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We provide the post-Newtonian (PN) waveform for binary systems in motion along generic planar orbits
at 2.5PN accuracy, in terms of the dynamical variables of the effective one-body (EOB) formalism. In
addition to the calculation of the higher-order terms for all the contributions to the waveform that have been
already considered in previous avatars of EOB models, we also compute the EOB expression of the
oscillatory memory terms. These are purely noncircular contributions, first appearing at 1.5PN order, that
have been so far neglected in the EOB literature. This should foster their inclusion in EOB models and the
definitive assessment of their role in shaping gravitational wave signals at infinity. To further promote the
application of our results, we also derive associated noncircular factors according to the waveform
factorization prescription of the noncircular EOB model TEOBResumS-DALI; the result is a set of ready-
to-use noncircular factors that can be directly implemented as extra noncircular corrections in the waveform
of TEOBResumS-DALI.
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I. INTRODUCTION

From the observation of the first gravitational wave (GW)
signal [1], the LIGO-Virgo-Kagra (LVK) Collaboration [2]
has been bringing prestige to the field of gravitational wave
astronomy with numerous confirmed detections [3–5].
Prompted by these results, the scientific community is
now very active in improving the already existing GW
interferometers and in setting up the commissioning for
new detectors, both ground based such as Einstein Telescope
[6] and Cosmic Explorer [7], or designed to work in space
such as LISA [8] and TianQin [9].
The prominent sources of the GW signals observed

by current and future detectors are compact binary coa-
lescences (CBC), i.e., binary systems made by black holes
and neutron stars. Therefore, the data we can gather from
GW astronomy offer an unprecedented chance to inves-
tigate the properties of these compelling systems and probe
General Relativity in the strong-field regime. The extrapo-
lation and analysis of these data is heavily based on huge
banks of GW templates, which must comprehensively
cover the space of the relevant CBC parameters and be
accurate enough to sustain data analysis, with specific
requirements depending on the sensitivity of the given
detector [10].

Amid the different directions of development for such
CBC waveform models, both the analytical and numerical
relativity communities have recently turned their focus
on extending their CBC waveforms from their native
quasicircular-orbit implementation to more generic, non-
circularized binary dynamics [11–27]. This has been
mainly spurred by the increasing observational relevance
that noncircularized binaries have been gaining over the
past few years [28–30], and by the many GW detections
from noncircular CBC that are expected in view of the
forthcoming next generation of interferometers, LISA in
particular [8,31,32].
Specializing the discussion to effective-one-body (EOB)

models [33–37], which combine analytical and numerical
information into a unified, robust, and theoretically com-
prehensive description of the whole coalescence process,
the generalization to noncircular binaries is proceeding
according to different strategies of implementation; on
the one hand, in the eccentric branch of TEOBResumS
now known as TEOBResumS-DALI [16,17,38,39], it is
basically realized by replacing the quasicircular expression
of the Newtonian prefactor, in the factorization of the
spherical modes of the waveform, with the general expres-
sion obtained by computing the time derivatives of the
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Newtonian mass and current multipoles [13,14,16,17]; on
the other hand, the eccentric model SEOBNRv4HME [24]
has beenbuilt aroundpost-Newtonian (PN)waveform results
for generic-planar-orbit dynamics, previously released in a
series of works [23,40–42]. More specifically, this wave-
form information has been implemented up to next-to-
next-to-leading-order in the PN expansion, i.e., at 2 PN.1

Subsequently, this same PN information has been also incor-
porated intoTEOBResumS-DALI; seeRef. [25]. Here, after
suitable factorization and resummation procedures, the extra
analytical information has been recast in the form of extra
waveform factors, which were observed to improve, slightly
but noticeably, the analytical/numerical phase agreement
of the model, although with a marginal impact on the
waveform amplitude, which was seen to benefit mostly from
the generic Newtonian prefactor prescription. Other signifi-
cant differences between the aforementioned EOB models
can be found at the level of the radiation reaction forces, for
which we refer to the thorough analysis of Ref. [27].
Moreover, Ref. [26] has recently proposed a novel

approach to the inclusion of noncircular PN information
in the instantaneous (i.e., not involving time integrals over
the past history of the source) part of the EOB waveform.
The main idea behind this proposal consists in not perform-
ing the usual order-reduction procedure, by which the
natural occurring time derivatives in the waveform are
replaced with the respective PN-expanded equations of
motion (EOM); instead, all these time derivatives are left
explicit and evaluated along the dynamics, as it is done in
the generic Newtonian prefactor introduced in Ref. [13]. As
a consequence, each time derivative is de facto evaluated
using either the exact or the full EOB-resummed EOM,
depending on whether one has to deal, respectively, with
the test-mass or the comparable mass scenarios. In both
cases, this new strategy has been proven to further improve
the noncircular correction to the waveform amplitude,
which no longer vanishes at the turning points of the radial
motion, the apastra and periastra of the orbits along which
the binary system evolves; see e.g., Fig. 2 in Ref. [26]. A
related improvement has been also observed in the ana-
lytical/numerical agreement of the model at the level of the
corresponding fluxes of energy and angular momentum at
infinity; see Fig. 4 in Ref. [26].
Following this line of work, in this paper we push the

computation of noncircular waveform information in the
EOB formalism up to the 2.5PN order, encompassing also
the so far neglected oscillatory memory terms; then, we use
our findings to derive noncircular waveform factors that
can be used to upgrade the PN sector of the generic-orbit
model TEOBResumS-DALI.

More in detail, the generic-orbit waveform contributions
we provide here, for the first time, in EOB coordinates, are

(i) the 2.5PN tail terms.
(ii) the 2.5PN postadiabatic term.
(iii) the 1.5PN, 2PN, and 2.5PN oscillatory memory

terms.
(iv) the 2.5PN instantaneous terms with implicit time

derivatives.
The contributions (i)–(iii) are obtained by expressing in
EOB coordinates the results of Refs. [41,42], where
the authors completed the derivation of the full 3PN
waveform for noncircular binaries, adopting the quasi-
Keplerian parametrization in harmonic coordinates. For the
contribution (iv) instead we push at 2.5PN the scheme
proposed and outlined in Ref. [26]. The expressions of the
new waveform contributions for the specific case of
the dominant l ¼ m ¼ 2 mode are given in Eqs. (10) and
(25)–(28); all the other spherical modes can be found in the
file 2.5PN_results_in_EOB_ coordinates.m,
provided as supplementary material [43] to this paper.
Regarding the details of the EOB dynamics, we refer the

reader to Refs. [13,16].
The paper is organized as follows. In Sec. II we go

through the derivation of the various terms which compose
the 2.5PN waveform in EOB coordinates, dealing sepa-
rately with the adiabatic instantaneous terms in Sec. II A
and with all the others in Sec. II B. These results are then
used in Sec. III to derive 2.5PN-accurate noncircular
multiplicative corrections to the factorized waveform
modes of TEOBResumS-DALI. Finally, we summarize
and comment our results in Sec. IV.

II. 2.5PN GENERIC-ORBIT WAVEFORM
IN EOB COORDINATES

We consider a nonspinning black hole binary system
with individual masses m1;2. It is useful to define the total
mass M≡m1 þm2, the reduced mass μ≡m1m2=M and
the symmetric mass ratio ν≡ μ=M. The gravitational wave
strain h at future null infinity can be decomposed as

h≡ hþ − ih× ¼ D−1
L

Xþ∞

l¼2

Xl
m¼−l

hlm−2Ylm; ð1Þ

where DL is the luminosity distance of the source and

−2Ylm are the spin-weight −2 spherical harmonics. In what
follows we discuss the 2.5PN-accurate derivation in EOB
coordinates of the spherical multipoles hlm, limiting
ourselves to the m ≠ 0 case. We employ the usual mass-
reduced EOB phase-space variables ðr;φ; pr� ; pφÞ, which
are given by: r≡ R=M, the relative separation in the center
of mass frame; φ, the orbital phase; pr� ≡ ðA=BÞ1=2pr,
where A, B are the radial potentials entering the EOB
effective metric [13,16] and pr ≡ PR=μ is the radial
momentum; pφ ≡ Pφ=μM, the angular momentum.

1We recall in this respect that the PN expansion is essentially
an expansion for small internal velocities of the considered
system, and it is usually organized in powers of 1=c, with c
being the speed of light. In particular, terms proportional to 1=cn
correspond to corrections at n

2
PN order.
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In general, the PN expression of each spherical wave-
form mode consists of two distinct parts; the instantaneous
part, which depends on the state of the source at a specific
retarded time, and the hereditary part, whose time depend-
ence is instead extended to the past history of the source via
distinctive time integrals. Among the hereditary contribu-
tions there is a further distinction based on the traits of their
time dependence; the tail terms are those that are pro-
gressively suppressed as one goes towards the remote past
of the source, while the memory terms weight equally each
moment of the source past.
The derivation of instantaneous and hereditary waveform

components will proceed according to different approaches,
respectively outlined in Sec. II A and Sec. II B. We specify
however that in the latter section we will also target the
additional phasing terms of instantaneous type that are
induced by the energy and angular momentum loss, the so
called post-adiabatic terms [41], for which the approach of
Sec. II A is not viable; we anticipate that terms of this kind
arise as 2.5PN contributions in the PN expansion of each
spherical mode and, correspondingly, only those of the
l ¼ m ¼ 2 mode are relevant for the 2.5PN accuracy in
the total waveform (1) we are aiming for here.

A. Time-derivative dependent instantaneous part

The instantaneous contributions to the waveform are
dealt with according to the strategy introduced in Ref. [26],
which remarkably improves the behavior of the waveform
at the apastra and periastra of the binary motion. In general,
for nonprecessing binaries, the spherical multipoles of the
waveform in the decomposition (1) are given by

hlm ¼ −
Ulmffiffiffi
2

p
clþ2

if lþm is even;

hlm ¼ i
Vlmffiffiffi
2

p
clþ3

if lþm is odd; ð2Þ

in terms of the mass-type (Ulm) and current-type (Vlm)
radiative multipole moments. The latter are related to the
symmetric trace-free (STF) radiativemomentsUL andVL by

Ulm ¼ 4

l!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ
2lðlþ 1Þ

s
αLlmUL;

Vlm ¼ −
8

l!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2Þ

2ðlþ 1Þðl − 1Þ

s
αLlmVL; ð3Þ

where L≡ i1;…; il and αLlm are the STF tensors which
connect the basis of spherical harmonics to the set of STF
tensors NhLi ≡ Nhi1 � � �Nili,

2 defined by the unit vector N
pointing from the source of thewave to its observer. The STF

radiative moments ðUL; VLÞ are computed in terms of the
STF moments of the source ðIL; JL; XL; YL; ZL;WLÞ3 fol-
lowing the PN-matched multipolar post-Minkowskian
scheme developed by Blanchet and Damour [44] and
reviewed in Ref. [45]. The relations connecting the two
set of STF moments are conveniently collected, at 3PN
accuracy, in Sec. III A of Ref. [40]. Moreover Sec. III B of
Ref. [40] collects the expression at 3PN order for the source
moments of nonspinning binary systems in harmonic coor-
dinates. What is of uttermost importance for our approach is
the presence of time derivatives in the aforementioned
relations between radiative and source moments. For in-
stance at the level of the mass quadrupole, which is needed
for the l ¼ m ¼ 2 spherical mode, and focusing just on the
instantaneous terms, we have

Uinst
ij ¼ Ið2Þij þ G

c5

�
1

7
Ið5ÞahiIjia −

5

7
Ið4ÞahiI

ð1Þ
jia −

2

7
Ið3ÞahiI

ð2Þ
jia

þ 1

3
εabhiI

ð4Þ
jiaJb þ 4ðWð4ÞIij þWð3ÞIð1Þij −Wð2ÞIð2Þij

−Wð1ÞIð3Þij Þ
�
þOðc−6Þ; ð4Þ

where the superscript (n) indicates the nth time derivative. In
the standard approach, also followed in Ref. [40], all the time
derivatives in this expressions are removed with an order-
reduction procedure which replaces them with the corre-
sponding PN-expanded EOM, truncated at the desired PN
accuracy. On the contrary, embracing the strategy proposed
in Ref. [26], we choose not to remove the time derivatives in
the instantaneous terms, and instead keep them in explicit
form. This amounts by all means to a PN generalization of
what has been done in Ref. [13] to define the generic-orbit
Newtonian prefactor, which in fact turns out to be precisely
the leading-order term of the instantaneous waveform
component we compute here.
The procedure to derive these results in EOB coordinates

is the following: starting from the harmonic coordinate
source moments, given in Sec. III B of Ref. [40], we recast
them in EOB coordinates with the transformations given in
Eqs. (5)–(8) of Ref. [25].4 Then we insert the so obtained
source moments, now functions of ðr;φ; pr� ; pφÞ, in the
relations connecting them to the radiative moments, such as
Eq. (4). In all these relations one has time derivatives of the
source moments. Therefore, when they are used together
with Eqs. (2) and (3) to compute the instantaneous part of
the waveform, the latter shows a dependence on several

2Adopting a standard notation the angular brackets hi denote a
STF projection over the indices they enclose.

3Here IL are the mass-type source moments, JL the current-
type ones, and all the others are typically dubbed gauge
moments since they are of gauge nature in linearized gravity,
even though they are physical in the full nonlinear theory.

4Tough 2PN-accurate, these transformations can still be used
for our 2.5PN computation since their next PN contribution
would appear at 3PN.
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time derivatives of the EOB variables. For instance, the
formal structure of the instantaneous terms in h22, up to
2.5PN, read

hinst22 ¼ hN22ðrð2↑Þ;Ωð1↑ÞÞ

þ 1

c2
h1PNinst
22 ðrð2↑Þ;Ωð1↑Þ; pð2↑Þ

r� ; pð2↑Þ
φ Þ

þ 1

c4
h2PNinst
22 ðrð2↑Þ;Ωð1↑Þ; pð2↑Þ

r� ; pð2↑Þ
φ Þ

þ 1

c5
h2.5PNinst
22 ðrð5↑Þ;Ωð4↑Þ; pð4↑Þ

r� ; pð2↑Þ
φ Þ; ð5Þ

where Ω≡ _φ and the symbol ðn↑Þ indicates that the
corresponding variable appears with all its time derivatives

up to the nth. As anticipated before, the leading term of
Eq. (5) coincides with the generic l ¼ m ¼ 2 Newtonian
prefactor [13]

hN22 ¼ −
8ν

c4

ffiffiffi
π

5

r
r2Ω2e−2iφĥNnc

22 ; ð6Þ

ĥNnc
22 ¼ 1 −

1

2

�
_r2

r2Ω2
þ ̈r
rΩ2

�
þ i

�
2_r
rΩ

þ
_Ω

2Ω2

�
; ð7Þ

where the subscript “nc” labels waveform contributions
that are purely noncircular, i.e., that vanish when the
dynamics of the source is constrained on circular orbits.
The remaining PN terms are given by

h1PNinst
22 ¼ 2

21

ffiffiffi
π

5

r
νe−2iφ

h
ð90νþ 54Þp2

r�r
2Ω2 þ 9ið5νþ 3Þp2

r�r
2 _Ω − 9ð5νþ 3Þp2

r� r̈rþ 36ið5νþ 3Þp2
r�r_rΩ

− 9ð5νþ 3Þp2
r� _r

2 − 9ð5νþ 3Þpr� p̈r�r
2 þ 36ið5νþ 3Þpr� _pr�r

2Ω − 36ð5νþ 3Þpr� _pr�r_r − 8ið6νþ 5Þpr�pφrΩ2

þ 4ð6νþ 5Þpr�pφr _Ωþ 2ið6νþ 5Þpr�pφ ̈rþ 8ð6νþ 5Þpr�pφ _rΩþ 2ið6νþ 5Þpr� p̈φrþ 8ð6νþ 5Þpr� _pφrΩ

þ 4ið6νþ 5Þpr� _pφ _rþ 2ið6νþ 5Þp̈r�pφr − 9ð5νþ 3Þ _p2
r�r

2 þ 8ð6νþ 5Þ _pr�pφrΩþ 4ið6νþ 5Þ _pr�pφ _r

þ 4ið6νþ 5Þ _pr� _pφrþ ð42νþ 14Þp2
φΩ2 þ 7ið3νþ 1Þp2

φ
_Ω − 7ð3νþ 1Þpφp̈φ þ 28ið3νþ 1Þpφ _pφΩ

− 7ð3νþ 1Þ _p2
φ þ 12ðν − 19ÞrΩ2 þ 6iðν − 19Þr _Ωþ ð57 − 3νÞ̈rþ 12iðν − 19Þ_rΩ

i
; ð8Þ

h2PNinst
22 ¼ 1

378r4

ffiffiffi
π

5

r
νe−2iφ

n
−90p4

r� ½ðν − 13Þνþ 5�Ω2r6 þ 270p2
r� _p

2
r� ½ðν − 13Þνþ 5�r6 þ 90p3

r� p̈r� ½ðν − 13Þνþ 5�r6

− 360ip3
r� _pr� ½ðν − 13Þνþ 5�Ωr6 − 45ip4

r� ½ðν − 13Þνþ 5� _Ωr6 − 48ip3
r�pφ½νð14νþ 43Þ − 5�Ω2r5

þ 24p2
r� ½νð47νþ 91Þ þ 124�Ω2r5 þ 45p4

r� ̈r½ðν − 13Þνþ 5�r5 þ 360p3
r� _pr� _r½ðν − 13Þνþ 5�r5

þ 72ipr� _p
2
r�pφ½νð14νþ 43Þ − 5�r5 þ 36ip2

r� p̈r�pφ½νð14νþ 43Þ − 5�r5 þ 12ip3
r� p̈φ½νð14νþ 43Þ − 5�r5

þ 72ip2
r� _pr� _pφ½νð14νþ 43Þ − 5�r5 − 12 _p2

r� ½νð47νþ 91Þ þ 124�r5 − 12pr�p̈r� ½νð47νþ 91Þ þ 124�r5
− 180ip4

r� _r½ðν − 13Þνþ 5�Ωr5 þ 144p2
r� _pr�pφ½νð14νþ 43Þ − 5�Ωr5 þ 48p3

r� _pφ½νð14νþ 43Þ − 5�Ωr5
þ 48ipr� _pr� ½νð47νþ 91Þ þ 124�Ωr5 þ 24p3

r�pφ½νð14νþ 43Þ − 5� _Ωr5 þ 12ip2
r� ½νð47νþ 91Þ þ 124� _Ωr5

þ 36p2
r�p

2
φð−21ν2 þ ν − 25ÞΩ2r4 − 8ipr�pφ½4νð22νþ 353Þ þ 983�Ω2r4 þ ½24νð65νþ 271Þ þ 924�Ω2r4

þ 45p4
r� _r

2½ðν − 13Þνþ 5�r4 þ 12ip3
r�pφ ̈r½νð14νþ 43Þ − 5�r4 þ 72ip2

r� _pr�pφ _r½νð14νþ 43Þ − 5�r4
þ 24ip3

r� _pφ _r½νð14νþ 43Þ − 5�r4 þ 18 _p2
r�p

2
φ½νð21ν − 1Þ þ 25�r4 þ 18pr� p̈r�p

2
φ½νð21ν − 1Þ þ 25�r4

þ 18p2
r� _p

2
φ½νð21ν − 1Þ þ 25�r4 þ 18p2

r�pφp̈φ½νð21ν − 1Þ þ 25�r4 þ 72pr� _pr�pφ _pφ½νð21ν − 1Þ þ 25�r4
þ 2ip̈r�pφ½4νð22νþ 353Þ þ 983�r4 þ 2ipr� p̈φð4νð22νþ 353Þ þ 983Þr4 þ 4i _pr� _pφ½4νð22νþ 353Þ þ 983�r4
− 6p2

r� ̈r½νð47νþ 91Þ þ 124�r4 − 24pr� _pr� _r½νð47νþ 91Þ þ 124�r4 þ 48p3
r�pφ _r½νð14νþ 43Þ − 5�Ωr4

− 72ipr� _pr�p
2
φ½νð21ν − 1Þ þ 25�Ωr4 − 72ip2

r�pφ _pφ½νð21ν − 1Þ þ 25�Ωr4 þ 8 _pr�pφð4ν½22νþ 353Þ þ 983�Ωr4
þ 8pr� _pφ½4νð22νþ 353Þ þ 983�Ωr4 þ 24ip2

r� _r½νð47νþ 91Þ þ 124�Ωr4 − 18ip2
r�p

2
φ½νð21ν − 1Þ þ 25� _Ωr4

þ 4pr�pφ½4νð22νþ 353Þ þ 983� _Ωr4 þ 6i½2νð65νþ 271Þ þ 77� _Ωr4 þ 4p2
φð434ν2 − 3806ν − 1703ÞΩ2r3

− 144ipr�p
3
φ½νð6νþ 11Þ − 5�Ω2r3 þ _p2

φð−868ν2 þ 7612νþ 3406Þr3 þ pφp̈φð−868ν2 þ 7612νþ 3406Þr3
þ 36ip̈r�p

3
φ½νð6νþ 11Þ − 5�r3 þ 216ipr�pφ _p2

φðν½6νþ 11Þ − 5�r3 þ 108ipr�p
2
φp̈φ½νð6νþ 11Þ − 5�r3
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þ 216i _pr�p
2
φ _pφ½νð6νþ 11Þ − 5�r3 þ 8ipφ _pφð434ν2 − 3806ν − 1703ÞΩr3 þ 144 _pr�p

3
φ½νð6νþ 11Þ − 5�Ωr3

þ 432pr�p
2
φ _pφ½νð6νþ 11Þ − 5�Ωr3 þ 2ip2

φð434ν2 − 3806ν − 1703Þ _Ωr3 þ 72pr�p
3
φ½νð6νþ 11Þ − 5� _Ωr3

þ p4
φ½30 − 6νð143νþ 109Þ�Ω2r2 þ p2

φ ̈rð434ν2 − 3806ν − 1703Þr2 þ 4pφ _pφ _rð434ν2 − 3806ν − 1703Þr2
þ p3

φp̈φð858ν2 þ 654ν − 30Þr2 − 36ipr�p
3
φ ̈r½νð6νþ 11Þ − 5�r2 − 72i _pr�p

3
φ _r½νð6νþ 11Þ − 5�r2

− 216ipr�p
2
φ _pφ _r½νð6νþ 11Þ − 5�r2 þ 18p2

φ _p2
φ½νð143νþ 109Þ − 5�r2 − 4ip2

φ _rð434ν2 − 3806ν − 1703ÞΩr2
− 144pr�p

3
φ _r½νð6νþ 11Þ − 5�Ωr2 − 24ip3

φ _pφ½νð143νþ 109Þ − 5�Ωr2 − 3ip4
φ½νð143νþ 109Þ − 5� _Ωr2

þ p2
φ _r2ð−868ν2 þ 7612νþ 3406Þrþ 72ipr�p

3
φ _r2½νð6νþ 11Þ − 5�r − 24p3

φ _pφ _r½νð143νþ 109Þ − 5�r
þ p4

φ ̈r½15 − 3νð143νþ 109Þ�rþ 12ip4
φ _r½νð143νþ 109Þ − 5�Ωrþ 9p4

φ _r2½νð143νþ 109Þ − 5�
o
; ð9Þ

h2.5PNinst
22 ¼ 2i

21r3

ffiffiffi
π

5

r
ν2e−2iφ

�
16Ω5r7 − 60Ω _Ω2r7 − 40Ω2Ω̈r7 − 10iΩΩð3Þr7 þ Ωð4Þr7 þ 80iΩ3 _Ωr7 − 20iΩ̈ _Ω r7

þ 224 _pr�Ω
3r6 − 64̈rΩ3r6 þ 112ip̈r�Ω

2r6 − 32irð3ÞΩ2r6 þ 28ipð4Þ
r� r

6 þ 2irð5Þr6 þ 56pð3Þ
r� Ωr6 − 56 _pr�Ω̈r

6

þ 16̈r Ω̈ r6 − 56p̈r�
_Ωr6 þ 16rð3Þ _Ωr6 þ 336i _pr�Ω _Ωr6 − 96ïrΩ _Ωr6 − 112pφΩ4r5 þ 256_r2Ω3r5 þ 224pr� _rΩ

3r5

þ 112ipr� ̈rΩ
2r5 þ 896i _pr� _rΩ

2r5 þ 192ïr _rΩ2r5 þ 84pφ
_Ω2r5 þ 112ip̈r� ̈rr

5 þ 56i _pr�r
ð3Þr5 þ 12ïrrð3Þr5

þ 28ipr�r
ð4Þr5 þ 168ipð3Þ

r� _rr
5 − 10irð4Þ _rr5 − 24̈r2Ωr5 − 168 _pr� ̈rΩr

5 þ 56pr�r
ð3ÞΩr5 − 56p̈r� _rΩr

5

− 96rð3Þ _rΩr5 − 64_r2Ω̈r5 − 56pr� _r Ω̈ r5 þ 112pφΩΩ̈r5 þ 14ipφΩð3Þr5 − 336ipφΩ2 _Ωr5 − 56pr� ̈r _Ω r5

− 448 _pr� _r
_Ω r5 − 96̈r _r _Ω r5 þ 384i_r2Ω _Ωr5 þ 336ipr� _rΩ _Ωr5 − 448ipφ _rΩ3r4 − 56ipr� ̈r

2r4 þ 112ip̈r� _r
2r4

− 88irð3Þ _r2r4 þ 288i_r3Ω2r4 þ 672ipr� _r
2Ω2r4 þ 336pφ ̈rΩ2r4 − 14pφrð4Þr4 − 84ïr2 _rr4 − 112i _pr� ̈r _r r

4

− 784 _pr� _r
2Ωr4 − 336̈r_r2Ωr4 þ 112ipφrð3ÞΩr4 − 560pr� ̈r _rΩr

4 þ 112ipφ _r Ω̈ r4 − 144_r3 _Ωr4 − 336pr� _r
2 _Ωr4

þ 168ipφ ̈r _Ω r4 þ 672pφ _rΩ _Ωr4 − 112i _pr� _r
3r3 − 24ïr_r3r3 − 42pφ ̈r2r3 − 224ipr� ̈r_r

2r3 þ 336pφ _r2Ω2r3

− 288ipr�Ω
2r3 þ 72ip̈r�r

3 − 56pφrð3Þ _rr3 − 24_r4Ωr3 − 336pr� _r
3Ωr3 þ 288 _pr�Ωr

3 þ 336ipφ ̈r _rΩr3

þ 168ipφ _r2 _Ωr3 þ 144pr�
_Ωr3 − 576pφΩ2r2 þ 144p̈φr2 − 576i _pφΩr2 − 288ipφ

_Ωr2

− 144pφ ̈rr − 288 _pφ _rrþ 576ipφ _rΩrþ 288pφ _r2
�
; ð10Þ

where we stress that h2.5PNinst
22 is one of the novel waveform

contributions presented in this work. The instantaneous
terms for the other m ≠ 0 spherical modes up to l ¼ 6 are
collected in the supplementary file [43], together with the
respective expressions that follow when the usual order
reduction of the time derivatives is instead performed.
We specify that the approach we described and adopted

above is only suitable for the instantaneous part of the
waveform. In fact, to evaluate the time integrals over the past
history of the source, which appear in all the hereditary
contributions, one needs to make use of the PN-expanded
EOM; the same happens for the derivation of the postadia-
batic terms.

B. Quasi-Keplerian harmonic parametrization in EOB
coordinates: Postadiabatic and hereditary terms

Throughout this section we will consider the useful
spherical mode notation

hlm ¼ −
8ν

c4

ffiffiffi
π

5

r
e−imφĤlm; ð11Þ

already employed (modulo different numerical factors) in
Refs. [23,25], where Ĥlm has been computed in EOB
coordinates up to the 2PN order, without including memory
terms. In this section we go through the derivation of the
EOB-coordinate expressions for Ĥlm up to the 2.5PN order
while including all the waveform contributions that are
inherently left out from the procedure outlined in the
previous section; hereditary (tailþmemory) and postadia-
batic terms. We stress in this respect that the memory terms
we are considering here specifically belong to the so-called
oscillatory memory, a component of the nonlinear memory
[46–48] whose hereditary time integrals involve oscillatory
exponentials. Since these oscillations tend to cancel each
other out going towards the remote past of the dynamical
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history of the source, these contributions are more similar
to the tail than to the genuine nonoscillatory memory, the
so-called direct current memory, present only for them ¼ 0
spherical modes whose analysis we leave for future work.
In general, thewaveform contributionswe are interested in

herewere derived up to the 3 PN order in Ref. [42], using the
quasi-Keplerian (QK) parametrization [49,50] and perform-
ing an expansion for small time eccentricity et up to order
Oðe6t Þ. Our aim is to recast these results in EOB coordinates,
so to get them ready for the implementation into EOB
models, limiting ourselves to 2.5PN accuracy. To this end,
starting from the QK expressions of Ref. [42], we need to
(i) recover the usual harmonic coordinates from the QK
orbital parameters and (ii) use the proper 2 PN accurate5

coordinate transformations to finally recast everything in
EOB coordinates. Before we start, it should be noted that all
the contributions we consider in this section enter the
complete waveform starting from the 1.5PN order. This
brings a huge simplification in the procedure outlined above,
especially in its first step.
In the following we outline in detail the entire translation

procedure while applying it stepwise, as an illustrative
example, to the leading oscillatory memory term in the PN
expansion of the l ¼ m ¼ 2 spherical mode. The latter is
provided in its original QK form, together with the other
contributions we want to translate in EOB coordinates, in the
Supplementary Material of Ref. [42]; up to order Oðe6t Þ
it reads

Ĥ1.5PNmem
22 ¼ x3=2iν

�
13e−2iξ

6048
e6t þ

1495e6iξ

4032
e6t þ

55

504
e6t þ

13e−iξ

3024
e5t þ

767e5iξ

3024
e5t þ

13

336
e4t

−e4iξ
�
169

1512
e6t þ

169

1008
e4t

�
− e3iξ

�
25

336
e5t þ

13

126
e3t

�
− eiξ

�
185

1008
e5t −

13

126
e3t

�

−e2iξ
�
503

4032
e6t −

5

72
e4t þ

13

252
e2t

��
: ð12Þ

Here x ¼ ðGMω=c3Þ2=3 is a PN-counting frequency
parameter defined in terms of the orbital frequency
ω ¼ ð1þ kÞn, where 1þ k ¼ 2π=Φ gives the angle ad-
vance of the periastron per revolution and n ¼ 2π=P is the
mean motion associated with the period P; finally the phase
angle ξ is a redefinition of the mean anomaly l which arises
from a shift of the time coordinate6 aimed at removing from
the instantaneous and tail parts of the waveform the
arbitrary parameter x0 introduced in the multipolar wave-
form generation formalism (see, e.g., Ref, [45]). At 1 PN
order one simply has

ξ ¼ l ¼ ue − et sin ue: ð13Þ

The parameter ue above is the eccentric anomaly which
enters the Keplerian parametrization of elliptic orbits in
polar coordinates and in the center-of-mass frame, that is

Rh ¼ að1 − e cos ueÞ; ð14aÞ

φh − ðφhÞ0 ¼ 2 arctan

��
1þ e
1 − e

�
1=2

tan
ue
2

�
; ð14bÞ

where also the semimajor axis a appears, while e is the
Newtonian orbital eccentricity; Rh and φ define the
components of the relative separation R⃗h ¼ Rhðcos φh;
sin φh; 0Þ and the subscript “h” signals that we are
employing harmonic coordinates. The QK parametrization
used in Ref. [42] is none other than a post-Newtonian
generalization of the Keplerian parametrization outlined
above, and reduces to it when truncated at the Newtonian
order. At 1PN, the profile of the parametrization remains
the same as in Eq. (14) but one has two other eccentricities
in addition to et appearing in Eq. (13); the radial eccentricity
er and the angular eccentricity eφ, respectively replacing the
Newtonian eccentricity e in Eqs. (14a) and (14b).7

Starting from the 2PN order one also has additional
terms appearing in Eq. (14b). However since the accuracy
we work with is 2.5PN and the expressions we need
to translate in EOB coordinates enter at 1.5PN order, we
just need the coordinate transformation between the QK
parametrization and the harmonic coordinates at 1PN
order. Therefore we can safely use Eq. (13) and the
1PN-corrected version of (14), identifying Rh and φh as
the harmonic radial separation and phase, together with the
1PN relations [50]

a ¼ −
1

2E

�
1 −

E
2

1

c2
ð−7þ νÞ

�
; ð15aÞ

5The next PN order after the 2PN in the transformations from
harmonic to EOB coordinates is the 3PN. Therefore, for a 2.5PN
accurate waveform, the 2 PN accurate coordinate transformations
are all we need.

6This same shift also results in a redefinition of the harmonic
phase but it enters the latter as a 4PN correction; we can thus
ignore it for our 2.5PN-accurate computation.

7At the leading Newtonian order all the various types of
eccentricities coincide and reduce to e.
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e2t ¼ 1þ 2EJ2 −
1

c2
E
2
½8ð−1þ νÞ þ 2EJ2ð−17þ 7νÞ�;

ð15bÞ

e2r ¼ 1þ 2EJ2 −
1

c2
E
2
½4ð6 − νÞ − 10EJ2ð−3þ νÞ�;

ð15cÞ

n ¼ ð−2EÞ3=2
�
1þ 1

c2

�
E
4
ð15 − νÞ

��
; ð15dÞ

x ¼ −
2E
c2

�
1 −

2

3c2

�
3

J2
−
1

4
Eðν − 15Þ

��
; ð15eÞ

which connect the orbital elements we need to rewrite in
harmonic coordinates with the binary orbital energy and
angular momentum per unit reduced mass μ, respectively

denoted as E and J. Then, using the mass reduced radial
coordinate rh ≡ Rh=M, at 1PN we have

E ¼ _r2h
2
þ 1

2
r2hΩ2

h −
1

rh
þ 1

c2

�
3

8
ð1 − 3νÞð _rh2 þ r2h _φh

2Þ2

þ 1

2
ν
_rh2

rh
þ ð3þ νÞð _rh2 þ r2h _φh

2Þ
2rh

þ 1

2r2h

�
; ð16Þ

J ¼ r2h _φh þ
r2h _φh

c2

�
1

2
ð1 − 3νÞð _rh2 þ r2h _φh

2Þ þ 3þ ν

rh

�
:

ð17Þ

By combining Eqs. (13)–(16) we can thus rewrite as
desired the orbital elements ue, e, and x in terms of the
harmonic polar coordinates rh, φh and their first time
derivatives _r and Ωh ≡ _φh. The 1PN explicit expression we
find are

ue ¼ arccos

2
64 −1þ rh _r2h þ r3hΩ2

hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2r3hΩ2

h þ r4h _r
2
hΩ2

h þ r6hΩ4
h

q
3
75 −

1

c2
_r2h
2

2þ rh _r2hð4 − 5νÞ þ 5νþ r3hð4 − 8νþ rh _r2hνÞΩ2
h þ r6hνΩ4

hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh _r2hð2 − rh _r2h − r3hΩ2

hÞ
q

ð1 − 2r3hΩ2
h þ r4h _r

2
hΩ2

h þ r6hΩ4
hÞ

; ð18Þ

et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2r3hΩ2

h þ r4h _r
2
hΩ2

h þ r6hΩ4
h

q
þ 1

c2
1

2rh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2r3hΩ2

h þ r4h _r
2
hΩ2

h þ r6hΩ4
h

q h
2rh _r2h þ 4ð−1þ νÞ− 2rh _r2hν

þ r3hð8− 13νÞΩ2
h þ r5h _r

4
hð6− 7νÞΩ2

h þ r4h _r
2
hð−10þ 17νÞΩ2

h þ 2r7h _r
2
hð6− 7νÞΩ4

h þ 2r6hð−5þ 8νÞΩ4
h þ r9hð6− 7νÞΩ6

h

i
;

ð19Þ

x ¼ 2 − rh _r2h − r3hΩ2
h

rh
þ 1

c2
1

3r5hΩ2
h

h
12 − 6rh _r2h þ r4h _r

2
hð6 − 7νÞΩ2

h þ r3hð−24þ νÞΩ2
h þ r5h _r

4
hð−6þ 7νÞΩ2

h

þ 2r6hð3 − 2νÞΩ4
h þ 2r7h _r

2
hð−6þ 7νÞΩ4

h þ r9hð−6þ 7νÞΩ6
h

i
: ð20Þ

An important consideration is in order: in the leading
Keplerian motion, one has

_rh ¼ e
n1=3 sin ue
1 − e cos ue

; ð21aÞ

Ωh ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ð1 − e cos ueÞ2
: ð21bÞ

This shows as expected that the quantity _rh is proportional
to the eccentricity e and thus goes to zero in the circular
limit. In addition to this, it is possible to construct yet
another quantity proportional to the eccentricity; introduc-
ing the variable kp ≡ 1 −Ω2

hr
3
h and using Eq. (21) yields

kp ¼ e
e − cos ue
1 − e cos ue

; ð22Þ

in compliancewith the fact thatΩ2
hr

3
h ¼ 1when the motion is

circular. Therefore, to properly keep into account the eccen-
tricity expansion of Eq. (12) in our translation into harmonic
coordinates, wemust rescale _rh and kp by a small parameter ϵ,
which we use to properly keep track of the power order in
eccentricity, and expand in ϵ up to Oðϵ6Þ. This produces a
simultaneous expansion in _rh and kp up to the sixth order, the
same order at which the expansion in eccentricity underlying
the startingQKcontributions to thewaveformmultipoles, e.g.,
Eq. (12), is truncated. In this expansion one would get
expressions containing also half integer powers of rh, although
they can be removed by harnessing the definition of the
quantity kp. We can in fact use the latter to rewrite

ffiffiffiffiffi
rh

p
as
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ffiffiffiffiffi
rh

p ¼ r2hΩhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kpϵ

p ¼ r2hΩh

�
1þ kpϵ

2
þ 3k2pϵ2

8
þ 5k3pϵ3

16

þ 35k4pϵ4

128
þ 63k5pϵ5

256
þ 231k6pϵ6

1024

�
þOðϵ7Þ; ð23Þ

and use it in our expansion in ϵ. After this stepwe set ϵ to 1 and
rewrite kp in terms of rh andΩh, so that we finally end upwith
expressions that depend only on the harmonic coordinates rh,
_rh, and Ωh. Coming back to Eq. (12), with the procedure
described above it becomes

Ĥ1.5PNmem
22 ¼ ν

c3

�
23

28
ir17h Ω13

h −
689

126
ir14h Ω11

h −
71

126
r13h _rhΩ10

h −
65

252
ir12h _r2hΩ9

h þ
3865

252
ir11h Ω9

h þ
137

42
r10h _rhΩ8

h

þ 26

21
ir9h _r

2
hΩ7

h −
1

63
r8h _r

3
hΩ6

h −
93

4
ir8hΩ7

h −
1

126
ir7h _r

4
hΩ5

h −
325

42
r7h _rhΩ6

h −
65

28
ir6h _r

2
hΩ5

h þ
4

63
r5h _r

3
hΩ4

h þ
725

36
ir5hΩ5

h

þ 1

42
ir4h _r

4
hΩ3

h þ
1195

126
r4h _rhΩ4

h þ
130

63
ir3h _r

2
hΩ3

h −
2

21
r2h _r

3
hΩ2

h þ
23_rh
14r2h

−
265

28
ir2hΩ3

h −
1

42
irh _r4hΩh

þ _r3h
21rh

−
767

126
rh _rhΩ2

h þ
475iΩh

252rh
−
65

84
i_r2hΩh

�
: ð24Þ

We can now trade the harmonic coordinates ðrh; _rh;φh;ΩhÞ with the mass-reduced EOB phase-space variables
ðr;φ; pr� ; pφÞ at 2PN accuracy, by employing the transformations shown in Eqs. (5)–(8) of Ref. [25]. The final result
for the leading oscillatory memory terms we are explicitly computing as an illustrative example of the procedure is

Ĥ1.5PNmem
22 ¼ ν

c3

�
−

71

126
u7pr�p

10
φ −

65

252
iu6p2

r�p
9
φ þ

137

42
u6pr�p

8
φ þ

26

21
iu5p2

r�p
7
φ −

325

42
u5pr�p

6
φ −

1

63
u4p3

r�p
6
φ

−
65

28
iu4p2

r�p
5
φ þ

1195

126
u4pr�p

4
φ −

1

126
iu3p4

r�p
5
φ þ

4

63
u3p3

r�p
4
φ þ

130

63
iu3p2

r�p
3
φ −

767

126
u3pr�p

2
φ þ

1

42
iu2p4

r�p
3
φ

−
2

21
u2p3

r�p
2
φ −

65

84
iu2p2

r�pφ þ
23

14
u2pr� −

1

42
iup4

r�pφ þ
1

21
up3

r� þ
23

28
iu9p13

φ −
689

126
iu8p11

φ þ 3865

252
iu7p9

φ

−
93

4
iu6p7

φ þ
725

36
iu5p5

φ −
265

28
iu4p3

φ þ
475

252
iu3pφ

�
; ð25Þ

where we introduced the variable u≡ 1=r. The final expressions in EOB coordinates for all the hereditary and postadiabatic
contributions to the waveform up to 2.5PN order can be found in the Mathematica notebook [43] that accompanies this
paper, encompassing each relevant spherical mode with m ≠ 0. Below, focusing on the mode l ¼ m ¼ 2, we limit
ourselves to reporting the EOB-coordinate contributions that represent a novelty in the EOB literature, in addition to the
leading-order oscillatory memory already given in Eq. (25). These are the 2.5PN oscillatory memory,

Ĥ2.5PNmem
22 ¼ ν

c5

��
345ν

28
−
299

56

�
iu11p15

φ þ 23

14
pr�u

10νp14
φ þ

�
845099ν

8064
−
5339291

48384

�
iu10p13

φ

þ
�
69ν

14
−
299

56

�
ip2

r�u
9p13

φ þ
�
781

252
−
4673ν

252

�
pr�u

9p12
φ þ

�
19990273

24192
−
3973649ν

4032

�
iu9p11

φ

þ
�
1598621

43008
−
797269ν

21504

�
ip2

r�u
8p11

φ þ
�
100321

896
−
45331ν

448

�
pr�u

8p10
φ þ

�
781

252
−
911ν

252

�
p3
r�u

7p10
φ

þ
�
3421043ν

1152
−
37301543

16128

�
iu8p9

φ þ
�
2526931ν

64512
−
4983163

129024

�
ip2

r�u
7p9

φ þ
�
715

504
−
845ν

504

�
ip4

r�u
6p9

φ

þ
�
3354823ν

4032
−
1784815

2688

�
pr�u

7p8
φ þ

�
965ν

63
−
409

28

�
p3
r�u

6p8
φ þ

�
41009279

12096
−
1023047ν

224

�
iu7p7

φ

þ
�
5064533ν

32256
−
8498621

64512

�
ip2

r�u
6p7

φ þ
�
−
2515ν

4032
−
6085

4032

�
ip4

r�u
5p7

φ þ
�
2600881

1728
−
4153495ν

2016

�
pr�u

6p6
φ

þ
�
142937

4032
−
92747ν

2016

�
p3
r�u

5p6
φ þ

�
1

14
−
ν

9

�
p5
r�u

4p6
φ þ

�
31548677ν

8064
−
135064421

48384

�
iu6p5

φ
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þ
�
7486247

21504
−
222275ν

512

�
ip2

r�u
5p5

φ þ
�
282325

16128
−
11251ν

2688

�
ip4

r�u
4p5

φ þ
�
1

28
−

ν

18

�
ip6

r�u
3p5

φ

þ
�
1659109ν

672
−
6897269

4032

�
pr�u

5p4
φ þ

�
65339ν

672
−
717665

12096

�
p3
r�u

4p4
φ þ

�
ν

3
−
2

9

�
p5
r�u

3p4
φ

þ
�
9928091

8064
−
7213553ν

4032

�
iu5p3

φ þ
�
26373029ν

64512
−
39590701

129024

�
ip2

r�u
4p3

φ þ
�
5473ν

224
−
990629

24192

�
ip4

r�u
3p3

φ

þ
�
1369

16128
−
1921ν

24192

�
ip6

r�u
2p3

φ þ
�
2655167

2688
−
5998967ν

4032

�
pr�u

4p2
φ þ

�
103847

1728
−
71987ν

672

�
p3
r�u

3p2
φ

þ
�
5077ν

4032
−
44519

8064

�
p5
r�u

2p2
φ þ

�
2763659ν

8064
−
3673177

16128

�
iu4pφ þ

�
4278091

43008
−
1024033ν

7168

�
ip2

r�u
3pφ

þ
�
417677

16128
−
174901ν

8064

�
ip4

r�u
2pφ þ

�
97

72
−
773ν

1512

�
ip6

r�upφ þ
�
1472603ν

4032
−
5644187

24192

�
pr�u

3

þ
�
89099ν

2016
−
99881
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�
; ð26Þ

the 2.5PN tail

Ĥ2.5PNtail
22 ¼ 1

c5
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; ð27Þ

and the leading postadiabatic contribution, also at 2.5PN,

Ĥ
2.5PNpost−ad
22 ¼ ν

c5

�
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�
: ð28Þ

We highlight that all the oscillatory memory terms are
purely noncircular contributions8 that are proportional to
the symmetric mass ratio ν. This means that they
disappear both in the test-mass limit ν → 0 and in the
circular limit, so that the impact of their eventual
inclusion in EOB models can be only assessed by
performing comparisons with numerically simulated
waveform for comparable-mass noncircularized binaries.
Regarding the postadiabatic term (28) we specify instead
that, while it is also proportional to ν, it survives in the
circular limit and its contribution is actually needed to
correctly reproduce the quasicircular PN expression of
h22 given, e.g., in Ref. [51].9

III. GENERIC-ORBIT 2.5PN FACTORIZED
WAVEFORM

The spherical multipoles of the waveform derived in
EOB coordinates in the previous section at 2.5PN accuracy
have the following structure:

hlm ¼ hinstlm þ hQKlm; ð29Þ

where (i) hinstlm is the purely instantaneous part of the mode,
derived in Sec. II A and presenting a PN profile of the type
(5),which also encompasses the leadingNewtonian term; the
component hQKlm addresses instead the set of all the other
contributions to the spherical mode, computed from QK
waveform results as outlined in Sec. II B, and it is always
subleading with respect to the Newtonian term. For instance,
in the case of the dominant l ¼ m ¼ 2 mode, one has10

8In fact they stem from QK expressions like Eq. (12) whose
terms are all proportional to the eccentricity e.

9In particular, it can be seen that the 2.5PN-accurate term
−24iνx5=2 inside the curl brackets in Eq. (79) of Ref. [51] results
form the sum between the circular limits of the instantaneous
contributions (6)–(10) and the postadiabatic term (28).

10Here each waveform piece is considered in its full form,
obtained by multiplying the corresponding Ĥlm of the previous
section with the prefactor of Eq. (11).
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hQK22 ¼ 1

c3

�
h1.5PNtail
22 þ h1.5PNmem

22

�
þ 1

c5

�
h2.5PNtail
22 þ h2.5PNmem

22 þ h
2.5PNpost−ad
22

�
; ð30Þ

With this generic-orbit waveform information at hand,
the aim of this section is to properly organize it so that it can
be readily incorporated in the factorization scheme of
TEOBResumS-DALI [13,14,16], in the most profitable
way. To this end, for each m ≠ 0 mode we consider the
following factorized structure

hlm ¼ hNlmŜeff ĥ
inst
lmĥ

QK
lm; ð31Þ

where
(i) hNlm is the generic-planar-orbit Newtonian prefactor

[13], leading order term of hinstlm .
(ii) Ŝeff is the effective source term [52], which is given

by the μ-rescaled effective EOB Hamiltonian Heff
when lþm is even and by the Newton-normalized
angular momentum pφ=r2ωΩ when lþm is odd,
where rω is the modified EOB radius defined in
Refs. [53,54].

(iii) ĥinstlm is a purely instantaneous, time-derivative de-
pendent, PN factor. It is defined from hinstlm by

ĥinstlm ≡ T2.5PN

�
hinstlm

hNlmŜeff

�
; ð32Þ

where the operator T2.5PN applies to its argument a
PN-type Taylor expansion up to 2.5PN, counting the
PN orders with respect to the leading order of the full
waveform, i.e., the Newtonian component of the
l ¼ m ¼ 2 mode. This is exactly the instantaneous
PN factor introduced in Ref. [26], now pushed to the
2.5PN order. Notice that the resulting structure is of
the type “1+PN corrections”.

(iv) ĥQKlm is the residual PN factor where all the other
waveform contributions are collected, namely those
derived in Sec. II B. The formal definition of this
factor is given by

ĥQKlm ≡ TEOM
2.5PN

�
hlm
hinstlm

�
; ð33Þ

where the superscript “EOM” on the Taylor series
operator makes explicit that the expansion is taken
using the PN-expanded EOM also for the instanta-
neous part hinstlm in the denominator. Again, it has a
structure of the type “1+PN corrections”.

These last two PN factors are then further factorized by
isolating their circular parts, namely

ĥXlm ¼ ĥXc
lmĥ

Xnc
lm ; ĥXnc

lm ≡ T2.5PN

�
ĥXlm
ĥXc
lm

�
; ð34Þ

where X ¼ finst;QKg. Here the circular parts are com-
puted by taking the circular limit, as clarified below, in the
corresponding PN factors. For ĥinstlm this is simply realized
by setting to zero pr� and all the time derivatives of the
EOB variables that appear therein except for Ω≡ _φ;
notably this is done without replacing the angular momen-
tum pφ with its circular orbit expression in terms of r, as

done in Ref. [26]. In ĥQKlm we must take into account the
expansion in eccentricity which underlies the waveform
terms it incorporates. We do so as follows: First, we replace
pφ with _pr� , by inverting perturbatively the EOB EOM of
the latter, after it is expanded up to 2.5PN. Then, we take a
simultaneous expansion in pr� and _pr� up to the sixth order,
as we did for _rh and kp in Sec. II B. At this point the circular
part of this factor can be singled out by setting pr� and _pr�
to zero.
The resulting noncircular factors ĥQKnc

lm are functions of
pr� , _pr� , and u that reduce to 1 when one takes either the
Newtonian or the circular limit. We moreover split them
into three distinct factors that separately collect tail,
memory and postadiabatic contributions, which give back
the total factor ĥQKnc

lm when multiplied together and
expanded up to 2.5PN,

ĥQKnc
lm ¼ ĥQKnc;tail

lm ĥQKnc;mem
lm ĥ

QKnc;post−ad
lm : ð35Þ

Globally, the factors ĥinstnclm and the three factors in which
ĥQKnc
lm is split contain all the novel noncircular contributions

to the waveform that we have computed in the previous
section, in a form already set up for the inclusion in
TEOBResumS-DALI; they are explicitly given in the
supplementary Mathematica notebook [43]. As for the
circular factors ĥinstnclm and ĥQKc

lm , instead of keeping them
as they are in the waveform model, we propose to replace
them with the last avatars of the circular relativistic wave-
form factors Tlmeiδlm and ðρlmÞl [38,52], used in all
the previous iterations of the model.11 Here Tlm is a
complex factor which resums infinite leading logarithms
appearing in the tail part of the quasicircular waveform, and
is given by

Tlm ¼ Γðlþ 1 − 2i ˆ̂kÞ
Γðlþ 1Þ eπ

ˆ̂ke2i
ˆ̂k log ð2kr0Þ; ð36Þ

11Our intent here is to preserve as much as possible the great
accuracy boasted by the native quasicircular version of the model
for the case of quasicircular binary coalescences.
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where ˆ̂k≡GHrealmΩ, in terms of the real EOB
Hamiltonian Hreal, k≡mΩ, and r0 is a length scale
introduced in the Blanchet-Damour waveform generation
formalism [44], fixed in this context to r0 ¼ 2GM=

ffiffiffi
e

p
. The

other two quantities, δlm and ρlm, account respectively for
the residual modulations to the phase and the amplitude of
the spherical mode. They are given in terms of PN series
which, being computed in the simplifying context of the
quasicircular approximation, span higher PN orders than
the one reached by ĥinstnclm and ĥQKc

lm , especially in the test-
mass (ν → 0) sector where they are pushed up to 5PN or
6PN accuracy, depending on the spherical mode; see e.g.,
Ref. [38]. Moreover, the behavior of the PN series in both
δlm and ρlm is tamed by specific Padé resummations whose
details can be found in Ref. [38] and references therein.
To wrap up, the resulting factorized waveform model we

propose for generic-planar-orbit black hole binaries reads

hlm ¼ hNlmŜeffTlmeiδlmðρlmÞlĥinstnclm ĥQKnc
lm ; ð37Þ

with the noncircular factor ĥQKnc
lm further split as in Eq. (35).

IV. CONCLUSIONS

In this work we have derived the 2.5PN accurate wave-
form components of each spherical mode of the waveform
in EOB phase-space variables, in a form valid for binary
systems moving along generic planar orbits. This extends
the current knowledge of the PN-expanded EOB waveform
with respect to previous works in two directions: (i) by
including higher-order terms for all the waveform contri-
butions that were already considered in the EOB literature,
essentially instantaneous and tail terms, with the former
provided either with explicit time derivatives or in the usual

order-reduced form via the PN-expanded EOM; (ii) by
introducing the 2.5PN-accurate EOB expression of the
oscillatory memory terms, which so far have been missing
in the EOB literature. We believe that our results will
encourage and facilitate the inclusion of these neglected
terms in EOB models, leading to a more comprehensive
description of the gravitational wave signals radiated at
infinity by noncircularized binaries.
To further promote the application of the novel EOB

waveform information we provide, we have have also
computed associated noncircular factors that are suitably
set up for being incorporated in the noncircular EOB model
TEOBResumS-DALI. We defer to future work the assess-
ment of the effective importance of these new corrections in
TEOBResumS-DALI, as well as the computation of the
generic-planar-orbit EOB waveform at higher-PN orders
and the inclusion of extra spin-related corrections.
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(MUR) through the program “Dipartimenti di Eccellenza
2018–2022” (Grant SUPER-C) and financial support
from Fondo Ricerca di Base 2020 [Multi-messanger
Observations and Simulations of Atropysical Inspiral
Compact Objects (MOSAICO)] and 2021 [Memory
Effects in Gravitational-wave Astrophysics (MEGA)] of
the University of Perugia. The work of T. H. is supported in
part by the project “Towards a deeper understanding of
black holes with nonrelativistic holography” of the
Independent Research Fund Denmark (Grant No. DFF-
6108-00340). G. G. and A. P. thank the Niels Bohr Institute
for hospitality at different stages of this project. T. H.
thanks University of Perugia for hospitality.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[2] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and virgo during the second part of the
third observing run, arXiv:2111.03606.

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[4] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GWTC-2: Compact Binary Coalescences Observed by

LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[5] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), The Population of Merging Compact
Binaries Inferred using Gravitational Waves through
GWTC-3, Phys. Rev. X 13, 011048 (2023).

[6] M. Maggiore et al., Science case for the Einstein telescope,
J. Cosmol. Astropart. Phys. 03 (2020) 050.

[7] M. Evans et al., A horizon study for cosmic explorer: Science,
observatories, and community, arXiv:2109.09882.

[8] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna, arXiv:1702.00786.

[9] J. Mei et al., The TianQin project: Current progress on
science and technology, Prog. Theor. Exp. Phys. 2021,
05A107 (2021).

ANDREA PLACIDI et al. PHYS. REV. D 108, 024068 (2023)

024068-12

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arXiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1088/1475-7516/2020/03/050
https://arXiv.org/abs/2109.09882
https://arXiv.org/abs/1702.00786
https://doi.org/10.1093/ptep/ptaa114
https://doi.org/10.1093/ptep/ptaa114


[10] M. Pürrer and C.-J. Haster, Gravitational waveform accu-
racy requirements for future ground-based detectors, Phys.
Rev. Res. 2, 023151 (2020).

[11] I. Hinder, L. E. Kidder, and H. P. Pfeiffer, An eccentric
binary black hole inspiral-merger-ringdown gravitational
waveform model from numerical relativity and post-
Newtonian theory, Phys. Rev. D 98, 044015 (2018).

[12] T. Hinderer and S. Babak, Foundations of an effective-one-
body model for coalescing binaries on eccentric orbits,
Phys. Rev. D 96, 104048 (2017).

[13] D. Chiaramello and A. Nagar, Faithful analytical effective-
one-body waveform model for spin-aligned, moderately
eccentric, coalescing black hole binaries, Phys. Rev. D 101,
101501(R) (2020).

[14] A. Nagar, P. Rettegno, R. Gamba, and S. Bernuzzi,
Effective-one-body waveforms from dynamical captures
in black hole binaries, Phys. Rev. D 103, 064013 (2021).

[15] T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna, M. A.
Scheel, H. P. Pfeiffer, D. Gerosa, and L. E. Kidder, Eccentric
binary black hole surrogate models for the gravitational
waveform and remnant properties: Comparable mass, non-
spinning case, Phys. Rev. D 103, 064022 (2021).

[16] A. Nagar, A. Bonino, and P. Rettegno, Effective one-body
multipolar waveform model for spin-aligned, quasicircular,
eccentric, hyperbolic black hole binaries, Phys. Rev. D 103,
104021 (2021).

[17] A. Nagar and P. Rettegno, The next generation: Impact of
high-order analytical information on effective one body
waveform models for noncircularized, spin-aligned black
hole binaries, Phys. Rev. D 104, 104004 (2021).

[18] S. Albanesi, A. Nagar, and S. Bernuzzi, Effective one-body
model for extreme-mass-ratio spinning binaries on eccentric
equatorial orbits: Testing radiation reaction and waveform,
Phys. Rev. D 104, 024067 (2021).

[19] X. Liu, Z. Cao, and Z.-H. Zhu, A higher-multipole gravi-
tational waveform model for an eccentric binary black holes
based on the effective-one-body-numerical-relativity for-
malism, Classical Quantum Gravity 39, 035009 (2022).

[20] Q. Yun, W.-B. Han, X. Zhong, and C. A. Benavides-
Gallego, Surrogate model for gravitational waveforms of
spin-aligned binary black holes with eccentricities, Phys.
Rev. D 103, 124053 (2021).

[21] A. Tucker and C. M. Will, Residual eccentricity of inspiral-
ling orbits at the gravitational-wave detection threshold:
Accurate estimates using post-Newtonian theory, Phys. Rev.
D 104, 104023 (2021).

[22] Y. Setyawati and F. Ohme, Adding eccentricity to quasi-
circular binary-black-hole waveform models, Phys. Rev. D
103, 124011 (2021).

[23] M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines,
Radiation-reaction force and multipolar waveforms for
eccentric, spin-aligned binaries in the effective-one-body
formalism, Phys. Rev. D 104, 024046 (2021).

[24] A. Ramos-Buades, A. Buonanno, M. Khalil, and S.
Ossokine, Effective-one-body multipolar waveforms for
eccentric binary black holes with nonprecessing spins,
Phys. Rev. D 105, 044035 (2022).

[25] A. Placidi, S. Albanesi, A. Nagar, M. Orselli, S. Bernuzzi,
and G. Grignani, Exploiting Newton-factorized, 2PN-
accurate waveform multipoles in effective-one-body models

for spin-aligned noncircularized binaries, Phys. Rev. D 105,
104030 (2022).

[26] S. Albanesi, A. Placidi, A. Nagar, M. Orselli, and S.
Bernuzzi, New avenue for accurate analytical waveforms
and fluxes for eccentric compact binaries, Phys. Rev. D 105,
L121503 (2022).

[27] S.Albanesi,A.Nagar, S.Bernuzzi,A. Placidi, andM.Orselli,
Assessment of effective-one-body radiation reactions for
generic planar orbits, Phys. Rev. D 105, 104031 (2022).

[28] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190521: A Binary Black Hole Merger with a Total Mass
of 150M⊙, Phys. Rev. Lett. 125, 101102 (2020).

[29] V. Gayathri, J. Healy, J. Lange, B. O’Brien, M.
Szczepanczyk, I. Bartos, M. Campanelli, S. Klimenko,
C. O. Lousto, and R. O’Shaughnessy, Eccentricity estimate
for black hole mergers with numerical relativity simulations,
Nat. Astron. 6, 344 (2022).

[30] R. Gamba, M. Breschi, G. Carullo, P. Rettegno, S. Albanesi,
S. Bernuzzi, and A. Nagar, GW190521: A dynamical
capture of two black holes, Nat. Astron. 7, 11 (2023).

[31] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta,
C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and
A. Klein, Science with the space-based interferometer
LISA. V: Extreme mass-ratio inspirals, Phys. Rev. D 95,
103012 (2017).

[32] J. R. Gair, S. Babak, A. Sesana, P. Amaro-Seoane, E.
Barausse, C. P. L. Berry, E. Berti, and C. Sopuerta, Pros-
pects for observing extreme-mass-ratio inspirals with LISA,
J. Phys. Conf. Ser. 840, 012021 (2017).

[33] A. Buonanno and T. Damour, Effective one-body approach
to general relativistic two-body dynamics, Phys. Rev. D 59,
084006 (1999).

[34] A. Buonanno and T. Damour, Transition from inspiral to
plunge in binary black hole coalescences, Phys. Rev. D 62,
064015 (2000).

[35] T. Damour, P. Jaranowski, and G. Schafer, On the deter-
mination of the last stable orbit for circular general relativ-
istic binaries at the third post-Newtonian approximation,
Phys. Rev. D 62, 084011 (2000).

[36] T. Damour, Coalescence of two spinning black holes: An
effective one-bodyapproach, Phys.Rev.D64, 124013 (2001).

[37] T. Damour, P. Jaranowski, and G. Schafer, Fourth post-
Newtonian effective one-body dynamics, Phys. Rev. D 91,
084024 (2015).

[38] A. Nagar, G. Riemenschneider, G. Pratten, P. Rettegno, and
F. Messina, Multipolar effective one body waveform model
for spin-aligned black hole binaries, Phys. Rev. D 102,
024077 (2020).

[39] G. Riemenschneider, P. Rettegno, M. Breschi, A. Albertini,
R. Gamba, S. Bernuzzi, and A. Nagar, Assessment of
consistent next-to-quasicircular corrections and postadia-
batic approximation in effective-one-body multipolar wave-
forms for binary black hole coalescences, Phys. Rev. D 104,
104045 (2021).

[40] C. K. Mishra, K. G. Arun, and B. R. Iyer, Third post-
Newtonian gravitational waveforms for compact binary
systems in general orbits: Instantaneous terms, Phys. Rev.
D 91, 084040 (2015).

[41] Y. Boetzel, C. K. Mishra, G. Faye, A. Gopakumar, and B. R.
Iyer, Gravitational-wave amplitudes for compact binaries in

2.5PN ACCURATE WAVEFORM INFORMATION FOR GENERIC- … PHYS. REV. D 108, 024068 (2023)

024068-13

https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevD.98.044015
https://doi.org/10.1103/PhysRevD.96.104048
https://doi.org/10.1103/PhysRevD.101.101501
https://doi.org/10.1103/PhysRevD.101.101501
https://doi.org/10.1103/PhysRevD.103.064013
https://doi.org/10.1103/PhysRevD.103.064022
https://doi.org/10.1103/PhysRevD.103.104021
https://doi.org/10.1103/PhysRevD.103.104021
https://doi.org/10.1103/PhysRevD.104.104004
https://doi.org/10.1103/PhysRevD.104.024067
https://doi.org/10.1088/1361-6382/ac4119
https://doi.org/10.1103/PhysRevD.103.124053
https://doi.org/10.1103/PhysRevD.103.124053
https://doi.org/10.1103/PhysRevD.104.104023
https://doi.org/10.1103/PhysRevD.104.104023
https://doi.org/10.1103/PhysRevD.103.124011
https://doi.org/10.1103/PhysRevD.103.124011
https://doi.org/10.1103/PhysRevD.104.024046
https://doi.org/10.1103/PhysRevD.105.044035
https://doi.org/10.1103/PhysRevD.105.104030
https://doi.org/10.1103/PhysRevD.105.104030
https://doi.org/10.1103/PhysRevD.105.L121503
https://doi.org/10.1103/PhysRevD.105.L121503
https://doi.org/10.1103/PhysRevD.105.104031
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1038/s41550-021-01568-w
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1088/1742-6596/840/1/012021
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.084011
https://doi.org/10.1103/PhysRevD.64.124013
https://doi.org/10.1103/PhysRevD.91.084024
https://doi.org/10.1103/PhysRevD.91.084024
https://doi.org/10.1103/PhysRevD.102.024077
https://doi.org/10.1103/PhysRevD.102.024077
https://doi.org/10.1103/PhysRevD.104.104045
https://doi.org/10.1103/PhysRevD.104.104045
https://doi.org/10.1103/PhysRevD.91.084040
https://doi.org/10.1103/PhysRevD.91.084040


eccentric orbits at the third post-Newtonian order: Tail
contributions and postadiabatic corrections, Phys. Rev. D
100, 044018 (2019).

[42] M. Ebersold, Y. Boetzel, G. Faye, C. K. Mishra, B. R. Iyer,
and P. Jetzer, Gravitational-wave amplitudes for compact
binaries in eccentric orbits at the third post-Newtonian order:
Memory contributions, Phys. Rev. D 100, 084043 (2019).

[43] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.108.024068. This file
collects the explicit expressions of all the 2.5PN-accurate
spherical modes (m!=0) for generic planar orbits, in EOB
mass-rescaled variables, plus the corresponding non-circular
factors in the waveform prescription of TEOBResumS-
DALI.

[44] L. Blanchet and T. Damour, Post-Newtonian generation of
gravitational waves, Ann. Poincare Phys. Theor. 50, 377
(1989).

[45] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 17, 2 (2014).

[46] D. Christodoulou, Nonlinear Nature of Gravitation and Gravi-
tational Wave Experiments, Phys. Rev. Lett. 67, 1486 (1991).

[47] A. G. Wiseman and C. M. Will, Christodoulou’s nonlinear
gravitational wave memory: Evaluation in the quadrupole
approximation, Phys. Rev. D 44, R2945 (1991).

[48] L. Blanchet and T. Damour, Hereditary effects in gravita-
tional radiation, Phys. Rev. D 46, 4304 (1992).

[49] T. Damour and N. Deruelle, General relativistic celestial
mechanics of binary systems. I. The post-Newtonian
motion., Ann. Inst. Henri Poincaré Phys. Théor. 43, 107
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