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We take into account the subcritical case for dielectric media by exploiting an approximation allowing us
to perform perturbative analytical calculations and still not implying low dispersive effects. We show that in
the background of a specific solitonlike solution, pair-creation occurs and can display a thermal behavior
governed by an effective temperature. The robustness of the approach is also corroborated by the analysis
of the ¢w-model related to the standard Hopfield model, for which analogous results are obtained.
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I. INTRODUCTION

We study the problem of the so-called subcritical case
for the Hawking effect in analog gravity, which is
characterized by the absence of a real horizon but still a
process of pair-creation takes place. The phenomenon has
been extensively studied in the physical literature, because
of the Vancouver experiment with water [1,2], where
measurements of a thermal spectrum appear, despite the
actual absence of a horizon, as shown in subsequent
analysis [3-5]. As to analytical calculations, the first
one, again devoted to the case of scattering in water,
appeared in [6], and it was provided by means of the so-
called Bremmer approximation [7,8], adapted to an ordi-
nary differential equation of the nth order. Subsequent
analytical calculations, involving also the subcritical case
for water and Bose—Einstein condensates (BEC), again in
the limit of low dispersive effects, are found in [9,10], and
exploit a Korteweg—De Vries (KdV) equation emerging in
the approximation of no copropagating modes [9]. It is
worth mentioning also the first experiment with water [11],
and we stress that both the subcritical and the transcritical
cases for water were studied also in [12—-14].

For the case of the analog Hawking effect in dielectric
media, horizonless situations were numerically taken into
account in [15,16], but for the subcritical case, a fully
analytical calculation is still missing.
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We have shown in previous papers [17,18] that an
equation of the Orr-Sommerfeld type inherited by
Nishimoto’s works (see e.g. [19,20]) enables us to treat
in a quite unified way the case with a horizon, also called the
transcritical case, which amounts to the presence of a real
turning point (real horizon) in the limit of weak dispersive
effects, where the weakness of dispersion is indicated by a
suitable small parameter e.

In this paper, we focus on the subcritical case for
dielectric media; i.e. we take into account configurations
where a real turning point is missing. We still obtain a
fourth-order differential equation governing the phenome-
non, but we adopt a different attitude and a different
expansion parameter with respect to the transcritical case
mentioned above. Indeed, we consider a linearization of the
equation around a specific solitonlike background solution,
and we exploit an expansion in terms of a parameter 7 which
represents the weakness of the soliton amplitude. In the
comoving frame of the background solution, we obtain a
static situation that mimics that of the Hawking effect in the
transcritical case, but with no horizon. Even if it could seem
that weak dispersion is implied by our picture, actually this
is not the case: Indeed, the dispersion parameter € is a priori
not restricted to be small, and this is the main difference with
respect to the standard picture described in [17], where € is
small and a so-called singular perturbation theory is to be
allowed. In the framework we discuss, one is allowed to
adopt a regular perturbative expansion in the parameter 7,
which represents a strong advantage.

We show that for the particular profile which is taken into
account, in some limit thermality is simulated, with an
effective temperature which is one-third of the one of the
corresponding transcritical case.
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Explicit calculations are first carried out for a modified
¢w-model whose aim is to simplify as possible the
dispersion relation associated with the model, and to allow
more straightforward analytical calculations and a clearer
exposition of the basic idea. Then we corroborate the
robustness of the approach by applying it to the ¢y-model
introduced in [21], then discussed elsewhere, and again
taken into account in [17,22]. The aforementioned
¢w-model will be mentioned as the “original” model
and represents a simplification of the Hopfield model
[23] which is a standard way to discuss the electromagnetic
field in dielectric media.

II. THE MODIFIED ¢yw-MODEL
AND ITS SOLITONIC SOLUTIONS

The model we will consider is defined by a Lagrangian
function involving two real scalar fields ¢ and y, with the
aim of simulating some features of the behavior of the
electromagnetic field in dielectric media. As is well known,
a way to obtain this goal consists in the Hopfield model
[23], where the interaction between the electromagnetic
field and the atoms/molecules of the dielectric medium is
taken into account by replacing the aforementioned
microscopic objects with a mesoscopic polarization field.
One still obtains the correct Sellmeier equation for the
dispersion relation. In our case, intending to simplify as
much as possible both the analytical calculations and the
dispersion relation, we replace the polarization field with
the field y and the electromagnetic field with ¢, with a
setup aimed at reproducing the Cauchy dispersion relation
most straightforwardly. We stress that our picture below
will be corroborated also in the trickier case of the ¢w-
model discussed in [21], where the Hopfield model is
reduced in the most direct way to a model reproducing
exactly the Sellmeier dispersion relation using a couple of
scalar fields ¢, y.

In our present model, the Lagrangian, expressed in the
lab frame, with respect to spacetime variables #;, x;, is

A
w)? +uty?) + 9oy ——vyt. (1)

=207+ 5, :

NI'—

We can write it in a covariant form, which will be useful to
pass to the frame comoving with the pulse:

p
L= w) + ghn o —

)

( “0,4)° + (( “o,p) +

\S] |

where in the lab frame we have o}, = (1,0) and
nt, = (0,1), while in a boosted frame we get v* =
(y,—Vy) and n* = (=Vy,y) (c = 1 everywhere).

The equations of motion that follow from (2) are

(vbau)2¢ - gnyaul// = 0’ (3)

A
(v0,)w + gn* 0, — w2 + 3y = 0. (4)

The free-field solutions (for 1 =0) are plane waves
e@wt=kw¥i ywhich satisfy
2 2 2

k uw o o
I
al

(A + Ba)lab’ (5)

where wy,, = vk, and ki, = —n*k,. The quantity ny is, by
definition, the refractive index of the medium. Equation (5),
in the limit as wy,, — 0, gives rise to the Cauchy dispersion
relation, which is frequently used to describe dielectric
media at low frequencies. Indeed, as w,;, — 0 we get

~ VA + (6)

(a)lab)

\/‘wlab
To describe ordinary dielectrics,
ie. pu>g.

The Lagrangian (2) admits a conserved current, which is
related by the Noether theorem to the invariance (in its
complexified version) under phase shifting of the fields
P e, y > ey

we require A > 1,

= L0 (190,9) + vy (190) + g —c.c).
(7)

The zeroth component gives rise to the conserved charge

[\)

/ dxJO=:Q, (8)
%

where X, is a spacelike hypersurface. The associated
(conserved) scalar product is

(). ’ )) =3 [ o0 - o

+ UOW* Uaaalp _ v()lpvaaav/*
+gn’(y g - W*)} : 9)

It is straightforward now to provide a canonical quantiza-
tion of the free-Lagrangian, compute the propagators, and
perform standard perturbative Quantum Field Theory
(QFT) computations with the vertex il: we will not deal
with this in this paper. The free particles of the theory are
polaritons which satisfy the Cauchy dispersion relation,
and the interaction term is a modelization of the nonlinear
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response that can happen in dielectrics, better known as the
Kerr effect. The norm of the free particle states @, = (;‘Z )~

e ™" has a simple expression in the laboratory frame:

W
07 = () 20ma (14 52 ). (10
H Db

From Eq. (10) we can clearly distinguish the positive-norm
modes (my,, > 0) from the negative-norm modes (@, < 0).
In Appendix A we give a more detailed analysis of the current
two-vector J#, and we prove that the norm is proportional to
sign(wyy,) in any inertial frame.

The equations of motion (3) also admit a solitonic
solution that propagates rigidly at a fixed velocity V with
respect to the laboratory:

a

Ws(xl - th) = COSh(ﬁ(.X[ — th)) ’ (11)
at = 12‘;2,62’ (12)
P = (V2 — ). (13)

=
III. THE LINEARIZED EOM

In this section we consider the linearization of the
equations of motions (EOMs) (3) around a solitonlike
background:

_ 2l 1
wp(x — Vi) = \/Ecosh(ﬂ(x, “Vi)) (14)

We will treat # and f as independent parameters to allow
valid results not only for the soliton (11) but also for other
backgrounds with the same shape. Indeed, it is known that
solitons of this type can emerge also as approximated
solutions of electrodynamics inside nonlinear dielectrics:
specifically, they are solutions of the so-called nonlinear
Schrodinger equation, which derives from some approx-
imations made on the Maxwell equations inside those
media. We shall comment further on our choice in the
following section.

We want to study the scattering of the asymptotic normal
modes against the perturbation given by the soliton traveling
across the medium: if the scattering involves both positive
and negative-norm modes, this can be interpreted as a sign
of instability of the system, which decays by emitting
particles, as in the pioneering computation by Hawking for
black hole evaporation.

The linearized EOMs are

(v70,)*¢p — gn*d,y = 0, (15)

2
(v0,)y + gn“oy — 12 +Sypw = 0. (16)

Notice that, in the linearized equation, the effect of the
perturbation is a shift of the parameter y’:

A
e Hﬂz—glﬂ%(xz—wz), (17)

which induces a shift in the refractive index [see (5)]

n? (i, X1, 1)) = nf(@y,) +6n*(x; — Vey),  (18)

n 1

Y —_1
on*(x; = V) = g cosh?(B(x; = Viy))~

(19)

WMAX

\ WMAX
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FIG. 1. (a) The dispersion relation (5) represented in the
comoving frame with the background, with g =1, y =1.2;
for 0 < w < wyax there are four real solutions. (b) The
dispersion relation (18) represented at the peak of the perturba-
tion, i.e. x; = Vt;, for n = —1. The modes 0 < @ < @y do not
experience an event horizon (subcritical regime).
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To include both cases én > 0 and én < 0, we will consider
n as a real quantity, with

sign(n) := sign(4).

The dispersion relations (5) and (18) are represented in
Fig. 1, as seen in the comoving frame with the background.

We decouple Egs. (15) and (16) by applying the operator
(1%0,)? to the second equation; then, we eliminate ¢ using
(1%0,)*¢p = gn’d,w. In this way, we obtain the following
decoupled equation only for the field y:

(v°0,)'w + ¢*(n"0,) >y — u*(v*0, )y

+E 0 rwin =0 (20)

It is convenient to write the equations in the comoving
coordinates ¢ = y(t; — Vx;), x =y(x; — Vt;). Since the
potential term is independent of the comoving time, we
seek a solution in the form y = e™'®'f(x), where the
constant @ is a conserved quantity (cf. e.g. [21]). In this
way we end up with a fourth-order equation for f(x) only:

0 = VWD (x) + 4iV3iar fO (x) + 72" (x)[InVsech® (Bx/y) + ¢ — 2 V* = 6V2w?y?]
+ 2iVyf'(x)[ysech®(fx/y) (2ipV tanh(Bx/y)+wy) + wy(g* — p* = 20%7*)] + f(x)[=2*nV?sech (Bx/y)

—nsech?(Bx/y)(wy + 2ipV tanh(Bx/y))*+a’y* (—g* V2 + u* + 0)].

We can further manipulate the equation by performing
the following change of variables, usual for the Poschl-
Teller potential,

(1)

. - d
0, =200, =2z . (23)

~ P
— _,2px — /_
< e p= v’ (22) By defining the rescaled parameters G = %, Q= ﬁ and
o M = Zﬁ we end up with the following equation:
which implies 4
n Virz
0= (V474)Z4f(4> + (6V4 4 _ 4iV3Q}/4)Z3f<3) 4 (G2}/2 _ M2V2]/2 4 7‘/4},4 _ 12iV3974 _ 6V292}’4 _?ﬁ> ZZf(Z)
-z

+ <G2y2 — M?V2y? = 2iGPVQy* + 2iMPVQy* + VAy* = 4iV3Qp* — 6V2Q%* + 4iVQPy!

n <2iVQyzz B V32z(3 + 2)

P\(1-22  (1-2
L < @’z 2iVQyz VipPz(1+4z+ z2)>>f
P\1-2? (1-2) (1-2)* '

Equation (24) is of Fuchsian type. The complete char-
acterization of the equation is not in the interest of this work
and will be the subject of some future publication. In the
present work, we propose a perturbative method for the
solution of the equation, which will be exposed in the next
section.

IV. PERTURBATIVE METHOD

The solitonic solution (11) has no free parameter, except
for the velocity V: its amplitude, in particular, is fixed by
the constants of the Lagrangian. Nevertheless, as in the
previous section, we linearize the field equations for our
nonlinear theory around weak solitonlike backgrounds

>>Zf(l) 4 <M2QZJ/2 _ GZVZQZYZ 4 94},4

(24)

(whichever produced experimentally), with the aim to
consider the perturbation induced by the solitonlike back-
ground as “small.” We stress that we have the freedom to
choose the spatial dependence of the perturbation in the
refractive index in such a way that it can be reproduced
using linearization around a given background solution.
This attitude is corroborated by the experimental fact that
strong laser pulses may induce in dielectrics a nonlinear
perturbation én(x) (in the comoving frame) of the refrac-
tive index which is typically orders of magnitude lower
than the leading term (e.g. order of 10~3 compared with
one of the leading terms).

There is an immediate consequence of this approach:
as all the nonhomogeneity is associated with the
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refractive index n(x) is due to the correction én(x), and
the latter one is treated perturbatively in # which is
associated directly with the amplitude of the solitonlike
background, we are considering a situation where at the
lowest order homogeneity occurs, and then no horizon
can appear; i.e. we are automatically in a subcritical
regime. This is the main difference with respect to the
perturbative approach where the perturbation parameter ¢
is associated with a weak dispersion, and where instead a
horizon may appear in the leading order equation (in the
form of a real turning point).

The perturbative method for Fuchsian equations that we
apply was proposed in [24]. We start by eliminating the
third-order derivative by the change of variable

f(z) = 73 %u(z)

that gives

u® + [01(2) + nw (2)]u® + [v5(2) + w2 (2)]uV

+ [v3(2) +nws(z)]u =0, (25)
where
2G? = 2MPV? + 5V4y?
vi(2) = .22
2Viyoz
—2G?V +2M?*V? +2iG*Q - 2iG*V>*Q — 5V3y?
va(z) = V5,273 ;
Yars
36G*V? — 36M?V* — 48iG*VQ + 48iG*V3Q
v3(z) = 6.2.4
16V°y<z
16G?>Q* + 32G*V?Q? — 16G*V*Q? + 81V0y?
16Voy2z* ’

1
M= v
4
" v
—1 + 27257
w3 (z)

= 4,52V2y2(z — 1)4Z3 :

Now we consider # as a small parameter and formally
expand the solution as

u(z) = ug(z) +nui (z) + Pus(z) + -, (26)

which allows us to obtain a regular perturbative expansion
(to be compared with the singular perturbation expansion
one obtains by expanding with respect to a low dispersion
parameter €; cf. Sec. VII). Herein, we compute the first-
order solution u;, and we will discuss the possibility of
taking n — 1.

Solving the unperturbed equation (7 = 0) is very easy,
and it gives

ug(z) = 2, (27)
where a satisfies a fourth-degree algebraic equation. By
putting iax = i% + % + i%, we find that k is one of the four

solutions of the dispersion relation (5) as written in the
comoving frame:

v(=g*(k + Vw)? + (kV + @)*(u> + (kV + w)?y?)) = 0.
(28)

By substituting (26) into (25) we find the set of equations

i 40, (2l + vy (2)ul + vy (2 = wi(2)ul? + wa(2)ul + ws(2)uo,

(29)

4 2 1 2 1
i+ vy (2)us? + 0o (2uk) + v3(R)uy = wi(Rup )+ wa(2u) )+ ws (2o, (30)

Thus every u, satisfies a linear differential equation with a source term that depends on u,_;); the associated
homogeneous equation is the unperturbed equation satisfied by u,,.
Let us consider the equation for u;. We can explicitly solve it by applying the method of variation of constants. By

defining

r1(2) = wy(2)ul)

we compute the quantities

+wa(2)ug

) s (2)uo, (31)
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Zial Ziaz Zia3 Zi(x4
Zial)/ (Zuxz)/ (Zia3)/ (Zia4>/
W(Z) = det Ziozl)// (Ziaz)// (Zia3>// (Zia4)// ’
(Zza, )/// (Ziaz )/// (Zia} )/// (Zm“ )///
Zia2 Zi013 Zia4
Wi(z) = ri(z)det| (=) ()" ()
(Ziaz)// (Zia3)// (Zm“)”

Zial ZiGB Zia4
W2(Z) =—-n (Z) det (zial)’ (Zi03>/ (Zia“‘)’

(Zia, )// (Zin:3 )// (Ziaz4 )//
Zia] Ziozz Zia4
Wi(z) = ri(z)det| (z)" () ()" |.
(Zi”' )// (Ziaz )// (Z“’“ )//
Ziozl Ziaz Zia3
Wi(z) = —ri(z)det| ()" (=) ()
(Zia, )// (Ziaz)// (Zia3 )//
A particular solution to the first equation of (29) is given by
u = j .
1\Z - < 4 W(Z/)

In principle, we can recursively iterate the procedure to
obtain particular solutions to u,. Notice that the general
solution for each order 7 is obtained by adding a solution to
the homogeneous equation, which is the same for every 7,
so we can say that the general solution u(z) is obtained by
adding to the iterative solution a combination of the
solutions to the unperturbed equation: the coefficients of
the combination will be set by the boundary condition of
the scattering.

V. BOUNDARY CONDITIONS
FOR THE SCATTERING

For the subcritical case, it is standard to consider a white
hole configuration, in which an initial state, representing a
Hawking mode, approaches the white hole-like perturba-
tion at early times, and four modes emerge at late times:
three backward modes P, N, B, where N is the only negative
norm mode appearing in the scattering, and a transmitted-
mode T representing the fraction of the Hawking mode
H which is transmitted beyond the perturbation. This is
nothing but what happens in the presence of a real white
hole horizon in the transcritical case, apart for the trans-
mitted mode. For the black hole case, an analytical study is
trickier, as the black hole-like configuration, in principle, is
not related to the white hole—like one by time reversal: in the
presence of a black hole horizon, one has three entering

initial modes P, N, B which are converted in a scattered
emerging mode H. When the scattering is subcritical, in
principle, given three initial modes P, N, B, one should
consider the possibility to get three transmitted particles,
and then it is evident that one does not obtain the time
reversal configuration of a white hole subcritical scattering.
We consider a white hole-like configuration, as usual.
Thus, in the initial state, we will have only a right-moving
H-mode, which is scattered and mode converted in a way
such that we obtain the four modes in the final state. The
asymptotic form of the solution we seek is thus

ik ik ik ik
et 4 Cre™r¥ 4+ Cye™* 4 Cye™s*, x — —o0,

ik
Clez nx

oo~ {

X = +00,

(33)

when we recall that the H-mode has a positive group
velocity (right-moving), while all other modes have neg-
ative group velocity (left-moving). Since the unperturbed
solution would be just f(x) = e*#* defined everywhere, we
expect the coefficient C; of the transmitted part of the
Hawking mode to be O(1), while all other coefficients must
be O(e). We can now proceed to the solution of Eq. (29) for
u;(z) considering for the source term the unperturbed
solution ug(z) = z'*, where iay = ig—; +3+i% The
detailed computation of the solution is shown in
Appendix C: in what follows we will just expose the final
expressions.

The asymptotic coefficients of the solution [see Eq. (33)]
at first perturbative order are

1
C, = , 34
! 1+int (34)
. fid i d 2 _ v
o _in=1) 2(kpV + ) csch((kH kp)zﬂ) )
oAt APV kp—ky)(kp—kp)
. fidz s 2 _ 7
c :”1(_1) T a(kyV +w) csch((kH kN)Zﬂ) 36)
3 1+int 42V (ky —kp) (ky —kg)
ke —kp g
. :m(_l)zz—ﬁzz(kBV—|—w)20sch((kH—kB)Zyj) 37
Yo d+inr 4pPVHkg—kp)(kg—ky)
kyV + w)?

T 2BV (ki — kp) (kg — k) (kg — k)
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VI. RESULTS

Current conservation implies that the following equation
holds true:

Tl = Izl + [Tp| = [In| + gl (39)

so that, by defining

J

T«—%%, (40)
H
J

|Nr=%%, (41)
H
J

ww—%ﬂ, (42)
H

n* 7 (kyV + w)* (kyV + w)*csch(((ky = ky)yn)/(2)]*

we get

1= |T|+|P[-|N|+[B

, (43)

where for the model labeled by K we have |K|:=
|Ck[?| % |, vg(w) is the group velocity of the
K-mode, and DR(w, k) is the dispersion relation function
defined in Eq. (A3): we provide a derivation of (43) in
Appendix B. The ratio |N| corresponds, in the black hole
case, to the rate of spontaneous emission of H-mode waves,
as it can be argued by using standard Bogoliubov coef-
ficients. In the present case, it represents the rate of pair-
production in the subcritical process at hand.

From the scattering coefficients (34) and the expression
(A10) for the flux factors, we can write down explicitly the

expressions

N| = , (44
al L+ 163V (ky — kp) (ky — kg) (ki — kp) (ks — kp) )
|P| _ (ky = kg)(kp — ki) (kpV + @)*(cschlmy (ky — kp)/(28)])*
TN 2 2> (45)
N[ (kp — kp)(ky — k) (knV + @) (eschlzy (ky — ky)/(28)])
7= (46)
IR
BT PVt 0Pk + ) (eschlry(ky = kn)/(26)] )
L+ 168*V3 (kg — ky) (kg — kp)(ky — ky) (ky — kp)
|
As a consequence, we can provide V@ — u2V2 1 e
kp="Y> (-
" yv? (V T AVE - M2V2)> N
_ 11— B FRF+ v, 3
IN| = % - (48) (g v + 0(a?), (51)
. [ — i2V? 1 7
We stress that these expressions are exact except for the  ky = ————F—— S+ 555> |@
perturbative approximation in z: no other approximation rv Vo V(g —puV?)
has been made throughout the computation, so they are 729> + u2v?) o+ 00", (52)

valid for all frequencies, as long as we know k;(®).
For an explicit evaluation we have expanded the modes
k;(w) from Eq. (5) near @ = 0, obtaining

n—gv

= o+ O(0?), 49

w =0+ 0 (49)
u+gv 3

kg = — 0 , 50

p=-t o+ 0) (50)

2y (g? — ?v2)>2

and weput g= 1,y = 1.2, and V = 0.5. As to ky, due to
the fact that the perturbation vanishes very rapidly in the
comoving frame both for x - oo and for x — —oco, one
easily finds kr = k. These values are taken just to obtain
qualitatively the same dispersion relation as in an exper-
imental situation of laser pulses in silica, but they are not
meant to be quantitatively accurate. In the following
analysis of the results we will treat both # and g as
independent parameters: although they are uniquely
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FIG. 2. The coefficients 7' and B from (46) and (47), for different values of the amplitude of the perturbation #.

determined by the soliton (11), we still think that it is
interesting to study the dependence of the radiation on these
parameters. We might equivalently say that we are studying
a generic perturbation of the form (14) with generic
parameters, even though this perturbation might not be a
solution of the nonlinear equations of motion (3). The
scattering coefficients |T|, |B|, |P|, and |N| are plotted in
Figs. 2 and 3, for different values of . Notice that | B| results

n=0.1
10+
0.100 -
----- INI
0.001 -
[Pl
107% e TS “’-
- []
\
107 1
1
1
H
. . L L n L
0.005 0.010 0.050 0.100 0.500 1 wnax
(a)
n=100
10
o100k  TTe=a
S
~
N - INI
0.001 |- \\
v, [Pl
Vi
. Y
10 H
107
L L L L L L v
0.005 0.010 0.050 0.100 0.500 1 wax
(c)
FIG. 3.

at small frequencies is P, N ~ @, which agrees with the findings of [6]; in (d) we show the onset of critical behavior, as P,N ~ @™ ".

are smaller than the others, as was expected. The trans-
mission coefficient |T|~1 for low frequencies, but it
decreases more rapidly as # increases: this is a sign that
for high perturbation we approximate the formation of an
event horizon, and this interpretation is supported by the fact
that the frequencies near wyax are less transmitted.

The coefficients |P| and |N| are nearly equal at low
frequencies and are ~w. This behavior is in agreement with

n=1
10
0.100}
------------------- L]
0001f e ~
™ IPI
\
\ 4
‘I
10° !
107
0,005 0,010 0,050 0.100 0500 1 o
(b)
n=1000
10 ———
ot00f Tt
~
<
N, T NI
0.001} \
\ [P
\ 4
v/
105 F ‘I,'
107
0,005 0,010 0,050 0.100 0500 1 o
(d)

The coefficients P and N from (44) and (45), for different values of the amplitude of the perturbation 7. In (a)—(c) the behavior

1

025001-8



PERTURBATIVE APPROACH TO ANALOG HAWKING RADIATION ...

PHYS. REV. D 108, 025001 (2023)

0.8

04l

0.2

..........

L L L
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w

whaax

(a)

FIG.4. The temperature T, as defined in (54). (a) Plot at fixed = 1, for different 57; we see the formation of a plateau at 7'

n L L L
0.050 0.100 0500 1

w

Wax

(b)

o~ Tpent for

high 7. (b) Plot at fixed n = 1, for different ; the estimation of the value of the plateau T is less accurate for increasing f.

what was found by Coutant and Weinfurtner [6] for a
subcritical flow in shallow water.

. Pl . . .
The ratio M is very close to an exponential function,
P @ [ . .
MNeT. This is shown in Fig. 5, where we see that

w/ log(%) is almost constant. The temperature T, (the

subscript is for “perturbative”) can be estimated analyti-
cally from the arguments of the csch in (45): we find

1 - 277,']/ 1 2kH—kp—kN

ﬂperl =7

= 1
Tpert Zﬂ w—0 w

_ 22929 +pV) (53)
prv(g® —u’v?)

We note that T o, which is proportional to the
derivative of the background function (11): this is what
was expected based on previous literature about analog
Hawking radiation in the critical case. As it is clear from
Fig. 5, while the exponential approximation is still valid,
our estimation of the temperature is less good as f
increases.

0.005 0.010 0.050 0.100 0.500 1

w

whiax

FIG. 5. The ratio w/log (I‘WPD normalized by the estimated

temperature T . [see Eq. (53)] as a function of f. The ratio is
almost constant, which means that % is indeed exponential with
the frequency; our estimation of the “temperature” T’ proves

to be good at low f, while less accurate for increasing f.

Finally, we define a temperature function 7, by the
relation

1
IN[= .
eto — 1

(54)

The function T, is plotted in Fig. 4 for different values of 7
and p. We note T, is not constant, showing a lack of
thermality in the emission spectrum. However, for higher
values of 7, a plateau is created for frequencies close to
oymaxs> With T, & Ty. This fact is again interpreted as a sign
of the presence of a group horizon for higher frequencies:
indeed, a similar behavior was found by a numerical study
of the transcritical regime in shallow water [3].

The near criticality of the system for high 7 is underlined
also by the behavior of |P| and |N|, which start growing as
N% near w =0 [see Fig. 3(d)]. This is precisely the
behavior that one expects in the critical case. We specify
that the results for high values of 5 should be taken
carefully since # is precisely the expansion parameter of
our perturbative solution. However, we find it interesting
that already at the leading order, the solution shows a near
critical behavior for high #; we expect that the same
qualitative behavior is present also in the higher order
solutions, possibly showing up already at lower values of 7.

We stress that the ratio w/ log (%) displayed in Fig. 5

can also be considered as a realistic way for testing
thermality in experiments, both in the subcritical case
(where thermality is just effective) and in the transcritical
one. Compare also [1] for analogous measurements in the
case of water. In an optical system such as a dielectric, one
can measure the amplitude of the peaks corresponding to
the P, N modes in the photon spectrum, as e.g. described
in [25] (see in particular the associated supplementary
information), and cf. also [26], Chap. 10. Solitonlike laser
pulses are e.g. considered in [27], both for diamond and for
fused silica, and suitable tuning of the input conditions,
such as power, wavelength, and focusing, makes it possible
to control, to some extent, the steepening effects and the
peak velocity [28]. Steepening of the pulse is, of course,
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fundamental in order to enhance the pair-creation process,
as the associated temperature is proportional to the spatial
derivative of the refractive index in the transcritical case,
and this is, to some extent, true also in the subcritical one
discussed above, as T o ff, where f is still related to the
derivative n’(x) in the comoving frame, as remarked above.
To provide a realistic estimate of the perturbation in the
refractive index one may obtain in experiments, let us also
recall that the effective refractive index associated with the
Kerr effect is n ~ ng + n,1, where the nonlinear index n, in
fused silica is n, ~ 3.2 x 10'® cm?/W, so that for pulses
whose intensity is I ~ 10'3> W /cm?, in fused silica one may
obtain én := n,I ~3 x 1073, Conditions for both the sub-
critical and the transcritical cases can be matched (cf. also
[25]), and then both the situations can be checked exper-
imentally: this can be done more realistically for the model
to be discussed in the next section, which is more
straightforwardly related to the standard Hopfield model
for dielectric media.

VII. THE ORIGINAL ¢yw-MODEL

In the original ¢y-model, including a w* term, one has

1
2yt (070 )* — wfy?]

A

(v*0.p) ¢ — E"’4’ (55)

Ly = 5(0,0)0) +

+

| =

where ¢,y play the role of the electromagnetic field and
polarization field, respectively, y plays the role of the
dielectric susceptibility, v* is the usual four-velocity vector
of the dielectric, and @, is the proper frequency of the
medium [22]. We get the system

T~ (#0,) =0, (56)

1 AN A,
<)(a)(2)(vﬂaﬂ) +){)l//+c(v”6ﬂ¢) ‘I’gl[/ =0. (57)

As in [29], we allow the spatial dependence to appear in y
and in @, in such a way that yw} = const. Indeed, by
linearizing the model around solitonlike solutions, directly
written in the comoving frame, one obtains

1 | D)
— > —+ =y (x), 58
A
o> (1425030 (59)

in such a way that y®3 remains invariant: o3 — y3.
In this case, we identify the parameter associated with
dispersion as follows:

ool
XD
This parameter has been considered as the small parameter
associated with the model in the limit of low dispersion. In
the present case, we adopt a different view where dispersion
can also be strong, and the expansion parameter is instead
associated with the amplitude of the background solution
around which the EOMs are linearized. We limit ourselves
to notice that a linearization of the EOMs around a
background solitonlike solution y(x) amounts simply in
replacing £y > Zydy in (57).

A. A separated equation for y

By applying the operator [J on the left of equation (57),
as shown in [17], we obtain the following fourth-order
ordinary differential equation:

1 2
—626§f—2i€296§f—|— 5 <— <1 —)(yﬂz) +€2)(a)2)0§f
v 17 c

ol 1 1
+2<l;?(1 —€2(l)2) —W (6,();) ) axf
o

4 2

, @ 1 21 )

SN S (£ P A ~0. (60
+<€ 22 7,21)2< )() oy sz2>f (60)

We also define f(x) = h(x){(x), with

h(x) _Aexp<—i2“’—vx>, (61)

where A is a constant. i(x) is chosen such that the third-
order term vanishes, and the procedure is analogous to the
Liouville transformation which eliminates the first-order
term in a second-order linear ordinary differential equation.
This leads to the following quartic equation, which is just of
the type “Orr—Sommerfeld”:

-2+ L 1—)(;/21]—2 +€2—1 1—37/2 w? |02
* 172 v? c? y?v? 2 .
o 1 v? 1 1 @?
Y (12l ) 2 (0 ) =i )a
+(Z v;m/zvﬂ( I cz) yzvz( ")() h vcz) <
1 1 1
(9 05)- (%))
YU v X X
n 1 1 w? | 2112 w?
22\ 4y o2 V) P
4 2
S (@ 1 1w
S+ ) ) |¢=0. 62
te <1}4( 16+4c2>)]§ (62)

The effect of the linearization around a background
solitonlike solution y,(x) consists simply in the replacement
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11 2
— > —+—yi(x), 63
P o(x) (63)

where y is constant. We choose

g 1
wo(x) := 2\/|Zcosh(ﬁx) . (64)

As in the model discussed in the previous sections, we turn
to the change of variable

2 3= —exp(2x). (65)

As a consequence, with some abuse of language, we have
¢ = f(z). Then we obtain
|

s (1 5) + e (107 - (1-37)?)

125]

1 z

1
— > —=2—. 66
X ox o (1-z2)? (¢6)

Furthermore, to cancel a new third-order term that appears
again after the above-mentioned independent variable
change, we set {(z) = z73?h(z). Then we obtain the
following equation:

A + (uy + nw)h® + (uy + qwy)hD
+ (up +nwo)h = 0, (67)

where

4B2€2Z2
—4pvc? (1 — ¥or? Z—;) - i02w<1 + xo07? lc—f) + xov(=4052 12 c2y? 4+ 2Bc2(2 = 372 w? + iy ve’)
uy = = )
1 85 2y0e 132
14457122 (1 — xor? Z—Z) + 48ipvc? (1 + yor? Z—;) +4a? (4 + yor*)v? = %) + €26
Uy = ~ )
0 256 2y o€y vt
1
Wy =

- Zﬁzezyzvzz(l _ Z)z’
i iw(z—1) + 8pvz
VT aBE R (-1 42

(2 —4v))a?(z — 1) + 4ipctvo(l —2)(5z — 1) — 4> 0% (1 — 2z + 257%)

0= 32~4c2€2y2v4(z— 1)4Z3 ’

with
8 = yo(1296*v*c?y? + 1271w (=2 + 37?)
— 48ipy*vPw’ + y*(c? — 4v?)w?).

B. Dispersion relation and its roots

As in the previous case, we can guess that solutions of
the zeroth order equation are of the form z/* and that a
satisfies the dispersion relation associated with the model.
In the comoving frame, the eikonal equation for the model
provides us with the following equation:

o?\ 1 1
<k2 - ?> po (03 — 7*(w + vk)?) — C—2y2(w + vk)? = 0.
0

(68)

It is a quartic equation whose roots k;(w), i =1,2,3,4
cannot be managed in simple formulas unless some kind of

|
approximation is provided. Our ansatz is the following. We
choose 0 — 0 as an expansion parameter, and we put

1 0]

k= —u—", 69
5475 (69)
l_

(U()::ga)o. (70)

We mean to indicate an expansion where k, unless it is
zero, dominates over w/v; i.e. @ is small relative to a
nonzero k, and that also @y is big compared to w (this kind
of approach leads also to the Cauchy approximation; cf.
e.g. [26], Chap. 9). As a consequence, we find the
following rewriting of (68):

2 2,2
<u2—26%u+52%) (1—%142) —xr*v*u?=0. (71)
r*v I

We look for a series solution in u:
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u=uy+ou, + 8% u, +8ud + .

As a consequence, we expect

1
k:5u0+ <u1 —9> +Ouy + SPuz + - -
v

We find at the zeroth order two vanishing degenerate

solutions uy = 0, to be associated with the modes H, B,
and also

Uoy = —Upp- (73)

Corrections for the two nondegenerate solutions in the first
order are

2
® v 1

= —— Y S, 74

tp == 20 W (74)

Uy = Uyp. (75)

Corrections at the first order for the two degenerate zero
roots uy = 0 arise from the second-order contribution to the
dispersion relation (as the first-order contribution vanishes
identically for uy = 0): one finds

®
Uig = — (1 +
v

C v

v 1
1+X—>ﬁ7 (76)
L=yrz

0] v 1
M]B:=;<1—\/1+){E>ﬁ. (77)

We are not interested in further corrections. It is nice to
point out that the expressions we have found are compatible
with the Wentzel-Kramers-Brillouin (WKB) behavior of
the solutions found in [17].

C. Scattering coefficients

We proceed in the same way as exposed in Secs. IV and
V, performing a perturbative expansion of Eq. (67) in the
parameter 7. We just give the results of the scattering
coefficients, analogous to (34):

B 1
IR

(O (78)

(—l)i% n(k3 — w?)csch (%ﬂ_k”))
Ltine 2p°V2e (kp — ky) (kp — kg)

i
C2:’7

(79)

_ in(_l)ik”gN 7(k — @*)csch (7””(](;’/;1‘”))
L+int 252V2e (ky — kp)(ky — kg)

Cs . (80)

in(_])ikHZ}ikB ﬂ(k% _ (L)Z)CSCh(m’(kgﬁ_kB)>
C — — ) 81
4 L+int 2p°V?e (kg — kp) (kg — ky) (5!

== (k%-l B w2) (82)
:BV27€2<kH —kp)(ky — ky)(ky — kg) '

Recalling that, from (68),

_ yoirt(w+Vk,)? @ <@

‘2’ 2 2
- 5 +Vk;)=, (83
w%_yz(w ij)z a4 (w J) ( )

(kj—a?)

we can see that the expressions of the coefficients (78)
basically reduce to (34) at low frequencies. This fact was
expected since the Cauchy dispersion relation in an
approximation of the Sellmeier for w?, < w3, but it can
be viewed also as a check of consistency and robustness of
our results.

VIII. COMPARISON WITH THE
ORR-SOMMERFELD APPROACH

Equations such as (21) are called of generalized Orr-
Sommerfeld type. Such equations emerge often in analog
gravity and have been studied extensively in [17]. Here the
authors developed a general technique for computing the
Hawking spectrum in the transcritical case, using a
perturbative approach in the low-dispersion parameter. In
this section we compare our results to those derived with
the Orr-Sommerfeld approach: in particular, we establish a
relation between the effective temperature we have defined
in Eq. (53) for the subcritical regime, with the Hawking
temperature the authors find in [17] for the transcritical
case. From Egs. (5) and (17) we can identify the low-
dispersion limit as

1 2
€:=— >0, o= const,

= 12 =:p=const. (84)
g g g

Notice that this means that u*> x e and 7 xe™2. By
eliminating the third-order term, Eq. (21) can be written as

e fD(x) + p3(x0)f"(x) + p2(x)f (x) + p1(x)f(x) = 0,
(85)

where

1 — V2 + pV2sech?(px)
= Va2

p3(x) , (86)
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pa(x) = 2i((V?-1)w —4/5pVV53}/tzanh(ﬂx)sech2 (Bx)) @)
1 ~ ~
zv6—y2(—2ﬂ2pV4sech4 (x)
+45%pV*tanh? (Bx)sech?(fx) — (V2 —1)20?). (88)

p1(x)

Notice that the functions p;(x) do not depend on e, as in the
Corley model. This form is directly comparable with the
form in [17]. The position of the horizon is defined by

p3(x) =0. (89)

By changing the variable to z = —e?P* ag before, we find

92 + 2’1‘/2 —,Ll2V2 i 2\/g2nv2 + 112‘/4 _ ’7”2‘/4
g — p*V?

14 2pV2 =0V £24/pV? + p?VE - poV*

N 1 —oVv?2 ‘

iH+ —

(90)

The corresponding points xp.. are real if

T | 000, 01)

In this comparison with the critical regime, we just consider
the case of positive Kerr nonlinearity: on > 0 = 5 < 0.
Thus we neglect positive values of 7, and we identify n <
—Nmin aS the condition of transcriticality of the perturbation.
Notice that 7., > 0. In Fig. 6 we plot the dispersion
relation in the critical case.

In [17] thermal Hawking radiation was predicted with a
temperature

0.2

-0.2

-04

FIG. 6. The dispersion relation (18) represented at the peak of
the background field for # < —#,,;,. In this configuration, for any
, the modes H and P become imaginary as they experience an
event horizon: this is referred to as the transcritical regime.

2v72 ./
Kk yVeEn(xy)
Ty=—=—"7T""—, 92

"= 2z 2n 92)
where n’(xy) is the derivative of the refraction index at the
horizon. We compute n’ from the Cauchy dispersion
formula including the background correction in the comov-
ing frame:

A

n*(x) = n% 27 wi(x), (93)
where
2
, M
ng == . (94)
0 7

Here we do not consider the dependence on wy,, of the
refractive index [Eq. (18)], because the Orr-Sommerfeld
approach is true in the low-dispersion limit (@, ~ 0):
indeed, the event horizon is defined by

p3(xy) =0 o nP(xy) = (95)

W.

With these considerations, we find

o o) =5 0 = (=5 203 ) ) S (00

and using (93), (95), and (14), we and up with

:M—VQZ_M2v21+ZH

Ty

2r 7 1-zy
— Mgz - IMZVZ |’7| - nmin (97)
2 ¢ In|

This result is surprisingly similar to (53), although they
were computed in very different ways, one within the
critical regime and the other in the subcritical. We notice
that if the expression (53) for T, is computed for near
critical velocity

21
2 __ H <
nyg = —5 ~ 1,0
0 92 V2
and compare it to (97) in the very critical case (|| > #yin),
we find

Ty
Tpert ~ ? . (98)
We are not able to give a quantitative interpretation of
the missing factor of 3 with respect to the case of real

turning points. Note that we obtain T o Ty, and the
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proportionality coefficient becomes 1/3 just for the suitable
limits of near criticality for T\, and very large n for T. It is
in any case remarkable that our result, qualitatively, is just
consistent with the previous literature, as, in the subcritical
case, a reduced pair-production, due to the less efficient
mode-conversion occurring in the absence of a true horizon
(real turning point), must be expected. Moreover, we may
suggest that it could be an effect of considering a non-
monotonic background such as (11), whereas the results of
the Orr-Sommerfeld approach in [17] were computed assum-
ing a monotonic background. In any case, the similarity of
the critical and subcritical temperatures is interesting, and it
suggests that they are related by some physical mechanism:
this will be a matter for future studies.

The same estimations can be done using the ¢y model,
introduced in Sec. VII. We set ¢ = 1. The temperature
estimated from the coefficients (78) is

] 271'7/ . 2kH—kp—kN
foox = —— = L fim =1 ZEP TN
Tpert 2ﬂ =0 @
2204V + Vo + 1) (99)

Prv(1=V3(ro+1))

For near-critical velocity

ng=1+x < (100)

W 5

we see that the term between brackets in the numerator
of (99) is

<1—|—y2V2)(0+V\/)(0—|— 1) ~ 3, (101)
which gives
V(1 =V23(y + 1
r oYU =Vl £ 1) (102)

6

The analysis of the critical case with the Orr-Sommerfeld
approach gives that criticality is found for

1
1N < —Mmin, Mmin :=%(1 _}(OYZVZ) > 0,

and the Hawking temperature is

ﬁ 2 |77| ~ Nmin
= 1-V2(1 + 111~ Hnin
" 2”)(0‘/}’( (1 +x)) Inl
ﬁ}/V 2 ‘7]| ~ Nmin
~— (1 =V=(1 _ 103

where in the last line we used (100) as before. We see
that, once again, the relation between the two temperatures
(fOI’ |77| > nmin) is

Ty

ER (104)

Tpert ~

confirming what we found using the Cauchy model.

IX. CONCLUSIONS

We proposed a new approach to Hawking-like radiation
in the subcritical case for a particular, but arguably realistic,
class of solitonlike backgrounds in a nonlinear dielectric.
The method allows a straightforward analytical solution of
the scattering problem at the leading perturbation order
of the amplitude of the background field, represented by the
parameter 7. With respect to other existing techniques, our
approach does not rely on the approximation of weak
dispersion, and indeed our predictions are not restricted
to the @ ~ 0 region. We tested our approach on a simplified
model of scalar electrodynamics and checked its robustness
on the scalar field reduction of the Hopfield model, which
strongly corroborates the results obtained in the simplified
model. In both cases, we can define an effective temperature
associated with the spectrum of the emitted radiation,
which, in the limit where the subcritical case approaches
the transcritical one, is one-third of the Hawking temper-
ature estimated by other established methods for the tran-
scritical regime. Even though a quantitative interpretation of
this fact is not yet available to us, we can stress that a
reduced effective temperature is still to be expected, con-
sistently with what is known in literature for the subcritical
case, where a reduced pair-production occurs, due to the less
efficient mode-conversion occurring in the absence of a true
horizon. Future work will be focused on the transition to the
critical regime, and it will possibly give us a clearer view.

The perturbative expansion we propose, although being
naturally suited for the study of the subcritical regime, is
not theoretically limited to this case: the problem of the
transition to the transcritical regime is configured, in this
context, as possibly a matter of being able to compute
enough perturbative orders. This can be corroborated by the
fact that a new mathematical perspective on the phenome-
non of particle creation was provided, as we related particle
creation to the solution of a fourth-order Fuchsian equation.
Fuchsian equations have many well-studied properties, and
much of that theoretical machinery may be applied to the
problem of analog Hawking radiation, potentially extend-
ing our analytical comprehension of the phenomenon. This
will be a matter for future studies.

APPENDIX A: THE CONSERVED CURRENT

We compute the current vector, evaluated on normal
modes e’ in a generic frame moving with velocity V
with respect to the laboratory. From Eq. (15) we find that if

l//(x) = eik;«x“, then ¢(X) — gn"ku2 ik

(k)
these fields into (7) we find

substituting
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2 2 21
JH o vy, (1 +,u +2wlab> + n? zlab, (A1)
Db Diab
where o = (y,=Vy), n* = (=yV,y), @ ="k, =

y(w + Vk), and ky, = —n*k, = y(k + V). We can verify
that J# is timelike. Indeed,

2(12 2 2 2 \2
T, = o, <1 4 (u twlab> n (1 +4wlab)
Diap Diap
20,2 2
g (1 + o)
— : lab ) , (A2)
WDy

which is positive provided that u?> > ¢?, which is the

condition we required at the beginning [see below

Eq. (5)]. Thus J* is timelike, so the sign of J° is constant

in every inertial reference frame: since in the lab frame

sign(J9) = sign(wyy,), this must be true in every frame.
We now define the dispersion relation function

212

9" kigp,
5
lab

DR(®. k) = p* + opy, —

(A3)

The free normal modes of the theory satisfy DR(w, k) = 0.
It is easy to show that the following relations hold:

JO & awDR|DR:O’ (A4)

Thus, we can identify the measure of the Hilbert space of
free normal modes as

dw
d[.l] :

- A6
’ 2m3kDR|k:kj<w> ( )

where we are writing the field theory in the frequency

representation and k; are the different real solutions of

DR = 0. It is also straightforward to show
J¥ = v,(w)J°, (A7)

where v, (w) = 92| . is the group velocity of the normal

modes. This relation could be derived also from the implicit

. . DR __ _da
function theorem, which states 3555 = =% |pr_o-

We can write the flux J* also in a more convenient way
for future computations. Since we called ky(w), kp(w),

ky(®), and kg(w) the four solutions of the dispersion
relation, we can write Eq. (A3) as

},2‘/4
DR(w. k) ="—5— [] (k=ki(w). (A8)
Dlab j—F.P.N,B
It is now easy to verify that
2174
0uDRi_p () = — — | [ (ki(@) — k;(@)), (A9)
i) D1, Owg !
and then
Jx(e—ia)tJriki(a))x) — Ui(w)awDR|ki
2174
y Vv
= -S5—[[ki(@) = k;(@)).  (Al0)
wlab|k[ J#i

APPENDIX B: THE CONSERVATION LAW

To understand the conservation law (43), we must
consider that the initial and final states of the scattering
should be wave packets rather than plane waves. A
normalized wave packet centered around the frequency
@ and momentum k;(w) [here k;(w) is any of the solutions
of the dispersion relation] has the form

dw iwt—ik;(w)x
/5 DR, @) ,

is the measure of the Hilbert space defined

(BI)

do
where 58— DR )
by plane waves (in the frequency representation) and f.(w)
is a distribution centered around @ with a small bandwidth

€, which satisfies

do 5
—|f. = 1.

We can see Eq. (B1) represents a wave packet by evaluating
it at x = ot, for some velocity v: for t = =00 we can say
that the dominant contribution comes from the stationary
point, which is
1—v%i_g
ow
which means that the function (B1) is traveling at a constant
velocity v = v;(@), where v;(w) is the group velocity of
the mode k;.
The asymptotic plane-wave solution (33) corresponds to
the wave packets
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—ikyx —ikpx —ikyx —ikpx _
)~ [ s S LT TSR GeT (B2)
At t = —oco the only contribution comes from the ingoing H-mode, so the measure of integration is chosen such that
W) = 1= [ des (it =—o0)).
The current conservation implies
%/dx]o = /danJO = /dxaxjx =0. (B3)

At t = +o0 the solution splits into four outgoing localized wave packets with central momenta: each mode propagates with
a different group velocity, so we can assume that the wave packets are not overlapping at ¢t = 4o00. With these
considerations, the computation of the norm gives

dw do’
felw)fi(a) C|*270,DR|, 6(ky (@) — ky (o'
/2”akDRkH(m) 2ﬂakDR|kH(m’) ( i:[-;]vy3| | |kl H( H( ))
dw 5 1
= | — _ C;|*22v;,0,DR|, = 1.
| i, VO spr, S ICR2w0a R,

(B4)

The last equality comes from current conservation.

APPENDIX C: SOLUTION OF FIRST-ORDER

EQUATION

We start computing the first-order solution u;(z)
[Eq. (32)] around z = 0 (x = —o0). We proceed as exposed
in Sec. IV to derive the expression of the first-order
solution. In the scattering of the H-mode, we expect the
asymptotic coefficient of the H-mode to be O(1), while all

By recalling 9,DR|; () = —vj(a))awDR|k/_(w) (from the
implicit function theorem) we see that the sign of each
term is determined by the product v;(@)wy,. Since the
equality must hold for every distribution f., we finally
obtain the following relation between the absolute values:

, , UPamDR|k,, ) UNawDR|kN the others shoulq be O(n) (see.Sec. V): for this reason, the
1 =1[C]* 4+ |Gy 2m0,DR],. —|C5] on9uDR];.. zero-order solution we put into the source term (31)
A= ky HZ ™=k corresponds to a single H-mode, which means
1 (e 222 PRl | (BS) . ky 3.0
UHamDR|kH MO(Z) = Zla"’, iaH = lﬁ+§+ ZV (Cl)

which is precisely (43). From this choice, we get

M (Aagy (2 — 1) + 4y (522 — 624 1) — 2522 + 22— 1)
() = oV : (C2)

Wi(z) i(da? (z — 1)? + diay (52 — 6z + 1) =252 + 27— 1)

= , C3

W(z) 4(z = 1)*V2(ay — ap)(ay — ay)(ay — ag) ()
Wa(z) _ i(4ag(z = 1)* + diay(52% — 62 4 1) = 2522 + 27 — 1)zi(@n—a) (c4)
W(z) a 4(z - 1)4V27’2((1P —ay)(ap —ay)(ap — ag) ’

Wi(z) 3 i(4a3,(z = 1) + diay (5% — 67 + 1) — 2572 4 27 — 1)zilen—av) (©5)
W(z) 4(z = 1)V (ay — ay)(ay — ap)(ay — ap) ’

Wy(z)  i(4ag(z = 1)* + diay(52% — 624 1) = 2522 + 27 — 1)zi(@n—a) (C6)
W(z) a 4z = 1)*V?(ag — ay)(ap — ap)(ap — ay)
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Computing the integrals in (32), we get

121(2) = 4V2}’2

izian (—4a%_1(z —1)2 —dioy (52 =8z +3) +25z> —262+9

(z— 1)3(0’11 —ap)(ay —ay)(ay —ag)

+Z(i(ZOcH +5i)%,F (2 i(ag —ap) + 1i(ayg —ap) +2;2) + 16(ay + 3i),F1 (3, i(ay —ap) + 1, i(ay —ap) +2;2))

(an —ap)(ay —ap—i)(ap—ay)(ap —ag)

_Z<24i2F1 (4, i((lH —ap) + 1, i(aH —ap) +2,Z))

(ay —ap)(ay —ap—1i)(ap—ay)(ap—ag)

n 2(i(2ay +5i)*,F1 (2,i(ap —ay) + 1 i(ay —ay) +2;2) + 16(ay +30),F1 (3, i(ay —ay) + L i(ay —ay) +2;2))

(ay —ay)(ay —ay —i)(ay —ap)(ay — ap)

_z2(24iF\(4vi(ay —ay) + Li(ay —ay) +2:2))

(ay —ay)(ay —ay —i)(ay —ap)(ay — ap)

+z(i(2aH +5i)2,F (2,i(ay —ag) + 1,i(ay —ag) +2;2) + 16(ay +3i),F(3,i(ay —ag) + 1,i(ay —ag) +2:2))

(ay —ap)(ay —ap—i)(ag —ap)(ag —ay)

_ 2(24i,F\(4.i(ay —ag) + 1, i(ay —ag) + 2§Z))>

(ay —ag)(ay —ag—i)(ag —ap)(ag —ay)

This is a particular solution of (29): the general
expression is obtained by adding a linear combination of
free-field solutions (with coefficients of order O()). The
coefficients of such combinations will be determined later
based on the boundary conditions. From (C7) we can
compute the asymptotic expression of it; around z =0
(x = —00):

it (z70) = cyz™ (1 + 0(z)),

A i(—4a2, — 12iay +9) )
4V (ay —ap)(ay —ay)(ay — ag)

The function (C7) is defined on the whole complex plane:
to write the asymptotic expression at 7 = oo (x = +00) we
use the connection formulas of the hypergeometric function

,Fi(a,b,c;7)

_ (=)™ (c)l'(b—a) . 1

— O 2F1<a,a—c+l,a—b+1,g)
P (g —
( le(al;lg()crfb) b)2F1 (b,b—c+1;—a+b+1;%>.

(©9)

Expanding around z = oo we find

(C7)

i(zro0)=— > ;24 (1+0(2)),

J=P.N.B
_in(2ap+3i)?(—1)i@n—r)csch(z(ay —ap))

’

)
4V (ap— -
r*(ap—ay)(ap—ag)
in(2ay +3i)?(=1) @~ aesch(n(ay —ay))
4V2y*(ay —ap)(ay —ag)

in(2ag +3i)%(=1)! @) csch(n(ay —ag))
Cp—=—

Cny =

El

4‘/272(0‘3 —ay)(ag—ap)
(C10)
From the boundary conditions (33) we see that we do not

have the modes P, N, and B at right infinity; so we add to
the particular solution the linear combination

CpZi® + cnZi + cpzios.
The first-order correction to the solution is thus
ui(z) = it (z) + cpz'® + cy7'™ + cpz's,
such that u;(z & o0) = 0. Finally, we can write down the

solution u(z) at the first perturbative order and its asymp-
totic behavior:

M(Z N ()) ~ (] + nCH)Zi(lH + ﬂcpzi(lp + ﬂcNZiaN + WCBZiaB,

(C11)
u(z = o0o) ~ g, (C12)

The coefficients (34) are obtained dividing (C11) by
(1 + ncy) and recalling ia; = i%+%+ i
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