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We provide the post-Newtonian (PN) waveform for binary systems in motion along generic planar orbits
at 2.5PN accuracy, in terms of the dynamical variables of the effective one-body (EOB) formalism. In
addition to the calculation of the higher-order terms for all the contributions to the waveform that have been
already considered in previous avatars of EOB models, we also compute the EOB expression of the
oscillatory memory terms. These are purely noncircular contributions, first appearing at 1.5PN order, that
have been so far neglected in the EOB literature. This should foster their inclusion in EOB models and the
definitive assessment of their role in shaping gravitational wave signals at infinity. To further promote the
application of our results, we also derive associated noncircular factors according to the waveform
factorization prescription of the noncircular EOB model TEOBRe sumS-DALT; the result is a set of ready-
to-use noncircular factors that can be directly implemented as extra noncircular corrections in the waveform

of TEOBResumS-DALT.
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I. INTRODUCTION

From the observation of the first gravitational wave (GW)
signal [1], the LIGO-Virgo-Kagra (LVK) Collaboration [2]
has been bringing prestige to the field of gravitational wave
astronomy with numerous confirmed detections [3-5].
Prompted by these results, the scientific community is
now very active in improving the already existing GW
interferometers and in setting up the commissioning for
new detectors, both ground based such as Einstein Telescope
[6] and Cosmic Explorer [7], or designed to work in space
such as LISA [8] and TianQin [9].

The prominent sources of the GW signals observed
by current and future detectors are compact binary coa-
lescences (CBC), i.e., binary systems made by black holes
and neutron stars. Therefore, the data we can gather from
GW astronomy offer an unprecedented chance to inves-
tigate the properties of these compelling systems and probe
General Relativity in the strong-field regime. The extrapo-
lation and analysis of these data is heavily based on huge
banks of GW templates, which must comprehensively
cover the space of the relevant CBC parameters and be
accurate enough to sustain data analysis, with specific
requirements depending on the sensitivity of the given
detector [10].
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Amid the different directions of development for such
CBC waveform models, both the analytical and numerical
relativity communities have recently turned their focus
on extending their CBC waveforms from their native
quasicircular-orbit implementation to more generic, non-
circularized binary dynamics [11-27]. This has been
mainly spurred by the increasing observational relevance
that noncircularized binaries have been gaining over the
past few years [28-30], and by the many GW detections
from noncircular CBC that are expected in view of the
forthcoming next generation of interferometers, LISA in
particular [8,31,32].

Specializing the discussion to effective-one-body (EOB)
models [33-37], which combine analytical and numerical
information into a unified, robust, and theoretically com-
prehensive description of the whole coalescence process,
the generalization to noncircular binaries is proceeding
according to different strategies of implementation; on
the one hand, in the eccentric branch of TEOBResumsS
now known as TEOBResumS-DALI [16,17,38,39], it is
basically realized by replacing the quasicircular expression
of the Newtonian prefactor, in the factorization of the
spherical modes of the waveform, with the general expres-
sion obtained by computing the time derivatives of the
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Newtonian mass and current multipoles [13,14,16,17]; on
the other hand, the eccentric model SEOBNRV4HME [24]
has been built around post-Newtonian (PN) waveform results
for generic-planar-orbit dynamics, previously released in a
series of works [23,40-42]. More specifically, this wave-
form information has been implemented up to next-to-
next-to-leading-order in the PN expansion, i.e., at 2 PN.!
Subsequently, this same PN information has been also incor-
porated into TEOBResumS -DALT; see Ref. [25]. Here, after
suitable factorization and resummation procedures, the extra
analytical information has been recast in the form of extra
waveform factors, which were observed to improve, slightly
but noticeably, the analytical/numerical phase agreement
of the model, although with a marginal impact on the
waveform amplitude, which was seen to benefit mostly from
the generic Newtonian prefactor prescription. Other signifi-
cant differences between the aforementioned EOB models
can be found at the level of the radiation reaction forces, for
which we refer to the thorough analysis of Ref. [27].

Moreover, Ref. [26] has recently proposed a novel
approach to the inclusion of noncircular PN information
in the instantaneous (i.e., not involving time integrals over
the past history of the source) part of the EOB waveform.
The main idea behind this proposal consists in not perform-
ing the usual order-reduction procedure, by which the
natural occurring time derivatives in the waveform are
replaced with the respective PN-expanded equations of
motion (EOM); instead, all these time derivatives are left
explicit and evaluated along the dynamics, as it is done in
the generic Newtonian prefactor introduced in Ref. [13]. As
a consequence, each time derivative is de facto evaluated
using either the exact or the full EOB-resummed EOM,
depending on whether one has to deal, respectively, with
the test-mass or the comparable mass scenarios. In both
cases, this new strategy has been proven to further improve
the noncircular correction to the waveform amplitude,
which no longer vanishes at the turning points of the radial
motion, the apastra and periastra of the orbits along which
the binary system evolves; see e.g., Fig. 2 in Ref. [26]. A
related improvement has been also observed in the ana-
lytical/numerical agreement of the model at the level of the
corresponding fluxes of energy and angular momentum at
infinity; see Fig. 4 in Ref. [26].

Following this line of work, in this paper we push the
computation of noncircular waveform information in the
EOB formalism up to the 2.5PN order, encompassing also
the so far neglected oscillatory memory terms; then, we use
our findings to derive noncircular waveform factors that
can be used to upgrade the PN sector of the generic-orbit
model TEOBResumS-DALT.

'"We recall in this respect that the PN expansion is essentially
an expansion for small internal velocities of the considered
system, and it is usually organized in powers of 1/¢, with ¢
being the speed of light. In particular, terms proportional to 1/¢"
correspond to corrections at 5PN order.

More in detail, the generic-orbit waveform contributions
we provide here, for the first time, in EOB coordinates, are

(i) the 2.5PN tail terms.

(i) the 2.5PN postadiabatic term.

(iii) the 1.5PN, 2PN, and 2.5PN oscillatory memory

terms.

(iv) the 2.5PN instantaneous terms with implicit time

derivatives.

The contributions (i)—(iii) are obtained by expressing in
EOB coordinates the results of Refs. [41,42], where
the authors completed the derivation of the full 3PN
waveform for noncircular binaries, adopting the quasi-
Keplerian parametrization in harmonic coordinates. For the
contribution (iv) instead we push at 2.5PN the scheme
proposed and outlined in Ref. [26]. The expressions of the
new waveform contributions for the specific case of
the dominant # = m = 2 mode are given in Eqgs. (10) and
(25)—(28); all the other spherical modes can be found in the
file 2.5PN results in EOB coordinates.m,
provided as supplementary material [43] to this paper.

Regarding the details of the EOB dynamics, we refer the
reader to Refs. [13,16].

The paper is organized as follows. In Sec. II we go
through the derivation of the various terms which compose
the 2.5PN waveform in EOB coordinates, dealing sepa-
rately with the adiabatic instantaneous terms in Sec. [T A
and with all the others in Sec. II B. These results are then
used in Sec. I to derive 2.5PN-accurate noncircular
multiplicative corrections to the factorized waveform
modes of TEOBResumS-DALI. Finally, we summarize
and comment our results in Sec. IV.

I1. 2.5PN GENERIC-ORBIT WAVEFORM
IN EOB COORDINATES

We consider a nonspinning black hole binary system
with individual masses m; ,. It is useful to define the total
mass M = m; + m,, the reduced mass y = m;m,/M and
the symmetric mass ratio v = u/M. The gravitational wave
strain & at future null infinity can be decomposed as

+oco0 7
/’lEh+—ihx :Dzl Z Z hfm_szm’ (1)
=2 m=—¢

where D; is the luminosity distance of the source and
_»Y ¢, are the spin-weight —2 spherical harmonics. In what
follows we discuss the 2.5PN-accurate derivation in EOB
coordinates of the spherical multipoles #y,,, limiting
ourselves to the m # 0 case. We employ the usual mass-
reduced EOB phase-space variables (r, ¢, p, , p,), which
are given by: r = R/M, the relative separation in the center
of mass frame; ¢, the orbital phase; p, = (A/B)"/?p,,
where A, B are the radial potentials entering the EOB
effective metric [13,16] and p, = Pgr/u is the radial
momentum; p, = P(/, /uM, the angular momentum.
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In general, the PN expression of each spherical wave-
form mode consists of two distinct parts; the instantaneous
part, which depends on the state of the source at a specific
retarded time, and the hereditary part, whose time depend-
ence is instead extended to the past history of the source via
distinctive time integrals. Among the hereditary contribu-
tions there is a further distinction based on the traits of their
time dependence; the tail terms are those that are pro-
gressively suppressed as one goes towards the remote past
of the source, while the memory terms weight equally each
moment of the source past.

The derivation of instantaneous and hereditary waveform
components will proceed according to different approaches,
respectively outlined in Sec. II A and Sec. II B. We specify
however that in the latter section we will also target the
additional phasing terms of instantaneous type that are
induced by the energy and angular momentum loss, the so
called post-adiabatic terms [41], for which the approach of
Sec. IT A is not viable; we anticipate that terms of this kind
arise as 2.5PN contributions in the PN expansion of each
spherical mode and, correspondingly, only those of the
¢ = m =2 mode are relevant for the 2.5PN accuracy in
the total waveform (1) we are aiming for here.

A. Time-derivative dependent instantaneous part

The instantaneous contributions to the waveform are
dealt with according to the strategy introduced in Ref. [26],
which remarkably improves the behavior of the waveform
at the apastra and periastra of the binary motion. In general,
for nonprecessing binaries, the spherical multipoles of the
waveform in the decomposition (1) are given by

Ufm . .
hypy = — NI if Z+ m is even,
. me . .
hyp =i if £+ m is odd, (2)

\/i cf+3

in terms of the mass-type (U,,,) and current-type (V,,,)
radiative multipole moments. The latter are related to the
symmetric trace-free (STF) radiative moments U; and V; by

4 [(+1)(c+2) ,

Ui =—
m =\ 20+ 1) Tl
v _ 8 ‘(¢ +2) gLV 3)
o\ 2e+ (e -1)
where L =iy, ....i, and ok, are the STF tensors which

connect the basis of spherical harmonics to the set of STF
tensors Ny = Ny -+ N; f),z defined by the unit vector N
pointing from the source of the wave to its observer. The STF

2Adopting a standard notation the angular brackets () denote a
STF projection over the indices they enclose.

radiative moments (U;, V) are computed in terms of the
STF moments of the source (I;,J;,X;,Y;,Z;, W) fol-
lowing the PN-matched multipolar post-Minkowskian
scheme developed by Blanchet and Damour [44] and
reviewed in Ref. [45]. The relations connecting the two
set of STF moments are conveniently collected, at 3PN
accuracy, in Sec. I[II A of Ref. [40]. Moreover Sec. III B of
Ref. [40] collects the expression at 3PN order for the source
moments of nonspinning binary systems in harmonic coor-
dinates. What is of uttermost importance for our approach is
the presence of time derivatives in the aforementioned
relations between radiative and source moments. For in-
stance at the level of the mass quadrupole, which is needed
for the £ = m = 2 spherical mode, and focusing just on the
instantaneous terms, we have

st _ 7@, G {15 5
Uijtflij +§|:§Ia<ilj

2
219 28

)a _7 a(i’ jla 7 u><i Jja

1
+3 sabglﬁlb AW, + WO - WS

- W<'>1§J3.>)] +0(c™), (4)

where the superscript (n) indicates the nth time derivative. In
the standard approach, also followed in Ref. [40], all the time
derivatives in this expressions are removed with an order-
reduction procedure which replaces them with the corre-
sponding PN-expanded EOM, truncated at the desired PN
accuracy. On the contrary, embracing the strategy proposed
in Ref. [26], we choose not to remove the time derivatives in
the instantaneous terms, and instead keep them in explicit
form. This amounts by all means to a PN generalization of
what has been done in Ref. [13] to define the generic-orbit
Newtonian prefactor, which in fact turns out to be precisely
the leading-order term of the instantaneous waveform
component we compute here.

The procedure to derive these results in EOB coordinates
is the following: starting from the harmonic coordinate
source moments, given in Sec. III B of Ref. [40], we recast
them in EOB coordinates with the transformations given in
Egs. (5)—(8) of Ref. [25].* Then we insert the so obtained
source moments, now functions of (r,¢, p, .p,), in the
relations connecting them to the radiative moments, such as
Eq. (4). In all these relations one has time derivatives of the
source moments. Therefore, when they are used together
with Egs. (2) and (3) to compute the instantaneous part of
the waveform, the latter shows a dependence on several

*Here [ ; are the mass-type source moments, J; the current-
type ones, and all the others are typically dubbed gauge
moments since they are of gauge nature in linearized gravity,
even though they are physical in the full nonlinear theory.

Tough 2PN-accurate, these transformations can still be used
for our 2.5PN computation since their next PN contribution
would appear at 3PN.
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time derivatives of the EOB variables. For instance, the
formal structure of the instantaneous terms in /,,, up to
2.5PN, read

hiznzst = hlz\fz(r@ﬂ,g(w))

1 1PN 2 2
+?h22 : (rm),Q(m,pﬁf),pgp T))

L opN. 2 2
+?h22 (r(m’gm)’pg* ),p((/, T))

1 spN,, 4 2
s ke (.60 I P (5)
where Q= ¢ and the symbol (n?) indicates that the

corresponding variable appears with all its time derivatives
|

up to the nth. As anticipated before, the leading term of
Eq. (5) coincides with the generic £ = m = 2 Newtonian
prefactor [13]

8v Iz —2ip SN e
Wy =—7 \/gﬂgze 20 fryge, (6)

- 1/ ” F (2 Q
=1 e ) Tlha ) 7

where the subscript “nc” labels waveform contributions
that are purely noncircular, i.e., that vanish when the
dynamics of the source is constrained on circular orbits.
The remaining PN terms are given by

2 . .
PPN — o \/gye‘m” [(901/ +54)p? rPQ* 4+ 9i(5v + 3) p? r’Q — 9(5v + 3) p2 rit + 36i(5v + 3) p? riQ

—9(5v +3)p} it —=9(5v + 3)p, p,.r* 4+ 36i(5v + 3)p, p, r*Q—36(5v+3)p, p, ri —8i(6v+5)p, p,rQ*
+4(6v + S)pr*p(prQ +2i(6v +5)p, p,i +8(6v +5)p, p,iQ+2i(6v +5)p, p,r +8(6v+5)p, p,rQ
+4i(6v + 5)p,, p,i + 2i(6v +5)p, p,r —9(5v +3)p7 r* + 8(6v + 5)p, p,rQ+ 4i(6v + 5)p, p,F
+4i(6v +5)p, p,r + (420 + 14) p2 Q% + Ti(3v + 1)p2Q —T(3v + 1)p, b, + 28i(3v + 1) p, p, 2

— TGy + 1)p2 + 12(v = 19)rQ2 + 6i(v — 19)rQ + (57 — 3u)7# + 12i(y — 19)}9}, (8)
: 1 .
Rt — 757 \/gye‘z"/’{—90pi (v = 13)v + 5]Q%r° + 270p?% p2 (v — 13)v + 5]r° + 90p3 p, [(v — 13)v + 5]r°
p .

—360ip} p, [(v—13)v + 5]Qr° — 45ip? [(v — 13)v + 5]Qr° — 48ip3 p,[v(14v + 43) — 5]Q%F°

+ 24p? [V(4Tv 4 91) + 124]Q°F° + 45p} #[(v — 13)v + 5] +360p} p, il(v = 13)v + 5]r

+ 72ip, p? p,lv(14v 4 43) = 5] + 36ip? p, p,v(14v +43) = 5] + 12ip; p,[v(14v + 43) — 5]
+72ip2 py by lv(14v + 43) = S| — 122 [w(4Tv + 91) + 124155 — 12p, p, V(47w + 91) + 124]°

— 180ipy} il(v —13)v + 5]Qr° + 144p? p, p,[v(14v 4 43) = 5]Qr° +48p; p,[v(14v +43) — 5]Qr
+48ip, p, [V(4Tv +91) + 124]Qr° + 24p3 p,[v(14v + 43) = 5]Qr° + 12ip2 [V(4Tv + 91) + 124]Qr
+36p2 p2(=2102 + v — 25)Q%* — 8ip, p,[4v(22v + 353) + 983]Q% + [241(650 + 271) + 924]Q%*
+45p} P[(v = 13)v + 5]r* + 12ip; p,#v(14v +43) — 5]r* + 72ip; p, p,rv(14y + 43) — 5]r

+24ip; p,rlv(14v +43) = 5]r* + 18p7 pi[v(21y — 1) +25]r* + 18p, p, polv(21v — 1) 4 25]r*

+ 18p7 polv(21y — 1) +25]r* + 18p? p, b, [v(21w — 1) +25]r* +72p, p, p,p, (21w — 1) 4 25]r*
+2ip, p,[4v(22v + 353) + 983]r* + 2ip, p,,(4v(22v + 353) + 983)r* + 4ip, p,[4v(22v + 353) + 983]r*
— 6p2 Fu(4Ty +91) + 124]r* = 24p, p, ilv(4Tv + 91) + 124]r* + 48p3 p,,iv(14v + 43) — 5]Qr*
—72ip, p, palv(2lv = 1) 4 25]Qr* = 72ip? p,p,(21v — 1) + 25]Qr* + 8p, p,(4v[22v + 353) + 983]Qr*
+ 8D, po[4v(22v + 353) + 983]Qr* + 24ip? iu(47v + 91) + 124]Qr* — 18ip? p2[v(21v — 1) + 25)Qr*
+4p, p,[4v(22v + 353) + 983]Qr* + 6i2u(65v + 271) + T7|Qr* + 4p2 (43417 — 3806v — 1703)Q%r

— 144ip, pilv(6v + 11) = 5]Q%r + p2(—8681% + 7612v + 3406)r° + p,,p,(—8681% + 7612v + 3406)r°
+36ip, pyv(6v+ 11) = 5]r° +216ip, p,p3v[6v + 11) = 5] + 108ip, p3p,[v(6v + 11) = 5]r
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+216ip, pop,w(6v + 11) = 5] + 8ip, p,(4341* — 38060 — 1703)Qr° + 144p, pllv(6v + 11) — 5]Qr
+432p, p2p,[(6v + 11) = 5]Qr + 2ip3 (4342 — 3806w — 1703)Qr* + 72p, p3[v(6v + 11) — 5]Qr

+ p3[30 — 60(143v + 109)]Q%r2 + p2#(434% — 3806V — 1703)72 + 4p,, p,, (4340 — 3806v — 1703)r>
+ p3 b, (85807 + 654v — 30)r* — 36ip, piF(6r + 11) = 5]r? = 72ip, plirlv(6r + 11) — 5]r?

—216ip, p2p,irv(6v+ 11) = 5]r* + 18p2 p2[v(143v + 109) — 5]r? — 4ip?i(4341> — 38060 — 1703)Qr?

4

— 144p, p3iu(6y + 11) = S|Qr2 — 24ipd jp, [L(143y + 109) — 5]Qr% — 3iph (1430 + 109) — 5]
+ p3i*(—868L2 + 7612v + 3406)r + 72ip, pii*[v(6v + 11) — 5]r — 24p3 p,,ilv(143v + 109) — 5]r

+ pAF[15 = 3u(1430 + 109)]r + 12ipt (1430 + 109) — 5]Qr + 9p4i2[1(143v + 109) — 5]}, (9)

R \/gl/ze_z"/’ (1695 r = 60Q0° " — 40Q2Qr" — 10iQQA) 7 + QH) 7 + 80iQ3Qr" — 20iQ2 Q.

21r

+224p, Q30 — 64FQ3 /0 4 1120, Q270 — 32ir3Q25 + 28iplY 1o + 2ir5) 0 4 56pQr0 — 56, Cor0
+ 167070 = 56, Qr + 16r3)QrS 4 336ip, QQr® — 96i7QQr° — 112p,Q*r° + 256i2Q%1° +224p, Q>
+ 112ip, #Q2r5 + 896ip, FQr® + 192 ¥ Q21" + 84p, Q7 + 112ip, #r° + 56ip, r®r + 12i7r3)

+28ip, r4° +168ipl) i — 10ir®) iS5 — 24i2Qr° — 168, 7Qr° + 56p, rQr —56p, iQr®

s

—96r)iQrS — 642G — 56p, i Q5 + 112p, Q0 + 14ip Q3 r° — 336ip,Q*QrS — 56p, i Q1
—448p, i Q1S =967 Qr° + 384ii2QQr + 336ip, iQQrS — 448ip,, Q3 r* — 56ip, Pt + 112ip, i*rt

— 88ir3)i2r* 4 288ii3Q2r* + 672ip, i2Q2r* + 336, 7% r* — 14p,r®r* — 84i2ir* — 112ip, #ir*

— 784 p, i?Qrt — 3367i2Qr* + 112ip,r®Qr* — 560p, 7 Qrt + 112ip,, i 4 r* — 1443Qr* — 336p, iQr*
+ 168ip,,,'f§2 o+ 672pq,i"QQr4 - 112ip,, Pr = 24irir — 42}7,,,';521’3 —224ip,, Fitr + 336pq,i"2£22r3
—288ip, Q213 + 72ip, 1} = 56p,rir’ —24i4Qr3 — 336p, i*Qr® +288p, Q3 + 336ip,, i i Qr
+168ip,i*Qr* + 144p, Qr® — 576p, 0> + 144, 1% — 576ip,Qr* — 288ip,,Qr’

— 144p, ir — 288, ir + 5T6ip,iQr + 288p¢i2>,

2.5PNjpy
where we stress that 455 ™ is one of the novel waveform

contributions presented in this work. The instantaneous
terms for the other m # 0 spherical modes up to # = 6 are
collected in the supplementary file [43], together with the
respective expressions that follow when the usual order
reduction of the time derivatives is instead performed.

We specity that the approach we described and adopted
above is only suitable for the instantaneous part of the
waveform. In fact, to evaluate the time integrals over the past
history of the source, which appear in all the hereditary
contributions, one needs to make use of the PN-expanded
EOM; the same happens for the derivation of the postadia-
batic terms.

B. Quasi-Keplerian harmonic parametrization in EOB
coordinates: Postadiabatic and hereditary terms

Throughout this section we will consider the useful
spherical mode notation

(10)

8 -
I = =2\ | =& ™0 1, (11)
c 5

already employed (modulo different numerical factors) in
Refs. [23,25], where H ¢#m has been computed in EOB
coordinates up to the 2PN order, without including memory
terms. In this section we go through the derivation of the
EOB-coordinate expressions for 4, up to the 2.5PN order
while including all the waveform contributions that are
inherently left out from the procedure outlined in the
previous section; hereditary (tail + memory) and postadia-
batic terms. We stress in this respect that the memory terms
we are considering here specifically belong to the so-called
oscillatory memory, a component of the nonlinear memory
[46-48] whose hereditary time integrals involve oscillatory
exponentials. Since these oscillations tend to cancel each
other out going towards the remote past of the dynamical
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history of the source, these contributions are more similar
to the tail than to the genuine nonoscillatory memory, the
so-called direct current memory, present only for the m = 0
spherical modes whose analysis we leave for future work.
In general, the waveform contributions we are interested in
here were derived up to the 3 PN order in Ref. [42], using the
quasi-Keplerian (QK) parametrization [49,50] and perform-
ing an expansion for small time eccentricity e, up to order
O(e?). Our aim is to recast these results in EOB coordinates,
so to get them ready for the implementation into EOB
models, limiting ourselves to 2.5PN accuracy. To this end,
starting from the QK expressions of Ref. [42], we need to
(1) recover the usual harmonic coordinates from the QK
orbital parameters and (ii) use the proper 2 PN accurate’
|

_2‘
1372 6

1495¢%%¢ 6
e
6048 '

4032 ¢

7r1.5PN, .
H22 mem x3/2”/[

(169 169 ,
_ L4kl _~ 27 6 P 2 IRNC 173
¢ <15126’*1008e’> ¢ <

(503 , 5 13
_ il T 6~ 4 2
¢ <4032€’ 726’*_2526’>}'

Here x = (GMw/c*)*? is a PN-counting frequency
parameter defined in terms of the orbital frequency
o = (1+k)n, where 1+ k =2z/® gives the angle ad-
vance of the periastron per revolution and n = 2z/P is the
mean motion associated with the period P; finally the phase
angle £ is a redefinition of the mean anomaly / which arises
from a shift of the time coordinate® aimed at removing from
the instantaneous and tail parts of the waveform the
arbitrary parameter x, introduced in the multipolar wave-
form generation formalism (see, e.g., Ref, [45]). At 1 PN
order one simply has

E=1=u,—e, sin u,. (13)
The parameter u, above is the eccentric anomaly which

enters the Keplerian parametrization of elliptic orbits in
polar coordinates and in the center-of-mass frame, that is

R, =a(l —ecos u,), (14a)

1/2
+'e> tan %f], (14b)

—e

1
@n — (¢n)y = 2 arctan Kl

>The next PN order after the 2PN in the transformations from
harmonic to EOB coordinates is the 3PN. Therefore, for a 2.5PN
accurate waveform, the 2 PN accurate coordinate transformations
are all we need.

®This same shift also results in a redefinition of the harmonic
phase but it enters the latter as a 4PN correction; we can thus
ignore it for our 2.5PN-accurate computation.

55,
504 '

25 13 ‘
=5 o 3 i S__~ .3
3366’*1266’> ¢ (IOOSe’ 126e’>

coordinate transformations to finally recast everything in
EOB coordinates. Before we start, it should be noted that all
the contributions we consider in this section enter the
complete waveform starting from the 1.5PN order. This
brings a huge simplification in the procedure outlined above,
especially in its first step.

In the following we outline in detail the entire translation
procedure while applying it stepwise, as an illustrative
example, to the leading oscillatory memory term in the PN
expansion of the £ = m = 2 spherical mode. The latter is
provided in its original QK form, together with the other
contributions we want to translate in EOB coordinates, in the
Supplementary Material of Ref. [42]; up to order O(e?)
it reads

13¢7%

, 13,
3024 ¢

7675% 5
3024 " T336

185 13

6

(12)

where also the semimajor axis a appears, while e is the
Newtonian orbital eccentricity; R, and ¢ define the

components of the relative separation ﬁh = R, (cos ¢,
sin ¢;,,0) and the subscript “h” signals that we are
employing harmonic coordinates. The QK parametrization
used in Ref. [42] is none other than a post-Newtonian
generalization of the Keplerian parametrization outlined
above, and reduces to it when truncated at the Newtonian
order. At 1PN, the profile of the parametrization remains
the same as in Eq. (14) but one has two other eccentricities
in addition to e, appearing in Eq. (13); the radial eccentricity
e, and the angular eccentricity e, respectively replacing the
Newtonian eccentricity e in Egs. (14a) and (14b).7

Starting from the 2PN order one also has additional
terms appearing in Eq. (14b). However since the accuracy
we work with is 2.5PN and the expressions we need
to translate in EOB coordinates enter at 1.5PN order, we
just need the coordinate transformation between the QK
parametrization and the harmonic coordinates at 1PN
order. Therefore we can safely use Eq. (13) and the
IPN-corrected version of (14), identifying R, and ¢, as
the harmonic radial separation and phase, together with the
1PN relations [50]

el
a=—-——|1-

5E (15a)

0| Iy

%(—7—#1/)},

At the leading Newtonian order all the various types of
eccentricities coincide and reduce to e.
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1 E
e =1+2EJ* — == [8(=1 +v) +2EJ*(-17 + Tv)],

c*2
(15b)
e2=1+2EJ - ég [4(6 —v) — 10EJ?* (=3 +v)],
(15¢)
n = (=2E)*? [1 +% (5(15 - y))] : (15d)
2 2 (3 1
xz—c—f{l—?<ﬁ—ZE(u—15))], (15¢)

which connect the orbital elements we need to rewrite in
harmonic coordinates with the binary orbital energy and
angular momentum per unit reduced mass u, respectively
|

denoted as E and J. Then, using the mass reduced radial
coordinate r, = R;,/M, at 1PN we have

”1 1 1173 . .
1 72 B+u)(r? +rg) | 1

h +( )(7 "% )+ }

5 ?h 21"h

(16)
Zr%l

r
J—rh h+ h(ph
C

E (1=3v)(F2 + rg,*) + 3 r+h y] )
(17)

By combining Eqgs. (13)-(16) we can thus rewrite as
desired the orbital elements u,, e, and x in terms of the
harmonic polar coordinates rj,, ¢; and their first time
derivatives i and Q; = ¢;. The 1PN explicit expression we
find are

4, — arceos =1+ ryi7 + r Qs %3%,2 +r rh(4 5v) + Sv+ r (4 = 8u + 1,y i70)Q2 + rSuQ} s
\/1 2thﬁ + r2 Qi + rZQ;‘l — rhrh Q,zl)(l — 2r*2§2%1 + r;‘lrﬁﬂﬁ + rﬁQﬁ)
¢;=\/1-2r00 + rbiRQ} + ri0 41 (2173 +4(=1+0) = 2ni3w
“an/1- 2th§, e
+ P (8 = 130)Q2 + i (6 = TW)Q2 + 142 (=10 + 170)92 + 2¢] 2 (6 — Tv) Qb + 27 (=5 + 8) % + r2(6 — Tv) < ]
(19)
22—t -2 1 1
x =2 T + 5= [12 6rpia + r}i2 (6 — Tw)Q2 + r3 (=24 +v)Q2 + r it (—6 + Tv)Q;
), c"3r;Q5
£ 255(3 = 20)Q + 2072 (=6 + L)L + 19(=6 + 7y)gﬂ . (20)
. . S . : e —Cos u,
An important consideration is in order: in the leading k,=e——m %, (22)
P 1 —ecos u,

Keplerian motion, one has

1/3

n'/? sin u
b= et e 21
" el—ecosue’ (21a)
V1= 2
Q, = ¢ (21b)

.
(1 —e cos u,)?

This shows as expected that the quantity 7, is proportional
to the eccentricity e and thus goes to zero in the circular
limit. In addition to this, it is possible to construct yet
another quantity proportional to the eccentricity; introduc-
ing the variable k, = 1 — Qi r; and using Eq. (21) yields

in compliance with the fact that Q7 r; = 1 when the motion is
circular. Therefore, to properly keep into account the eccen-
tricity expansion of Eq. (12) in our translation into harmonic
coordinates, we must rescale 7, and k » by a small parameter e,
which we use to properly keep track of the power order in
eccentricity, and expand in € up to O(e®). This produces a
simultaneous expansion in 7, and k, up to the sixth order, the
same order at which the expansion in eccentricity underlying
the starting QK contributions to the waveform multipoles, e.g.,
Eq. (12), is truncated. In this expansion one would get
expressions containing also half integer powers of r;,, although
they can be removed by harnessing the definition of the
quantity k,. We can in fact use the latter to rewrite /7, as
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raQy, 5 ke 3kie*  5kie’ and use it in our expansion in e. After this step we set e to 1 and
Ve = \/m = 1+ 7 + 3 16 rewrite k,, in terms of r;, and €, so that we finally end up with
. Z s s 6 6 expressions that depend only on the harmonic coordinates 7y,
35kye N 63k, e N 231kp€ ) +o() (23) i, and Q. Coming back to Eq. (12), with the procedure
128 256 1024 ' described above it becomes
|
23, 689 . 71 65 . 3865 . 137
Hl SPNipem v 17913 14911 — 13 QlO U 12 299 1199 98
2 A\28" " T a6 126" T 255! a5 PRl
26 . . 1 93 1 . 325 . 65 4 725
+ilr2riﬂh 3 rpr 296 —erhQ 1261rlr292 Erzlrhﬂg 73 lrhthS a3 rhth;t 36 lthZ
1 1195 , 130 . 2 237, 265 . 1
T3 N Tag i+ gy G = 57 R 1472~ 28 W = 33
-3 .
B 767 ., 475iQ, 65 e
-— Q — ii,Q 24
2r, 126 T 55p, " T Ra T 24)

We can now trade the harmonic coordinates (7,7, @;,,€2,) with the mass-reduced EOB phase-space variables
(r.@.p,..p,) at 2PN accuracy, by employing the transformations shown in Egs. (5)—=(8) of Ref. [25]. The final result
for the leading oscillatory memory terms we are explicitly computing as an illustrative example of the procedure is

s, V[ TU o 65, . 137 26 325
H22 :g (_ﬁu Pr.Py _Elu DPr.Py +Eu Pr.Py +i”’t pr p(p 42 pr*pqz 63u pr*p(p
0 7
. 4.2 4 .3 4 - 3.2 .3
=55 W' PL.Py + 5 W Pr Py = 1o PPy + DL Pl + P Py = 5w P P+ 5 WPy Py
2 65 23 1 1 23 689 3865 .
5 2.3 2 [ by 20 pl3 uSpll Ul p°
21 VPP = g DT Py H g WPr = g U Py gy upy g i’ pg = oeittpy + S iuT py
93 725 265 475
g WPy S Ry~ g Wy gy Ry ). ®)

where we introduced the variable u = 1/r. The final expressions in EOB coordinates for all the hereditary and postadiabatic
contributions to the waveform up to 2.5PN order can be found in the Mathematica notebook [43] that accompanies this
paper, encompassing each relevant spherical mode with m # 0. Below, focusing on the mode £ = m = 2, we limit
ourselves to reporting the EOB-coordinate contributions that represent a novelty in the EOB literature, in addition to the
leading-order oscillatory memory already given in Eq. (25). These are the 2.5PN oscillatory memory,

845099y 5339291

0 14 11,10 513

Po T g Prt VP ( 8064 48384 )”‘ Py

25PNmem_i (3451/ E) 11,15
s

+ pr.u p(/)+ 4

4032 2016

. <69u 299) 2 i <@_4673y> o0 <19990273_3973649u>i o 1
14 252 252 v 24192 4032 ¢
1598621 T9T2690Y 0 gy (100320 45BN g (T8E 9L g
+<43008 B 21504) v < 896 448 )p” “Py +<E_ 252) “ Py
M08y IS o (25209310 ABIIGR) o o (TS ISy o
+< 1152 16128 )’” p*"+< 64512 129024)””*” p‘”(ﬂ_ 504) “ly
33548230 1784815\ . . (9650 409\ , . . (41009279 10230470\ .
+< 4032 2688 ) " <63 _2_8> r Py < 12006 224 > Po
. <5064533y 8498621) ) 7+< 25150 6085>l i (2600881_41534951/) 58
32256 64512 )PP 4032 4032 v 1728 2016 )PP

142937 927470\ 4 < o (1 s oo o (315486770 135064421 ¢
+ —_
rE P T 14T 9 8064 48384
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We highlight that all the oscillatory memory terms are
purely noncircular contributions® that are proportional to
the symmetric mass ratio v. This means that they
disappear both in the test-mass limit v — 0 and in the
circular limit, so that the impact of their eventual
inclusion in EOB models can be only assessed by
performing comparisons with numerically simulated
waveform for comparable-mass noncircularized binaries.
Regarding the postadiabatic term (28) we specify instead
that, while it is also proportional to v, it survives in the
circular limit and its contribution is actually needed to
correctly reproduce the quasicircular PN expression of
h,, given, e.g., in Ref. (51].°

¥In fact they stem from QK expressions like Eq. (12) whose
terms are all proportional to the eccentricity e.

°In particular, it can be seen that the 2.5PN-accurate term
—24ivx>/? inside the curl brackets in Eq. (79) of Ref. [51] results
form the sum between the circular limits of the instantaneous
contributions (6)—(10) and the postadiabatic term (28).

III. GENERIC-ORBIT 2.5PN FACTORIZED
WAVEFORM

The spherical multipoles of the waveform derived in
EOB coordinates in the previous section at 2.5PN accuracy
have the following structure:

where (i) A% is the purely instantaneous part of the mode,
derived in Sec. IT A and presenting a PN profile of the type
(5), which also encompasses the leading Newtonian term; the
,I,,( addresses instead the set of all the other
contributions to the spherical mode, computed from QK
waveform results as outlined in Sec. II B, and it is always
subleading with respect to the Newtonian term. For instance,

in the case of the dominant £ = m = 2 mode, one has'”

component h?

"®Here each waveform piece is considered in its full form,
obtained by multiplying the corresponding H,,, of the previous
section with the prefactor of Eq. (11).
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1
QK __ 1.5PNy; 1.5PN e
hs, = 3 (hzz '+ Ry )

1 i . 0st—a

With this generic-orbit waveform information at hand,
the aim of this section is to properly organize it so that it can
be readily incorporated in the factorization scheme of
TEOBResumS-DALI [13,14,16], in the most profitable
way. To this end, for each m # 0 mode we consider the
following factorized structure

B = B2, SIS RIK, (31)

where

(i) AY, is the generic-planar-orbit Newtonian prefactor
[13], leading order term of At

(i) S.q is the effective source term [52], which is given
by the u-rescaled effective EOB Hamiltonian H
when £ + m is even and by the Newton-normalized
angular momentum p,/ r2Q when ¢+ m is odd,
where r, is the modified EOB radius defined in
Refs. [53,54].

(iii) fz}“,ff is a purely instantaneous, time-derivative de-
pendent, PN factor. It is defined from A5 by

7 inst [ hi{{m :|
w7 2 (32)
‘m 2.5PN 5
hlfym Seff

where the operator T, spy applies to its argument a
PN-type Taylor expansion up to 2.5PN, counting the
PN orders with respect to the leading order of the full
waveform, i.e., the Newtonian component of the
¢ = m = 2 mode. This is exactly the instantaneous
PN factor introduced in Ref. [26], now pushed to the
2.5PN order. Notice that the resulting structure is of
the type “1+PN corrections”.

@iv) ﬁ?}; is the residual PN factor where all the other
waveform contributions are collected, namely those
derived in Sec. II B. The formal definition of this
factor is given by

A h
K _ ‘m
h?m = TIZECS)II;/II\I |:hinst:| ’ (33)
‘m

where the superscript “EOM” on the Taylor series
operator makes explicit that the expansion is taken
using the PN-expanded EOM also for the instanta-
neous part h%f in the denominator. Again, it has a
structure of the type “1+PN corrections”.
These last two PN factors are then further factorized by
isolating their circular parts, namely

. Ax n . X
XC ch ch — f
WS, = RS ik e zzjéij{ﬁf?}’ (34)
‘m

where X = {inst, QK}. Here the circular parts are com-
puted by taking the circular limit, as clarified below, in the
corresponding PN factors. For A% this is simply realized
by setting to zero p, and all the time derivatives of the
EOB variables that appear therein except for Q= ¢;
notably this is done without replacing the angular momen-

tum p,, with its circular orbit expression in terms of r, as
done in Ref. [26]. In fzg’f we must take into account the
expansion in eccentricity which underlies the waveform
terms it incorporates. We do so as follows: First, we replace
p, with p, , by inverting perturbatively the EOB EOM of
the latter, after it is expanded up to 2.5PN. Then, we take a
simultaneous expansion in p, and p, up to the sixth order,
as we did for 7, and k, in Sec. I B. At this point the circular
part of this factor can be singled out by setting p, and p,
to zero.

The resulting noncircular factors fz?};“ are functions of
Pr.» Dr.» and u that reduce to 1 when one takes either the
Newtonian or the circular limit. We moreover split them
into three distinct factors that separately collect tail,
memory and postadiabatic contributions, which give back
the total factor fz%"“
expanded up to 2.5PN,

when multiplied together and

7 QKnc _ 7 QKnc.(ail 7 QKnc,mem 7 QKnc.pnsl—ad
hfm - hfm hfm hfm . (35)

Globally, the factors /2" and the three factors in which
IAQS,I;“C is split contain all the novel noncircular contributions
to the waveform that we have computed in the previous
section, in a form already set up for the inclusion in
TEOBResumS-DALI; they are explicitly given in the
supplementary Mathematica notebook [43]. As for the
circular factors 225 and h2%, instead of keeping them
as they are in the waveform model, we propose to replace
them with the last avatars of the circular relativistic wave-
form factors T,,,en and (ps,)’ [38,52], used in all
the previous iterations of the model.'" Here Ty, is a
complex factor which resums infinite leading logarithms
appearing in the tail part of the quasicircular waveform, and
is given by

T+ 1-2ik)

T, — wk 2ik log (Zkro)’ 36
=TT O (36)

""Our intent here is to preserve as much as possible the great
accuracy boasted by the native quasicircular version of the model
for the case of quasicircular binary coalescences.
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where k= GH_,mQ, in terms of the real EOB
Hamiltonian H,,, k= mQ, and r, is a length scale
introduced in the Blanchet-Damour waveform generation
formalism [44], fixed in this context to rq = 2GM/+/e. The
other two quantities, d,,, and p,,,, account respectively for
the residual modulations to the phase and the amplitude of
the spherical mode. They are given in terms of PN series
which, being computed in the simplifying context of the
quasicircular approximation, span higher PN orders than

the one reached by fzif;;“ and fz?}f, especially in the test-
mass (v — 0) sector where they are pushed up to SPN or
6PN accuracy, depending on the spherical mode; see e.g.,
Ref. [38]. Moreover, the behavior of the PN series in both
Oz and p,,, is tamed by specific Padé resummations whose
details can be found in Ref. [38] and references therein.
To wrap up, the resulting factorized waveform model we

propose for generic-planar-orbit black hole binaries reads
N i3, ¢ 7yinstye §QKye
hem = 03 SeicTemem (Pem) hgy™hp™ . (37)

with the noncircular factor iz%““ further split as in Eq. (35).

IV. CONCLUSIONS

In this work we have derived the 2.5PN accurate wave-
form components of each spherical mode of the waveform
in EOB phase-space variables, in a form valid for binary
systems moving along generic planar orbits. This extends
the current knowledge of the PN-expanded EOB waveform
with respect to previous works in two directions: (i) by
including higher-order terms for all the waveform contri-
butions that were already considered in the EOB literature,
essentially instantaneous and tail terms, with the former
provided either with explicit time derivatives or in the usual

order-reduced form via the PN-expanded EOM; (ii) by
introducing the 2.5PN-accurate EOB expression of the
oscillatory memory terms, which so far have been missing
in the EOB literature. We believe that our results will
encourage and facilitate the inclusion of these neglected
terms in EOB models, leading to a more comprehensive
description of the gravitational wave signals radiated at
infinity by noncircularized binaries.

To further promote the application of the novel EOB
waveform information we provide, we have have also
computed associated noncircular factors that are suitably
set up for being incorporated in the noncircular EOB model
TEOBResumS-DALI. We defer to future work the assess-
ment of the effective importance of these new corrections in
TEOBResumS-DALI, as well as the computation of the
generic-planar-orbit EOB waveform at higher-PN orders
and the inclusion of extra spin-related corrections.
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