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The generalized SU(2) Proca theory is a vector-tensor theory of gravity whose action is invariant under
global transformations of the SU(2) group and includes second-order derivative self-interactions of the vector
field beyond the massive Yang-Mills theory. We find, in particular, that the presence of two Lagrangian pieces
consisting of four gauge fields minimally coupled to gravity gives rise to an exact Reissner-Nordström black
hole solution endowed with two different non-Abelian effective charges that depend on the specific
combination χ ¼ 2χ1 þ χ2 of the respective coupling constants. After studying the spacetime structure of the
black hole, which allows us to characterize the parameter space that preserves the weak cosmic censorship
conjecture, some astrophysical implications of the black hole solutions are investigated. First, joint analysis of
observations of the Event Horizon Telescope’s first images of Sagittarius A⋆ of our Galaxy and the Keck
telescope set the first serious constraint on the free parameters of the theory beyond the theoretical bounds
found. Second, we investigate the accretion properties of spherical steady flows around this class of non-
Abelian Reissner-Nordström black hole. Specifically, we examine the general conditions under which
transonic flow is allowed. An analytical solution for critical accretion is found in terms of the coupling
constant. In addition, we explore the effect of changing χ on the radial velocity and mass density numerically
and show how the extremal Reissner-Nordström and the standard Schwarzschild solutions as limit cases are
achieved. Finally, working in the fully relativistic regime, an analytical expression for the critical mass
accretion rate of a polytropic fluid onto a black hole is derived. As a main result, we find that the critical
accretion rate efficiency can be noticeably improved compared to the Schwarzschild case for a specific region
of the parameter space where the non-Abelian charge becomes imaginary.
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I. INTRODUCTION

Black holes (BHs) are among the most fascinating
objects in the Universe, resulting from the gravitational
collapse of massive objects, as predicted by general
relativity (GR), see, e.g., [1]. Apart from the fundamental
conceptions and interesting properties they harbor, BHs are
ideal laboratories, due to their intense gravitational fields,
to study high-energy astrophysical processes occurring in
their vicinity [2]. Furthermore, observations of BHs in the
strong field regime provide a unique opportunity to study
the properties of spacetime and understand the nature of
gravity in extreme environments. This is the primary
program of theories beyond GR, which aim to predict

deviations from Einstein’s theory. Motivated by these
concerns, BHs have been the central target of current
astrophysical experiments, including the Event Horizon
Telescope (EHT) and the very large telescope global
networks [3,4], GRAVITY Collaboration [5], and the
LIGO-Virgo Collaboration [6,7], among others. While
the predictions of GR are well consistent with all available
observational data within the current uncertainties [8],
some theories beyond Einstein’s theory can also explain
the observed phenomena [9–12]). Therefore, current and
future measurements of BHs at the event horizon scale pose
a challenge for theories beyond GR. Such observations,
however, do provide strong evidence about the existence
of BHs.
BHs can possess electric and magnetic charges as

described by the Reissner-Nordström (RN) solution in
the Einstein-Maxwell theory [13,14]. However, it is widely
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believed that astrophysical BHs are electrically neutral
due to charge neutralization by astrophysical plasma,
among other suitable physical mechanisms. Alternatively,
it is possible for BHs to carry, for instance, U(1) charge
instead of electromagnetic charge due to mechanisms in
the early Universe within the dark (hidden) sector with no
coupling to Standard Model particles (see, e.g., [15,16]).
See also [17] for a discussion from an astrophysical point
of view. Regardless of the underlying physical process
behind the charge mechanism, this remains an open
issue that has recently received significant attention after
measurements made by the EHT of the supermassive
BH M87⋆ shadow size and the detection of gravitational
waves from compact object binaries [18–23]. These
discoveries demand a careful examination of BH charges
beyond academic considerations. See also [24,25] for
observational limits on the charge of the Galactic
Center BH.
Moreover, several observations have confirmed that

BHs must rotate to account for various astrophysical
phenomena, such as x rays streaming off material near
BHs due to the formation of an accretion disk (see, e.g.,
Ref. [26]). On the other hand, the RN solution provides a
useful first approximation for studying realistic and com-
plex phenomena in the presence of electric charge, such as
accretion and shadow phenomena. The charge of the
RN black hole plays a significant role in the event horizon
structure, similar to the role of spin. However, it is
important to note that RN and Kerr black holes are
fundamentally different scenarios.
The electric and magnetic charges of the RN black

hole can have similar effects as the spin parameter of a
rotating Kerr black hole, which has been observed in the
magnetar J1745-2900 orbiting around the supermassive BH
Sagittarius A⋆ [27]. In addition, recent observations on
the motion of S stars have constrained the spin of the
central object in the Milky Way to be relatively small, with
a=M ≲ 0.1 [28]. This suggests that, even though BHs are
expected to have significant spin, “there exist objects with
small angular momentum” that can be described by a
stationary and spherically symmetric spacetime [29].
After the discovery of (purely magnetic) static spheri-

cally symmetric non-Abelian BH solutions in the Einstein
SU(2) Yang-Mills (EYM) model [30–32], it was soon
demonstrated that they are perturbatively unstable [33].
To address this problem, higher-order curvature terms of
the gauge field [34,35], as well as nontrivial combina-
tions with other theories, have been introduced into the
gravitational sector (see, e.g., Ref. [36] for previous
proposals). Furthermore, some BH solutions with non-
Abelian hairs have been found in theories beyond the
canonical Yang-Mills theory but still within the framework
of GR [34,35,37]. In addition, higher curvature terms of the
metric tensor, such asfðRÞ gravity coupled to theYang-Mills
field, also admit BH solutions with single or double
horizons [38].

The EYM case is interesting, as there exists a RN
solution [39,40]. However, unlike the Einstein-Maxwell
case, the EYM RN solution is unstable, indicating
that, although both models share the same spacetime
configuration, they are perturbatively different. The same
is true in the Einstein-Yang-Mills-Higgs case, where a
RN solution exists but can be stabilized by the Higgs
mechanism [41].
The quest to construct classical theories beyond

Einstein’s theory is an ongoing and active area of
research, fueled by the need to address long-standing
issues related to singularities [42,43] and renormaliza-
tion [44] in GR. While Einstein’s theory of gravity
provides an effective description of the gravitational
interaction, it is only valid up to a certain cutoff scale
before it loses its regime of validity [45,46]. If this
breakdown occurs, for instance, in the strong gravity
regime, then modified gravity theories may play a
significant role in describing the behavior of compact
objects, such as BHs and neutron stars. More impor-
tantly, these theories have the potential to provide a
more complete and accurate description of the gravita-
tional interaction at these scales, which is crucial for a
deeper understanding of the nature of gravity and the
behavior of astrophysical objects.
One promising approach to modify Einstein’s theory is

to introduce new gravitational degrees of freedom (see,
e.g., [47]). The simplest example is the Horndeski
theory [48], which introduces a scalar field and yields
field equations that are, at most, of second order. This is
crucial for avoiding the Ostrogradski ghost [49]. The
generalized Proca theory [50–53] is a vector-tensor
version of the Horndeski theory, where the internal gauge
symmetry of the vector field has been abandoned to
allow for the existence of extra terms [54–57]. Adding a
global SU(2) internal symmetry to the generalized Proca
leads to what we called the generalized SU(2) Proca
(GSU2P) theory [54–57], whose action is invariant under
diffeomorphisms and globally invariant under the SU(2)
group transformations. However, the equivalence between
these two vector-tensor theories is not straightforward due
to the non-Abelian nature of the GSU2P theory, leading
to the presence or absence of new terms, which can
potentially result in new phenomenology [58]. Although
the GSU2P theory was first formulated in [54] by
imposing a primary constraint-enforcing relation to elimi-
nate the nonphysical degree of freedom from the vector
field, a secondary constraint-enforcing relation was
required to close the constraint algebra [56]. Therefore,
all Lagrangian building blocks in the GSU2P theory
were constructed to ensure the propagation of the correct
number of physical degrees of freedom, thereby avoiding
the Ostrogradski instability.
The aim of this paper is to explore the astrophysical

implications of the GSU2P theory, which provides a useful
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framework for investigating the theory at that relevant
scale. The field equations in the GSU2P theory are highly
nontrivial, which makes it challenging to obtain analytical
solutions for the entire theory. Therefore, we have focused
on studying the phenomenological aspects of individual
Lagrangian pieces, as we did in our recent work on
particlelike solutions [59]. Specifically, we have investi-
gated two Lagrangian pieces that involve quartic-order
nonderivative self-interactions of the gauge field, as they
allow for analytical solutions of BHs, unlike the other
Lagrangian pieces. We plan to report on numerical
solutions for the derivative self-interaction terms in a
separate work.
In this paper, we report an analytical exact Reissner-

Nordström solution within the GSU2P theory. The solu-
tions are characterized by two non-Abelian effective
charges that depend on the coupling constants of the
Lagrangian pieces. While this solution shares the same
RN spacetime structure as the standard solution, there is a
crucial difference: the charge in our solution is not of
electromagnetic origin and can even be imaginary, resulting
in negative energy density. This leads to interesting
astrophysical implications. It is worthwhile mentioning
that our findings are rooted in modified theories of gravity,
although they were particularly derived from Lagrangian
pieces minimally coupled to gravity.
Accretion processes of ideal and polytropic fluids

onto black holes have been an area of intense study
in astrophysics (see, e.g., [60–63]), serving as a proof
of concept in both the context of GR and more gen-
eral frameworks. In particular, accretion flows in an
arbitrary spacetime have been extensively studied as
valuable astrophysical probes for detecting any devia-
tions from GR and testing alternative theories of
gravity [64–77].
The paper is structured as follows. In Sec. II, we

introduce the model and derive in detail an exact non-
Abelian RN BH solution in terms of the coupling
constants of the theory. Some properties of the BH
solutions, such as the event horizon, photon sphere, and
shadow, are studied. In particular, observational data of
the EHT’s first images of Sagittarius A⋆ are used to
infer the first constraints on the effective coupling
constant. In Sec. III, we present a general description
of the hydrodynamics equations of the accretion flow,
and in Sec. IV, we calculate the critical accretion rate
for isothermal and polytropic fluids using analytical and
numerical computations. In Sec. V, we discuss the
main findings and possible extensions of the work,
along with further observational constraints on the
theory that can be used in the future. Throughout the
manuscript, latin indices are internal SU(2) group
indices and run from 1 to 3, while greek indices stand
for spacetime indices and run from 0 to 3. We use
geometrized units with c ¼ G ¼ 1.

II. REISSNER-NORDSTRÖM BLACK HOLE
WITH NON-ABELIAN CHARGE

The action of the model, which corresponds to some
Lagrangian pieces of the GSU2P theory [56], includes
quartic-order self-interactions of the vector field,1

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x½R − FaμνFaμν

þ χ1BaμBaμBbνBbν þ χ2BaμBa
νBb

μBbν�; ð1Þ
where R is the Ricci scalar, Baμ represents the vector fields,
Faμν ¼ ∂μBaν − ∂νBaμ þ g̃ϵabcBb

μBc
ν is the field strength,

g̃ is the gauge coupling constant, and ϵabc is the structure
constant tensor of the SU(2) group. In geometrized units, g̃
has units of inverse length, and the free parameters χ1 and
χ2 have units of inverse square length.
The line element in a stationary and spherical symmetric

spacetime has the following form:

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2

¼ −e−2δNdt2 þ N−1dr2 þ r2dΩ2; ð2Þ
where N ¼ 1 − 2m=r, δ and m are functions of the
coordinate r, and dΩ is the solid angle element.
Regarding the vector fields, we chose the Wu-Yang
monopole, given by

B ¼ ðw=vþ 1Þtϕdθ þ ðv − wÞ sin θtθdϕ; ð3Þ
where

tθ ¼ cos θ cosϕt1 þ cos θ sinϕt2 − sin θt3; ð4Þ
tϕ ¼ − sinϕt1 þ cosϕt2; ð5Þ

in which ti ¼ −iσi=2 correspond to the vector basis of
the SU(2) algebra, with σi being the Pauli matrices, w is
constant, and v is an integer denoting the azimuthal
winding number. We use the coupling constant g̃ to define
the normalized variables r̂ ¼ rg̃, m̂ ¼ mg̃, χ̂1 ¼ χ1=g̃2, and
χ̂2 ¼ χ2=g̃2. The form of the equations in the normalized
variables can be obtained effectively by setting g̃ ¼ 1.
Hereafter, all the equations are normalized, but we drop the
hat to ease the notation.
The field equation obtained after varying the action with

respect to Baμ is

ðvþ wÞ½ðv2χ1 þ v2χ2 þ χ1Þðvþ wÞ2 þ wðv − wÞ� ¼ 0:

ð6Þ

1As the inclusion of a mass term μ2BaαBaα spoils the existence
of the solution, it has been taken away from the model. This result
is similar to the classical massive vector field, where the mass
needs to vanish to guarantee regularity of the solution and to
allow, therefore, a vector hair to exist [78].
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The solutions of this last equation are

wschw ¼ −v; ð7Þ

wI;II ¼
vþ 2vχ1 þ 2v3ðχ1 þ χ2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2½8v2χ2 þ 8ðv2 þ 1Þχ1 þ 1�

p
2ð1 − v2χ1 − v2χ2 − χ1Þ

: ð8Þ

The first solution (7) is the trivial solution with vanishing
vector field, which corresponds to the Schwarzschild
spacetime.2 Instead, the latter solutions (8), with two
branches I and II, allow the existence of a nontrivial vector
field we shall focus on and constitutes, therefore, an
important outcome of this work, as will be described in
detail below.
The field equations obtained by varying the action (1)

with respect to metric are given by

m0 −
ðv3 − vw2Þ2

2r2v4

þ ðvþ wÞ4½v4χ2 þ ðv2 þ 1Þ2χ1 þ χ2�
4r2v4

¼ 0; ð9Þ

δ0 ¼ 0; ð10Þ

m00 þ v2ðv − wÞðv þ 3wÞðv þ wÞ2
r3v4

þ ½ðv4 þ 5Þχ2 þ ðv4 þ 6v2 þ 5Þχ1�ðv þ wÞ4
2r3v4

¼ 0:

ð11Þ

We look for asymptotically flat solutions, i.e., the compo-
nents of the metric have the following behavior: gμν →
ημν þOðr−1Þ when r → ∞, where ημν are the components
of the Minkowski metric (see, e.g., [79]). This implies that
the functions tend asymptotically to δ → 0, m → M≡
finite [79]. The Arnowitt-Deser-Misner mass, which coin-
cides with the Komar mass in this spherically symmetric
and stationary case, is given by the asymptotic value of
mðrÞ; thusM corresponds the total gravitational mass [80].
Under these conditions Eq. (10) is easily solved as δ ¼ 0.
On the other hand, the solution of mass function m for the
cases given by (8) has the following Reissner-Nordström
solution:

m ¼ M −
Q2

NA

2r
; ð12Þ

where QNA is a constant representing the effective charge
and depends on the free parameters of the theory.
Equations (9) and (11) must be consistent, which

implies an additional constraint between χ1, χ2, and v
given by

3ðv4 − 1Þðχ1 þ χ2Þf4v3χ2 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2½8v2χ2 þ 8ðv2 þ 1Þχ1 þ 1�

p
þ 4ðv3 þ vÞχ1 þ 5vg2

½v2χ2 þ ðv2 þ 1Þχ1 − 1�4 ¼ 0: ð13Þ

One solution fixes the winding number as

v ¼ �1; ð14Þ

with the parameters χ1 and χ2 being independent. The other
solution gives a relation between the free parameters of the
action model,

χ2 ¼ −χ1; ð15Þ

with the winding number now unconstrained.3

Despite the fact that the solution set by (14) gives two
possible solutions, it represents only one since changing the
sign of the winding number interchanges the solutions wI
and wII, as can be verified in Eq. (8). In the solution given
by (14), the value of w depends on the combination
χ ¼ 2χ1 þ χ2,

wI;II ¼
1þ 2χ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8χ
p

2 − 2χ
: ð16Þ

2To fully understand this solution, we need to consider Eq. (9).
If we set wschw ¼ −v we find m0 ¼ 0, implying that the mass
function takes the form of the Schwarzschild solution, where
m ¼ M and δ ¼ 0. HereM is the total gravitational mass. This, in
turn, is consistent with an asymptotically flat solution.

3It seems that there is another solution given by the vanishing
of the expression between braces in the numerator of Eq. (13).
Nevertheless, this does not constitute a solution because it also
makes the denominator to vanish, inducing a divergence.
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In the other solution corresponding to (15), the value of w=v
has the same functional form of (16) after making χ ↦ χ1.
Therefore, the physical behavior of both cases can be
analyzed by means of (16). Hence, all subsequent analysis
will be carried out in terms of the new effective coupling
constant χ. Notice that once the value of χ is determined,
the value of w is fully specified. This is consistent with the
Wu-Yang monopole ansatz, which assumes that w is a
constant, as stated in Eq. (3).
Consequently, the value of the effective charge Q2

NA is
given by

Q2
NA;I;II ¼

1 − 4χð5þ 2χÞ ∓ ð1þ 8χÞ3=2
2ð1 − χÞ3 ; ð17Þ

where the − sign corresponds to branch I, and theþ sign
corresponds to branch II. The dependence of both quan-
tities on the coupling constant is displayed in Fig. 1.
There exist solutions for the interval −1=8 < χ <

1 ∪ χ > 1. When χ ¼ 0, the branch I solution corresponds
to the Schwarzschild solution, and the branch II solution
corresponds to the EYM charged solution with Q2 ¼ 1.
When χ → 1, branch I has a divergence; in contrast, in the
same limit, branch II is finite and tends to wII→−1=3,
Q2

NA;II → 16=27.
On the one hand, if we assume that the total mass of the

black hole in normalized units isM ¼ 1, we can find regions
whereQ2

NA > 1, corresponding to naked singularities. These
regions are given by−1=8 < χ < ð11 − 5

ffiffiffi
5

p Þ=2 ∪ 1 < χ <
ð11þ 5

ffiffiffi
5

p Þ=2 for branch I and −1=8 < χ < 0 for branch II
(see the gray regions in Fig. 1). Notice that we conjecture the
existence of a naked singularity based solely on thevanishing
of the event horizon. However, this criterion alone is
insufficient to ensure the formation of such a spacetime.
Therefore, a formal stability analysis must be carried out to

determine whether a naked singularity can indeed form in
this theory.4

Finally, it is worthwhile tomention that the energy density
associated with the vector fields is ρ ¼ Q2

NA=ð8πr4Þ. Thus,
when the non-Abelian charge is imaginary, the energy
density is negative, and this happens only in branch I in
the interval 0 < χ < 1.

A. Event horizon

In the stationary and spherically symmetric case, the
vanishing of the metric function gtt defines unequivocally
the horizon (see, e.g., [82]). When multiple solutions exist,
the greatest positive solution is identified with the event
horizon of the black hole rþ ¼ rH. In particular, the metric
function associated with the Reissner-Nordström solution
has two distinct roots,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

NA

q
: ð18Þ

The internal solution r− is an apparent horizon and the
external solution corresponds to the event horizon. Hence,
any observer outside the black hole (in asymptotically flat
spacetimes), or on the event horizon itself, cannot see any
singularity because they are protected by an event horizon.
Otherwise, it is said to possess a naked singularity at r ¼ 0.
We do not mention here all the minor details and conditions
about the precise formulation of what is called the “weak
cosmic censorship conjecture.”5

FIG. 1. Values of the vector field and effective charge as a function of χ for branch I (left) and for branch II (right). In both cases, when
χ → ∞, the charge tends to zero; thus the solution becomes the Schwarzschild spacetime. If the mass of the black hole in normalized
units is M ¼ 1, values of Q2

NA > 1 represent a naked singularity. These last cases are shown as gray regions. In branch II, the charge is
always real. In branch I, for 0 < χ < 1, the charge is imaginary, which implies that the energy density is negative. Notice also that the
shift χ þ 1=8 in the abscissa has been done for convenience.

4There are, in fact, physical reasons to believe that the
formation of a naked singularity, at least in a Kerr BH spacetime,
is highly unlikely in any realistic astrophysical collapse scenario
[81].

5We refer the reader to [83] for a general and robust
formulation of the cosmic censor conjecture.
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The structure of the RN solution has been studied
extensively, whereby we do not pretend to make here a
detailed examination on this subject. Nevertheless, an
intriguing query arises when one asks about the implica-
tions of the coupling constant χ on the charge and,
therefore, on the event horizon. In particular, we are
interested in finding which values of the coupling constant
account for the convergence to both the Schwarzschild and
the extremal RN black holes, as limit cases of our solution.
When performing numerical analysis and presenting the

corresponding general discussion, we shall work with
dimensionless variables by normalizing all physical quan-
tities by the black hole mass M, unless otherwise said.
Accordingly, we introduce, as usual, the charge-to-mass
ratio qNA ¼ QNA=M and the dimensionless radial coordi-
nate x ¼ r=M.
The event horizon is depicted in left panel of Fig. 2 as a

function of the coupling constant for both charges.6 For
qNA;II (purple solid line) the event horizon is a well-behaved
function of the coupling constant. Indeed, it covers
continually the full range χ ∈ ð0;∞Þ, where the finite
extreme value corresponds to the extremal RN case, in
which case both solutions of Eq. (18) meet at xH ¼ 1 (red
point on the purple curve); while large values lead to the
uncharged solution, where xH ¼ 2 and the apparent
horizon (dashed curve) coincides with the singularity.
This is hence a quite normal behavior that reproduces
plainly the standard RN solution.
On the contrary, the event horizon for the case qNA;I

(blue solid curves) exhibits a peculiar structure: there is a
twofold degeneracy with respect to the constant coupling.
It means that the limit cases, that is, the Schwarzschild

solution and the extremal RN black hole, can be descri-
bed in two distinct regions of the parameter space. The
same degeneracy is also presented for the apparent horizon
(blue dashed curves). This is clearly appreciated in the
regions defined by the ranges χ ∈ ð−0.0901; 0Þ and
χ ∈ ð11.0902;∞Þ of the left panel of Fig. 2. There is also
a special region of the parameter space χ ∈ ð0; 1Þ, where
the square of the effective charge becomes negative and
gravity repulsive. Out of the mentioned ranges results
in q2NA > 1, a case that describes a naked singularity.

B. Innermost stable circular orbit

Next, we turn our attention to the motion of massive test
particles in the equatorial plane, as usual, to find the
position of the so-called innermost stable circular orbits
(ISCO). Following the standard procedure (see, e.g., [84]),
one finds that the geodesic equation can be written as�

dr
ds

�
2

¼
�
E2 − N

�
1þ L2

r2

��
; ð19Þ

where E and L are identified, respectively, as the energy
and angular momentum, which correspond to conserved
quantities as in the classical Keplerian motion. From the
above equation, one can also identify the effective potential

Veff ¼ N

�
1þ L2

r2

�
: ð20Þ

We remind the reader that N ¼ 1 − 2m=r, the mass
function mðrÞ has the form given by Eq. (12), and the
(squared) angular momentum is defined as

L2 ¼ N0ðrÞr3
2NðrÞ − rN0ðrÞ : ð21Þ

FIG. 2. Left: position of the event horizon xH as a function of the coupling constant for both charges as specified by the legend. Right:
innermost stable circular orbit xISCO as a function of the coupling parameter χ, as well as for both non-Abelian charges. In both plots, red
points indicate the match with the extremal RN solution. The twofold degeneracy of qNA;I and the convergence to the Schwarzschild
solutions when χ → ∞ for both charges is evident here. Note that the parameter χ explicitly appears in the expression for qNA as given by
Eq. (17). Therefore, the event horizon and ISCO radii, which are determined by Eqs. (18) and (22), respectively, are dependent
on χ as well.

6When plotting, the shift χ þ 1=8 in the abscissa is done for
convenience.
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In marginally stable circular orbits, the local extremum of the effective potential, i.e., V 00
eff ¼ 0, determines the position of

the ISCO. It yields

rISCO ¼ 2M þ
4M4 − 3M2Q2

NA þ
�
8M6 − 9M4Q2

NA þ 2M2Q4
NA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M8Q4

NA − 9M6Q6
NA þ 4M4Q8

NA

q �
2=3

M
�
8M6 − 9M4Q2

NA þ 2M2Q4
NA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5M8Q4

NA − 9M6Q6
NA þ 4M4Q8

NA

q �
1=3 : ð22Þ

This expression of course equals the corresponding
standard RN case [84]. At this point, we are able to
compute the location of the ISCO in terms of the coupling
constant χ with the aid of Eq. (17). The result is shown in
the right panel of Fig. 2. Clearly, the effect of the coupling
constant is replicated on the ISCO structure in the same
fashion as it is on the event horizon. Hence, the same
parameter space region establishes the corresponding
Schwarzschild solution xISCO ¼ 6 and the extremal RN
case xISCO ¼ 4 (red point on all curves) for both positive
square of the non-Abelian charges, as can be read from the
plot. Thus, all the discussed properties for the event horizon
are preserved for the ISCO location. It is interesting to
notice, however, that for the charge qNA;I, there appears
another region where gravity is repulsive in the interval
χ ∈ ð1; 11.092Þ, in comparison with the ones seen for the
event horizon. For this charge, it is admissible then to have
stable circular orbits for almost all the parameter space with
the exception of its extreme values, even though there does
not exist an event horizon. This particular behavior is
reminiscent of having stable accretion flows onto a RN
black hole, even though there is not a physical event
horizon. Hence, in a naked singularity situation, it is
(mathematically) possible to have stable circular orbits.
We will not discuss this point in detail, however, since it is
not of physical interest for the present work.

C. Photon sphere and shadow

A black hole has a central dark area called the shadow.
This shadow is not delimited by the event horizon, but by
the photon sphere, which is made of circular photon orbits.
The radius of the photon sphere rph is given by solving

rphg0ttðrphÞ − 2gttðrphÞ ¼ 0: ð23Þ
However, the observed shadow radius rsh is given by the
lensed image of this surface [85],

rsh ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðrphÞ

p : ð24Þ

For the Reissner-Nordström solution, the shadow radius is

rsh
M

¼ xsh ¼
ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8q2NA

p þ 3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2NAþ

ffiffiffiffiffiffiffiffiffiffiffiffi
9−8q2NA

p
−3

q2NA

r : ð25Þ

This last equation can be inverted such that, for a given
observed shadow radius, we can constrain the charge qNA.
From this value, we can constrain, in turn, the free
parameters of the theory g̃ and χ. The observations of
Sagittarius A� made by the EHT Collaboration give the
following constraints on the size of the shadow, which
depend on the mass-to-distance ratio [86]:

4.5≲ xsh ≲ 5.5; ð26Þ

with Keck and

4.3≲ xsh ≲ 5.3; ð27Þ

with very large telescope inter-ferometer (VLTI). With this
information, we can place constraints on the parameters g̃
and χ, shown in Fig. 3. Since (17) is normalized but
depends physically on the g̃ and χ, only in this part of the
analysis do we put back the units. The first conclusion is
that an extremal RN black hole is not consistent with the
current observations.
If the non-Abelian charge is real, the maximum value

of the shadow is rsh ¼ 3
ffiffiffi
3

p
M, obtained when QNA ¼ 0,

i.e., when the solution is the Schwarzschild spacetime.
This last case corresponds to the limit χ → ∞ in both
branches I and II. The shadow of a Schwarzschild black
hole is inside the intervals (26) and (27). Since the charge is
always real for branch II, we can give only lower limits on
χM2 for this branch (see the blue and orange curves in the
lower plot of Fig. 3). For example, if g̃M ¼ 1.01, the
minimum values of χM2 are 0.608985 and 0.226688, for
Keck and VLTI, respectively.
In contrast, the branch I exhibits imaginary values of

the charge, allowing a greater shadow than the one of a
Schwarzschild black hole. Also, in this branch, the allowed
region of values for g̃M and χM2 are greater than in branch
II. For instance, when g̃M ¼ 0.9 the minimum values of
χM2 are −0.0326136 and −0.0414562 for mass-to-distance
ratio with Keck and VLTI, respectively. This implies a
less stringent constraint in the parameters than in the
branch discussed above. More exactly, if g̃M ¼ 1.01,
the constraints are ð−0.0545704≲ χM2 ≲ 0.0223263Þ ∪
14.3271≲ χM2 for Keck and ð−0.0708403≲ χM2 ≲
0.00774184Þ ∪ 12.6237≲ χM2 for VLTI, see the upper
plots in Fig. 3. More cases for branch I can be inferred
from Fig. 3.
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The main purpose now is to figure out how the structure
of the non-Abelian RN black hole can impact the transonic
properties of accretion flows. After formulating the basic
hydrodynamics equations, this subject will be investigated
by employing both numerical and analytical treatments in
the subsequent sections.

III. SPHERICAL STEADY ACCRETION FLOWS
IN A SPHERICALLY SYMMETRIC SPACETIME

Bondi accretion processes in a spherically symmetric
spacetime are briefly described in this section following the
general prescription presented in Ref. [64]. Accordingly,
we consider a spacetime with line element given by (2),
with m and Q2

NA given, respectively, by (12) and (17),
describing a black hole of massM and non-Abelian charge
Q2

NA in Schwarzschild coordinates. Although the non-
Abelian RN solution (12) is, in principle, globally indis-
tinguishable for the standard RN BH solution, it was found,

formally speaking, in the framework of modified gra-
vity. So, we keep as much as possible the generality in
the description.7 On the other hand, we consider a steady
fluid with total density ρ, mass density ρ0, and internal
energy density ϵ, such that ρ ¼ ρ0 þ ϵ. For isentropic
fluids, the pressure can be defined as P ¼ kργ , where k
is a constant and γ is the adiabatic index. For perfect fluids,
the stress energy momentum tensor is given by

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð28Þ

where uμ ¼ ðut; ur; 0; 0Þ is the four velocity of the fluid
characterized by infall radial flow. The normalization
condition allows one to obtain the relation between the

components ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðu2þgttÞ

gtt

q
, where we have defined for

FIG. 3. Constraints on the parameters g̃ and χ obtained from the observation of the shadow of the object located at the Galactic
Center of the Milky Way, Sagittarius A⋆. The upper plots correspond to branch I which has been split into two ranges of χ for
better representation, and the lower plot corresponds to branch II. The different colored curves show the possible values of gc and χ
for the lower and upper limits on xsh given by (26) and (27) as indicated by the legend. For comparison, we have added the curves
for xsh ¼ 4; 5.19; 3

ffiffiffi
3

p
. The regions with slanted orange lines represent the constraints obtained from the mass-to-distance ratio with

Keck, and the blue regions represent the constraints with VLTI. It can be seen that a naked singularity is not consistent with the
observational data.

7This general treatment serves also as a starting point to other
(nonanalytical) BH solutions found in the GSU2P theory [59].
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abbreviation u≡ ur. From the baryon conservation and
energy momentum conservation,

∇μðρ0uμÞ ¼ 0; ð29Þ

∇μTμν ¼ 0; ð30Þ

one obtains two master equations, respectively,

ρ00
ρ0

þ u0

u
þ Σ ¼ 0; ð31Þ

uu0 þ gtt0
2grrgtt

ð1þ grru2Þ þ
g0rr
2grr

u2 þ c2s
grr

ð1þ grru2Þ
ρ00
ρ0

¼ 0;

ð32Þ

where prime denotes radial derivative and the quantity Σ≡
ð ffiffiffiffi−gp Þ0ffiffiffiffi−gp has been introduced for brevity as in [64]. These

equations reduce to the Schwarzschild case when
−gtt ¼ 1

grr
¼ 1 − 2M

r . In finding Eq. (32), we have used
the definition of the sound speed of a medium at constant
entropy c2s ≡ dP

dρ and the useful relation P0 ¼ ðρþPÞ
ρ0

c2sρ00
derived from the first law of thermodynamics in the form
dρ
dρ0

¼ ρþP
ρ0
. Integration of Eqs. (31) and (32) gives, respec-

tively, the mass accretion rate

Ṁ ¼ 4πr2uρ0; ð33Þ

and, after some algebraic manipulations, the relativistic
version of the Bernoulli equation (see Ref. [64] for more
details),

gttð1þ grru2Þ
�
ρþ P
ρ0

�
¼ C; ð34Þ

whereC is an integration constant. OnceC is defined by the
boundary conditions at infinity, for instance, and the metric
functions are specified, the inward radial velocity can be
computed for a given equation of state P ¼ Pðρ0Þ. Our
primary concern is to solve this equation to determine, in
turn, the accretion rate given by Eq. (33). Before computing
this, we find critical values at which accretion flow is
regular and causality is guaranteed.

IV. ACCRETION IN A NON-ABELIAN
REISSNER-NORDSTRÖM BLACK HOLE

A. Critical accretion

We study in this part general conditions under which
transonic flow can take place in the vicinity of black holes.
Next, we shall describe both the spacetime geometry and
the fluid nature. Let us first write Eqs. (31) and (32) in the
more convenient form

u0

u
¼ gttð2c2sð1þ u2grrÞΣ − u2g0rrÞ − ð1þ u2grrÞg0tt

2grrgttðu2 − c2sðgrru2ÞÞ
; ð35Þ

ρ00
ρ0

¼ −
u2gttð−2grrΣþ g0rrÞ þ ð1þ u2grrÞg0tt

2grrgttðu2 − c2sðgrru2ÞÞ
: ð36Þ

Imposing regular condition in both equations implies that
both numerators must vanish simultaneously at some
critical point rc, resulting in

u2c ¼ −
g0tt

gttg0rr þ grrð−2gttΣþ g0ttÞ
; ð37Þ

c2s;c ¼
grrg0tt

2grrgttΣ − gttg0rr
: ð38Þ

Causality constraint c2s < 1 in the flow sets a special
point (rc) by which the flow must pass. This physical
requirement leads to the relation

u2c ¼ −
c2s;cgrr

−1þ c2s;c
; ð39Þ

between the radial velocity and the sound speed. At large
radius, the flow is in the subsonic regime u2 < c2s . So far,
these results are general, in the sense that can be applied to
any spherically symmetric black hole solution. At this
point, we must specify necessarily the metric functions to
obtain the exact forms for the critical velocity and sound
speed, Eqs. (37) and (38), respectively. Thus, considering
the non-Abelian Reissner-Nordström BH solution (12),
leads to the critical values

u2c ¼ −
Q2

NA −Mr
2r2

; c2s;c ¼
−Q2

NA þMr
Q2

NA þ rð−3M þ 2rÞ :

ð40Þ

From the transonic condition that u2c ¼ c2s;c at the critical
radius, and considering Eq. (39), one obtains unequivocally
the critical radius

rc ¼
Mþ3c2s;cM�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ3c2s;cMÞ2−8c2s;cð1þc2s;cÞQ2

NA

q
4c2s;c

;

ð41Þ

where the nontrivial contribution of the non-Abelian charge
to the Schwarzschild solution, rc;Sch ¼ Mð1þ 3c2s;cÞ=2c2s;c
and u2c;Sch ¼ M=2rc, is clearly manifested. From Eq. (41)
we can see that there exist, mathematically speaking, two
distinct critical points, but the positive branch corresponds
only to the physical solution, which resides outside the
event horizon, and therefore, it is the one to which we shall
pay our attention. Of course, the negative branch is in a
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region observationally inaccessible since it is delimited by
the event horizon. Existence of the critical radius demands

Q2
NA

M2
<

1þ 6c2s;c þ 9c4s;c
8c2s;c þ 8c4s;c

; ð42Þ

which, in turn, puts constraints on the coupling para-
meter for a given non-Abelian charge. Nevertheless, the
resulting expressions are very lengthy (and not illuminat-
ing) to be reported here. We shall illustrate below this
aspect numerically.
In order to understand the striking structure of the critical

radius, we must necessarily specify the non-Abelian charge
and the nature of the fluid that characterizes the sound speed.
For simplicity in the former analysis, we assume an
isothermal fluid8 so that the sound speed equals its equation
of state. This simple choice will give us, however, a profound
insight about the behavior of the critical radius in terms of
the model parameters. So the present case suffices to prove
the rich structure of the critical radius due to the non-Abelian
charge. It should be noticed, on the other hand, that for the
(physical) critical radius there are two solutions, due to the
existence of the non-Abelian charges QNA;I;II.
Let us first explore the effect of changing the sound

speed on the critical radius for some specific values of the
coupling constant that cover mostly the (physical) BH
solutions of interest. The behavior of the critical radius

depends, however, on the non-Abelian charge chosen.
This is shown in Fig. 4, where the left and right panels
correspond, respectively, to the non-Abelian charges qNA;I
and qNA;II. In particular, for qNA;I and χ ¼ 0, the critical
radius matches exactly the Schwarzschild solution, whereas
for qNA;II the convergence is possible provided that χ → ∞.
This is the reason why we have displayed the exact
Schwarzschild solution (green curve) in right panel as
an asymptotic limit of large coupling constant values.
Accordingly, for the larger case shown, χ ¼ 20, the
solution is barely distinguishable from the uncharged case,
but physically different since the former is endowed with a
charge qNA;I ¼ 0.113438. Hence, despite taking the same
values of χ for both non-Abelian charges, the physical
implications do not hold for the critical radius as it also
happens for the event horizon and ISCO.
To better illustrate the role of χ in the critical radius, we

take the same values of the coupling constant, as described
below, for both charges. For instance, taking qNA;I (see left
panel) and a given coupling parameter lead to the following
physical situations: the extremal case χ ¼ −0.0901, the
Schwarzschild solution χ ¼ 0, the charged solution χ ¼ 20
(qNA;I ¼ 0.4112), and a naked singularity χ ¼ 11.0222,
that affect in a way different than the behavior of the critical
radius. Now, taking the same values for χ as before but for
qNA;II, the previous physical meaning is lost. Naked singu-
larities can take place, for instance, for χ ¼ −0.0901, which
in the qNA;I case occurs for χ ¼ 11.0222. Notice that for the
former case accretion is possible only for (subsonic) sound
speeds c2s;c < 0.3478, while for the latter it occurs out of the
range 0.6930 < c2s;c < 1.5677. This explains the disconti-
nuity of those curves. Hence, accretion may be possible
even though the event horizon vanishes. An interesting
discussion about how to distinguish a BH from a naked

FIG. 4. Left: critical radius xc ≡ rc=M (41) for the non-Abelian charge qNA;I for given coupling parameters that correspond to the
extremal case χ ¼ −0.0901, Schwarzschild solution χ ¼ 0, charged solution χ ¼ 20 (qNA;I ¼ 0.4112), and a naked singularity
χ ¼ 11.0222 (qNA;I ¼ 1.01). Right: critical radius for the non-Abelian charge qNA;II for the same values of parameters as the left panel.
The exact Schwarzschild solution (green curve) has been included here for comparison. Notice that, on the contrary, the solutions
χ ¼ −0.0901, χ ¼ 0, χ ¼ 20, and χ ¼ 11.0222 correspond, respectively, to a naked singularity (qNA;II ¼ 1.11352), an extremal case,
and charge BH cases qNA;II ¼ 0.113438 and qNA;II ¼ 0.17345.

8Another possibility is to take a polytropic fluid, but it
introduces an extra parameter that could obscure the current
analysis regarding the structure of the critical radius. Never-
theless, it will be successfully addressed in the next part for
the sake of completeness when looking for the critical mass
accretion rate.
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singularity spacetime by using the image of thin accretion
disks is addressed in [76].
As a general trend, for subsonic sound speeds, the critical

radius can be located far away from the event horizon, and
for supersonic sound speeds, it can be accommodated,
on the contrary, between the event horizon and the apparent
horizon. For c2s ¼ 1 all critical points coincide with their
respective position of the event horizon, as can be easily
verified. Another interesting feature is that for the
Schwarzschild case and subsonic speeds c2s;c < 1 the
critical radius is outside the event horizon, while for
c2s;c > 1 the critical radius is located behind it. See purple
and green curves in the left and right panels of Fig. 4,
respectively. This general discussion is in agreement with
former studies about the accretion of perfect fluids in the
RN metric [87].
In contrast, in Fig. 5, the coupling parameter is fixed,

while the sound speed varies. Notice that for the case qNA;I
the critical radius exhibits a discontinuity, as it was also
perceived for the event horizon structure. It should be
noticed that as c2s;c decreases (see, for instance, c2s;c ¼ 1/4)
the critical radius can be in a region where naked
singularity takes place. As to the case qNA;II, the critical
radius is also a monotonically increasing function of χ,
but it is well behaved until the condition (42) is broken for
small values of χ and given squared sound speeds. This
discussion provides, in complement to the one made
around Fig. 4, a full picture of the general conditions
under which the critical radius exists in terms of the
coupling constant through Eq. (42).
Now, we are in a more grounded position to investigate

the effect of changing the coupling parameter on the
accretion properties, concretely on the radial velocity
and on the mass density around this class of black hole.
This will be carried out first numerically for an isothermal
fluid and later with the aid of some analytical treatments for
polytropic fluids, to allow a more robust and complete

exploration of the involved parameters. These two cases
will be then treated separately in the next sections.

B. Isothermal test fluid

Before describing accretion flows for a more general
fluid, let us first consider a simplistic but useful isothermal
test fluid. It will provide us some physical insights on how
the coupling constant influences the behavior of the infall
radial velocity and mass density. This inquiry is comple-
mentary to the discussion on the critical point realized
previously.
We focus for comparison reasons on a range of the

coupling constant that resembles the RN BH and the
Schwarzschild solution and leave the (allowed) range that
provides q2NA;I < 0 out of this analysis. It implies that the
corresponding parameter space of χ for a given non-
Abelian charge provides the same physics whereby we
focus on qNA;I. To illustrate this point, we show only a limit
case for qNA;II to see the convergence. The full range of χ
will be, however, considered in the calculation of the
critical accretion rate for a polytropic fluid. The above
are also advantageous for numerical facilities since we have
many variables involved.
Accordingly, the equation of state is of the form P ¼ κρ,

with κ being a constant, from which the simple relation for
the sound speed c2s;c ¼ κ is derived.
Let us start our analysis by considering a stiff fluid

κ ¼ 1. As we already discussed, for this case (c2s;c ¼ 1),
critical points coincide with the event horizons no matter
the value of the coupling constant. The latter spans the
allowed region of the parameter space χ ∈ ð−0.09; 0Þ for
the charge qNA;I, as can be seen in the bar legend of Fig. 6.
We are not considering the other possible range of values
χ ∈ ð11.0902;∞Þ because the same physical properties are
replicated in the already shown range. For the other cases
describing an ultrarelativistic fluid κ ¼ 1=2, a radiation
fluid κ ¼ 1=3, and a subrelativistic fluid κ ¼ 1=4,

FIG. 5. Left: critical radius for the non-Abelian charge qNA;I for certain critical sound speeds, as described in the legend, as a function
of the coupling parameter. Right: critical radius for the non-Abelian charge qNA;II for the same parameters as the left panel.
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all critical points move out of the BH as κ decreases
according to Eq. (41). As a general trend, all transonic
solutions are delimited from below to the extremal RN
solution χ ¼ −0.0901 and from above to the Schwarzschild
case. This latter case is attained whenever the coupling
constant increases until it reaches the maximum value
showed here (χ ¼ 0). We have also included the solution
χ ¼ 11.09 (dashed magenta curve) for the charge qNA;II,
which matches the RN solution of the qNA;I case. What is of
physical interest here is that all infall radial velocities pass
through the corresponding critical points marked as points
on the curves and computed from Eq. (41), guaranteeing
thus the transonic flow of all solutions, otherwise a stellar
wind is generated. This selects a unique solution with
constant inward mass flux that connects the subsonic with
the supersonic regimes, as expected in Bondi-type accre-
tion [60,61]. Far beyond the BH influence, that is, in the

nonrelativistic regime, the radial velocities of the particles
are too low, such that the inflow rate is decreased compared
with particles with high-speed velocities.
For the mass density distribution due to the BH gravi-

tational potential, the RN solution now delimits all sol-
utions from above, as seen in Fig. 7. As in the radial
velocity case, χ covers the same range of values for each
value of the constant κ considered. We can observe that,
as κ reduces, the mass density is more spread out along the
radial coordinate.
So far, we have obtained the expected behavior for the

radial velocity and mass density within the steady-state
spherical accretion scenario for the discussed range of χ
values. As in previous sections, this has been very useful
to understand the role of the coupling constant on the
transonic flows and how our solutions approach the
extremal RN and Schwarzschild solutions. Making a more
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FIG. 6. Infall radial velocity for some specific values of κ describing a stiff fluid (κ ¼ 1), ultrarelativistic fluid (κ ¼ 1=2), radiation
fluid (κ ¼ 1=3), and subrelativistic fluid (κ ¼ 1=4), while the coupling parameter χ spans the allowed range as depicted by the bar
legend. The dotted magenta curve that delimits all the possible transonic solutions from below corresponds to the extremal case
χ ¼ 11.09 for qNA;I (or χ ¼ −0.09 for qNA;II), while χ → 0 resembles the Schwarzschild solution from above. It is worth noting that the
event horizon is always located in the interval x ∈ ½1; 2�, with the lower and upper limits corresponding to the extremal Reissner-
Nordström and Schwarzschild solutions, respectively. In the specific case of stiff fluid κ ¼ 1 (top left), the position of the critical points
coincide with the location of the event horizons. However, for smaller and larger values of κ and χ, all critical points shift toward larger
values of the corresponding event horizons. Note also that the divergences observed are not physical, but they are related, instead, to the
coordinate singularity problem associated with the Schwarzschild coordinates. This singularity can be removed by moving to
nonsingular coordinates at the event horizon as the Eddington-Finkelstein coordinates.
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robust description of the fluid, in the next section we will
perform analytical calculations of the critical accretion rate
in the fully relativistic regime, along with numerical
computations for the entire range of values of χ and both
non-Abelian charges.

C. Polytropic fluid

Once the properties of the steady flows are known at
the sonic point, this is, radial velocity, sound speed, and
critical radius, we can proceed to express such quantities
in terms of the boundary conditions, with the help of the
Bernoulli equation, as commonly done. The purpose of
doing so is to calculate the accretion rate explicitly. It is
necessary also to adopt an equation of state for the gas.
So we study a nonrelativistic baryonic gas with a
polytropic equation

P ¼ Knγ; ð43Þ
where γ is the adiabatic index and K is a constant. With
this and from the first of law of thermodynamics, one
can get [2]

ρ ¼ mnþ K
γ − 1

nγ: ð44Þ

1. Relativistic regime

Surprisingly, the fully relativistic accretion rate for the
Reissner-Nordström solution has not been thoroughly
treated in the literature, where most of existing works have
focused on the nonrelativistic limit. It leaves undoubtedly
an incomplete comprehension of the full picture. We first
derive some analytical expressions and show some numeri-
cal examples to illustrate better the role of the coupling
constant on the mass accretion rate. We follow closely
Ref. [62], where Bondi accretion of steady spherical gas
flow onto a Schwarzschild black hole has been studied. We
extend this work to the charged case.
With the aid of the polytropic equation, it is possible to

relate the sound speed with the mass density

c2s ¼
γkργ−10

1þ γkργ−10 =ðγ − 1Þ : ð45Þ
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FIG. 7. Mass density distribution for some specific values of κ describing a stiff fluid (κ ¼ 1), ultrarelativistic fluid (κ ¼ 1=2),
radiation fluid (κ ¼ 1=3), and subrelativistic fluid (κ ¼ 1=4), while the coupling parameter χ spans the allowed range as depicted by the
bar legend. The dotted magenta curve that delimits all the possible transonic solutions from below corresponds to the extremal case
χ ¼ 11.09 for qNA;I (or χ ¼ −0.09 for qNA;II), while χ → 0 (or χ → ∞) resembles the Schwarzschild solution from above.
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This expression can be evaluated at the critical point and in
the asymptotic region to provide the useful relation

ρ0;s ¼ ρ0;∞

�
c2s;c
c2s;∞

� 1
γ−1
�
γ − 1 − c2s;∞
γ − 1 − c2s;c

� 1
γ−1
: ð46Þ

This closed expression requires the knowledge of the
critical sound speed that can be extracted from the
relativistic Bernoulli equation

ð1þ 3c2s;cÞ
�
1 −

c2s;c
γ − 1

�
2

¼
�
1 −

c2s;∞
γ − 1

�
2

: ð47Þ

So, once the sound speed at infinity is specified, the sound
speed and the mass density at the critical point are uniquely
determined. The Bernoulli equation is actually a cubic
equation for c2s;c with one real solution for the range
1 < γ < 5=3. There are several solution techniques for
cubic equations as, for instance, a standard root-finding
schema which we implement to.
Having expressed all quantities at the critical radius in

terms of the boundary conditions, the critical accretion rate

Ṁ ¼ 4πρ0;susr2s ð48Þ

can be computed easily

Ṁ ¼ 4π

�
M
c2s;∞

�
2

c2s;∞ρ0;∞λNARN ; ð49Þ

with the accretion rate eigenvalue

λNARN ≡
�
c2s;c
c2s;∞

�5−3γ
γ−1
�
γ − 1− c2s;∞
γ − 1− c2s;c

� 1
γ−1 ð1þ 3c2s;cÞ3=2

4
β; ð50Þ

and the β factor, containing information of the non-Abelian
charge, is

β ¼ 1

4

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8c2s;cð1þ c2s;cÞq2NA
ð1þ 3c2s;cÞ2

s #2

: ð51Þ

This quantity clearly accounts for the deviation from the
Schwarzschild case. In what follows, we quantify such a
deviation by computing the ratio of both accretion rates,

ṀNA
RN

ṀSch
¼ λNARN

λSch
¼ β: ð52Þ

As it is known, the electric charge of the RN black hole
reduces the accretion rate compared to the Schwarzschild
black hole. Our case may be, however, different if the
imaginary charge of the black hole is allowed, i.e., when
q2NA ¼ q2NA;I < 0 and χ ∈ ð0; 1Þ. Under this choice, ṀNA

RN >
ṀSch as can be verified in all left panels of Fig. 8 where the

accretion rate has been plotted as a function of the coupling
constant χ for different adiabatic indices as indicated.
Notice that all curves meet in the corresponding position
of the event horizon χ → 0;∞. Out of the mentioned range,
the expected behavior of the Reissner-Nordström black
hole is displayed just as the case qNA ¼ qNA;II (right
panels). Even though the non-Abelian charge case is
effectively distinguishable from its electric counterpart
in the small range χ ∈ ð0; 1Þ for qNA;I, these numerical
computations allow one, in addition, to understand better
the multiplicity of the non-Abelian Reissner-Nordström
black solution and its implications in the accretion rate,
in particular, for the range of values of χ that leads to a
significant enhancement of the accretion flow.
As a last remark about the boundary conditions, the

larger the boundary sound speed, the shorter the accretion
rate variations are among the polytropic fluid considered.
The stiff case γ ¼ 1 is more sensible to the increase of the
boundary sound speed: notice how the dashed black curves
in right panels meet the other curves for low χ or, which is
equivalent, in the non-Abelian extremal case qNA → 1.

2. Asymptotic limit

We do not describe here in detail all derivations con-
cerning the asymptotic limit of the mass accretion rate since
it can be found, for instance, in Ref. [2]. The purpose of this
part is to check the consistency with the well-known
Newtonian limit and the corresponding dependence on
the non-Abelian charge. From the Bernoulli equation, one
can derive the useful relation

c2s;c ≈
2c2s;∞

ð5 − 3γÞ ; ð53Þ

under the nonrelativistic condition cs;c ≪ 1, which holds
for reasonable large radius r ≫ rc, far away from the BH
gravitational influence. The same condition leads to the
simple relation

c2s;c ≈ Kγργ−10;c ; ð54Þ

between the sound speed and the mass density at the critical
point. This implies that the mass density can be expressed
in terms of the sound speed at the infinity in view of
Eq. (53) to yield

ρ0;c ≈ ρ0;∞

�
c2s;c
c2s;∞

� 1
γ−1

≈
�

2

5 − 3γ

� 1
γ−1
: ð55Þ

As in the uncharged case, physical solutions require
γ < 5=3 in this. At this point, all of the above are standard
and these quantities do not receive contributions from
the effective charge QNA at lowest order in cs;c. This is
not the case, however, for the critical radius (41) where,
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at leading order, QNA already appears explicitly as second-
order power

rc ≈
M
2c2s;c

þ 3M2 − 2Q2
NA

2M
þ 2ðM2Q2

NA −Q4
NAÞ

M3
c2s;c

þOðc4s;cÞ: ð56Þ

Keeping only higher-order contributions in cs;c and using
Eq. (53), the critical radius can be approximated to

rc ≈
ð5 − 3γÞ
4c2s;∞

MηðQNAÞ; ð57Þ

where the dimensionless correction factor due to the
effective charge has been defined as

ηðQNAÞ ¼ 1þ c2s;∞
ð5 − 3γÞ

�
6 − 4

Q2
NA

M2

�
: ð58Þ

With all this, the critical accretion mass rate can be written
in the familiar form

FIG. 8. Ratio of mass accretion rate in the non-Abelian RN BH to the accretion rate in the Schwarzschild BH for different adiabatic
indices as indicated in the legend. Cases qNA ¼ qNA;I and qNA ¼ qNA;II are shown on the left and right, respectively. Top: the boundary
condition approaching to the nonrelativistic regime c2s;∞ ¼ 0.001 has been taken, whereas a relativistic boundary sound speed c2s;∞ ¼
0.1 (middle) and c2s;∞ ¼ 0.5 (bottom) has been chosen, in contrast. In all cases, the condition uc > cs;∞ is guaranteed, ensuring thus the
transonic flow.
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Ṁ ≈ 4πρ0;∞M2c−3s;∞

�
1

2

� γþ1

2ðγ−1Þ
�
5 − 3γ

4

� 3γ−5
2ðγ−1Þ

ηðQNAÞ2; ð59Þ

which agrees with [88]. Finally, the uncharged Newtonian
limit is straightforwardly achieved in the limit QNA → 0

and, appropriately, c2c;∞ ≪ 1.

V. DISCUSSION AND CONCLUSIONS

Within the framework of modified theories of gravity, in
particular, in the context of vector-tensor theories that
follow the same spirit of Horndeski’s theory, a kind of
RN black hole solution with two different non-Abelian
effective charges has been found in terms of the coupling
constants of the involved Lagrangian pieces of the gener-
alized SU(2) Proca theory. Such new solutions correspond
to genuine non-Abelian RN BH solutions in the sense they
were derived from a theory where the vector fields belong
to the Lie algebra of the SU(2) group. These objects then
carry a dark charge because the magnetic charge is not of
electromagnetic origin. There do exist other solutions
coming from other more involved Lagrangians of the
theory [56], but they do not possess effective charges in
the asymptotic limit, which means that they converge,
formally speaking, to the Schwarzschild solution. This will
be reported in a separate paper.
Even though these solutions retain the main global

properties of the standard RN BH derived from the
Einstein-Maxwell theory, the solutions found exhibit an
appealing structure due to the nontrivial dependence on
the coupling constants. Interestingly, the solution with qNA;I
is characterized by having a negative square of the effective
charge for a certain rangeof valuesof the coupling constant χ,
similar to the tidal charge of brane BHs [89–91] and BH
solutions in Horndeski theory [92]. Preventing the naked
singularity from forming in both non-Abelian RNBHs leads
to discard a small region of the parameter space. This
happens, particularly, for the solutions with qNA;I since the
solution with qNA;II is always real and well behaved in the
sense that no divergences are present in the event horizon
and ISCO structures. Studying the RN solution within the
framework of the GSU2P theory allowed us to infer con-
straints on the free parameters of themodel. This finding is of
particular physical interest as it can be compared with future
astrophysical constraints to check the consistency of the
theory at the relevant scales.
Some phenomenological implications of the BH solu-

tions were also investigated in the astrophysical setting in
order to constrain the parameter space in a joint way with
the aforementioned theoretical considerations. They are
summarized as follows.

(i) Observations of the EHT’s first images of Sagittarius
A⋆ of our Galaxy, along with Keck telescope results,
set the first serious constraint on the free parameters
of the theory (g̃; χ), leaving almost all the available
parameter space of the non-Abelian RN BHs

basically unconstrained. For a given g̃, a lower limit
on χ is determined as can be inferred from the
parameter space, Fig. 3. As in the electric RN BH
case, these observational constraints also rule out
regions of the parameter space of the BH solutions
associated with naked singularities and with the
extremal BH. On the contrary, the corresponding
region of the parameter space for which q2NA;I < 0,
i.e., imaginary non-Abelian charge, is allowed.

(ii) As a first step toward a more realistic and elaborate
description of accretion processes, a fully relativistic
treatment of spherical accretion of isothermal and
polytropic fluids onto this class of BHs has been
performed to quantify the effect of the non-Abelian
charge and, therefore, of the coupling constant on
the critical accretion rate. Interestingly, we have
found some dissimilarities in the accretion process
with respect to the standard electric RN case that
can serve as a potential observational signature to
test the theory. Concretely, the critical accretion rate
efficiency can be noticeably improved compared to
the Schwarzschild case (and also to the electric RN
case), that is, ṀNA

RN > ṀSch, provided that χ ∈ ð0; 1Þ
and qNA ¼ q2NA;I < 0 which is, as discussed above,
admitted form the observational side. In this regard,
we have examined carefully, with the aid of numeri-
cal computations for different adiabatic indices of a
polytropic fluid, the role of the coupling parameter
on the transonic properties of steady flows.

(iii) As a way of probing the consistency of the non-
AbelianBHsolutions, the Schwarzschild solution and
the extremal RN BH solution are recovered in our
solutions, as limit cases of the theory, for certain
values of χ. This is a proof of concept of how the BH
solutions found behave in extreme regimes of the
parameter space.

An immediate theoretical extension of this work is to
implement the Newman-Janis algorithm to find rotating
non-Abelian charge BH solutions. Effectively, a Kerr (non-
Abelian)-Newman BH solution is naturally expected.
Although the applicability of this algorithm must be taken
with great care [93], the absence of direct couplings of the
gauge fields to curvature terms guarantee the viability of
this future work. Then, we plan to study the main properties
of the image of the resulting BHs, such as the shadows and
photon rings, surrounded by an optically and geometrically
thin accretion disk and the subsequent comparison with
current observations. In this regard, it is imperative to use
observational constraints from the shadow of the super-
massive BH galaxy M87⋆, as was recently done for the
tidal charge [91]. Gravitational and electromagnetic wave-
forms for charged black hole binaries can be used to
estimate the charges of BHs in current and future gravi-
tational wave experiments as has been discussed recently
[19–23]. This is another interesting way to assess the effect
of the coupling constants in the strong field regime in the
vicinity of BHs. Hence, gravitational wave observations
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have also the potential of putting constraints on the
coupling constants of the theory.
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José de Caldas (Ministerio de Ciencia Tecnología e Inno-
vación (MINCIENCIAS)—COLOMBIA) under Grant
No. 110685269447 RC-80740–465–2020, project 69553,
and from the Universidad Industrial de Santander, VIE,
Contrato de financiamiento RC No. 003-1598/Registro
Contractual 2023000357.

[1] E. Poisson, A Relativist’s Toolkit: The Mathematics of
Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2009).

[2] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs, and Neutron Stars: The Physics of Compact
Objects (Wiley-Interscience, New York, 1983).

[3] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. Lett. 875, L1 (2019).

[4] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. Lett. 930, L12 (2022).

[5] R. Abuter et al. (GRAVITY Collaboration), Astron.
Astrophys. 636, L5 (2020).

[6] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM,
INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride
Imager Team, IPN, Insight-Hxmt, ANTARES, Swift,
AGILE Team, 1M2H Team, Dark Energy Camera GW-
EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, AS-
KAP, Las Cumbres Observatory Group, OzGrav, DWF
(Deeper Wider Faster Program), AST3, CAASTRO,
VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR,
CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS,
MAXI Team, TZAC Consortium, KU, Nordic Optical
Telescope, ePESSTO, GROND, Texas Tech University,
SALT Group, TOROS, BOOTES, MWA, CALET, IKI-
GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre
Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team
at McGill University, DFN, ATLAS Telescopes, High Time
Resolution Universe Survey, RIMAS, RATIR, and SKA
South Africa/MeerKAT Collaborations), Astrophys. J. Lett.
848, L12 (2017).

[7] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[8] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[9] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),

Phys. Rev. D 103, 122002 (2021).
[10] V. Cardoso and P. Pani, Living Rev. Relativity 22, 4 (2019).
[11] D. Psaltis et al. (Event Horizon Telescope Collaboration),

Phys. Rev. Lett. 125, 141104 (2020).
[12] S. Vagnozzi et al., arXiv:2205.07787.
[13] H. Reissner, Ann. Phys. (Berlin) 355, 106 (1916).
[14] G. Nordström, K. Ned. Akad. Wet., Proc., Ser. B: Phys. Sci.

20, 1238 (1918).
[15] A. De Rujula, S. L. Glashow, and U. Sarid, Nucl. Phys.

B333, 173 (1990).

[16] V. Cardoso, C. F. B. Macedo, P. Pani, and V. Ferrari,
J. Cosmol. Astropart. Phys. 05 (2016) 054; 04 (2020) E01.

[17] M. Zajaček and A. Tursunov, arXiv:1904.04654.
[18] P. Kocherlakota et al. (Event Horizon Telescope Collabo-

ration), Phys. Rev. D 103, 104047 (2021).
[19] G. Bozzola and V. Paschalidis, Phys. Rev. Lett. 126, 041103

(2021).
[20] L. Liu, O. Christiansen, Z.-K. Guo, R.-G. Cai, and S. P.

Kim, Phys. Rev. D 102, 103520 (2020).
[21] O. Christiansen, J. Beltrán Jiménez, and D. F. Mota,
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