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Supermassive black holes at the center of each galaxy may be surrounded by dark matter. Such dark
matter admits a spike structure and vanishes at a certain distance from the black hole. This dark matter
will impact the spacetime near the black hole and the related ringing gravitational waves can show
distinguished features of the black hole without dark matter. In the present work, we focus on the
quasinormal modes of the axial gravitational perturbation who dominate the ringdown process of the
perturbed black holes surrounded by dark matter spikes. The relativistic modification results in less
impact on QNMs. And the relative ringing frequency difference between the black holes with and without
dark matter can be as large as 10−2. These features can be used in future gravitational wave detection
about extremal mass ratio inspiral systems to probe the existence of dark matter around supermassive
black holes.

DOI: 10.1103/PhysRevD.108.024070

I. INTRODUCTION

Black holes (BHs) are important predictions of general
relativity (GR) [1]. In the past century, many scientists
have endeavored to explore the existing evidences and
characteristics of black holes [2]. Since the first detection
of gravitational wave (GW) event in 2015 [3], more than
90 directly observed black hole binary events have been
detected [4–8]. The observations of the shadow from M87
and our galaxy also provided additional evidence for
supermassive black holes (SMBHs) [9–16].
The event horizon is the distinguishable feature of BHs.

Event horizon, as a one-way causal boundary, prevents us
from detecting the inside of a black hole [17]. Black holes
in our universe may be affected by astronomical environ-
ments, such as the dark matter (DM) near the BHs [18–20].
It is believed that 90% of the host galaxies of SMBHs are
composed of DM [21]. It is interesting to ask how the DM
around the BHs impacts the spacetime and GWs related to
these BHs.
The exploration of DM has a long history. The numerical

results from N-body cosmological simulations suggest the
density distribution of DM is peaked near the center of

galaxies and decreases as a power of 1=rwith r the distance
from the halo’s center, as given by [22]:

ρðrÞ ¼ ρ0ðr=r0Þ−γ0ð1þ ðr=r0Þα0Þðγ0−β0Þ=α0 ; ð1Þ

where r0 and ρ0 are the scale factors determined by
the numerical fitting such as [23], while α0, β0, and γ0
are the parameters determined by the choice of models
with ðα0; β0; γ0Þ ¼ ð1; 4; 1Þ for the Hernquist profile
and ðα0; β0; γ0Þ ¼ ð1; 3; 1Þ for the Navarro-Frenk-White
(NFW) profile [24,25].
With the presence of a BH, the density distribution of

DM changes. In an early pioneering work [26], a
Newtonian method is used to calculate the redistribution
of cold DM near the center of galaxies. The BH accretion
makes the DM form a cusp (“spike”) structure. For spheri-
cally symmetric BHs, the density peaks near r ∼ 4Rs with
Rs the Schwarzschild radius and has a steep cutoff at
r ¼ 4Rs, below which the density of DM vanishes due to
annihilation or dropping into the BHs. With the relativistic
modification [27], the density profile has similar character-
istics, but the cutoff radius will be changed to r ¼ 2Rs.
In [22], both Hernquist and NFWmodels with or without

relativistic modifications are introduced to explore the
impacts of the DM spike on the extreme mass-ratio inspirals*zjcao@amt.ac.cn
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(EMRIs) GW waveform. And the relativistic modifications
are found to have a positive impact on the detectability of
DM for both models. In the current work, we use the same
profile to explore the impacts of the ringdown waveform,
specifically, the quasinormal modes (QNMs) of the per-
turbed BHs [28–32]. This DM profile takes the BHs
Eddington accretion effect into consideration instead of
Bondi accretion effect [33]. Not like Refs. [34,35] this DM
profile does not consider the self-interactions of DM.
Different DM profile may change the QNMs properties.
The detection of ringdown signals with ground-based

GW detectors is not satisfactory due to the low signal-to-
noise (SNR) [36]. Taking the advantage of high SNR, the
impacts of DM spike on ringdown of SMBHs may be
detected by the future space-based GW detectors including
LISA, Taiji, Tianqin, and DECIGO [37–39]. As an example,
we will discuss the detectability of such signals for the
SgrA� BH at the center of MilkyWay [23], whose ringdown
frequency exactly falls into the sensitive frequency bands of
space-based GW detectors [40].
In [41–45], the impacts of the cold DM halo on the

ringdown process are explored. And the impacts of the DM
spike with initial profile Eq. (1) and β0 ¼ γ0 on the QNMs
of scalar perturbations can be found in [46]. Here we extend
the investigation to axial gravitational perturbations with
Hernquist profile ðα0; β0; γ0Þ ¼ ð1; 4; 1Þ and Navarro-
Frenk-White (NFW) profile ðα0; β0; γ0Þ ¼ ð1; 3; 1Þ. And
the impacts of different models and relativistic modification
are also taken into consideration.
The structure of this paper is as follows: based on the

profile of DM spike and using the TOVequations, we derive
the modified gauge metric of spherically symmetric BHs in
Sec. II. We then derive the QNMs equation for axial
gravitational perturbations in Sec. III. After that, we solve
the QNMs equations with numerical methods and present
the results in Sec. IV. We will use the SgrA� with the DM
spike as an example to explore the impacts of different DM
spikes on QNMs and discuss the detectability of such
impacts. Throughout the paper, we use the geometric unit
system so that c ¼ G ¼ 1, where c is the speed of light and
G is the gravitational constant.

II. BLACK HOLES SURROUNDED BY
DARK MATTER SPIKE

In this section, we consider the spherically symmetric
BHs surrounded by the DM spike and derive the modified
metric. The most well-known solution for the spherically
symmetric static BHs spacetime is the Schwarzschild BHs,
which characterize the vacuum scenario. In general, such an
isolated BH does not exist, particularly for SMBHs in the
center of galaxies, which are more or less surrounded by
some matters with complex distribution, such as DM. Then,
a Schwarzschild BH in DM spike can be well described by
the most general metric:

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ: ð2Þ

and the contribution of the DM can be thought of as the
energy-momentum tensor:

Tμ
ν ¼ diagf−ρðrÞ; pðrÞ; pðrÞ; pðrÞg ð3Þ

where ρðrÞ depends on the density distribution of DM.
Based on [22], we introduce the density profile of the DM
spike as:

ρðrÞ ¼ ρR

�
1 −

4ηM
r

�
w
�
σM
r

�
q

ð4Þ

with σ ¼ 4.17 × 1011 and ρR is the effective density of the
DM spike given by:

ρR ¼ A × 10δ
�

ρ0
0.3 GeV=cm3

�
α
�

M
106M⊙

�
β
�

r0
20 kpc

�
γ

;

ð5Þ

where the parameter η ¼ 1ð2Þ for relativistic (Newtonian)
DM profiles and limits the location of a steep cutoff at r ¼
4ηM (corresponding to 2Rs and 4Rs respectively with Rs
the Schwarzschild radius), below which the DM density
vanishes due to annihilation or dropping into the BH as
shown in Fig. 1. The parameters ðα; β; γ; δÞ depend on
whether the Hernquist model or the NFW model is chosen.
The parameters ðA; w; qÞ are the fitting factors. ρ0 and r0 are
the scale factors in Eq. (1) and we choose the range the same
as [22], while M is the mass of the BHs and the range is
105 ∼ 109M⊙ for SMBHs [32]. Table I lists all the param-
eter values with the range of ρR.

FIG. 1. The DM profiles for Hernquist Newtonian model,
Hernquist relativistic model, NFW Newtonian model and
NFW relativistic model. The parameters are M ¼ 106M⊙,
ρ0 ¼ 0.3 GeV=cm3, r0 ¼ 20 kpc. The two vertical lines corre-
spond r ¼ 2Rs and r ¼ 4Rs, below which the density vanishes
for relativity and Newtonian DM respectively due to annihilation
or dropping into the BH.
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Inspired by the work of [46], we make the same
assumption that the DM distributes like dust and the
pressure pðrÞ can be neglected with respect to ρðrÞ and
ð1 − gðrÞÞ=8πr2 as shown in Fig. 2. Einstein equations
Gμν ¼ 8πTμν or the TOV equations [46–48] now read:

rg0ðrÞ þ gðrÞ − 1þ 8πρðrÞr2 ¼ 0; ð6Þ

fðrÞgðrÞ − fðrÞ þ rgðrÞf0ðrÞ ¼ 0; ð7Þ

p0ðrÞ ¼ −ρðrÞ 1 − gðrÞ
2rgðrÞ : ð8Þ

By using Eq. (4), we then integrate Eq. (6) from 4ηM to the
spatial infinity and obtain:

gðrÞ ¼ 1 −
2M
r

þ 8πρRðMσÞq
q − 3

r2−q

× 2F1

�
q − 3;−w; q − 2m;

4ηM
r

�
ð9Þ

where 2F1 is the hypergeometric function [49,50]. And
we have chosen the constant of integration so that
gð4ηMÞ ¼ 1 − 2M

r .
By substituting Eqs. (4) and (9) into Eq. (7), fðrÞ can be

obtained as:

TABLE I. The parameters for DM density spike profiles. We choose the same values as [22] except the mass of
BHs and we also calculate the realistic range of ρR. And we use “Rel.” to denote the models with relativistic
modification.

Hernquist (Newton) Hernquist (Rel.) NFW (Newton) NFW (Rel.)

η 2 1 2 1
α 0.335 0.335 0.331 0.331
β −1.67 −1.67 −1.66 −1.66
γ 0.31 0.31 0.32 0.32
δ −0.025 −0.025 −0.000282 −0.000282
Að10−43M−2

⊙ Þ 4.87 7.90 1.60 6.42
w 2.22 1.83 2.18 1.82
q 1.93 1.90 1.98 1.91
ρ0 ðGeV=cm3Þ 0.1–0.5 0.1–0.5 0.1–0.5 0.1–0.5
MðM⊙Þ 105–109 105–109 105–109 105–109

r0 (kpc) 0.005–50 0.005–50 0.005–50 0.005–50
ρRM2 1.14 × 10−32 1.85 × 10−32 3.57 × 10−33 1.43 × 10−32

∼7.08 × 10−30 ∼1.15 × 10−29 ∼2.66 × 10−30 ∼1.07 × 10−29

FIG. 2. Self-consistence check of the assumption that the pressure pðrÞ is ignorable in the spike region. The parametersM ¼ 106M⊙,
ρ0 ¼ 0.3 GeV=cm3, r0 ¼ 20 kpc are used here to numerically solve Eq. (8). The assumption that pðrÞ ≪ ρðrÞ and 8πr2pðrÞ ≪
1 − gðrÞ is valid in this region as shown in the figure. The two vertical lines correspond r ¼ 2Rs and r ¼ 4Rs, blow which the density
vanishes for relativity and Newtonian DM profile respectively.
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fðrÞ ¼
�
1 −

2M
r

�
× exp

�
1

ðq − 3ÞΓðq − 3Þ
XNmax

n¼0

�
8πΓðq − 2ÞðρRr2Þ

�
2M
r

�
n
�
Mσ

r

�
q

×

�
Γðq − 3Þ2F̃1

�
q − 3;−w; q − 2;

4Mη

r

�
−Γðnþ q − 2Þ2F̃1

�
nþ q − 2;−w;nþ q − 1;

4Mη

r

��

− πðρRM2Þ27−n−2qη2−n−qσqΓðq − 2ÞΓðwþ 1Þ
�

Γðq − 3Þ
Γðqþ w − 2Þ −

Γðnþ q − 2Þ
Γðnþ qþ w − 1Þ

���
; ð10Þ

where Γ is the Gamma function and 2F̃1ða; b; c; dÞ≡
2F1ða; b; c; dÞ=ΓðcÞ is the regularized hypergeometric
function. Besides choosing suitable integration constant
to satisfy fð4ηMÞ ¼ 1 − 2M

r , we use two tricks to simplify
the integration process: (1) Noticing that ρRM2 ≪ 1 as
shown in Table I, we apply the Taylor expansion for the
function about ρR and retain only the constant and first-
order terms of ρR. (2) Considering the integral region
r ≥ 4ηM, we expand the function about r to spatial infinity
and ignore the higher order terms than ð1=rÞNmax .
It is also important to note that Eqs. (4), (9), and (10)

only describe the scenarios in the spike region with
r ∈ ð4ηM;∞Þ. When r ∈ ð2M; 4ηMÞ and r → ∞ or we
have ρR ¼ 0, the density vanishes with ρðrÞ ¼ 0 and the
spacetime returns to Schwarzschild BHs with fðrÞ ¼
gðrÞ ¼ 1 − 2M

r . Table II contains the different scenarios
in both regions.
We then discuss the rationality of neglecting the pressure

pðrÞ in the spike region. Following the work of [46], Eq. (8)
needs to be considered. By substituting Eqs. (4) and (9),
the pressure pðrÞ can be numerically solved as shown in
Fig. 2. In this way, we find it valid for pðrÞ ≪ ρðrÞ and
8πr2pðrÞ ≪ 1 − gðrÞ in the spike region.

III. AXIAL PERTURBATIONS OF
SCHWARZSCHILD-LIKE BLACK HOLES

In this section, we consider the linear gravitational
perturbation for the modified Schwarzschild-like back-
ground metric given by Eq. (2). We shall deal with the
axial perturbation in Sec. III A and the master equations in
different regions are contained in Table II. The disconti-
nuity from the density profile results in the discontinuity of

the QNMs equations (as shown in Figs. 1 and 3), and the
numerical method for such a problem will be discussed in
Sec. III B.
In general, the perturbation can be caused by the

injection of gravitational waves or the fall of a particle
into the BHs [51,52], in addition to describing the remnants
of a binary BH merger event. Such perturbed metric can be
described by:

gμν ¼ g
∘
μν þ hμν; ð11Þ

where g
∘
μν is the metric of background spacetime given by

Eq. (2) and Table II, while hμν is the linear perturbation
term. And higher-order perturbation terms are neglected.
Because of the static spherical symmetry of the back-

ground spacetime M4ðt; r; θ;ϕÞ, it can be regarded as the
product of a Lorentzian 2-dimension manifoldM2ðt; rÞ and
a 2-dimension unit sphere surface manifold S2ðθ;ϕÞ. By
taking advantage of this, the metric perturbation hμν can be
decomposed into multipoles known as axial (odd) parity
and polar (even) parity as [53,54]:

hμν ¼
X∞
l¼0

Xm¼l

m¼−l
½ðhlmμν ÞðaxialÞ þ ðhlmμν ÞðpolarÞ�; ð12Þ

where, l and m are the integers from the separation of θ
and ϕ respectively. By adopting the Regge-Wheeler
(RW) gauge, the axial perturbations can be parametrized
as [31,55]:

ðhlmμν ÞðaxialÞ ¼
�
sin θ

∂Yl0ðθÞ
∂θ

�
eiωtϵ·

×

0
BBBB@

0 0 0 h0ðrÞ
0 0 0 h1ðrÞ
0 0 0 0

h0ðrÞ h1ðrÞ 0 0

1
CCCCA ð13Þ

and that of the polar perturbations is

TABLE II. Summary of the functions or equations in different
regions. ρðrÞ is the DM profile, fðrÞ and gðrÞ are modified gauge
functions in Eq. (2) and r� is the tortoise coordinate.

r ∈ ð2M; 4ηMÞ r ∈ ð4ηM;∞Þ
ρðrÞ 0 Eq. (4)
fðrÞ 1 − 2M

r
Eq. (10)

gðrÞ 1 − 2M
r

Eq. (9)
r� Eq. (19) Eq. (16)
Axial equations Eq. (18) Eq. (15)
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ðhlmμν ÞðpolarÞ ¼ Yl0ðθÞeiωtϵ ·

0
BBBBBB@

H0ðrÞ
�
1 − 2M

r

	
H1ðrÞ 0 0

H1ðrÞ H2ðrÞ
1−2M

r
0 0

0 0 r2KðrÞ 0

0 0 0 r2KðrÞsin2θ

1
CCCCCCA
; ð14Þ

where jϵj ≪ 1 is the real number to track the order of
perturbation proposed by [43]. ω is the eigenfrequency
from the separation of t known as the quasinormal modes
(QNMs) of the BHs. And Ylm stands for the spherical
harmonics with m ¼ 0 for the spherical symmetry case.
Notice that the axial gravitational perturbation is intrinsi-

cally decoupled with scalar fields, the perturbations of DM
will be neglected for simplification, and the corresponding
perturbation equations for the axial case can be then obtained
in Sec. III A. However, such an assumption is not valid for
the polar perturbations, which always couple with any extra
matter fields [56]. Thus, obtaining the QNMs equations for
polar perturbations is a nontrivial problem, and we would
like to just focus on the axial case in the rest paper.

A. QNM equations for axial perturbation

Based on [43,57], we substitute Eq. (13) into the Einstein
equations Gμν ¼ 8πTμν and neglect the perturbation of
DM. In the DM spike region, the QNM equations of the
axial gravitational perturbation in the frequency domain
can be obtained:

�
∂
2

∂r2�
þ ω2 − VaxialðrÞ

�
ΨðrÞ ¼ 0; ð15Þ

where r� is the tortoise coordinate defined by:

dr� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞgðrÞp ð16Þ

and the effective potential is

VaxialðrÞ ¼
rf0ðrÞg0ðrÞþ gðrÞ½f0ðrÞþ 2rf00ðrÞ�

2r
−
gðrÞf0ðrÞ2
2fðrÞ

þ fðrÞ½rg0ðrÞþ 4gðrÞþ 2ðl2þl− 2Þ�
2r2

; ð17Þ

where gðrÞ and fðrÞ are given by Eqs. (9) and (10)
respectively. When r ≤ 4ηM or ρR ¼ 0, it returns to
Schwarzschild case (see Table II) and the QNM equations
become:

�
∂
2

∂r2�
þ ω2 −

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

��
Ψ ¼ 0 ð18Þ

with r� given by:

dr� ¼
�
1 −

2M
r

�
−1
dr ð19Þ

which is known as RW equation [58].

B. Matrix method for QNMs

So far, the physical problem of perturbation has been
written in the master equations as summarized in Table II.
Obviously, there is a discontinue point at r ¼ 4ηM for
ρR ≠ 0 as the axial effective potential is shown in Fig. 3 for
example. And several standard methods for QNMs cannot
be used directly, likeWKB approximation methods [59–61].
We then use the modified matrix method to deal with
it [62–66].
We begin with the boundary conditions for QNMs of the

BHs. As mentioned before, the equations return to the
Schwarzschild case when r ∼ 2M or r ∼∞. Thus, boun-
dary conditions for QNMs are e−iωr� and eiωr� , denoting the
incoming waves near the horizon and outgoing waves at
spatial infinity respectively [31,67]. The tortoise coordinate
r� is defined by Eq. (19) or can be explicitly written as
r� ¼ rþ 2M lnðr − 2MÞ. And the boundary conditions
now read:

FIG. 3. Comparison of the axial effective potentials for BH with
and without DM. In order to make the difference obvious we use
parameter ρRM2 ¼ 10−27 which is larger than realistic values as
listed in Table I. When r < 4ηM, the DM vanishes and the
spacetime returns to Schwarzschild, causing a discontinuous
point at r ¼ 4ηM.
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Ψ →

�
e−iωrðr − 2MÞ−2iMω r → 2M

eiωrðr − 2MÞ2iMω r → ∞
. ð20Þ

We then introduce the substitution for r ∈ ð2M; 4ηMÞ:

ΨðrÞ≡ e−iωrðr − 2MÞ−2iMωLðrÞ ð21Þ

y ¼ r − 2M
4ηM − 2M

ð22Þ

and for r ∈ ð4ηM;∞Þ:

ΨðrÞ≡ eiωrðr − 2MÞ2iMωRðrÞ ð23Þ

z ¼ 1 −
4ηM
r

; ð24Þ

where Eqs. (21) and (23) remove the singularity at the
boundaries, while Eqs. (22) and (24) map r ∈ ð2M; 4ηMÞ
and r ∈ ð4ηM;∞Þ to [0, 1] respectively. The QNMs
equations in Table II can be rewritten as:

A2ðyÞL00ðyÞ þ A1ðyÞL0ðyÞ þ A0ðyÞLðyÞ ¼ 0 ð25Þ

B2ðzÞR00ðzÞ þ B1ðzÞR0ðzÞ þ B0ðzÞRðzÞ ¼ 0; ð26Þ

where A2, A1, A0, B2, B1, and B0 are the coefficient
functions about ω, y (or z) and the DM parameters in
Table I, depending on the axial QNMs equations. And the
boundary conditions Eq. (20) now become:

Lðy ¼ 0Þ ¼ const; Rðz ¼ 1Þ ¼ const. ð27Þ

By further introducing:

L̃ðyÞ≡ yLðyÞ ð28Þ

R̃ðzÞ≡ ð1 − zÞRðzÞ ð29Þ

the boundary conditions can be further simplified as:

L̃ðz ¼ 0Þ ¼ R̃ðz ¼ 1Þ ¼ 0. ð30Þ

The corresponding equations now become:

Ã2ðyÞL̃00ðyÞ þ Ã1ðyÞL̃0ðyÞ þ Ã0ðyÞL̃ðyÞ ¼ 0 ð31Þ

B̃2ðzÞR̃00ðzÞ þ B̃1ðzÞR̃0ðzÞ þ B̃0ðzÞR̃ðzÞ ¼ 0 ð32Þ

with

Ã0ðyÞ ¼ y2A0ðyÞ − yA1ðyÞ þ 2A2ðyÞ
Ã1ðyÞ ¼ y½yA1ðyÞ − 2A2ðyÞ�
Ã2ðyÞ ¼ y2A2ðyÞ
B̃0ðzÞ ¼ ðz − 1Þ2B0ðzÞ − ðz − 1ÞB1ðzÞ þ 2B2ðzÞ
B̃1ðzÞ ¼ ðz − 1Þ½ðz − 1ÞB1ðzÞ − 2B2ðzÞ�
B̃2ðzÞ ¼ ðz − 1Þ2B2ðzÞ. ð33Þ

Then, we deal with the discontinuity at r ¼ rc ≡ 4ηM.
Such discontinuity provides the limitation governed by
Israel’s junction condition [68] and the wave functions on
both sides are related to vanishing Wronskian [64,65,69]:

Ψ0ðr ¼ r−c ÞΨðr ¼ rþc Þ −Ψðr ¼ r−c ÞΨ0ðr ¼ rþc Þ ¼ 0; ð34Þ

where r ¼ r−c and r ¼ rþc denote the asymptotic values
from left or right to the discontinue point respectively. We
then define the ratio coefficient κ as:

κ ¼ Ψ0ðr ¼ r−c Þ
Ψðr ¼ r−c Þ

¼ Ψ0ðr ¼ rþc Þ
Ψðr ¼ rþc Þ

ð35Þ

By substituting Eqs. (21)–(24), it can be rewritten as:

0 ¼ yL̃0ðyÞ þ yf2ð1 − 2ηÞκMy

− 2iω½ð2η − 1ÞMyþM� − 1gL̃ðyÞ ð36Þ

0 ¼ ðz − 1Þ2ð2ηþ z − 1ÞR̃0ðzÞ þ ½−ð2ηþ z − 1Þ
× ð4ηκM þ z − 1Þ þ 8iη2Mω�R̃ðzÞ ð37Þ

And Eqs. (36) and (37) are the connection conditions.
Then, the matrix method algorithm for our case is as

follows:
(1) Following [62], any coordinate x ∈ ½0; 1� can be

discretized into N points with x1 to xN . With the
application of Taylor expansion, the value of a
function with its 1st order derivatives to its Nth
order derivatives at each point can be written in the
N × N matrices respectively (details in [62]).

(2) By substituting the matrices of the function, 1st
order derivatives and 2nd order derivatives from
(1), Eqs. (31) and (32) can be rewritten as two
matrix equations M̄LL ¼ M̄RR ¼ 0 respectively.
Here, M̄L and M̄R are the NL × NL and NR × NR
matrices only about ω respectively, while
L ¼ ðLðx1Þ;…; LðxNL

ÞÞT and R ¼ ðRðx1Þ;…;
RðxNR

ÞÞT are the values of functions at each points.
(3) Then, we use Eq. (30) to replace the 1st line of M̄L

andNth line of M̄R, while we use Eqs. (36) and (37)
to replace the Nth line of M̄L and 1st line of M̄R
respectively. We now obtain MLL ¼ MRR ¼ 0,

ZHAO, SUN, LIN, and CAO PHYS. REV. D 108, 024070 (2023)

024070-6



with ML and MR the modified matrices about ω
and κ.

(4) By using the equations detðMLÞ ¼ detðMRÞ ¼ 0,
the QNMs ω can be numerically solved with the
corresponding ratio coefficients κ.

IV. RESULTS

In this section, we shall discuss the numerical results of
QNMs and their characteristics affected by the DM spike.
With Eq. (5), we have unified the parameters of the DM
models r0 and ρ0 and the parameter of the BHs M into a
single dimensionless parameter ρRM2. By analyzing the
parameter ρR, we can cover the analysis of the parameters
r0, ρ0 andM. We then consider the QNMs of the Sgr A� BH
at the center of Milky Way in Sec. IVA and explore the
QNMs vary with ρR to simulate the exploration of various
BHs and galaxies in the universe in Sec. IV B. And the
detectability of the deviation effected by DM spike will be
discussed in Sec. IV C.
Due to the limited computational capacity, it is impos-

sible to use arbitrarily large matrices and unlimited pre-
cision in our numerical algorithm. Based on the studies of
the Mashhoon method and WKB approximate method for
solving QNMs, the peak of the effective potential plays a
significant role in QNMs [59,70]. And since the peak of the
effective potential falls exactly in r ≤ 4ηM as shown in
Fig. 3, in order to speed up the calculation, we choose
NL ¼ 24, NR ¼ 12, and Nmax ¼ 20.
In order to understand the computational errors that

result from this choice, we first calculate the differences
between the results of our algorithm with ρR ¼ 0 and the

standard Schwarzschild values as listed in Table III. And
the QNMs of the Schwarzschild case from 61 order matrix
method are used as standard values, which have been
proven to be accurate within 12 significant digits [64].
Notice that the choice of ρR ¼ 0 returns the equations in
Table II back to the Schwarzschild case with corresponding
QNMs, the differences in Table III imply that our results
can be credible within 6 significant digits.

A. The QNMs of the BH in Milky Way

We certainly want to locate a suitable observational
source and target it with our GW detectors, in order to
detect the ringing of a BH when it is perturbed. Due to the
unsatisfactory detection of ringdown signals with ground-
based GW detectors [36], we look to space-based GW
detectors in the future.
Based on [40], the corresponding frequency of the

ringdown signal from the SMBHs with M ∼ 106M⊙ is
∼10−2 Hz, which falls exactly in the sensitive frequency
bands of LISA. And the Sgr A� BH at the center of the
Milky Way galaxy with M ¼ 4.3 × 106M⊙ can be such a
good source. The best-fit values for the parameters of the
NFW model are ρ0 ¼ 0.51 GeV=cm3 and r0 ¼ 8.1 kpc,
corresponding to ρRM2 ¼ 1.27 × 10−32 for NFW (Newton)
and ρRM2 ¼ 5.09 × 10−32 for relativistic DM profile
respectively [23]. We then calculate the QNMs of the
Sgr A� BH in DM spike and list them in Table IV.
As shown in Table IV, the effects of the DM spike on the

QNMs of the Sgr A� BH are ignorably small. The
deviations of the fundamental mode from the one without
DM are about ∼10−9 Hz and ∼0.001s. The detection of
such deviations is not possible in the near future.

B. The fundamental QNM with varying ρR
We then explore a wider range of observational sources

with varying parameters. For given parameters r0, ρ0, and
M, the parameter ρR is uniquely determined by Eq. (5).
Through the exploration of the trend of QNMs with varying
ρR, the corresponding trend for parameters r0, ρ0, and M
can also be obtained. Specifically, the dimensionless
parameter ρRM2 is closely related to r0, ρ, and M. This
exploration is interesting for three reasons [42,43]:

TABLE III. The differences between the results of our algo-
rithm with ρR ¼ 0 and the standard Schwarzschild values validate
our numerical algorithm. And we use ωs and ωa to denote the
standard Schwarzschild values and the results of the axial QNMs
from our algorithm respectively.

l n 2Mðωa − ωsÞ
2 0 −3.9 × 10−9 þ 1.2 × 10−8i

1 −1.6 × 10−7 þ 5.6 × 10−7i
3 0 −8.3 × 10−11 þ 1.0 × 10−9i

1 −4.0 × 10−8 þ 7.2 × 10−8i

TABLE IV. We list the axial QNMs 2Mω of the Sgr A� BH at the center of Milky Way galaxy surrounded by the
NFW DM spike. And we use “Rel.” to denote the models with relativistic modification.

l n Newton Rel. Schwarzschild

2 0 0.747342 − 0.177926i 0.747343 − 0.177924i 0.747343 − 0.177925i
1 0.693541 − 0.547762i 0.693422 − 0.547827i 0.693422 − 0.547829i

3 0 1.198890 − 0.185406i 1.198886 − 0.185406i 1.198887 − 0.185406i
1 1.165002 − 0.562909i 1.165286 − 0.562594i 1.165288 − 0.562596i
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FIG. 4. The behavior of the QNMs with respect to the dimensionless parameter ρRM2 for Hernquist models of DM profile.
In figures, “Re” in the left column denotes the real part, and “Im” in the right column denotes the imaginary part. The marked points
correspond to ρRM2 ¼ 10−35; 10−34;…; 10−29.
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(1) The DM parameters r0 and ρ0 are generally derived
by fitting the corresponding density profiles with
the data of rotation curves in various galaxies [23].
They can accurately reflect the distribution of DM
throughout the entire galaxy, but are essentially
effected by BHs and basically free near BHs.

(2) Around a BH, the baryonic component also makes
significant contributions to the DM parameters r0
and ρ0.

(3) The parameters r0 and ρ0 change from galaxy to
galaxy, whileM changes along with BHs. A suitable
BH in the DM spike is easier for detection.

As shown in Fig. 4, the axial QNMs for both Hernquist
and NFW models show different trends between Newton
and the relativistic case. Without relativistic modification,
both the real and imaginary parts of the QNMs decrease
with the increasing ρRM2. However, with relativistic
modification, both the real and imaginary parts of the
QNMs increase as ρRM2 grows.

C. Hints of detectability by space-based detectors

With the previous exploration, we have found that the
DM spike can result in deviations of QNMs from that of
BH without DM. We then explore the possibility of
detection of such deviations by future space-based detec-
tors. The GW waveform during the ringdown process can
be written as [40]:

hþ þ ih× ¼ Mz

DL

X
lmn

AlmneiðflmntþϕlmnÞe−t=τlmnSlmn; ð38Þ

where Mz is the redshifted BH mass, DL is the luminosity
distance to the source, Almn is the amplitude of the
corresponding QNM, ϕlmn is the phase coefficient and
Sl is the 2-spin-weighted spheroidal harmonics depending
on the polar and azimuthal angles. And the real waveform is
the superposition of the axial and polar parity components.

The two parameters associated to QNMs are the GW
frequency flmn and the damping time τlmn defined as:

2πflmn ¼ ReðωlmnÞ; ð39Þ

τlmn ¼ −
1

ImðωlmnÞ
; ð40Þ

where ωlmn is the QNMs for given ðl; m; nÞ. Here we
consider only the fundamental mode with ðl; m; nÞ ¼
ð2; 0; 0Þ because it decays slowest. Following [42], the
frequency and the damping time can be expanded as:

flmn ¼ fSchlmnð1þ δflmnÞ; ð41Þ

τlmn ¼ τSchlmnð1þ δτlmnÞ; ð42Þ

where fSchlmn and τSchlmn are the QNM frequency and damping
time for Schwarzschild case, while δflmn and δτlmn are the
corresponding relative deviations. Based on [71], the relative
deviations larger than ∼10−3 have the possibility to be
detected by future space-based detectors.
From Fig. 5, we can see that the deviations of axial

QNMs increase along with the increasing ρRM2. In general,
the deviation for the NFW DM profile is larger than that of
the Hernquist profile. The deviation for the Newtonian
profile is larger than that of the relativistic profile.
Corresponding to the DM profiles listed in Table I the
largest deviation of δflmn corresponding to ρRM2 ∼ 10−28

and with NFWDM profile may be as high as∼10−2 without
relativistic modification and about ∼10−4 with relativistic
modification. In the meantime, δτlmn can reach 0.1 and
0.001 respectively. Such deviations have the possibility to
be detected by future space-based detectors [71].

V. CONCLUSION

In this paper, we explore the behavior of the GWs
waveform emitted by the perturbed Schwarzschild-like

FIG. 5. The behavior of the deviations with respect to the dimensionless parameter ρRM2 for different models. The points in each
figure from the left to the right correspond to ρRM2 ¼ 10−32; 10−31;…; 10−28 respectively.
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BHs in the DM spike. Accounting for the profile of the DM
spike we use the TOV equation to derive the modified
metrics. After that, we derive the QNMs equations for axial
case under the modified metrics and use modified matrix
methods to calculate the QNMs. Finally, we discuss the
impacts of the DM spike and analyze the detectability.
The key points of the exploration are as follows:
(1) We unified the parameters r0, ρ0, andM into a single

dimensionless parameter ρRM2 by Eq. (5). And the
analysis of ρRM2 can cover all three parameters.

(2) We neglect the pressure pðrÞ in the DM spike and
show the rationality in Fig. 2.

(3) The DM spike profile vanishes for r ≤ 4ηM which
divides the entire domain into two different regions
as shown in Fig. 1. And the behaviors of the
spacetime and QNMs equations differ in both regions
as shown in Table II.

(4) Such differences in both regions lead to the dis-
continuity of QNMs equations at 4ηM as shown in
Fig. 3. And the modified matrix method for such a
scenario is used.

(5) We choose NL ¼ 24, NR ¼ 12 and Nmax ¼ 20, and
the numerical results are as accurate as 6 significant
digits as shown in Table III.

(6) The QNMs of the Sgr A� BH at the center of the
Milky Way galaxy in the NFW DM spike are
calculated and listed in Table IV.

(7) We explore the trend of fundamental QNM with
varying ρR to simulate the varying BHs and galaxies.
The trends with and without relativistic modification
are different: both the real and imaginary parts
decrease as ρRM2 increase without relativistic modi-
fication, while they increase with relativistic modi-
fication. And details are shown in Fig. 4.

(8) The detectability of the deviations affected by the
DM spike is explored. The relativistic modification
cause less relative deviation than Newton case. For
the DM profiles listed in Table I, the relative
deviation of the QNM frequency can be as high
as ∼10−2, which can be detected by future space-
based detectors.

In summary, the presence of the DM spike does impact
the axial ringing GW waveform of BHs. Only spinless BH
with nonself-interaction DM spike is investigated in the
current paper. The self-interaction DMmay change the DM
profile, and the effect of the DM spike for spinning BHmay
be even stronger because the spin of a BH can enhance the
spike effect [18] and enlarge the decay time of QNMs. And
these will be the focus of our next exploration.
Another point of interest, of course, is the impact on

QNMs of polar case. As is mentioned in Sec. III, the
perturbations of DM always couple with any extra matter
fields [56], which may have a more significant impact on
polar QNMs and then easier to be detected. And this will
also be the focus of our next exploration.
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