cauchy surface of spacetime. The second one is that
the problem studied in (nearly) flat spacetime is within the
regime of applicability of semiclassical gravity. It is well
possible that either one of the two hypotheses fail, or that
they cannot be taken to hold together. If this is the case, it
would seem that there exist apparently innocuous situa-
tions, such as the one here studied, for which a correct
theoretical description of the evolution of the system must
resort to quantum gravity. This seems to be in agreement
with conclusions drawn from [83,84]. However if one takes
semiclassical gravity to fail in this case, it seems likely that
other situations that are often discussed using semiclassical
language, for instance Hawking radiation and the back-
reaction in black holes (even at early times), might require
reconsideration as well. On the other hand, if one takes the
Cauchy collapse postulate to be inappropriate, it is unclear
how to assign an interpretation to the quantum state of a

system that is in harmony with the PBR theorem (i.e., that
is not purely epistemic). Another possibility is that semi-
classical gravity and measurements can coexist (in the
semiclassical regime of quantum gravity) in a fashion that
is yet to be better understood, and beyond the “effective”
treatment considered in [85].
Finally, it is our hope to draw the attention of the

community to these delicate issues that afflict our under-
standing of quantum theory in general and of QFT in
particular, especially in gravitational contexts.
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APPENDIX A: THE MINKOWSKI VACUUM IN
THE RINDLER WEDGES

The initial state is taken to be the Minkowski vacuum,
whose Wightman function takes the following form in the
right Rindler wedge

hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi ¼
Z
Rþ×R2

d3κ
Z
Rþ×R2

d3κ0hΩMj
�
vIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗

��
vIκ⃗0 ðx0ÞâRκ⃗0 þ vIκ⃗0 ðx0Þâ�Rκ⃗0

�
ΩMi: ðA1Þ

Using the relations [[9], Eqs. (2.125–(2.127)],

hΩMjâ�Rκ⃗âRκ⃗0ΩMi ¼ hΩMjâ�Lκ⃗âLκ⃗0ΩMi ¼ ðe2πω=a − 1Þ−1δ3ðκ⃗ − κ⃗0Þ; ðA2aÞ

hΩMjâRκ⃗â�Rκ⃗0ΩMi ¼ hΩMjâLκ⃗â�Lκ⃗0ΩMi ¼ ð1 − e−2πω=aÞ−1δ3ðκ⃗ − κ⃗0Þ; ðA2bÞ

hΩMjâLκ⃗âRκ⃗0ΩMi ¼ hΩMjâ�Lκ⃗â�Rκ⃗0ΩMi ¼ ðeπω=a − e−πω=aÞ−1δ3ðκ⃗ − κ⃗0Þ; ðA2cÞ
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(and zero otherwise) we obtain that

hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi ¼
Z
Rþ×R2

d3κ

�
vIκ⃗ðxÞvIκ⃗ðx0Þ
1 − e−2πω=a

þ vIκ⃗ðxÞvIκ⃗ðx0Þ
e2πω=a − 1

�
: ðA3Þ

Likewise, in the left Rindler wedge the Wightman function takes the form

hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi ¼
Z
Rþ×R2

d3κ

�
vIIκ⃗ðxÞvIIκ⃗ðx0Þ
1 − e−2πω=a

þ vIIκ⃗ðxÞvIIκ⃗ðx0Þ
e2πω=a − 1

�
; ðA4Þ

where vIIκ⃗ are left Rindler modes.

APPENDIX B: NORMALIZATION OF THE UPDATED STATE

We have seen in Sec. II that if the detector clicks the updated state of the field becomes

jfi ¼ −iN
Z
Rþ×R2

d3κ
Z
I
dvolðxÞζðxÞ

�
vIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗

�
jΩMi: ðB1Þ

In this appendix, we see that the normalization constant is given by Eq. (14). We compute

N −2hfjfi ¼
Z
Rþ×R2

d3κ
Z
Rþ×R2

d3κ0
Z
I
dvolðxÞ

Z
I
dvolðx0ÞζðxÞζðx0Þ

× hΩMj
�
vIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗

��
vIκ⃗0 ðx0ÞâRκ⃗0 þ vIκ⃗0 ðx0Þâ�Rκ⃗0

�
ΩMi: ðB2Þ

Using the relations [[9], Eqs. (2.125)–(2.126)], we obtain that

N −2hfjfi ¼
Z
Rþ×R2

d3κ
Z
I
dvolðxÞ

Z
I
dvolðx0ÞζðxÞζðx0Þ

�
vIκ⃗ðxÞvIκ⃗ðx0Þ
1 − e−2πω=a

þ vIκ⃗ðxÞvIκ⃗ðx0Þ
e2πω=a − 1

�
: ðB3Þ

APPENDIX C: THE TWO-POINT FUNCTION IN THE UPDATED STATE
IN THE RIGHT RINDLER WEDGE

The updated stress-energy tensor can be computed from the two-point function in the updated state. In this appendix, we
show that the two-point function in the updated state in the right Rindler wedge is given by

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi þ ΔRðx; x0Þ: ðC1Þ

where ΔRðx; x0Þ is given by Eq. (C12) below.
The two-point function in the right Rindler wedge reads

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3κ0
Z
Rþ×R2

d3p
Z
Rþ×R2

d3p0
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ

× hΩMj
�
vIp⃗ðyÞâRp⃗ þ vIp⃗ðyÞâ�Rp⃗

�
ðvIκ⃗ðxÞâRκ⃗ þ vIκ⃗ðxÞâ�Rκ⃗Þ

× ðvIκ⃗0 ðx0ÞâRκ⃗0 þ vIκ⃗0 ðx0Þâ�Rκ⃗0 Þ
�
vIp⃗0 ðy0ÞâRp⃗0 þ vIp⃗0 ðy0Þâ�Rp⃗0

�
ΩMi: ðC2Þ

Using [[9], Eqs. (2.122)–(2.124)] one can obtain the relations

hΩMjâRκ1!â
Rκ2
!â

Rκ3
!â

Rκ4
!ΩMi ¼ 0;

hΩMjâRκ1!â
Rκ2
!â

Rκ3
!â�

Rκ4
!ΩMi ¼ 0; ðC3aÞ
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hΩMjâRκ1!â
Rκ2
!â�

Rκ3
!â

Rκ4
!ΩMi ¼ 0; ðC3bÞ

hΩMjâRκ1!â�
Rκ2
!â

Rκ3
!â

Rκ4
!ΩMi ¼ 0; ðC3cÞ

hΩMjâ�
Rκ1
!â

Rκ2
!â

Rκ3
!â

Rκ4
!ΩMi ¼ 0; ðC3dÞ

hΩMjâRκ1!â
Rκ2
!â�

Rκ3
!â�

Rκ4
!ΩMi ¼

1

1 − e−2πω1=a

1

1 − e−2πω2=a
ðδðκ⃗1 − κ⃗3Þδðκ⃗2 − κ⃗4Þ þ δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3ÞÞ; ðC3eÞ

hΩMjâRκ1!â�
Rκ2
!â

Rκ3
!â�

Rκ4
!ΩMi ¼

1

1 − e−2πω1=a

1

1 − e−2πω3=a
δðκ⃗1 − κ⃗2Þδðκ⃗3 − κ⃗4Þ ðC3fÞ

þ 1

1 − e−2πω1=a

e−2πω3=a

1 − e−2πω3=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ; ðC3gÞ

hΩMjâ�
Rκ1
!â

Rκ2
!â

Rκ3
!â�

Rκ4
!ΩMi ðC3hÞ

¼ e−2πω1=a

1 − e−2πω1=a

1

1 − e−2πω4=a
ðδðκ⃗1 − κ⃗2Þδðκ⃗3 − κ⃗4Þ þ δðκ⃗1 − κ⃗3Þδðκ⃗2 − κ⃗4ÞÞ; ðC3iÞ

hΩMjâRκ1!â�
Rκ2
!â�

Rκ3
!â

Rκ4
!ΩMi ðC3jÞ

¼ 1

1 − e−2πω1=a

e−2πω4=a

1 − e−2πω4=a
ðδðκ⃗1 − κ⃗2Þδðκ⃗3 − κ⃗4Þ þ δðκ⃗1 − κ⃗3Þδðκ⃗2 − κ⃗4ÞÞ; ðC3kÞ

hΩMjâ�
Rκ1
!â

Rκ2
!â�

Rκ3
!â

Rκ4
!ΩMi ¼

e−2πω1=a

1 − e−2πω1=a

e−2πω3=a

1 − e−2πω3=a
δðκ⃗1 − κ⃗2Þδðκ⃗3 − κ⃗4Þ ðC3lÞ

þ e−2πω1=a

1 − e−2πω1=a

1

1 − e−2πω2=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ; ðC3mÞ

hΩMjâ�
Rκ1
!â�

Rκ2
!â

Rκ3
!â

Rκ4
!ΩMi ¼

e−2πω1=a

1 − e−2πω1=a

e−2πω2=a

1 − e−2πω2=a
ðδðκ⃗1 − κ⃗3Þδðκ⃗2 − κ⃗4Þ þ δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3ÞÞ; ðC3nÞ

hΩMjâRκ1!â�
Rκ2
!â�

Rκ3
!â�

Rκ4
!ΩMi ¼ 0; ðC3oÞ

hΩMjâ�
Rκ1
!â

Rκ2
!â�

Rκ3
!â�

Rκ4
!ΩMi ¼ 0; ðC3pÞ

hΩMjâ�
Rκ1
!â�

Rκ2
!â

Rκ3
!â�

Rκ4
!ΩMi ¼ 0; ðC3qÞ

hΩMjâ�
Rκ1
!â�

Rκ2
!â�

Rκ3
!â

Rκ4
!ΩMi ¼ 0; ðC3rÞ

hΩMjâ�
Rκ1
!â�

Rκ2
!â�

Rκ3
!â�

Rκ4
!ΩMi ¼ 0: ðC3sÞ

Inserting Eq. (C3) into (C2) we obtain that the two point function can be obtained as a sum of six contributions, each coming
from one of the non-trivial expressions in Eq. (C3), i.e., it takes the form

hfjΦ̂ðxÞΦ̂ðx0Þfiðx; x0Þ ¼
X6
n¼1

GRnðx; x0Þ: ðC4Þ
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Subtracting Eq. (A3) from this expression we obtain that

ΔRðx; x0Þ ¼ hfjΦ̂ðxÞΦ̂ðx0Þfi − hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi ¼
X6
n¼1

ΔRnðx; x0Þ ðC5Þ

with

ΔR1ðx; x0Þ ≔ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIp⃗ðyÞvIκ⃗ðxÞvIp⃗ðx0ÞvIκ⃗ðy0Þ

ð1 − e−2πωp=aÞð1 − e−2πωκ=aÞ ; ðC6Þ

ΔR2ðx; x0Þ ≔ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIp⃗ðyÞvIp⃗ðxÞvIκ⃗ðx0ÞvIκ⃗ðy0Þ

ð1 − e−2πωp=aÞð1 − e−2πωκ=aÞ ; ðC7Þ

ΔR3ðx; x0Þ ≔ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIκ⃗ðyÞvIκ⃗ðxÞvIp⃗ðx

0ÞvIp⃗ðy0Þe−2πωκ

ð1 − e−2πωκÞð1 − e−2πωpÞ

þN 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIκ⃗ðyÞvIp⃗ðxÞvIκ⃗ðx

0ÞvIp⃗ðy0Þe−2πωκ

ð1 − e−2πωκÞð1 − e−2πωpÞ ; ðC8Þ

ΔR4ðx; x0Þ ≔ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIκ⃗ðyÞvIκ⃗ðxÞ vIp⃗ðx

0Þ vIp⃗ðy0Þe−2πωp

ð1 − e−2πωκÞð1 − e−2πωpÞ

þN 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ vIκ⃗ðyÞvIp⃗ðxÞ vIκ⃗ðx

0Þ vIp⃗ðy0Þe−2πωp

ð1 − e−2πωκÞð1 − e−2πωpÞ ; ðC9Þ

ΔR5ðx;x0Þ≔N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0ÞvIκ⃗ðyÞvIκ⃗ðxÞvIp⃗ðx

0ÞvIp⃗ðy0Þe−2πωκe−2πωp

ð1−e−2πωκÞð1−e−2πωpÞ ; ðC10Þ

ΔR6ðx;x0Þ≔N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3p
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0ÞvIκ⃗ðyÞvIp⃗ðxÞvIκ⃗ðx

0ÞvIp⃗ðy0Þe−2πωκe−2πωp

ð1−e−2πωκÞð1−e−2πωpÞ : ðC11Þ

Collecting, we can write

ΔRðx; x0Þ ¼ ΔR1ðx; x0Þ þ ΔR3ðx; x0Þ þ ΔR5ðx; x0Þ þ c:c:; ðC12Þ

which yields Eq. (18).

APPENDIX D: THE TWO-POINT FUNCTION IN THE UPDATED STATE
IN THE LEFT RINDLER WEDGE

The updated stress-energy tensor can be computed from the two-point function in the updated state. In this appendix, we
show that the two-point function in the updated state in the right Rindler wedge is given by

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ hΩMjΦ̂ðxÞΦ̂ðx0ÞΩMi þ ΔLðx; x0Þ; ðD1Þ

as in Eq. (19).
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The two-point function in the left Rindler wedge reads

hfjΦ̂ðxÞΦ̂ðx0Þfi ¼ N 2

Z
Rþ×R2

d3κ
Z
Rþ×R2

d3κ0
Z
Rþ×R2

d3p
Z
Rþ×R2

d3p0
Z
I
dvolðyÞ

Z
I
dvolðy0ÞζðyÞζðy0Þ

× hΩMj
�
vIp⃗ðyÞâRp⃗ þ vIp⃗ðyÞâ�Rp⃗

��
vIIκ⃗ðxÞâLκ⃗ þ vIIκ⃗ðxÞâ�Lκ⃗

�

×
�
vIIκ⃗0 ðx0ÞâLκ⃗0 þ vIIκ⃗0 ðx0Þâ�Lκ⃗0

�
ðvIp⃗0 ðy0ÞâRp⃗0 þ vIp⃗0 ðy0Þâ�Rp⃗0 ÞΩMi: ðD2Þ

Using [[9], Eqs. (2.122)–(2.124)] one can obtain the relations

hΩMjâRκ1!â
Lκ2
!â

Lκ3
!â

Rκ4
!ΩMi ¼

e−πω1=a

1 − e−2πω1=a

e−πω2=a

1 − e−2πω2=a
δ̃ðκ⃗1 − κ⃗3Þδ̃ðκ⃗2 − κ⃗4Þ

þ e−πω1=a

1 − e−2πω1=a

e−πω3=a

1 − e−2πω3=a
δ̃ðκ⃗1 − κ⃗2Þδ̃ðκ⃗3 − κ⃗4Þ;

hΩMjâRκ1!â
Lκ2
!â

Lκ3
!â�

Rκ4
!ΩMi ¼ 0; ðD3aÞ

hΩMjâRκ1!â
Lκ2
!â�

Lκ3
!â

Rκ4
!ΩMi ¼ 0; ðD3bÞ

hΩMjâRκ1!â�
Lκ2
!â

Lκ3
!â

Rκ4
!ΩMi ¼ 0; ðD3cÞ

hΩMjâ�
Rκ1
!â

Lκ2
!â

Lκ3
!â

Rκ4
!ΩMi ¼ 0; ðD3dÞ

hΩMjâRκ1!â
Lκ2
!â�

Lκ3
!â�

Rκ4
!ΩMi ¼

1

1 − e−2πω1=a

1

1 − e−2πω2=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ

þ e−πω1=a

1 − e−2πω1=a

e−πω3=a

1 − e−2πω3=a
δ̃ðκ⃗1 − κ⃗2Þδ̃ðκ⃗3 − κ⃗4Þ; ðD3eÞ

hΩMjâRκ1!â�
Lκ2
!â

Lκ3
!â�

Rκ4
!ΩMi ¼

e−πω1=a

1 − e−2πω1=a

e−πω2=a

1 − e−2πω2=a
δ̃ðκ⃗1 − κ⃗3Þδ̃ðκ⃗2 − κ⃗4Þ

þ 1

1 − e−2πω1=a

e−2πω2=a

1 − e−2πω2=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ ðD3fÞ

hΩMjâ�
Rκ1
!â

Lκ2
!â

Lκ3
!â�

Rκ4
!ΩMi ¼ 0; ðD3gÞ

hΩMjâRκ1!â�
Lκ2
!â�

Lκ3
!â

Rκ4
!ΩMi ¼ 0; ðD3hÞ

hΩMjâ�
Rκ1
!â

Lκ2
!â�

Lκ3
!â

Rκ4
!ΩMi ¼

e−2πω1=a

1 − e−2πω1=a

1

1 − e−2πω2=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ

þ e−πω1=a

1 − e−2πω1=a

e−πω2=a

1 − e−2πω2=a
δ̃ðκ⃗1 − κ⃗3Þδ̃ðκ⃗2 − κ⃗4Þ ðD3iÞ

hΩMjâ�
Rκ1
!â�

Lκ2
!â

Lκ3
!â

Rκ4
!ΩMi ¼

e−2πω1=a

1 − e−2πω1=a

e−2πω2=a

1 − e−2πω2=a
δðκ⃗1 − κ⃗4Þδðκ⃗2 − κ⃗3Þ

þ e−πω1=a

1 − e−2πω1=a

e−πω3=a

1 − e−2πω2=a
δ̃ðκ⃗1 − κ⃗2Þδ̃ðκ⃗3 − κ⃗4Þ;

hΩMjâRκ1!â�
Lκ2
!â�

Lκ3
!â�

Rκ4
!ΩMi ¼ 0; ðD3jÞ
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hΩMjâ�
Rκ1
!â

Lκ2
!â�

Lκ3
!â�

Rκ4
!ΩMi ¼ 0; ðD3kÞ

hΩMjâ�
Rκ1
!â�

Lκ2
!â

Lκ3
!â�

Rκ4
!ΩMi ¼ 0; ðD3lÞ

hΩMjâ�
Rκ1
!â�

Lκ2
!â�

Lκ3
!â

Rκ4
!ΩMi ¼ 0; ðD3mÞ

hΩMjâ�
Rκ1
!â�

Lκ2
!â�

Lκ3
!â�

Rκ4
!ΩMi

¼ e−πω1=a

1 − e−2πω1=a

e−πω2=a

1 − e−2πω2=a
δ̃ðκ⃗1 − κ3Þδ̃ðκ⃗2 − κ⃗4Þ

þ e−πω1=a

1 − e−2πω1=a

e−πω3=a

1 − e−2πω3=a
δ̃ðκ⃗1 − κ2Þδ̃ðκ⃗3 − κ⃗4Þ:

ðD3nÞ
Following steps analogous to those in Appendix C we obtain
Eq. (19).
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