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The good-bad-ugly-F model is a system of semilinear wave equations that mimics the asymptotic
form of the Einstein field equations in generalized harmonic gauge with specific constraint damping
and suitable gauge source functions. These constraint additions and gauge source functions eliminate
logarithmic divergences appearing at the leading order in the asymptotic expansion of the
metric components. In this work, as a step towards using compactified hyperboloidal slices in
numerical relativity, we evolve this model numerically in spherical symmetry, axisymmetry, and
full 3D on such hyperboloidal slices. Promising numerical results are found in all cases. Our results
show that nonlinear systems of wave equations with the asymptotics of the Einstein field equations in
the above form can be reliably captured within hyperboloidal numerical evolution without assuming
symmetry.
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I. INTRODUCTION

The computation of gravitational waves at future null
infinity, Iþ, is arguably the most important deliverable
from a numerical relativity (NR) simulation of a coalescing
binary of compact objects in an asymptotically flat space-
time. Despite huge progress, there is no first principles
solution to this problem so far. The main issue is that
Cauchy evolution is the most widely used approach in NR,
and since Cauchy slices have to be truncated to permit
practical evolutions, postprocessing methods for extracting
the waveform out of the numerical domain have to be used
to get the desired signal. The two classic examples of this
are direct extrapolation and Cauchy-characteristic extrac-
tion, which are the most widely used gravitational wave
extraction methods in NR codes [1–6]. There is an ongoing
effort to include Iþ directly in the computational domain
via Cauchy-characteristic matching. In this approach the
wave zone is foliated using compactified null slices and
matched to standard Cauchy hypersurfaces in the interior.
See [7] for a review and [8,9] for recent work on the well-
posedness of general relativity (GR) in the single-null
gauges typically employed by formulations for both char-
acteristic extraction and matching.
An alternative strategy to reach null-infinity numerically

is to foliate spacetime using compactified hyperboloidal
slices [10–21]. Like Cauchy hypersurfaces these are every-
where spacelike, but terminate at Iþ instead of spatial

infinity, i0. As Iþ is an infinite distance apart from the
evolution region, we need to compactify an outgoing radial
coordinate. A nice property of hyperboloidal slices is that an
outgoing solution to the wave equation, which serves as a
fundamental model for all systems with wavelike solutions,
oscillates just a finite number of times before reachingIþ. In
contrast, on Cauchy slices an infinite number of oscillations
transpire as a wave propagates out. In this sense, hyper-
boloidal slices are adapted to resolve outgoing waves just as
outgoing characteristic slices. Consequently, one can expect
to resolve outgoing waves on hyperboloidal slices numeri-
cally with finite resolution [22]. The price paid is that
incomingwaves are poorly resolved, but this is an acceptable
loss because there should be very little incoming radiation
content from near Iþ in the scenarios we are ultimately
interested in computing.
In this paper, we use a foliation of Minkowski spacetime

by hyperboloidal slices to evolve a system of wave
equations called the good-bad-ugly-f (GBUF) system.
The work is a direct continuation of our previous studies
[23,24]. In this earlier work, we studied the good-bad-ugly
(GBU) system. The GBU system mimics the Einstein field
equations (EFEs) in the asymptotic future null directions in
harmonic gauge by ignoring their tensorial nature and
discarding (many) sufficiently rapidly decaying pieces of
the solution in the equations of motion. The GBU model
consists of the equations
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□g¼ 0; □b¼ ð∂TgÞ2; □u¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

p ∂Tu; ð1Þ

where g, b, and u represent the good, bad, and ugly fields,
respectively. The numerical treatment of the homogeneous
wave equation on compactified hyperboloidal slices is now
fairly standard. The key interest in studying such models is
instead in understanding the effect that the inhomogene-
ities, whether linear or nonlinear, have on the asymptotics
of the fields, and how (or even if) these may be treated
numerically if they permit either fast or only very weak
decay in R. For instance, the linear term on the right hand
side of the u equation suppresses the associated radiation
field, which leads to faster decay than that of solutions to
the wave equation, whereas the “gb” sector of the model
satisfies not the classical null condition [25], but rather the
weak null condition [26]. Consequently, near null infinity,
the bad field encounters an obstruction to decay and, even
starting from initial data of compact support, solutions
admit only a slow asymptotic expansion of the form [26]

b ∼
logR
R

B1ðT − RÞ þ 1

R
B2ðT − RÞ: ð2Þ

The logarithmic term here is problematic for numerics
when one wants to resolve the field asymptotically [23]. In
that work, the log-terms were dealt with by introducing
auxiliary fields whose task was to absorb the log terms so
that the evolved variables remained regular. This strategy
was successful, but managing limited regularity is less
desirable than eradicating problematic solutions. By anal-
ogy, this suggests that plain harmonic gauge is not ideally
suited for hyperboloidal evolution. Inspired by the gener-
alized harmonic gauge (GHG) formulation of general
relativity (GR) we therefore modify the system (1) by
adding a variable f to the system whose equation of motion
we are free to choose. Inspired by [27], we follow the
general strategy of [28–30] to make an appropriate choice
of f that cures the behavior of the bad field near Iþ,
resulting in asymptotics that are simpler to deal with
numerically. With these choices fixed, we implement the
model in a standalone spherical code and in the 3D NRPyþ
[31] infrastructure. Numerical results from both implemen-
tations are found to be compatible.
The paper is organized as follows. In Sec. II, we

introduce the GBUF model in detail and describe its
asymptotic properties. We also perform a first order
reduction of the system using radial characteristic variables,
introduce appropriate rescalings to regularize the equations
at Iþ, and then present the limiting equations satisfied at
Iþ so as to show the equations in their final form to be
implemented. Section III continues with a presentation of
the details of the spherical and NRPyþ implementations
and their respective numerical results. We demonstrate our

spherically symmetric results via two different choices of
variables and numerical schemes. The first one is the
standard Evans method [32] as applied in [23]. The second
one is similar to the summation-by-parts (SBP) method, as
derived in [24]. We close in Sec. IV with a discussion of,
and conclusions from, the present work.

II. THE GBUF MODEL

In this paper we generalize the GBU system of Eq. (1) to
include a field f. This system, the good-bad-ugly-F model,
serves as a model for GR in GHG, rather than pure
harmonic gauge. Specifically, an additional term is added
to the bad equation that mimics a part of the gauge source
terms, present in the EFEs. The resulting system takes the
form

□g¼ 0; □b¼ 1

χ
∂Tfþ ð∂TgÞ2; □u¼ 2

χ
∂Tu; ð3Þ

where g, b, and u represent the good, the bad and the ugly
fields, respectively, as described in [23], and χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
so that χ ∼ 1 near the origin and χ ∼ R for large R. Here, f
plays the role of the gauge source function in GHG. In [29]
it has been seen that terms of this type can be used to
regularize some of the equations at Iþ. The game is to
make a specific choice of equation of motion for f that
achieves this goal. Before making such a choice, we
observe that f should falloff at least like 1=R towards
Iþ. Clearly, the GBU model corresponds to the choice
∂Tf ≡ 0, which has been seen to lead to logarithmic
divergences in the bad field. In this paper, we take the
equation of motion for f to be

□f ¼ 2

χ
∂Tf þ 2ð∂TgÞ2: ð4Þ

Note that the first term on the right-hand side of the above
equation gives it the form of the ugly wave equation, which
does not radiate towards Iþ. On the other hand, the
nonlinear term falls off like 1=R2, so it can be seen that this
term determines the falloff of f towards Iþ [26,28]. With
this particular choice, the asymptotic expansion of the
fields (within a large class of initial data) is [29]

g ∼
G1ðT − RÞ

R
;

b ∼
B1ðT − RÞ

R
;

u ∼
U1

R
¼ mu

R
;

f ∼
F1ðT − RÞ

R
; ð5Þ
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where G1 and F1 are related through F0
1ðT − RÞ ¼

−G0
1ðT − RÞ2=2. If we therefore rescale the fields by χ,

they become Oð1Þ all the way towards Iþ and we can
cleanly extract the radiation field asymptotically. In con-
trast to the good or bad fields, the leading order term, or the
“mass” term mu, in the ugly field does not depend on
advanced or retarded time. In other words the radiation field
associated with u is trivial. In this work, we consider initial
data (ID) withmu ≡ 0, so that in fact the u field decays one
power of R faster than the other fields. Evolving ID with a
nonvanishing mass term with this model could be achieved
with a straightforward change of variables.

A. First order reduction and rescaling

We now present the equations of motion in the form that
will be implemented numerically. We first make a naive
first-order reduction (FOR) of the second-order equa-
tions (3) and (4) in terms of their null and angular
derivatives. Writing ψ to represent any of the g, b, u, or
f fields, we define FOR variables by

ψþ ¼ ∂Tψ þ ∂Rψ ; ψ− ¼ ∂Tψ − ∂Rψ ; ψA ¼ Θ̂Aψ ;

ð6Þ

where A ¼ fθ;ϕg and Θ̂A ¼ f∂θ; ð1= sin θÞ∂ϕg.
The utility of this particular choice of FOR variables is

that, for a large class of initial data, their falloff rates
towards Iþ form a clean hierarchy. Knowledge of these
falloff rates is then used for rescaling the respective
variables such that the resulting equations in hyperboloidal
coordinates are regular (as far as is possible) at Iþ. One
can see from (5) that, with the exception of the ugly fields,
the outgoing characteristic variables ψ− falloff like 1=R
whereas the ingoing ones, ψþ, decay like 1=R2 towards
Iþ. The outgoing characteristic field associated with u has
instead faster decay like 1=R2. The angular derivatives, ψA,
falloff like 1=R. The rescaled FOR fields we work with are

Ψ≡ χψ ;

Ψ− ≡ χψ−;

Ψþ ≡ χð∂T þ ∂RÞðχψÞ;
ΨA ≡ χψA: ð7Þ

Various alternative choices of reduction variables that
capture the stratification in decay rates are possible.
Observe that, despite the fact that incoming null derivatives
of the u field decay likeOðR−2Þ, we rescale only by a single
power of R. This is to permit the treatment of source terms
that decay at best likeOðR−3Þ, which appear for instance in
GR proper (see below for more detail).

Since we perform a complete reduction of the equations,
the FOR variables have associated with them FOR con-
straints. In terms of the rescaled variables these constraints
read

∂RΨþ Ψ− −
χ0

χ
Ψ −

1

χ
Ψþ ¼ 0;

Θ̂AΨ −ΨA ¼ 0; ð8Þ

where χ0 ≡ dχ=dR. If a solution of the FOR satisfies these
constraints, then it can be unambiguously mapped to a
solution of the original second order equations. In numeri-
cal applications the reduction constraints can be violated
due to either a poor choice of initial data or by numerical
error that should converge away with resolution. As in any
free evolution setup, we monitor the constraints during
evolution.

B. Hyperboloidal coordinates and compactification

The next step is to introduce a coordinate system thatmaps
Iþ on to a finite numerical grid in such a way that outgoing
radiation is well resolved. For this purpose, we introduce
hyperboloidal slices as described in [22–24,33,34]. These
slices use a hyperboloidal time coordinate and a compactified
radial coordinate defined on the level sets of hyperboloidal
time, denoted, respectively, by ðt; rÞ and defined as

t ¼ T −HðRÞ; R ¼ RðrÞ:

Demanding that dH=dR < 1 for allR and dH=dR → 1 (fast
enough) as R → ∞, the level sets of t are spacelike every-
where but reachIþ. The simplest example of such a height
function is given byHðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
, which explainswhy t

is called hyperboloidal time. To compactify the radial
coordinate we define RðrÞ ¼ r=ΩðrÞ, with ΩðrÞ ¼
1 − r2=r2I . Note that Iþ is mapped to r ¼ rI , and for
simplicity we take rI ¼ 1.
We define the differential operator _□pψ ≡□ψþ

2p
χ ∂Tψ , so that each of the GBUF wave equations has

the form _□pψ ¼ Sψ , where p ¼ 0 for good and bad
equations and p ¼ 1 for the ugly and f ones. We work
with the particular choice HðRÞ ¼ R − rðRÞ. As discussed
in [24], combining this choice of height function with the
compactification above results in a foliation that is only C0

at the origin. This could be avoided, but which in practice
does not appear to cause leading-order problems for our
second order accurate discretization at the resolutions we
have used. In these new coordinates, the equations take the
form
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∂tΨ ¼ Ψþ

2χ
þ Ψ−

2
−
χ0Ψ
2χ

;

∂tΨþ ¼ 1

2R0 − 1

��
R0

R
−

χ0

2χ
−
χ0R0

χ

�
Ψþ þ ∂rΨþþ

�
−
χR0

R
−
1

2
χ0 þ χ0R0

�
Ψ− − χ0∂rΨ

þ
�
−
χ0R0

R
þ ðχ0Þ2

2χ
þ ðχ0Þ2R0

χ
− χ00R0

�
Ψþ cotðθÞχR0

R2
Ψθ þ

χR0

R2
∂θΨθ þ

χR0

sinðθÞR2
∂ϕΨϕ

−p
R0Ψþ

χ
− pR0Ψ− þ p

χ0R0

χ
Ψþ SΨ

�
;

∂tΨ− ¼ R0Ψþ

Rχ
−
�
R0

R
−
χ0R0

χ

�
Ψ− − ∂rΨ− −

χ0R0Ψ
Rχ

þ cotðθÞR0

R2
Ψθ þ

R0

R2
∂θΨθ þ

R0

sinðθÞR2
∂ϕΨϕ

− p
R0Ψþ

χ2
− p

R0Ψ−

χ
þ p

χ0R0Ψ
χ2

þ 1

χ
SΨ;

∂tΨA ¼ −
χ0

2χ
ΨA þ 1

2χ
Θ̂AΨþ þ 1

2
Θ̂AΨ−;

where

SB¼−
R0

4

�
1

χ
GþþG− −

χ0

χ
G

�
2

−
R0

2χ
Fþ−

1

2
R0F−þχ0R0

2χ
F;

SF ¼−
R0

2

�
1

χ
GþþG− −

χ0

χ
G

�
2

;

SG¼SU ¼ 0:

This is the system we evolve numerically, both in spherical
symmetry and full 3D. Observe here that in the equation of
motion for Ψ−, if the original source terms Sψ were to
decay only like OðR−3Þ the associated terms in the final
equations would be Oð1Þ. Such terms do appear in GR, so
to avoid having to treat explicitly irregular terms in that
setting, we do not allow ourselves to rescale the evolved
fields here more aggressively. The constraints (8) in terms
of hyperboloidal coordinates read

1

2R0 − 1

�
2∂rΨþ Ψ− −

χ0

χ
Ψ
�
−
1

χ
Ψþ ¼ 0;

Θ̂AΨ −ΨA ¼ 0:

Some terms in the previous system of equations have
coefficients that diverge asymptotically but are multiplied
by parts of the solution that decay fast enough that the
product takes a finite limit. Thus although the term appears
formally singular, the composite term is in fact regular.
Consequently, to evolve the fields directly at Iþ, it is
necessary to calculate the limit of the whole system of
equations as r → rI . (Similar calculations performed in
full GR, rather than models, can be found for instance in
[15]). From the definition of RðrÞ, one finds that

R0

R2
→ 2:

The limit that has to be taken carefully is R0Ψ−=R when
p ¼ 1, which is the case for theU and F wave operators. To
calculate this limit, we use the l’Hospital’s rule, giving

R0

R
Ψ− → −∂rΨ−:

III. RESULTS

We have implemented the GBUF model, employing the
compactified hyperboloidal coordinates ðt; r; θAÞ described
above, both within a standalone code that explicitly
assumes spherical symmetry, and within the 3D NRPyþ
infrastructure. The code developed from this infrastructure
can be obtained at [35]. Both implementations use the
method of lines with a fourth-order Runge-Kutta method
for time integration. In the spherically symmetric case, the
grid has points lying exactly at the origin and at Iþ, as
opposed to the 3D case, in which a staggered grid is used.
Spatial derivatives are approximated by second-order
accurate centered finite differences, except at infinity,
where one-sided derivatives are taken following a trunca-
tion error matching approach (see [24]).
In both codes, the interior and outer boundaries require

special treatment. The interior boundary corresponds to the
boundary of the angular coordinates, in the 3D case or to
the origin r ¼ 0, in all cases. Ghost points in the r < 0 case
are populated using the parity of the original fields. The
original variables g, b, u, and f are even in R. In the 3D
implementation, angular ghost points are filled with the
values of the corresponding grid points inside the domain.
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In the continuum problem, no boundary condition is needed
at r ¼ rI , and we find it sufficient to fill the r > rI ghost
points with extrapolation, which we take to be fourth
order.
It is well known that the origin is a coordinate singularity

in spherical polar coordinates. This fact can be problematic
in numerics if the most naive discretizations are used, and
turns out to be particularly subtle for first order systems.
Because of this, the Evans method [32,36] is used to treat
the equations at the origin. To do this, we first use the
identity R0

R Ψ ¼ ð1r − Ω0
ΩÞΨ. We then discretize ∂rΨþ 2

rΨ by

�
∂rΨþ 2

r
Ψ
�
j
≈ 3

r2jþ1Ψjþ1 − r2j−1Ψj−1

r3jþ1 − r3j−1
:

This trick is used to replace all the terms in which R−1

appears explicitly as a coefficient of an evolved field.
Finally, we apply artificial dissipation on all variables on

the whole grid. For the spherically symmetric runs, this
dissipation is just the standard fourth order Kreiss-Oliger
dissipation [37] with a dissipation parameter σ ¼ 0.02
using Evans method at the origin, and instead σ ¼ 0.01
with our SBP inspired discretization (described in detail in
Sec. III A). In NRPyþ, because of the use of spherical polar
coordinates, the dissipation operators are adjusted with r−1

and ðr sin θÞ−1 factors on the θ and ϕ derivatives, respec-
tively [31,38]. Nevertheless, in the full 3D case, more
dissipation is required to eliminate high frequency errors
coming from the origin that eventually make the simu-
lations fail. This noise is likely due to the fact that the
coordinate singularity is more severe without symmetry, as
it affects all points with θ ¼ 0; π. In this setting, following
[31,38], we therefore use an overall dissipation factor of
around σ ¼ 0.4. By performing evolutions on plain Cauchy
slices, we have verified that these modifications are not
particular to the use of hyperboloidal coordinates.
As is standard for error analysis in numerical work, we

perform norm-convergence tests for both setups. Because
of the change of coordinates and the introduction of our
slightly nonstandard first-order reduction variables, the
energy norm associated with the plain scalar field takes
the form [24]

EðtÞ ¼
Z ��

2R0 − 1

2R0χ2
ðΨþ − χ0ΨÞ2

�
þ 1

2R0 ðΨ−Þ2

þ 1

R2
ðΨ2

θ þΨ2
ϕÞ
�
R0R2

χ2
sinðθÞdrdθdϕ: ð9Þ

This is the norm used in our numerical convergence tests.

A. Spherically symmetric test bed for 3D evolutions

Many interesting features of the model can already be
studied in the spherically symmetric case, for which the

evolutions are performed with the stand-alone infrastruc-
ture used for instance in [18,23]. We give centered
Gaussian ID corresponding to ψðt ¼ 0; rÞ ∝ e−RðrÞ2 and
∂Tψðt ¼ 0; rÞ ¼ 0 for all the fields, and define the ID for all
the FOR variables accordingly.
One feature of interest is the rate of decay of the fields

near null infinity. Placing certain assumptions on initial
data and employing the asymptotic systems approach of
[26], specific rates were predicted in [29]. The snapshots in
Fig. 1 show that the evolved fields remainOð1Þ for all times
in accord with these predictions. Since we choose the ID for
the ugly fields corresponding to mu ¼ 0, the ugly fields
vanish at Iþ. The rest of the fields behave asymptotically
like the G variables and so oscillate at Iþ. Interestingly
nearIþ, the B and F fields appear to reach a stationary but
non-vanishing state at late (hyperboloidal) times.
It is entirely expected that there is no incoming signal

from Iþ, but it is interesting that this behavior is captured
well by the numerical approximation, and furthermore that
we see no evidence of incoming waves being generated as
reflections in a neighborhood of Iþ either. Instead we see
the signal practically leaving the domain in finite hyper-
boloidal time.
Next, we successfully performed long convergence tests

on our numerical solutions, examining the data both
pointwise and in the energy norm (9). At the base
resolution, we took 200 grid points in the radial coordinate,
doubling resolution at every level of the convergence test.
The energy norm convergence rate, computed on all the
fields, is shown as a function of time in Fig. 2.
Recall that the main objective of this work is to show that

the system at hand, viewed as a model for the EFEs in
GHG, can be reliably numerically evolved on compactified
hyperboloidal slices. We therefore check pointwise con-
vergence for the grid points at Iþ that, in the spherical
case, corresponds to a single grid point at each time.
Rescaled differences at this point as a function of time are
shown in Fig. 2. Since the three curves lie on top of each
other, we get the expected convergence order.
In all of the above spherical runs, we employed the

standard Evans method as described above. To demonstrate
that our numerical results are not strongly dependent on this
particular choice of variables and numerical scheme, we
performed spherically symmetric evolutions also using
another discretization. This scheme is similar to the SBP
discretization derived in [24]. We use a similar (though not
identical) discretization as we still do not have an SBP
scheme for the linear part of whole GBUF model. The
derivation of such a scheme is left for future work. Both the
Evans and SBP-like discretization have the property that
they stabilize the approximation even in the absence of
artificial dissipation, although dissipation does help sup-
press undesirable error at the origin.
To implement the SBP-like discretization, we define the

rescaled fields as
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Ψ≡ χψ ; Ψþ ≡ χ2ψþ; Ψ− ≡ χψ−; ð10Þ

where, as before, ψ is one of the g, b, u, or f variables
and ψþ and ψ− are defined in (6). The associated FOR
constraints are

χ

R0

�
∂rΨþ Ψ−

2

�
−Ψχ0 þ

�
1

2R0 − 1

�
Ψþ ¼ 0: ð11Þ

Defining

e∂rΨ≡ ðχ2R−2Þ∂rðR2χ−2ΨÞ; ð12Þ

FIG. 2. In the left panel we show norm convergence for the entire state vector. Orange and red curves show the convergence factor for
standard finite differences with the Evans method for resolutions with 200, 400, 800 and 400, 800, and 1600 grid points (labeled low,
medium, high, highest), respectively. Blue and purple curves show the analogous norm convergence factor for the simulations with our
second scheme. The data display robust second order convergence. The right panel shows the sum over all the fields, including the
reduction variables, of the absolute value of the rescaled differences at Iþ from the Evans discretization. The three curves overlap very
well at all times, meaning we get excellent pointwise convergence at Iþ.

FIG. 1. Snapshots of spherically symmetric evolutions. Observe that all the fields reach a stationary state but have different
asymptotics. In particular, the good field goes to zero as it radiates out through null infinity and the ugly field is zero at Iþ for all times.
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the equations take the form

∂tΨ ¼ 1

2

�
Ψþ

χ
þΨ−

�
;

∂tΨþ ¼ χ

2ð2R0 − 1Þ ðð∂r þ
e∂rÞðχ−1ΨþÞ þ ð∂r − e∂rÞΨ−Þ

−
R0

2R0 − 1

�
pΨþ

χ
þ ðχ0 þ pÞΨ− þ SΨ

�
;

∂tΨ− ¼ 1

2
ððe∂r − ∂rÞðχ−1ΨþÞ − ðe∂r þ ∂rÞΨ−Þ

þ R0

χ

�ðχ0 − pÞΨþ

χ
− pΨ− − SΨ

�
; ð13Þ

in the bulk,

∂tΨ¼Ψþ; ∂tΨþ ¼ ∂tΨ− ¼ 3∂rΨþ−2pΨþ−SΨ0
; ð14Þ

at the origin. Here, the source terms SG and SU are
identically zero, and

SB ¼ 1

2

�
F− þ Fþ

χ

�
þ 1

4

�
Gþ

χ
þ G−

�
2

;

SF ¼ 1

2

�
Gþ

χ
þG−

�
2

; ð15Þ

with their limits at the origin being

SB0
¼ Fþ þ ðGþÞ2; SF0

¼ 2ðGþÞ2: ð16Þ

The limits atIþ are straightforward. The equations at Iþ
are obtained by taking the limits

U− → 0; F− þ ðG−Þ2
2

→ 0;
R0U−

R
→ −∂rU−;

R0

2R

�
F− þ ðG−Þ2

2

�
→ −∂rF− −G−

∂rG−:

In our implementation we compute them numerically
without using the ∂̃r operator.
We perform our convergence tests for this discretization

in the norm

EðtÞ ¼
Z

rI

0

�
1

2
r2Ψ2 þ εS

�
dr; ð17Þ

with

εS ¼
1

2

�ðΨ−Þ2
2

þ
�
2R0 − 1

2χ2

�
ðΨþÞ2

�
R2

χ2
; ð18Þ

where ψ stands for any of the g, b, u, or f variables, and Ψ,
Ψþ, andΨ− are defined as in (10). To make the norms in the
two discretization schemes compatible with each other, we

add r2Ψ2=2 to the integrand of the norm (9), when working
in spherical symmetry. However, no such modification is
introduced in the full 3D case, and the norm (9) is used. In
all cases, the argument in EðtÞ stands for the hyperboloidal
time over which the integral on the right is evaluated.
As can be seen in Fig. 2, all the results in the SBP

inspired discretization look similar to those obtained using
the Evans method. The FOR constraint violations in both
the schemes also converge perfectly at second order. These
violations arise only because of the discretization, as our ID
satisfies the reduction constraint in the continuum limit.

B. Full 3D case

Our next task is to see whether numerical evolutions of
the GBUF system can be performed with null infinity
without symmetry assumptions. To this purpose, we
perform full 3D evolutions using spherical polar coordi-
nates. Unfortunately, even putting aside the additional
computational cost, this is not a completely straightforward
generalization of the previous case. The main complication
is that we now encounter a “more singular” behavior at the
coordinate singularity along the whole z axis. To manage
that challenge, besides using the Evans method, we follow
the basic philosophy of NRPyþ, dividing the ϕ derivative
of the fields by sin θ [see (6)]. The corresponding dis-
sipation operator also needs to be modified as described
above. Another strategy to manage these challenges would
be to make a multipatch approach, as, for instance, in
earlier numerics for the hyperboloidal treatment of the
wave equation with the pseudospectral BAMPS code [39].
Presently, to evolve the full 3D system numerically, we
used NRPyþ [31], a numerical relativity PYTHON infra-
structure that outputs optimized C code for the runs.
Ideally, this C code is just compiled and run within
NRPyþ. There were however two places where, in our
implementation, the C code was modified directly by hand
because the NRPyþ PYTHON environment was not
designed to automate the particular bespoke changes we
required. First were the r < 0 ghost points, which were
populated by parity conditions. This is because the Ψ�
fields evaluated at points r < 0 involveΨ∓ andΨ evaluated
at r > 0. Second was the implementation of the Evans
method, which was not used (or needed) in the original
second order in space NRPyþ implementation of the wave
equation on Cauchy slices. All the modified files, including
those needed to create the code, together with instructions
for compilation and use of the code can be found at the
aforementioned link [35].
To avoid directly facing the singular nature of the

coordinates, the code uses a staggered grid in the three
spatial coordinates, ðr; θ;ϕÞ. This means that the spatial
domain in a coordinate, say r ∈ ð0; 1Þ, is divided in Nr
cells, and there is a grid point in the center of each cell. The
same is done for the θ and ϕ domains. This is standard in
the NRPyþ infrastructure.
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As a first test, we input the same ID as in the spherical
code with (200,4,4) grid points in the respective ðr; θ;ϕÞ
coordinates at the base resolution. For this case we
employed the same dissipation operators and parameters
as for the spherically symmetric code, but with full 3D
evolution and made a side-by-side comparison. For the
same resolution, the difference in the grid functions out-
putted from the different codes differ at most by numbers of
order Oð10−3Þ, for grid functions of order Oð1Þ, so they
differ by less than 1%. Moreover, the largest differences
appear close to the origin, and for most of the grid the errors
decrease to as little as Oð10−7Þ. We also performed norm-
convergence tests for the spherical code with a staggered
grid and the 3D one, by tripling resolution two times in the
radial coordinate, and compared them directly. Norms
calculated from the different codes outputs differ by
numbers of order Oð10−3Þ for all times, so they differ
by less than 1% as well. We take the excellent agreement of

the codes in this setup as evidence for the correctness of the
3D implementation.
For the ID with no symmetry, we use a partial-wave-like

expression of the form

ψðt ¼ 0Þ ¼ A
4R

e−ð1þ4RÞ2=16½−4 − 2R − 15R2

þ 8R3 þ 16R4 þ eRð4 − 2Rþ 15R2

þ 8R3 − 16R4Þ�Y22ðθ;ϕÞ; ð19Þ

where Y22 is the l ¼ 2, m ¼ 2 spherical harmonic and the
amplitude parameter A is a constant. This choice was taken
because a smooth solution at the origin with no symmetry is
needed for this simulation, with the expression inspired by
the d’Alembert partial-wave solution to the wave equation
for a given smooth function [40,41], which in this case we
take to be SðRÞ ¼ R2e−ðR−1

4
Þ2 . We take the constant A ¼ 1

FIG. 3. Snapshots of 3D evolutions of B and U fields (on the top and bottom rows) as functions of r and ϕ for θ ≃ 1 radian. Observe
that similar features can be seen as compared to the spherically symmetric runs, namely, a stationary solutions is reached and the ugly
field is zero at Iþ for all times. The G and F fields look qualitatively similar.

FIG. 4. Norm convergence and absolute value of rescaled differences at Iþ for the state vector. We observe convincing norm
convergence as a function of time with a slight drift for late times. Good pointwise convergence at Iþ can also be seen from the figure on
the right, even though these curves were calculated by extrapolating the data half a grid point.
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for the bad, ugly, and f fields and A ¼ 1=10 for the g field.
We choose this because larger values of the g field make it
completely dominate the behavior in the b field through
the nonlinearity, and we wanted to see evidence of the
linear radiation field besides. In Fig. 3 we show snapshots
of the evolution of the system as a function of r and ϕ for a
particular choice of θ. The same features as in the
spherically symmetric case can be seen, namely, the
appropriate decay rates and the signal leaving the domain
in finite hyperboloidal time, leaving behind a stationary
solution.
Norm convergence tests were also performed for the 3D

setting, again using the norm in expression (9). We started
with (80,16,32) grid points in ðr; θ;ϕÞ coordinates, respec-
tively, and increased resolution by a factor of 1.5 three
times in each coordinate. Resolutions are labeled as low,
medium, high, and highest with increasing number of grid
points. Fourth-order interpolation was used to match the
higher resolution grid points to the lowest one’s grid, except
at the numerical boundaries, where the third order was
used. The result is shown in the left panel of Fig. 4.
Respectable second order convergence is visible in the plot.
A slight drift from the ideal convergence rate is seen for late
times, although by these times, the data has already mostly
left the numerical domain (recall that a purely radially
outgoing pulse traveling at the speed of light takes around
t ¼ 1 to reach r ¼ rI in our coordinates). Second-order
pointwise convergence at r ¼ rI is examined in the right
hand panel of Fig. 4, and is similarly promising.

IV. CONCLUSIONS

In this work, a direct extension of [23,24,39,42], we
made another step towards including future null infinity in
generic numerical relativity simulations of asymptotically
flat spacetimes. Our strategy is to extend formulations of
GR, specifically the GHG system, that are known to work
well in the strong-field region on to compactified hyper-
boloidal slices. One challenge is that, unlike the conformal
field equations [11], the resulting system of partial differ-
ential equations (PDEs) may not be regular at null infinity
because, depending on the specific choice of gauge source
function, nonprincipal terms may lack sufficient decay in
radius to offset divergences due to the radial compactifi-
cation. Our direct starting point here was the demonstration
provided by [29] that, with care, the gauge source functions
can be chosen so that the worstOðlogðRÞ=RÞ decay present
with a naive choice of the gauge sources is circumvented.
Under that approach, the evolved variables have full
Oð1=RÞ decay near Iþ. The subtlety that remains to be
handled numerically are formally singular terms. The pur-
pose of this paper was to demonstrate that these terms could
bemanaged numerically both in spherical symmetry and full
3D simulations. Since this difficulty can be made explicit
without the full complication of the EFEs, we studied a toy
model. We presented numerical evolutions of the good-bad-

ugly-F model, a system of nonlinear wave equations that
mimics the asymptotic properties of the EFEs in GHG. We
showed that the various different fields, each with different
decay rates towards Iþ, can be evolved numerically on
compactified hyperboloids.
In related earlier work [39] pseudospectral numerics for

the wave equation on hyperboloidal slices was presented.
Here instead, because of the potentially slow asymptotic
decay of fields in the GBUF model, purely as a proof of
principle, we employed finite differences exclusively for
the approximation of spatial derivatives. We made two
numerical implementations, one in explicit spherical sym-
metry (with two distinct choices of variables and discre-
tization), the other in 3D using NRPyþ. Our first important
result was that the decay rates for each of the fields
predicted in [29] were reliably obtained in both codes,
and for all of the initial datasets we treated. Moreover, the
expected properties of hyperboloidal evolution of wavelike
equations with our setting were observed. Among these
were the finite but nonvanishing velocities of the signals
going through Iþ and, for a subset of the fields, the
presence of nonvanishing near-stationary solutions after a
finite hyperboloidal time. Clean norm convergence and
pointwise convergence atIþ is seen for all cases from our
numerics. In summary: the results presented here show that
there should be no problem in managing the asymptotic
properties of the EFEs in GHG on compactified hyper-
boloidal slices.
An interesting point that we have made no attempt

whatsoever to understand here is the effect of choosing
initial data that decay only very slowly towards Iþ. This
would make direct contact with [43], where such initial data
were considered for a subsector of the GBUF model. In the
context of GR, such data has relevance to the question of
the peeling property at Iþ (see [44–47] for recent work in
this direction). Unfortunately, treating such initial data
would force a complete rethink of the numerical strategy.
Many pieces of the puzzle are now in place for a 3þ 1

implementation of the EFEs on hyperboloidal slices. There
are a number of outstanding questions however, including
for instance our incomplete understanding of charges at
Iþ expressed in generic generalized harmonic gauges, the
lack of a clear (standalone) local well-posedness theory on
hyperboloidal slices and the hands-on construction of
initial data for a variety of scenarios of interest. Progress
on all these fronts is expected. In the near-term we will
present a comprehensive set of spherical numerics for
full GR.
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