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We take into account the subcritical case for dielectric media by exploiting an approximation allowing us
to perform perturbative analytical calculations and still not implying low dispersive effects. We show that in
the background of a specific solitonlike solution, pair-creation occurs and can display a thermal behavior
governed by an effective temperature. The robustness of the approach is also corroborated by the analysis
of the ϕψ-model related to the standard Hopfield model, for which analogous results are obtained.
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I. INTRODUCTION

We study the problem of the so-called subcritical case
for the Hawking effect in analog gravity, which is
characterized by the absence of a real horizon but still a
process of pair-creation takes place. The phenomenon has
been extensively studied in the physical literature, because
of the Vancouver experiment with water [1,2], where
measurements of a thermal spectrum appear, despite the
actual absence of a horizon, as shown in subsequent
analysis [3–5]. As to analytical calculations, the first
one, again devoted to the case of scattering in water,
appeared in [6], and it was provided by means of the so-
called Bremmer approximation [7,8], adapted to an ordi-
nary differential equation of the nth order. Subsequent
analytical calculations, involving also the subcritical case
for water and Bose–Einstein condensates (BEC), again in
the limit of low dispersive effects, are found in [9,10], and
exploit a Korteweg–De Vries (KdV) equation emerging in
the approximation of no copropagating modes [9]. It is
worth mentioning also the first experiment with water [11],
and we stress that both the subcritical and the transcritical
cases for water were studied also in [12–14].
For the case of the analog Hawking effect in dielectric

media, horizonless situations were numerically taken into
account in [15,16], but for the subcritical case, a fully
analytical calculation is still missing.

We have shown in previous papers [17,18] that an
equation of the Orr-Sommerfeld type inherited by
Nishimoto’s works (see e.g. [19,20]) enables us to treat
in a quite unified way the case with a horizon, also called the
transcritical case, which amounts to the presence of a real
turning point (real horizon) in the limit of weak dispersive
effects, where the weakness of dispersion is indicated by a
suitable small parameter ϵ.
In this paper, we focus on the subcritical case for

dielectric media; i.e. we take into account configurations
where a real turning point is missing. We still obtain a
fourth-order differential equation governing the phenome-
non, but we adopt a different attitude and a different
expansion parameter with respect to the transcritical case
mentioned above. Indeed, we consider a linearization of the
equation around a specific solitonlike background solution,
and we exploit an expansion in terms of a parameter ηwhich
represents the weakness of the soliton amplitude. In the
comoving frame of the background solution, we obtain a
static situation that mimics that of the Hawking effect in the
transcritical case, but with no horizon. Even if it could seem
that weak dispersion is implied by our picture, actually this
is not the case: Indeed, the dispersion parameter ϵ is a priori
not restricted to be small, and this is the main differencewith
respect to the standard picture described in [17], where ϵ is
small and a so-called singular perturbation theory is to be
allowed. In the framework we discuss, one is allowed to
adopt a regular perturbative expansion in the parameter η,
which represents a strong advantage.
We show that for the particular profile which is taken into

account, in some limit thermality is simulated, with an
effective temperature which is one-third of the one of the
corresponding transcritical case.
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Explicit calculations are first carried out for a modified
ϕψ-model whose aim is to simplify as possible the
dispersion relation associated with the model, and to allow
more straightforward analytical calculations and a clearer
exposition of the basic idea. Then we corroborate the
robustness of the approach by applying it to the ϕψ-model
introduced in [21], then discussed elsewhere, and again
taken into account in [17,22]. The aforementioned
ϕψ-model will be mentioned as the “original” model
and represents a simplification of the Hopfield model
[23] which is a standard way to discuss the electromagnetic
field in dielectric media.

II. THE MODIFIED ϕψ-MODEL
AND ITS SOLITONIC SOLUTIONS

The model we will consider is defined by a Lagrangian
function involving two real scalar fields ϕ and ψ , with the
aim of simulating some features of the behavior of the
electromagnetic field in dielectric media. As is well known,
a way to obtain this goal consists in the Hopfield model
[23], where the interaction between the electromagnetic
field and the atoms/molecules of the dielectric medium is
taken into account by replacing the aforementioned
microscopic objects with a mesoscopic polarization field.
One still obtains the correct Sellmeier equation for the
dispersion relation. In our case, intending to simplify as
much as possible both the analytical calculations and the
dispersion relation, we replace the polarization field with
the field ψ and the electromagnetic field with ϕ, with a
setup aimed at reproducing the Cauchy dispersion relation
most straightforwardly. We stress that our picture below
will be corroborated also in the trickier case of the ϕψ-
model discussed in [21], where the Hopfield model is
reduced in the most direct way to a model reproducing
exactly the Sellmeier dispersion relation using a couple of
scalar fields ϕ;ψ .
In our present model, the Lagrangian, expressed in the

lab frame, with respect to spacetime variables tl, xl, is

L¼ 1

2
ð∂tlϕÞ2 þ

1

2
ðð∂tlψÞ2 þ μ2ψ2Þ þ gϕ∂xlψ −

λ

4!
ψ4: ð1Þ

We can write it in a covariant form, which will be useful to
pass to the frame comoving with the pulse:

L¼ 1

2
ðvν∂νϕÞ2 þ

1

2
ððvν∂νψÞ2 þ μ2ψ2Þ þ gϕnν∂νψ −

λ

4!
ψ4;

ð2Þ

where in the lab frame we have vνlab ¼ ð1; 0Þ and
nνlab ¼ ð0; 1Þ, while in a boosted frame we get vν ¼
ðγ;−VγÞ and nν ¼ ð−Vγ; γÞ (c ¼ 1 everywhere).

The equations of motion that follow from (2) are

ðvν∂νÞ2ϕ − gnν∂νψ ¼ 0; ð3Þ

ðvν∂νÞ2ψ þ gnν∂νϕ − μ2ϕþ λ

3!
ψ3 ¼ 0: ð4Þ

The free-field solutions (for λ ¼ 0) are plane waves
eiωlabtl−iklabxl which satisfy

n20ðωlabÞ ≔
k2lab
ω2
lab

¼ μ2

g2
þ ω2

lab

g2
≕Aþ Bω2

lab; ð5Þ

where ωlab ¼ vμkμ and klab ¼ −nμkμ. The quantity n0 is, by
definition, the refractive index of the medium. Equation (5),
in the limit as ωlab → 0, gives rise to the Cauchy dispersion
relation, which is frequently used to describe dielectric
media at low frequencies. Indeed, as ωlab → 0 we get

n0ðωlabÞ ≃
ffiffiffiffi
A

p
þ B

2
ffiffiffiffi
A

p ω2
lab: ð6Þ

To describe ordinary dielectrics, we require A > 1,
i.e. μ > g.
The Lagrangian (2) admits a conserved current, which is

related by the Noether theorem to the invariance (in its
complexified version) under phase shifting of the fields
ϕ ↦ eiαϕ, ψ ↦ eiαψ :

Jν ≔
i
2
½ðvνϕ�ðvα∂αϕÞ þ vνψ�ðvα∂αψÞ þ gnνψ�ϕ − c:c:�:

ð7Þ

The zeroth component gives rise to the conserved chargeZ
Σt

dxJ0≕Q; ð8Þ

where Σt is a spacelike hypersurface. The associated
(conserved) scalar product is

��
ϕ

ψ

�
;

�
ϕ̃

ψ̃

��
¼ i

2

Z
Σt

�
v0ϕ�vα∂αϕ̃ − v0ϕ̃vα∂αϕ�

þ v0ψ�vα∂αψ̃ − v0ψ̃vα∂αψ�

þ gn0ðψ�ϕ̃ − ψ̃ϕ�Þ
�
: ð9Þ

It is straightforward now to provide a canonical quantiza-
tion of the free-Lagrangian, compute the propagators, and
perform standard perturbative Quantum Field Theory
(QFT) computations with the vertex iλ: we will not deal
with this in this paper. The free particles of the theory are
polaritons which satisfy the Cauchy dispersion relation,
and the interaction term is a modelization of the nonlinear
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response that can happen in dielectrics, better known as the
Kerr effect. The norm of the free particle statesΦk ¼ ðϕk

ψk
Þ ∼

e−ikμx
μ
has a simple expression in the laboratory frame:

kΦkk2 ¼ Qðϕk;ψkÞ ∝ 2ωlab

�
1þ ω2

lab

μ2 þ ω2
lab

�
: ð10Þ

From Eq. (10) we can clearly distinguish the positive-norm
modes (ωlab > 0) from the negative-normmodes (ωlab < 0).
InAppendixAwegive amore detailed analysis of the current
two-vector Jμ, and we prove that the norm is proportional to
signðωlabÞ in any inertial frame.
The equations of motion (3) also admit a solitonic

solution that propagates rigidly at a fixed velocity V with
respect to the laboratory:

ψsðxl − VtlÞ ¼
α

coshðβðxl − VtlÞÞ
; ð11Þ

α2 ¼ 12V2β2

λ
; ð12Þ

β2 ¼ 1

V4
ðμ2V2 − g2Þ: ð13Þ

III. THE LINEARIZED EOM

In this section we consider the linearization of the
equations of motions (EOMs) (3) around a solitonlike
background:

ψBðxl − VtlÞ ¼
ffiffiffiffiffiffiffiffi
2jηj
jλj

s
1

coshðβðxl − VtlÞÞ
: ð14Þ

We will treat η and β as independent parameters to allow
valid results not only for the soliton (11) but also for other
backgrounds with the same shape. Indeed, it is known that
solitons of this type can emerge also as approximated
solutions of electrodynamics inside nonlinear dielectrics:
specifically, they are solutions of the so-called nonlinear
Schrödinger equation, which derives from some approx-
imations made on the Maxwell equations inside those
media. We shall comment further on our choice in the
following section.
We want to study the scattering of the asymptotic normal

modes against the perturbation given by the soliton traveling
across the medium: if the scattering involves both positive
and negative-norm modes, this can be interpreted as a sign
of instability of the system, which decays by emitting
particles, as in the pioneering computation by Hawking for
black hole evaporation.
The linearized EOMs are

ðvν∂νÞ2ϕ − gnν∂νψ ¼ 0; ð15Þ

ðvν∂νÞ2ψ þ gnν∂νψ − μ2ϕþ λ

2
ψ2
Bψ ¼ 0: ð16Þ

Notice that, in the linearized equation, the effect of the
perturbation is a shift of the parameter μ2:

μ2 ↦ μ2 −
λ

2!
ψ2
Bðxl − VtlÞ; ð17Þ

which induces a shift in the refractive index [see (5)]

n2ðωlab; xl; tlÞ ¼ n20ðωlabÞ þ δn2ðxl − VtlÞ; ð18Þ

δn2ðxl − VtlÞ ¼ −
η

g2
1

cosh2ðβðxl − VtlÞÞ
: ð19Þ

FIG. 1. (a) The dispersion relation (5) represented in the
comoving frame with the background, with g ¼ 1, μ ¼ 1.2;
for 0 < ω < ωMAX there are four real solutions. (b) The
dispersion relation (18) represented at the peak of the perturba-
tion, i.e. xl ¼ Vtl, for η ¼ −1. The modes 0 < ω < ωMIN do not
experience an event horizon (subcritical regime).
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To include both cases δn > 0 and δn < 0, we will consider
η as a real quantity, with

signðηÞ ≔ signðλÞ:

The dispersion relations (5) and (18) are represented in
Fig. 1, as seen in the comoving frame with the background.
We decouple Eqs. (15) and (16) by applying the operator

ðvν∂νÞ2 to the second equation; then, we eliminate ϕ using
ðvν∂νÞ2ϕ ¼ gnν∂νψ . In this way, we obtain the following
decoupled equation only for the field ψ :

ðvν∂νÞ4ψ þ g2ðnν∂νÞ2ψ − μ2ðvν∂νÞ2ψ

þ λ

2
ðvν∂νÞ2ðψ2

BψÞ ¼ 0: ð20Þ

It is convenient to write the equations in the comoving
coordinates t ¼ γðtl − VxlÞ, x ¼ γðxl − VtlÞ. Since the
potential term is independent of the comoving time, we
seek a solution in the form ψ ¼ e−iωtfðxÞ, where the
constant ω is a conserved quantity (cf. e.g. [21]). In this
way we end up with a fourth-order equation for fðxÞ only:

0 ¼ V4γ4fð4ÞðxÞ þ 4iV3ωγ4fð3ÞðxÞ þ γ2f00ðxÞ½ηV2sech2ðβx=γÞ þ g2 − μ2V2 − 6V2ω2γ2�
þ 2iVγf0ðxÞ½ηsech2ðβx=γÞð2iβV tanhðβx=γÞþωγÞ þ ωγðg2 − μ2 − 2ω2γ2Þ� þ fðxÞ½−2β2ηV2sech4ðβx=γÞ
−ηsech2ðβx=γÞðωγ þ 2iβV tanhðβx=γÞÞ2þω2γ2ð−g2V2 þ μ2 þ ω2γ2Þ�: ð21Þ

We can further manipulate the equation by performing
the following change of variables, usual for the Pöschl-
Teller potential,

z ¼ −e2β̃x; β̃ ≔
β

γ
; ð22Þ

which implies

∂x ¼ 2β̃θz ≔ 2β̃z
d
dz

: ð23Þ

By defining the rescaled parameters G ¼ g
2β̃
, Ω ¼ ω

2β̃
, and

M ¼ μ
2β̃
, we end up with the following equation:

0 ¼ ðV4γ4Þz4fð4Þ þ ð6V4γ4 − 4iV3Ωγ4Þz3fð3Þ þ
�
G2γ2 −M2V2γ2 þ 7V4γ4 − 12iV3Ωγ4 − 6V2Ω2γ4 −

η

β̃2
V2γ2z
ð1 − zÞ2

�
z2fð2Þ

þ
�
G2γ2 −M2V2γ2 − 2iG2VΩγ2 þ 2iM2VΩγ2 þ V4γ4 − 4iV3Ωγ4 − 6V2Ω2γ4 þ 4iVΩ3γ4

þ η

β̃2

�
2iVΩγ2z
ð1 − zÞ2 −

V2γ2zð3þ zÞ
ð1 − zÞ3

��
zfð1Þ þ

�
M2Ω2γ2 − G2V2Ω2γ2 þΩ4γ4

þ η

β̃2

�
Ω2γ2z
ð1 − zÞ2 þ

2iVΩγ2z
ð1 − zÞ3 −

V2γ2zð1þ 4zþ z2Þ
ð1 − zÞ4

��
f: ð24Þ

Equation (24) is of Fuchsian type. The complete char-
acterization of the equation is not in the interest of this work
and will be the subject of some future publication. In the
present work, we propose a perturbative method for the
solution of the equation, which will be exposed in the next
section.

IV. PERTURBATIVE METHOD

The solitonic solution (11) has no free parameter, except
for the velocity V: its amplitude, in particular, is fixed by
the constants of the Lagrangian. Nevertheless, as in the
previous section, we linearize the field equations for our
nonlinear theory around weak solitonlike backgrounds

(whichever produced experimentally), with the aim to
consider the perturbation induced by the solitonlike back-
ground as “small.” We stress that we have the freedom to
choose the spatial dependence of the perturbation in the
refractive index in such a way that it can be reproduced
using linearization around a given background solution.
This attitude is corroborated by the experimental fact that
strong laser pulses may induce in dielectrics a nonlinear
perturbation δnðxÞ (in the comoving frame) of the refrac-
tive index which is typically orders of magnitude lower
than the leading term (e.g. order of 10−3 compared with
one of the leading terms).
There is an immediate consequence of this approach:

as all the nonhomogeneity is associated with the
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refractive index nðxÞ is due to the correction δnðxÞ, and
the latter one is treated perturbatively in η which is
associated directly with the amplitude of the solitonlike
background, we are considering a situation where at the
lowest order homogeneity occurs, and then no horizon
can appear; i.e. we are automatically in a subcritical
regime. This is the main difference with respect to the
perturbative approach where the perturbation parameter ϵ
is associated with a weak dispersion, and where instead a
horizon may appear in the leading order equation (in the
form of a real turning point).
The perturbative method for Fuchsian equations that we

apply was proposed in [24]. We start by eliminating the
third-order derivative by the change of variable

fðzÞ ¼ z−
3
2
þiΩVuðzÞ

that gives

uð4Þ þ ½v1ðzÞ þ ηw1ðzÞ�uð2Þ þ ½v2ðzÞ þ ηw2ðzÞ�uð1Þ
þ ½v3ðzÞ þ ηw3ðzÞ�u ¼ 0; ð25Þ

where

v1ðzÞ ¼
2G2 − 2M2V2 þ 5V4γ2

2V4γ2z2
;

v2ðzÞ ¼
−2G2V þ 2M2V3 þ 2iG2Ω − 2iG2V2Ω − 5V5γ2

V5γ2z3
;

v3ðzÞ ¼
36G2V2 − 36M2V4 − 48iG2VΩþ 48iG2V3Ω

16V6γ2z4

−
16G2Ω2 þ 32G2V2Ω2 − 16G2V4Ω2 þ 81V6γ2

16V6γ2z4
;

w1ðzÞ ¼ −
1

β̃2V2γ2ðz − 1Þ2z ;

w2ðzÞ ¼
4

β̃2V2γ2ðz − 1Þ3z ;

w3ðzÞ ¼
−1þ 2z − 25z2

4β̃2V2γ2ðz − 1Þ4z3 :

Now we consider η as a small parameter and formally
expand the solution as

uðzÞ ¼ u0ðzÞ þ ηu1ðzÞ þ η2u2ðzÞ þ � � � ; ð26Þ

which allows us to obtain a regular perturbative expansion
(to be compared with the singular perturbation expansion
one obtains by expanding with respect to a low dispersion
parameter ϵ; cf. Sec. VII). Herein, we compute the first-
order solution u1, and we will discuss the possibility of
taking η → 1.
Solving the unperturbed equation (η ¼ 0) is very easy,

and it gives

u0ðzÞ ¼ ziα; ð27Þ

where α satisfies a fourth-degree algebraic equation. By
putting iα ¼ i k

2β þ 3
2
þ i ΩV, we find that k is one of the four

solutions of the dispersion relation (5) as written in the
comoving frame:

γð−g2ðkþ VωÞ2 þ ðkV þ ωÞ2ðμ2 þ ðkV þ ωÞ2γ2ÞÞ ¼ 0:

ð28Þ

By substituting (26) into (25) we find the set of equations

uð4Þ1 þ v1ðzÞuð2Þ1 þ v2ðzÞuð1Þ1 þ v3ðzÞu1 ¼ w1ðzÞuð2Þ0 þ w2ðzÞuð1Þ0 þ w3ðzÞu0;
…; ð29Þ

uð4Þn þ v1ðzÞuð2Þn þ v2ðzÞuð1Þn þ v3ðzÞun ¼ w1ðzÞuð2Þðn−1Þ þ w2ðzÞuð1Þðn−1Þ þ w3ðzÞuðn−1Þ: ð30Þ

Thus every un satisfies a linear differential equation with a source term that depends on uðn−1Þ; the associated
homogeneous equation is the unperturbed equation satisfied by u0.
Let us consider the equation for u1. We can explicitly solve it by applying the method of variation of constants. By

defining

r1ðzÞ ≔ w1ðzÞuð2Þ0 þ w2ðzÞuð1Þ0 þ w3ðzÞu0; ð31Þ

we compute the quantities
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WðzÞ ¼ det

0
BBB@

ziα1 ziα2 ziα3 ziα4

ðziα1Þ0 ðziα2Þ0 ðziα3Þ0 ðziα4Þ0
ðziα1Þ00 ðziα2Þ00 ðziα3Þ00 ðziα4Þ00
ðziα1Þ000 ðziα2Þ000 ðziα3Þ000 ðziα4Þ000

1
CCCA;

W1ðzÞ ¼ r1ðzÞ det

0
B@

ziα2 ziα3 ziα4

ðziα2Þ0 ðziα3Þ0 ðziα4Þ0
ðziα2Þ00 ðziα3Þ00 ðziα4Þ00

1
CA;

W2ðzÞ ¼ −r1ðzÞ det

0
B@

ziα1 ziα3 ziα4

ðziα1Þ0 ðziα3Þ0 ðziα4Þ0
ðziα1Þ00 ðziα3Þ00 ðziα4Þ00

1
CA;

W3ðzÞ ¼ r1ðzÞ det

0
B@

ziα1 ziα2 ziα4

ðziα1Þ0 ðziα2Þ0 ðziα4Þ0
ðziα1Þ00 ðziα2Þ00 ðziα4Þ00

1
CA;

W4ðzÞ ¼ −r1ðzÞ det

0
B@

ziα1 ziα2 ziα3

ðziα1Þ0 ðziα2Þ0 ðziα3Þ0
ðziα1Þ00 ðziα2Þ00 ðziα3Þ00

1
CA:

A particular solution to the first equation of (29) is given by

u1ðzÞ ¼
X4
j¼1

ziαj
Z

dz0
Wjðz0Þ
Wðz0Þ : ð32Þ

In principle, we can recursively iterate the procedure to
obtain particular solutions to un. Notice that the general
solution for each order n is obtained by adding a solution to
the homogeneous equation, which is the same for every n,
so we can say that the general solution uðzÞ is obtained by
adding to the iterative solution a combination of the
solutions to the unperturbed equation: the coefficients of
the combination will be set by the boundary condition of
the scattering.

V. BOUNDARY CONDITIONS
FOR THE SCATTERING

For the subcritical case, it is standard to consider a white
hole configuration, in which an initial state, representing a
Hawking mode, approaches the white hole–like perturba-
tion at early times, and four modes emerge at late times:
three backward modes P,N,B, whereN is the only negative
norm mode appearing in the scattering, and a transmitted-
mode T representing the fraction of the Hawking mode
H which is transmitted beyond the perturbation. This is
nothing but what happens in the presence of a real white
hole horizon in the transcritical case, apart for the trans-
mitted mode. For the black hole case, an analytical study is
trickier, as the black hole–like configuration, in principle, is
not related to the white hole–like one by time reversal: in the
presence of a black hole horizon, one has three entering

initial modes P, N, B which are converted in a scattered
emerging mode H. When the scattering is subcritical, in
principle, given three initial modes P, N, B, one should
consider the possibility to get three transmitted particles,
and then it is evident that one does not obtain the time
reversal configuration of a white hole subcritical scattering.
We consider a white hole–like configuration, as usual.

Thus, in the initial state, we will have only a right-moving
H-mode, which is scattered and mode converted in a way
such that we obtain the four modes in the final state. The
asymptotic form of the solution we seek is thus

fðxÞ∼
�
eikHx þC2eikPx þC3eikNx þC4eikBx; x→ −∞;

C1eikHx; x→ þ∞;

ð33Þ

when we recall that the H-mode has a positive group
velocity (right-moving), while all other modes have neg-
ative group velocity (left-moving). Since the unperturbed
solution would be just fðxÞ ¼ eikHx defined everywhere, we
expect the coefficient C1 of the transmitted part of the
Hawking mode to beOð1Þ, while all other coefficients must
beOðεÞ. We can now proceed to the solution of Eq. (29) for
u1ðzÞ considering for the source term the unperturbed
solution u0ðzÞ ¼ ziαH , where iαH ¼ i kH

2β þ 3
2
þ i ΩV. The

detailed computation of the solution is shown in
Appendix C: in what follows we will just expose the final
expressions.
The asymptotic coefficients of the solution [see Eq. (33)]

at first perturbative order are

C1 ¼
1

1þ iητ
; ð34Þ

C2 ¼
iηð−1Þi

kH−kP
2β̃

1þ iητ

πðkPVþωÞ2csch
�
ðkH − kPÞ πγ2β

	
4β2V4ðkP− kNÞðkP− kBÞ

; ð35Þ

C3 ¼
iηð−1Þi

kH−kN
2β̃

1þ iητ

πðkNVþωÞ2csch
�
ðkH − kNÞ πγ2β

	
4β2V4ðkN − kPÞðkN − kBÞ

; ð36Þ

C4 ¼
iηð−1Þi

kH−kB
2β̃

1þ iητ

πðkBVþωÞ2csch
�
ðkH − kBÞ πγ2β

	
4β2V4ðkB− kPÞðkB − kNÞ

; ð37Þ

τ ¼ ðkHV þ ωÞ2
2βV4γðkH − kPÞðkH − kNÞðkH − kBÞ

: ð38Þ
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VI. RESULTS

Current conservation implies that the following equation
holds true:

jJHj ¼ jJT j þ jJPj − jJN j þ jJBj; ð39Þ

so that, by defining

jTj ¼ jJT j
jJHj

; ð40Þ

jNj ¼ jJN j
jJHj

; ð41Þ

jBj ¼ jJBj
jJHj

; ð42Þ

we get

1 ¼ jTj þ jPj − jNj þ jBj; ð43Þ

where for the model labeled by K we have jKj ≔
jCKj2j vK∂ωDRjkK

vH∂ωDRjkH
j, vKðωÞ is the group velocity of the

K-mode, and DRðω; kÞ is the dispersion relation function
defined in Eq. (A3): we provide a derivation of (43) in
Appendix B. The ratio jNj corresponds, in the black hole
case, to the rate of spontaneous emission ofH-mode waves,
as it can be argued by using standard Bogoliubov coef-
ficients. In the present case, it represents the rate of pair-
production in the subcritical process at hand.
From the scattering coefficients (34) and the expression

(A10) for the flux factors, we can write down explicitly the
expressions

jNj ¼ η2

1þ η2τ2
π2ðkNV þ ωÞ2ðkHV þ ωÞ2csch½ððkH − kNÞγπÞ=ð2βÞ�2

16β4V8ðkN − kPÞðkN − kBÞðkH − kPÞðkH − kBÞ
; ð44Þ

jPj
jNj ¼

ðkN − kBÞðkP − kHÞðkPV þ ωÞ2ðcsch½πγðkH − kPÞ=ð2βÞ�Þ2
ðkP − kBÞðkN − kHÞðkNV þ ωÞ2ðcsch½πγðkH − kNÞ=ð2βÞ�Þ2

; ð45Þ

jTj ¼ 1

1þ η2τ2
; ð46Þ

jBj ¼ η2

1þ η2τ2
π2ðkBV þ ωÞ2ðkHV þ ωÞ2ðcsch½πγðkH − kBÞ=ð2βÞ�Þ2

16β4V8ðkB − kNÞðkB − kPÞðkH − kNÞðkH − kPÞ
: ð47Þ

As a consequence, we can provide

jNj ¼ 1 − jTj − jBj
jPj
jNj − 1

: ð48Þ

We stress that these expressions are exact except for the
perturbative approximation in η: no other approximation
has been made throughout the computation, so they are
valid for all frequencies, as long as we know kjðωÞ.
For an explicit evaluation we have expanded the modes

kjðωÞ from Eq. (5) near ω ¼ 0, obtaining

kH ¼ μ − gV
g − μV

ωþOðω3Þ; ð49Þ

kB ¼ −
μþ gV
gþ μV

ωþOðω3Þ; ð50Þ

kP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
γV2

−
�
1

V
þ g2

γ2Vðg2 − μ2V2Þ
�
ω

−
g2ð2g2 þ μ2V2Þ
2γðg2 − μ2V2Þ5=2 ω

2 þOðω3Þ; ð51Þ

kN ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
γV2

−
�
1

V
þ g2

γ2Vðg2 − μ2V2Þ
�
ω

þ g2ð2g2 þ μ2V2Þ
2γðg2 − μ2V2Þ5=2 ω

2 þOðω3Þ; ð52Þ

and we put g ¼ 1, μ ¼ 1.2, and V ¼ 0.5. As to kT , due to
the fact that the perturbation vanishes very rapidly in the
comoving frame both for x → ∞ and for x → −∞, one
easily finds kT ¼ kH. These values are taken just to obtain
qualitatively the same dispersion relation as in an exper-
imental situation of laser pulses in silica, but they are not
meant to be quantitatively accurate. In the following
analysis of the results we will treat both η and β as
independent parameters: although they are uniquely
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determined by the soliton (11), we still think that it is
interesting to study the dependence of the radiation on these
parameters. We might equivalently say that we are studying
a generic perturbation of the form (14) with generic
parameters, even though this perturbation might not be a
solution of the nonlinear equations of motion (3). The
scattering coefficients jTj, jBj, jPj, and jNj are plotted in
Figs. 2 and 3, for different values of η. Notice that jBj results

are smaller than the others, as was expected. The trans-
mission coefficient jTj ∼ 1 for low frequencies, but it
decreases more rapidly as η increases: this is a sign that
for high perturbation we approximate the formation of an
event horizon, and this interpretation is supported by the fact
that the frequencies near ωMAX are less transmitted.
The coefficients jPj and jNj are nearly equal at low

frequencies and are ∼ω. This behavior is in agreement with

FIG. 3. The coefficients P and N from (44) and (45), for different values of the amplitude of the perturbation η. In (a)–(c) the behavior
at small frequencies is P;N ∼ ω, which agrees with the findings of [6]; in (d) we show the onset of critical behavior, as P;N ∼ ω−1.

FIG. 2. The coefficients T and B from (46) and (47), for different values of the amplitude of the perturbation η.
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what was found by Coutant and Weinfurtner [6] for a
subcritical flow in shallow water.
The ratio jPj

jNj is very close to an exponential function,
jPj
jNj ∼ e

ω
T . This is shown in Fig. 5, where we see that

ω= logðjPjjNjÞ is almost constant. The temperature Tpert (the

subscript is for “perturbative”) can be estimated analyti-
cally from the arguments of the csch in (45): we find

βpert ¼
1

Tpert
¼ 2πγ

2β
lim
ω→0

2kH − kP − kN
ω

¼ 2πgð2gþ μVÞ
βγVðg2 − μ2V2Þ : ð53Þ

We note that Tpert ∝ β, which is proportional to the
derivative of the background function (11): this is what
was expected based on previous literature about analog
Hawking radiation in the critical case. As it is clear from
Fig. 5, while the exponential approximation is still valid,
our estimation of the temperature is less good as β
increases.

Finally, we define a temperature function Tω by the
relation

jNj≕ 1

e
ω
Tω − 1

: ð54Þ

The function Tω is plotted in Fig. 4 for different values of η
and β. We note Tω is not constant, showing a lack of
thermality in the emission spectrum. However, for higher
values of η, a plateau is created for frequencies close to
ωMAX, with Tω ≈ TH. This fact is again interpreted as a sign
of the presence of a group horizon for higher frequencies:
indeed, a similar behavior was found by a numerical study
of the transcritical regime in shallow water [3].
The near criticality of the system for high η is underlined

also by the behavior of jPj and jNj, which start growing as
∼ 1

ω near ω ¼ 0 [see Fig. 3(d)]. This is precisely the
behavior that one expects in the critical case. We specify
that the results for high values of η should be taken
carefully since η is precisely the expansion parameter of
our perturbative solution. However, we find it interesting
that already at the leading order, the solution shows a near
critical behavior for high η; we expect that the same
qualitative behavior is present also in the higher order
solutions, possibly showing up already at lower values of η.

We stress that the ratio ω= log
�
jPj
jNj
	
displayed in Fig. 5

can also be considered as a realistic way for testing
thermality in experiments, both in the subcritical case
(where thermality is just effective) and in the transcritical
one. Compare also [1] for analogous measurements in the
case of water. In an optical system such as a dielectric, one
can measure the amplitude of the peaks corresponding to
the P, N modes in the photon spectrum, as e.g. described
in [25] (see in particular the associated supplementary
information), and cf. also [26], Chap. 10. Solitonlike laser
pulses are e.g. considered in [27], both for diamond and for
fused silica, and suitable tuning of the input conditions,
such as power, wavelength, and focusing, makes it possible
to control, to some extent, the steepening effects and the
peak velocity [28]. Steepening of the pulse is, of course,

FIG. 4. The temperature Tω as defined in (54). (a) Plot at fixed β ¼ 1, for different η; we see the formation of a plateau at Tω ≈ Tpert for
high η. (b) Plot at fixed η ¼ 1, for different β; the estimation of the value of the plateau Tpert is less accurate for increasing β.

FIG. 5. The ratio ω=log
�
jPj
jNj
	

normalized by the estimated

temperature Tpert [see Eq. (53)] as a function of β. The ratio is

almost constant, which means that jPjjNj is indeed exponential with
the frequency; our estimation of the “temperature” Tpert proves
to be good at low β, while less accurate for increasing β.
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fundamental in order to enhance the pair-creation process,
as the associated temperature is proportional to the spatial
derivative of the refractive index in the transcritical case,
and this is, to some extent, true also in the subcritical one
discussed above, as Tpert ∝ β, where β is still related to the
derivative n0ðxÞ in the comoving frame, as remarked above.
To provide a realistic estimate of the perturbation in the
refractive index one may obtain in experiments, let us also
recall that the effective refractive index associated with the
Kerr effect is n ∼ n0 þ n2I, where the nonlinear index n2 in
fused silica is n2 ∼ 3.2 × 1016 cm2=W, so that for pulses
whose intensity is I ∼ 1013 W=cm2, in fused silica one may
obtain δn ≔ n2I ∼ 3 × 10−3. Conditions for both the sub-
critical and the transcritical cases can be matched (cf. also
[25]), and then both the situations can be checked exper-
imentally: this can be done more realistically for the model
to be discussed in the next section, which is more
straightforwardly related to the standard Hopfield model
for dielectric media.

VII. THE ORIGINAL ϕψ-MODEL

In the original ϕψ-model, including a ψ4 term, one has

Lφψ ¼ 1

2
ð∂μϕÞð∂μϕÞ þ

1

2χω2
0

½ðvα∂αψÞ2 − ω2
0ψ

2�

þ 1

c
ðvα∂αψÞϕ −

λ

4!
ψ4; ð55Þ

where ϕ;ψ play the role of the electromagnetic field and
polarization field, respectively, χ plays the role of the
dielectric susceptibility, vμ is the usual four-velocity vector
of the dielectric, and ω0 is the proper frequency of the
medium [22]. We get the system

□ϕ −
1

c
ðvμ∂μψÞ ¼ 0; ð56Þ

�
1

χω2
0

ðvμ∂μÞ2 þ
1

χ

�
ψ þ 1

c
ðvμ∂μϕÞ þ

λ

3!
ψ3 ¼ 0: ð57Þ

As in [29], we allow the spatial dependence to appear in χ
and in ω0 in such a way that χω2

0 ¼ const. Indeed, by
linearizing the model around solitonlike solutions, directly
written in the comoving frame, one obtains

1

χ
↦

1

χ
þ λ

2
ψ2
0ðxÞ; ð58Þ

ω2
0 ↦ ω2

0

�
1þ χ

λ

2
ψ2
0ðxÞ

�
; ð59Þ

in such a way that χω2
0 remains invariant: χω2

0 ↦ χω2
0.

In this case, we identify the parameter associated with
dispersion as follows:

ϵ2 ≔
1

χω2
0

:

This parameter has been considered as the small parameter
associated with the model in the limit of low dispersion. In
the present case, we adopt a different view where dispersion
can also be strong, and the expansion parameter is instead
associated with the amplitude of the background solution
around which the EOMs are linearized. We limit ourselves
to notice that a linearization of the EOMs around a
background solitonlike solution ψ0ðxÞ amounts simply in
replacing λ

3!
ψ3 ↦ λ

2
ψ2
0ψ in (57).

A. A separated equation for ψ

By applying the operator □ on the left of equation (57),
as shown in [17], we obtain the following fourth-order
ordinary differential equation:

−ϵ2∂4xf−2iϵ2
ω

v
∂
3
xfþ

1

χγ2v2

�
−
�
1−χγ2

v2

c2

�
þϵ2χω2

�
∂
2
xf

þ2

�
i
ω

v
1

c2
ð1−ϵ2ω2Þ− 1

γ2v2

�
∂x
1

χ

��
∂xf

þ
�
ϵ2

ω4

v2c2
−

1

γ2v2

�
∂
2
x
1

χ

�
−

ω2

χγ2v2c2
−

ω2

c2v2

�
f¼0: ð60Þ

We also define fðxÞ ¼ hðxÞζðxÞ, with

hðxÞ ¼ A exp

�
−i

ω

2v
x

�
; ð61Þ

where A is a constant. hðxÞ is chosen such that the third-
order term vanishes, and the procedure is analogous to the
Liouville transformation which eliminates the first-order
term in a second-order linear ordinary differential equation.
This leads to the following quartic equation, which is just of
the type “Orr–Sommerfeld”:

−ϵ2∂4xζþ
�
−

1

χγ2v2

�
1−χγ2

v2

c2

�
þϵ2

1

γ2v2

�
1−

3

2
γ2
�
ω2

�
∂
2
xζ

þ
�
i
ω

v
1

χγ2v2

�
1þχγ2

v2

c2

�
−2

1

γ2v2

�
∂x
1

χ

�
−iϵ2

ω3

vc2

�
∂xζ

þ
�

1

γ2v2

�
i
ω

v

�
∂x
1

χ

�
−
�
∂
2
x
1

χ

��

þ 1

γ2v2

�
1

4χ

ω2

v2

�
1−χγ2

v2

c2

�
−
ω2

χc2

�

þϵ2
�
ω4

v4

�
−
1

16
þ1v2

4c2

���
ζ¼0: ð62Þ

The effect of the linearization around a background
solitonlike solution ψ0ðxÞ consists simply in the replacement
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1

χ
↦

1

χ0
þ λ

2
ψ2
0ðxÞ; ð63Þ

where χ0 is constant. We choose

ψ0ðxÞ ≔ 2

ffiffiffiffiffi
jηj
jλj

s
1

coshðβ̃xÞ : ð64Þ

As in the model discussed in the previous sections, we turn
to the change of variable

z ≔ − expð2β̃xÞ: ð65Þ
As a consequence, with some abuse of language, we have
ζ ¼ fðzÞ. Then we obtain

1

χ
↦

1

χ0
− 2η

z
ð1 − zÞ2 : ð66Þ

Furthermore, to cancel a new third-order term that appears
again after the above-mentioned independent variable
change, we set ζðzÞ ¼ z−3=2hðzÞ. Then we obtain the
following equation:

hð4Þ þ ðu2 þ ηw2Þhð2Þ þ ðu1 þ ηw1Þhð1Þ
þ ðu0 þ ηw0Þh ¼ 0; ð67Þ

where

u2 ¼
1

γ2v2χ0

�
1 − χ0γ

2 v2

c2

	
þ ϵ2

�
10β̃2 −

�
1 − 3

2
γ2
	
ω2

	
4β̃2ϵ2z2

;

u1 ¼
−4β̃vc2

�
1 − χ0γ

2 v2

c2

	
− ic2ω

�
1þ χ0γ

2 v2

c2

	
þ ϵ2χ0vð−40β̃3v2c2γ2 þ 2β̃c2ð2 − 3γ2Þω2 þ iγ2vω3Þ

8β̃3c2χ0ϵ2γ2v3z3
;

u0 ¼
144β̃2v2c2

�
1 − χ0γ

2 v2

c2

	
þ 48iβ̃vc2

�
1þ χ0γ

2 v2

c2

	
þ 4ω2ðð4þ χ0γ

2Þv2 − c2Þ þ ϵ2δ

256β̃4c2χ0ϵ2γ2v4z4
;

w2 ¼ −
1

2β̃2ϵ2γ2v2zð1 − zÞ2 ;

w1 ¼
iωðz − 1Þ þ 8β̃vz

4β̃3ϵ2γ2v3z2ð−1þ zÞ3 ;

w0 ¼
ðc2 − 4v2Þω2ðz − 1Þ2 þ 4iβ̃c2vωð1 − zÞð5z − 1Þ − 4β̃2c2v2ð1 − 2zþ 25z2Þ

32β̃4c2ϵ2γ2v4ðz − 1Þ4z3 ;

with

δ ≔ χ0ð1296β̃4v4c2γ2 þ 72β̃2c2v2ω2ð−2þ 3γ2Þ
− 48iβ̃γ2v3ω3 þ γ2ðc2 − 4v2Þω4Þ:

B. Dispersion relation and its roots

As in the previous case, we can guess that solutions of
the zeroth order equation are of the form ziα and that α
satisfies the dispersion relation associated with the model.
In the comoving frame, the eikonal equation for the model
provides us with the following equation:

�
k2 −

ω2

c2

�
1

χω2
0

ðω2
0 − γ2ðωþ vkÞ2Þ − 1

c2
γ2ðωþ vkÞ2 ¼ 0:

ð68Þ

It is a quartic equation whose roots kiðωÞ, i ¼ 1; 2; 3; 4
cannot be managed in simple formulas unless some kind of

approximation is provided. Our ansatz is the following. We
choose δ → 0 as an expansion parameter, and we put

k≕
1

δ
u −

ω

v
; ð69Þ

ω0≕
1

δ
ω̄0: ð70Þ

We mean to indicate an expansion where k, unless it is
zero, dominates over ω=v; i.e. ω is small relative to a
nonzero k, and that also ω0 is big compared to ω (this kind
of approach leads also to the Cauchy approximation; cf.
e.g. [26], Chap. 9). As a consequence, we find the
following rewriting of (68):

�
u2−2δ

ω

v
uþδ2

ω2

γ2v2

��
1−

γ2v2

ω̄2
0

u2
�
−χγ2v2u2¼0: ð71Þ

We look for a series solution in u:
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u ¼ u0 þ δu1 þ δ2u2 þ δ3u3 þ � � � :

As a consequence, we expect

k ¼ 1

δ
u0 þ

�
u1 −

ω

v

�
þ δu2 þ δ2u3 þ � � � :

We find at the zeroth order two vanishing degenerate
solutions u0 ¼ 0, to be associated with the modes H, B,
and also

u0P ≔
ω̄0

γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χγ2

v2

c2

s
; ð72Þ

u0N ≔ −u0P: ð73Þ

Corrections for the two nondegenerate solutions in the first
order are

u1P ≔ −
ω

v
χγ2

v2

c2
1

1 − χγ2 v2

c2
; ð74Þ

u1N ≔ u1P: ð75Þ

Corrections at the first order for the two degenerate zero
roots u0 ¼ 0 arise from the second-order contribution to the
dispersion relation (as the first-order contribution vanishes
identically for u0 ¼ 0): one finds

u1H ≔
ω

v

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p v
c

�
1

1 − χγ2 v2

c2
; ð76Þ

u1B ≔
ω

v

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ χ

p v
c

�
1

1 − χγ2 v2

c2
: ð77Þ

We are not interested in further corrections. It is nice to
point out that the expressions we have found are compatible
with the Wentzel-Kramers-Brillouin (WKB) behavior of
the solutions found in [17].

C. Scattering coefficients

We proceed in the same way as exposed in Secs. IV and
V, performing a perturbative expansion of Eq. (67) in the
parameter η. We just give the results of the scattering
coefficients, analogous to (34):

C1 ¼
1

1þ iητ
; ð78Þ

C2 ¼
iηð−1Þi

kH−kP
2β̃

1þ iητ

πðk2P − ω2Þcsch
�
πγðkH−kPÞ

2β̃

	
2β̃2V2ϵ2ðkP − kNÞðkP − kBÞ

; ð79Þ

C3 ¼
iηð−1Þi

kH−kN
2β̃

1þ iητ

πðk2N − ω2Þcsch
�
πγðkH−kNÞ

2β̃

	
2β̃2V2ϵ2ðkN − kPÞðkN − kBÞ

; ð80Þ

C4 ¼
iηð−1Þi

kH−kB
2β̃

1þ iητ

πðk2B − ω2Þcsch
�
πγðkH−kBÞ

2β̃

	
2β̃2V2ϵ2ðkB − kPÞðkB − kNÞ

; ð81Þ

τ ¼ ðk2H − ω2Þ
β̃V2γϵ2ðkH − kPÞðkH − kNÞðkH − kBÞ

: ð82Þ

Recalling that, from (68),

ðk2J−ω2Þ¼ χω2
0γ

2ðωþVkJÞ2
ω2
0−γ2ðωþVkJÞ2

≈
ω2
lab≪ω2

0
χγ2ðωþVkJÞ2; ð83Þ

we can see that the expressions of the coefficients (78)
basically reduce to (34) at low frequencies. This fact was
expected since the Cauchy dispersion relation in an
approximation of the Sellmeier for ω2

lab ≪ ω2
0, but it can

be viewed also as a check of consistency and robustness of
our results.

VIII. COMPARISON WITH THE
ORR-SOMMERFELD APPROACH

Equations such as (21) are called of generalized Orr-
Sommerfeld type. Such equations emerge often in analog
gravity and have been studied extensively in [17]. Here the
authors developed a general technique for computing the
Hawking spectrum in the transcritical case, using a
perturbative approach in the low-dispersion parameter. In
this section we compare our results to those derived with
the Orr-Sommerfeld approach: in particular, we establish a
relation between the effective temperature we have defined
in Eq. (53) for the subcritical regime, with the Hawking
temperature the authors find in [17] for the transcritical
case. From Eqs. (5) and (17) we can identify the low-
dispersion limit as

ϵ2 ≔
1

g2
→ 0;

μ2

g2
≕θ¼ const;

η

g2
≕ρ¼ const: ð84Þ

Notice that this means that μ2 ∝ ϵ−2 and η ∝ ϵ−2. By
eliminating the third-order term, Eq. (21) can be written as

ϵ2fð4ÞðxÞ þ p3ðxÞf00ðxÞ þ p2ðxÞf0ðxÞ þ p1ðxÞfðxÞ ¼ 0;

ð85Þ

where

p3ðxÞ ¼
1 − θV2 þ ρV2sech2ðβ̃xÞ

V4γ2
; ð86Þ
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p2ðxÞ¼
2iððV2−1Þω−4β̃ρV3 tanhðβ̃xÞsech2ðβ̃xÞÞ

V5γ2
; ð87Þ

p1ðxÞ¼
1

V6γ2
ð−2β̃2ρV4sech4ðβ̃xÞ

þ4β̃2ρV4tanh2ðβ̃xÞsech2ðβ̃xÞ−ðV2−1Þ2ω2Þ: ð88Þ

Notice that the functions pjðxÞ do not depend on ϵ, as in the
Corley model. This form is directly comparable with the
form in [17]. The position of the horizon is defined by

p3ðxÞ ¼ 0: ð89Þ

By changing the variable to z ¼ −e2β̃x as before, we find

zH� ¼ g2 þ 2ηV2 − μ2V2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ηV2 þ η2V4 − ημ2V4

p
g2 − μ2V2

¼ 1þ 2ρV2 − θV2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρV2 þ ρ2V4 − ρθV4

p
1 − θV2

: ð90Þ

The corresponding points xH� are real if

�
η < −

ðg2 − μ2V2Þ
V2

≕ − ηmin



∪ fη > 0g: ð91Þ

In this comparison with the critical regime, we just consider
the case of positive Kerr nonlinearity: δn > 0 ⇒ η < 0.
Thus we neglect positive values of η, and we identify η <
−ηmin as the condition of transcriticality of the perturbation.
Notice that ηmin > 0. In Fig. 6 we plot the dispersion
relation in the critical case.
In [17] thermal Hawking radiation was predicted with a

temperature

TH ¼ κ

2π
¼ γ2V2n0ðxHÞ

2π
; ð92Þ

where n0ðxHÞ is the derivative of the refraction index at the
horizon. We compute n0 from the Cauchy dispersion
formula including the background correction in the comov-
ing frame:

n2ðxÞ ¼ n20 −
λ

2g2
ψ2
BðxÞ; ð93Þ

where

n20 ≔
μ2

g2
: ð94Þ

Here we do not consider the dependence on ωlab of the
refractive index [Eq. (18)], because the Orr-Sommerfeld
approach is true in the low-dispersion limit (ωlab ∼ 0):
indeed, the event horizon is defined by

p3ðxHÞ ¼ 0 ⇔ n2ðxHÞ ¼
1

V2
: ð95Þ

With these considerations, we find

n0ðxHÞ¼
V
2
ðn2ðxHÞÞ0 ¼V

�
−

λ

2g2
ψ2
BðxHÞ

�
ψ 0
BðxHÞ

ψBðxHÞ
; ð96Þ

and using (93), (95), and (14), we and up with

TH ¼ βγV
2π

g2 − μ2V2

g2
1þ zH
1 − zH

¼ βγV
2π

g2 − μ2V2

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj − ηmin

jηj

s
: ð97Þ

This result is surprisingly similar to (53), although they
were computed in very different ways, one within the
critical regime and the other in the subcritical. We notice
that if the expression (53) for Tpert is computed for near
critical velocity

n20 ¼
μ2

g2
≲ 1

V2
;

and compare it to (97) in the very critical case (jηj ≫ ηmin),
we find

Tpert ≈
TH

3
: ð98Þ

We are not able to give a quantitative interpretation of
the missing factor of 3 with respect to the case of real
turning points. Note that we obtain Tpert ∝ TH, and the

FIG. 6. The dispersion relation (18) represented at the peak of
the background field for η < −ηmin. In this configuration, for any
ω, the modes H and P become imaginary as they experience an
event horizon: this is referred to as the transcritical regime.

PERTURBATIVE APPROACH TO ANALOG HAWKING RADIATION … PHYS. REV. D 108, 025001 (2023)

025001-13



proportionality coefficient becomes 1=3 just for the suitable
limits of near criticality for Tpert and very large η for TH. It is
in any case remarkable that our result, qualitatively, is just
consistent with the previous literature, as, in the subcritical
case, a reduced pair-production, due to the less efficient
mode-conversion occurring in the absence of a true horizon
(real turning point), must be expected. Moreover, we may
suggest that it could be an effect of considering a non-
monotonic background such as (11), whereas the results of
theOrr-Sommerfeld approach in [17]were computed assum-
ing a monotonic background. In any case, the similarity of
the critical and subcritical temperatures is interesting, and it
suggests that they are related by some physical mechanism:
this will be a matter for future studies.
The same estimations can be done using the ϕψ model,

introduced in Sec. VII. We set c ¼ 1. The temperature
estimated from the coefficients (78) is

βpert ¼
1

Tpert
¼ 2πγ

2β
lim
ω→0

2kH − kP − kN
ω

¼ 2πð1þ γ2V2χ0 þ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0 þ 1

p Þ
βγVð1 − V2ðχ0 þ 1ÞÞ : ð99Þ

For near-critical velocity

n20 ¼ 1þ χ0 ≲ 1

V2
; ð100Þ

we see that the term between brackets in the numerator
of (99) is �

1þ γ2V2χ0 þ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0 þ 1

p �
≈ 3; ð101Þ

which gives

Tpert ≈
βγVð1 − V2ðχ0 þ 1ÞÞ

6π
: ð102Þ

The analysis of the critical case with the Orr-Sommerfeld
approach gives that criticality is found for

η < −ηmin; ηmin ≔
1

χ0
ð1 − χ0γ

2V2Þ > 0;

and the Hawking temperature is

TH ¼ β

2πχ0Vγ
ð1 − V2ð1þ χ0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj − ηmin

jηj

s

≈
βγV
2π

ð1 − V2ð1þ χ0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj − ηmin

jηj

s
; ð103Þ

where in the last line we used (100) as before. We see
that, once again, the relation between the two temperatures
(for jηj ≫ ηmin) is

Tpert ≈
TH

3
; ð104Þ

confirming what we found using the Cauchy model.

IX. CONCLUSIONS

We proposed a new approach to Hawking-like radiation
in the subcritical case for a particular, but arguably realistic,
class of solitonlike backgrounds in a nonlinear dielectric.
The method allows a straightforward analytical solution of
the scattering problem at the leading perturbation order
of the amplitude of the background field, represented by the
parameter η. With respect to other existing techniques, our
approach does not rely on the approximation of weak
dispersion, and indeed our predictions are not restricted
to the ω ∼ 0 region. We tested our approach on a simplified
model of scalar electrodynamics and checked its robustness
on the scalar field reduction of the Hopfield model, which
strongly corroborates the results obtained in the simplified
model. In both cases, we can define an effective temperature
associated with the spectrum of the emitted radiation,
which, in the limit where the subcritical case approaches
the transcritical one, is one-third of the Hawking temper-
ature estimated by other established methods for the tran-
scritical regime. Even though a quantitative interpretation of
this fact is not yet available to us, we can stress that a
reduced effective temperature is still to be expected, con-
sistently with what is known in literature for the subcritical
case, where a reduced pair-production occurs, due to the less
efficient mode-conversion occurring in the absence of a true
horizon. Future work will be focused on the transition to the
critical regime, and it will possibly give us a clearer view.
The perturbative expansion we propose, although being

naturally suited for the study of the subcritical regime, is
not theoretically limited to this case: the problem of the
transition to the transcritical regime is configured, in this
context, as possibly a matter of being able to compute
enough perturbative orders. This can be corroborated by the
fact that a new mathematical perspective on the phenome-
non of particle creation was provided, as we related particle
creation to the solution of a fourth-order Fuchsian equation.
Fuchsian equations have many well-studied properties, and
much of that theoretical machinery may be applied to the
problem of analog Hawking radiation, potentially extend-
ing our analytical comprehension of the phenomenon. This
will be a matter for future studies.

APPENDIX A: THE CONSERVED CURRENT

We compute the current vector, evaluated on normal
modes eikμx

μ
in a generic frame moving with velocity V

with respect to the laboratory. From Eq. (15) we find that if

ψðxÞ ¼ eikμx
μ
, then ϕðxÞ ¼ −i gnμkμ

ðvμkμÞ2 e
ikμxμ : substituting

these fields into (7) we find
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Jμ ∝ vμωlab

�
1þ μ2 þ ω2

lab

ω2
lab

�
þ nμ

g2klab
ω2
lab

; ðA1Þ

where vμ ¼ ðγ;−VγÞ, nμ ¼ ð−γV; γÞ, ωlab ¼ vμkμ ¼
γðωþ VkÞ, and klab ¼ −nμkμ ¼ γðkþ VωÞ. We can verify
that Jμ is timelike. Indeed,

JμJμ ¼ ω2
lab

�
1þ 2ðμ2 þ ω2

labÞ
ω2
lab

þ ðμ2 þ ω2
labÞ2

ω4
lab

−
g2ðμ2 þ ω2

labÞ
ω4
lab

�
; ðA2Þ

which is positive provided that μ2 > g2, which is the
condition we required at the beginning [see below
Eq. (5)]. Thus Jμ is timelike, so the sign of J0 is constant
in every inertial reference frame: since in the lab frame
signðJ0Þ ¼ signðωlabÞ, this must be true in every frame.
We now define the dispersion relation function

DRðω; kÞ ≔ μ2 þ ω2
lab −

g2k2lab
ω2
lab

: ðA3Þ

The free normal modes of the theory satisfy DRðω; kÞ ¼ 0.
It is easy to show that the following relations hold:

J0 ∝ ∂ωDRjDR¼0; ðA4Þ

Jx ∝ −∂kDRjDR¼0: ðA5Þ

Thus, we can identify the measure of the Hilbert space of
free normal modes as

dμj ≔
dω

2π∂kDRjk¼kjðωÞ
; ðA6Þ

where we are writing the field theory in the frequency
representation and kj are the different real solutions of
DR ¼ 0. It is also straightforward to show

Jx ¼ vgðωÞJ0; ðA7Þ

where vgðωÞ ¼ dω
dk jDR¼0

is the group velocity of the normal
modes. This relation could be derived also from the implicit
function theorem, which states ∂kDR

∂ωDR
¼ −dω

dk jDR¼0
.

We can write the flux Jx also in a more convenient way
for future computations. Since we called kHðωÞ, kPðωÞ,

kNðωÞ, and kBðωÞ the four solutions of the dispersion
relation, we can write Eq. (A3) as

DRðω; kÞ ¼ γ2V4

ω2
lab

Y
j¼H;P;N;B

ðk − kjðωÞÞ: ðA8Þ

It is now easy to verify that

∂ωDRjk¼kiðωÞ ¼ −
γ2V4

ω2
labjki

∂ki
∂ω

Y
j≠i

ðkiðωÞ − kjðωÞÞ; ðA9Þ

and then

Jxðe−iωtþikiðωÞxÞ ¼ viðωÞ∂ωDRjki
¼ −

γ2V4

ω2
labjki

Y
j≠i

ðkiðωÞ − kjðωÞÞ: ðA10Þ

APPENDIX B: THE CONSERVATION LAW

To understand the conservation law (43), we must
consider that the initial and final states of the scattering
should be wave packets rather than plane waves. A
normalized wave packet centered around the frequency
ω and momentum kjðωÞ [here kjðωÞ is any of the solutions
of the dispersion relation] has the formZ

dω
2π∂kDRjkjðωÞ

fϵðωÞeiωt−ikjðωÞx; ðB1Þ

where dω
2π∂kDRjkjðωÞ

is the measure of the Hilbert space defined

by plane waves (in the frequency representation) and fϵðωÞ
is a distribution centered around ω with a small bandwidth
ϵ, which satisfiesZ

dω
2π∂kDRjkjðωÞ

jfϵðωÞj2 ¼ 1:

We can see Eq. (B1) represents a wave packet by evaluating
it at x ¼ vt, for some velocity v: for t ¼ �∞ we can say
that the dominant contribution comes from the stationary
point, which is

1 − V
∂kj
∂ω

¼ 0;

which means that the function (B1) is traveling at a constant
velocity v ¼ vjðωÞ, where vjðωÞ is the group velocity of
the mode kj.
The asymptotic plane-wave solution (33) corresponds to

the wave packets
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ψðx; tÞ ∼
Z

dω
2π∂kDRjkHðωÞ

fϵðωÞeiωt
�
e−ikHx þ C2e−ikPx þ C3e−ikNx þ C4e−ikBx; x → −∞;

C1e−ikHx; x → þ∞:
ðB2Þ

At t ¼ −∞ the only contribution comes from the ingoing H-mode, so the measure of integration is chosen such that

ðψ jψÞt¼−∞ ¼ 1≡
Z

dxJ0ðψðx; t ¼ −∞ÞÞ:

The current conservation implies

d
dt

Z
dxJ0 ¼

Z
dx∂0J0 ¼

Z
dx∂xJx ¼ 0: ðB3Þ

At t ¼ þ∞ the solution splits into four outgoing localized wave packets with central momenta: each mode propagates with
a different group velocity, so we can assume that the wave packets are not overlapping at t ¼ þ∞. With these
considerations, the computation of the norm givesZ

dω
2π∂kDRjkHðωÞ

dω0

2π∂kDRjkHðω0Þ
fϵðωÞf�ϵðω0Þ

X
i¼H;P;N;B

jCij22π∂ωDRjkiδðkHðωÞ − kHðω0ÞÞ

¼
Z

dω
2π∂kDRkH

jfϵðωÞj2
1

2π∂kDRkH

X
i¼H;P;N;B

jCij22πvi∂ωDRjki ≡ 1: ðB4Þ

The last equality comes from current conservation.
By recalling ∂kDRjkjðωÞ ¼ −vjðωÞ∂ωDRjkjðωÞ (from the
implicit function theorem) we see that the sign of each
term is determined by the product vjðωÞωlab. Since the
equality must hold for every distribution fϵ, we finally
obtain the following relation between the absolute values:

1 ¼ jC1j2 þ jC2j2
���� vP∂ωDRjkPvH∂ωDRjkH

���� − jC3j2
���� vN∂ωDRjkNvH∂ωDRjkH

����
þ jC4j2

���� vB∂ωDRjkBvH∂ωDRjkH

����; ðB5Þ

which is precisely (43).

APPENDIX C: SOLUTION OF FIRST-ORDER
EQUATION

We start computing the first-order solution u1ðzÞ
[Eq. (32)] around z ¼ 0 (x ¼ −∞). We proceed as exposed
in Sec. IV to derive the expression of the first-order
solution. In the scattering of the H-mode, we expect the
asymptotic coefficient of the H-mode to be Oð1Þ, while all
the others should be OðηÞ (see Sec. V): for this reason, the
zero-order solution we put into the source term (31)
corresponds to a single H-mode, which means

u0ðzÞ ¼ ziαH ; iαH ¼ i
kH
2β

þ 3

2
þ i

Ω
V
: ðC1Þ

From this choice, we get

r1ðzÞ ¼
z−3þiαHð4α2Hðz − 1Þ2 þ 4iαHð5z2 − 6zþ 1Þ − 25z2 þ 2z − 1Þ

4ðz − 1Þ4V2y2
; ðC2Þ

W1ðzÞ
WðzÞ ¼ ið4α2Hðz − 1Þ2 þ 4iαHð5z2 − 6zþ 1Þ − 25z2 þ 2z − 1Þ

4ðz − 1Þ4V2γ2ðαH − αPÞðαH − αNÞðαH − αBÞ
; ðC3Þ

W2ðzÞ
WðzÞ ¼ −

ið4α2Hðz − 1Þ2 þ 4iαHð5z2 − 6zþ 1Þ − 25z2 þ 2z − 1ÞziðαH−αPÞ
4ðz − 1Þ4V2γ2ðαP − αHÞðαP − αNÞðαP − αBÞ

; ðC4Þ

W3ðzÞ
WðzÞ ¼ −

ið4α2Hðz − 1Þ2 þ 4iαHð5z2 − 6zþ 1Þ − 25z2 þ 2z − 1ÞziðαH−αNÞ
4ðz − 1Þ4V2γ2ðαN − αHÞðαN − αPÞðαN − αBÞ

; ðC5Þ

W4ðzÞ
WðzÞ ¼ −

ið4α2Hðz − 1Þ2 þ 4iαHð5z2 − 6zþ 1Þ − 25z2 þ 2z − 1ÞziðαH−αBÞ
4ðz − 1Þ4V2γ2ðαB − αHÞðαB − αPÞðαB − αNÞ

: ðC6Þ

TREVISAN, BELGIORNO, and CACCIATORI PHYS. REV. D 108, 025001 (2023)

025001-16



Computing the integrals in (32), we get

ũ1ðzÞ ¼
iziαH

4V2γ2

�
−4α2Hðz− 1Þ2 − 4iαHð5z2 − 8zþ 3Þþ 25z2 − 26zþ 9

ðz− 1Þ3ðαH − αPÞðαH − αNÞðαH − αBÞ

þ zðið2αH þ 5iÞ22F1ð2; iðαH − αPÞþ 1; iðαH − αPÞþ 2;zÞþ 16ðαH þ 3iÞ2F1ð3; iðαH − αPÞþ 1; iðαH − αPÞþ 2;zÞÞ
ðαH − αPÞðαH − αP − iÞðαP − αNÞðαP − αBÞ

−
zð24i2F1ð4; iðαH − αPÞþ 1; iðαH − αPÞþ 2;zÞÞ
ðαH − αPÞðαH − αP − iÞðαP − αNÞðαP − αBÞ

þ zðið2αH þ 5iÞ22F1ð2; iðαH − αNÞþ 1; iðαH − αNÞþ 2;zÞþ 16ðαH þ 3iÞ2F1ð3; iðαH − αNÞþ 1; iðαH − αNÞþ 2;zÞÞ
ðαH − αNÞðαH − αN − iÞðαN − αPÞðαN − αBÞ

−
zð24i2F1ð4; iðαH − αNÞþ 1; iðαH − αNÞþ 2;zÞÞ
ðαH − αNÞðαH − αN − iÞðαN − αPÞðαN − αBÞ

þ zðið2αH þ 5iÞ22F1ð2; iðαH − αBÞþ 1; iðαH − αBÞþ 2;zÞþ 16ðαH þ 3iÞ2F1ð3; iðαH − αBÞþ 1; iðαH − αBÞþ 2;zÞÞ
ðαH − αBÞðαH − αB − iÞðαB − αPÞðαB − αNÞ

−
zð24i2F1ð4; iðαH − αBÞþ 1; iðαH − αBÞþ 2;zÞÞ
ðαH − αBÞðαH − αB − iÞðαB − αPÞðαB − αNÞ

�
: ðC7Þ

This is a particular solution of (29): the general
expression is obtained by adding a linear combination of
free-field solutions (with coefficients of order OðηÞ). The
coefficients of such combinations will be determined later
based on the boundary conditions. From (C7) we can
compute the asymptotic expression of ũ1 around z ¼ 0
(x ¼ −∞):

ũ1ðz≈ 0Þ ¼ cHziαHð1þOðzÞÞ;

cH ¼ −
ið−4α2H − 12iαH þ 9Þ

4V2γ2ðαH − αPÞðαH − αNÞðαH − αBÞ
: ðC8Þ

The function (C7) is defined on the whole complex plane:
to write the asymptotic expression at z ¼ ∞ (x ¼ þ∞) we
use the connection formulas of the hypergeometric function

2F1ða;b; c; zÞ

¼ ð−zÞ−aΓðcÞΓðb− aÞ
ΓðbÞΓðc− aÞ 2F1

�
a;a− cþ 1;a− bþ 1;

1

z

�

þ ð−zÞ−bΓðcÞΓða− bÞ
ΓðaÞΓðc− bÞ 2F1

�
b;b− cþ 1;−aþ bþ 1;

1

z

�
:

ðC9Þ

Expanding around z ¼ ∞ we find

ũ1ðz≈∞Þ¼−
X

J¼P;N;B

cJziαJð1þOðzÞÞ;

cP¼−
iπð2αPþ3iÞ2ð−1ÞiðαH−αPÞcschðπðαH −αPÞÞ

4V2γ2ðαP−αNÞðαP−αBÞ
;

cN ¼−
iπð2αN þ3iÞ2ð−1ÞiðαH−αNÞcschðπðαH−αNÞÞ

4V2γ2ðαN −αPÞðαN −αBÞ
;

cB¼−
iπð2αBþ3iÞ2ð−1ÞiðαH−αBÞcschðπðαH −αBÞÞ

4V2γ2ðαB−αNÞðαB−αPÞ
:

ðC10Þ

From the boundary conditions (33) we see that we do not
have the modes P, N, and B at right infinity; so we add to
the particular solution the linear combination

cPziαP þ cNziαN þ cBziαB :

The first-order correction to the solution is thus

u1ðzÞ ¼ ũ1ðzÞ þ cPziαP þ cNziαN þ cBziαB ;

such that u1ðz ≈∞Þ ¼ 0. Finally, we can write down the
solution uðzÞ at the first perturbative order and its asymp-
totic behavior:

uðz → 0Þ ∼ ð1þ ηcHÞziαH þ ηcPziαP þ ηcNziαN þ ηcBziαB ;

ðC11Þ

uðz → ∞Þ ∼ ziαH : ðC12Þ

The coefficients (34) are obtained dividing (C11) by

ð1þ ηcHÞ and recalling iαj ¼ i kj
2β þ 3

2
þ i ΩV.
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