
Cylindrical black bounces and their field sources

Kirill A. Bronnikov *

Center of Gravitation and Fundamental Metrology, VNIIMS, Ozyornaya ulitsa 46, Moscow 119361, Russia
Peoples’ Friendship University of Russia, ulitsa Miklukho-Maklaya 6, Moscow, 117198, Russia

and National Research Nuclear University “MEPhI”, Kashirskoe shosse 31, Moscow 115409, Russia

Manuel E. Rodrigues†

Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará Campus
Universitário de Abaetetuba, 68440-000, Abaetetuba, Pará, Brazil

and Faculdade de Física, Programa de Pós-Graduação em Física, Universidade Federal do Pará,
66075-110, Belém, Pará, Brazil

Marcos V. de S. Silva ‡

Faculdade de Física, Universidade Federal do Pará, Campus Universitário de Salinópolis,
68721-000, Salinópolis, Pará, Brazil

(Received 30 May 2023; accepted 12 July 2023; published 28 July 2023)

We apply the Simpson-Visser phenomenological regularization method to a cylindrically symmetric
solution of the Einstein-Maxwell equations known as an inverted black hole. In addition to analyzing some
properties of thus regularized space-time, including the Carter-Penrose diagrams, we show that this
solution can be obtained from the Einstein equations with a source combining a phantom scalar field with a
nonzero self-interaction potential and a nonlinear magnetic field. A similar kind of source is obtained for
the cylindrical black bounce solution proposed by Lima et al. as a regularized version of Lemos’s black
string solution. Such sources are shown to be possible for a certain class of cylindrically, planarly, and
toroidally symmetric metrics that includes the regularized solutions under consideration.
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I. INTRODUCTION

Space-time singularities are known to be an undesired
though common feature of general relativity (GR) and other
classical theories of gravity. A natural hope that all
singularities will be inevitably suppressed by quantum
gravity effects is made somewhat uncertain by the fact
that different models and approaches of quantum gravity,
being translated to the classical language, generally lead to
quite different results, see, e.g., [1–9], see also a discussion
in [10]. One can find among them black-hole–white-hole
transitions [2–6], scenarios where the spherical radius
beyond a black-hole horizon tends to a constant positive
value [7], configurations having no horizons at all [9], etc.
Such a diversity evidently indicates a still unfinished
situation in developing quantum gravity by now.
It is therefore natural that attempts to simulate the

possible effects of quantum gravity in the framework of
classical space-time, leaving aside the details of quantiza-
tion, cause rather large interest. The recent proposal of

Simpson andVisser (SV) [11] can be regarded as one of such
attempts: they regularized the Schwarzschild metric by
replacing the spherical radius r with the nonzero expression
rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
(b > 0 is a regularization parameter), thus

avoiding the Schwarzschild singularity at r ¼ 0. With differ-
ent values of b, the resulting geometry can represent a
wormhole (ifb > 2m, wherem is the Schwarzschildmass), a
black hole with two horizons if b < 2m, and an intermediate
case of an extremal black hole with a single horizon if
b ¼ 2m. In the black-hole case b < 2m, the subhorizon
region is a Kantowski-Sachs type cosmology in which u is a
temporal coordinate, and the hypersurface u ¼ 0, where the
radius rðuÞ has a regular minimum, is actually a bounce of
one of the two scale factors. This phenomenon was termed a
black bounce [11]. One can also recall that such black
bounces are a common feature of one more class of space-
time models, called black universes, that is, black holes in
which the internal region is a Kantowski-Sachs cosmology
with late-time isotropization [12–14]. Such solutions have
been obtained in GRwith a phantom scalar field as well as in
some scalar-tensor theories [15–17]. In the case b ¼ 2m, the
hypersurface u ¼ 0 is null, being simultaneously a black-
hole horizon and a throat, thus it may be called a black
throat [18].
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Later on, a similar regularization was considered for the
Reissner-Nordström space-time [19]. Lobo et al. [20]
constructed a large class of regular black-hole and worm-
hole space-times. The diversity and richness of geometries
obtained in this manner have attracted much attention,
and their rotating extensions and those with a Newman-
Unti-Tamburino (NUT) charge were also obtained and
studied [21–25]. A further analysis concerned gravitational
wave echoes at possible black-hole/wormhole transitions,
quasinormal modes, and gravitational lensing in such
space-times [26–36].
A question of interest emerging in this connection is

whether these new regular geometries can be presented
as solutions of GR with some reasonable sources, such as,
for example, scalar and/or electromagnetic fields. As shown
in [18] and [37,38], a large class of SV-like regular metrics,
including the regularized Schwarzschild and Reissner-
Nordström metrics, can be viewed as exact solutions to
the Einstein equations with a sum of two stress-energy
tensors (SETs): that of a minimally coupled self-interacting
phantom scalar field and that of a nonlinear electromag-
netic field in the framework of nonlinear electrodynamics
(NED) with a Lagrangian as a function of the invariant
F ¼ FμνFμν. A scalar field or NED taken separately cannot
be such a source due to algebraic properties of their SETs.
For regularized Schwarzschild and Reissner-Nordström
solutions, the explicit forms of scalar and NED constructed
were found as well as their global structure diagrams for the
cases of three and four horizons. Similar regularizations for
some cosmological models were considered in [39].
In [40], similar regularizations were obtained for two

other families of singular static, spherically symmetric
solutions of GR: Fisher’s solution with a massless scalar
field [41] and a special subset of dilatonic black-hole
solutions whose source consists of interacting scalar and
electromagnetic fields [42–45]. In both cases, the SV trick
(x ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b2

p
) is applied in the simplest way to a factor x

producing a space-time singularity at its zero value. Scalar-
NED sources have also been found in [40] for regularized
versions of these space-times, and it turned out that the
necessary scalar fields cannot be only canonical (possess-
ing positive kinetic energy) or only phantom (having
negative kinetic energy), but change their nature from
one region to another in a regular manner. A situation
where a scalar is phantom in a strong-field region and
canonical elsewhere has been termed a “trapped ghost”
[46], and some globally regular black-hole and wormhole
solutions with such fields were obtained [46–48].
As a by-product, it has been shown in [40] that a sum of

NED and minimally coupled scalar SETs can provide a
source for any static, spherically symmetric metric, but in
general the scalar can somewhere change its nature from
canonical to phantom. Away to describe an arbitrary static,
spherically symmetric metric using a single field source
was found in [49] in the framework of the general

(Bergmann-Wagoner-Nordtvedt) scalar-tensor theory of
gravity, but such a description turned out to be possible
only piecewise. This was demonstrated using as examples
the Reissner-Nordström metric and the regularized
Schwarzschild metric according to [11].
One more family of black-hole space-times, those with

cylindrical symmetry, called black strings [50,51], with the
metric

ds2 ¼ AðrÞdt2 − dr2

AðrÞ − r2ðdz2 þ dφ2Þ;

AðrÞ ¼ α2r2 −
b
αr

; α; b ¼ const > 0; ð1Þ

singular at r ¼ 0, was also regularized in the manner of
[11], by replacing r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
, a > 0, with, however,

dr → du [52]. (Note that r; u; a; α−1 have here the dimen-
sion of length while z and b are dimensionless.1) The
resulting nonsingular metric has the form

ds2 ¼ AðuÞdt2 − du2

AðuÞ − ðu2 þ a2Þðdz2 þ dφ2Þ;

AðuÞ ¼ α2ðu2 þ a2Þ − b

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p : ð2Þ

Both metrics (1) and (2) are asymptotically AdS at large r
or u, with the cosmological constant Λ ¼ −α2=3. A further
study of the metric (2) in [52] concerned the energy
conditions, the thermodynamic properties of regular black
strings, and possible stable and unstable circular orbits of
photons and massive particles.
In the present paper, we study a similar regularization of

another static, cylindrically symmetric metric of interest,
called “inverted black holes” and being a special solution
to the Einstein-Maxwell equations [53,54]. The metric has
the form

ds2 ¼ AðxÞdt2 − dx2

AðxÞ −
q2x2

4k2
ðdz2 þ dφ2Þ;

AðxÞ ¼ 16k4ð1 − xÞ
q2x2

; ð3Þ

where q (characterizing the electric or magnetic charge
density) and k are positive constants. The name “inverted
black holes” was proposed in [53] because, contrary to
“normal” black holes, a static region x < 1 in (3) with a
singularity at x ¼ 0 occurs at smaller values of the circular
radius rðxÞ ¼ qx=ð2kÞ, inside the horizon x ¼ 1, while the
region x > 1 where A < 0 is nonstatic and represents a
special kind of Bianchi-type I cosmology.

1We adopt the metric signature ðþ;−;−;−Þ and use the
geometric units where 8πG ¼ c ¼ 1.
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We regularize the metric (3) as before, replacing
x →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
, to obtain

ds2 ¼ AðuÞdt2 − du2

AðuÞ −
q2ðu2 þ a2Þ

4k2
ðdz2 þ dφ2Þ;

AðuÞ ¼ 16k4ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
Þ

q2ðu2 þ a2Þ ; ð4Þ

and study its properties in a manner similar to [52].
In addition to such regularizations, we construct the

Carter-Penrose global structure diagrams and determine
possible field sources for both regularized metrics (2)
and (4) in the framework of GR similarly to [18] in
terms of a combination of NED and a self-interacting
scalar field.
It is necessary to mention that all the metrics (1)–(4)

can be interpreted not only as cylindrically symmetric
ones [such that z ∈ R and φ ∈ ½0; 2πÞ] but also in terms
of two other kinds of symmetry: planar, if both z ∈ R and
φ ∈ R, and toroidal, if both z and φ range on finite
segments with identified ends. All local quantities dis-
cussed in this paper do not depend on these topological
assumptions. We will adhere to interpretations in terms of
cylindrical symmetry that seems to be of greater interest
than the other two.
The paper is organized as follows. We begin the next

Sec. II with giving some general relations for cylindrically
symmetric metrics and then consider some properties of the
regularized metrics (2) and (4). Section III is devoted to
finding and discussing field sources for these metrics, and
Sec. IV is a conclusion.

II. REGULARIZED METRICS

A. General relations

In general, the line element that describes static space-
times with cylindrical symmetry is written as

ds2 ¼ AðxÞdt2 − BðxÞdx2 − CðxÞdz2 −DðxÞdφ2: ð5Þ

However, in this paper we are dealing with space-times
possessing locally flat orbits of the spatial isometry group,
such that CðxÞ ¼ DðxÞ, and using the coordinate condition
BðxÞ ¼ 1=AðxÞ, the metric can be written in the form2

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − r2ðxÞðdz2 þ dφ2Þ; ð6Þ

where we assume z ∈ R and φ ∈ ½0; 2πÞ according to
cylindrical symmetry. The nonzero Riemann tensor com-
ponents are

K1 ¼ R01
01 ¼ −

1

2
A00; K2 ¼ R02

02 ¼ R03
03 ¼ −

A0r0

2r
;

K3 ¼ R12
12 ¼ R13

13 ¼ −
2Ar00 þ A0r0

2r
;

K4 ¼ R23
23 ¼ −

Ar02

r2
; ð7Þ

where the coordinates are numbered as ðt; x; z;φÞ ¼
ð0; 1; 2; 3Þ, and primes denote d=dx. Since the
Kretschmann invariant K ¼ RμνρσRμνρσ ¼ 4K2

1 þ 8K2
2 þ

8K2
3 þ 4K2

4 is a sum of squares, it is clear that the finiteness
of all Ki from (7) is a necessary and sufficient condition for
finiteness of all algebraic invariants of the Riemann tensor.
Also, in full similarity with the more familiar case of

spherical symmetry, regular zeros of AðxÞ (provided r ≠ 0)
correspond to Killing horizons at which the Killing vector
∂t that is timelike at A > 0, becomes null. At such horizons
all Ki are finite and well behaved, thus illustrating the well-
known fact that Killing horizons are regular surfaces.
Let us also present the expressions for nonzero compo-

nents of the Einstein tensor Gν
μ ¼ Rν

μ − 1
2
δνμR, to be used in

the Einstein equations Gν
μ ¼ −Tν

μ, where Tν
μ is the stress-

energy tensor of matter:

G0
0 ¼

1

r2
½Að2rr00 þ r02Þ þ A0rr0�;

G1
1 ¼

1

r2
½Ar02 þ A0rr0�;

G2
2 ¼ G3

3 ¼
1

r

�
Ar00 þ A0r0 þ 1

2
A00r

�
: ð8Þ

B. The regularized black string

Let us begin with the metrics (1) and (2), already
considered in [52]. In terms of (6), in the metric (1) we have

rðxÞ ¼ x; AðxÞ ¼ α2x2 − b=ðαxÞ: ð9Þ
Outside the horizon, at x > xh ¼ b1=3=α, there is a static
(R) region with an AdS-like asymptotic behavior at large x.
Inside the horizon, at 0 < x < xh, there is a dynamic (T)
region with a special Bianchi-type I geometry and a
singularity at x ¼ 0.
The regularized metric (2), with u ∈ R, has the same

AdS-like behavior at large r as the original one, but now
this happens at both limits u → �∞ since r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
.

The global properties of space-time (2) depend on the
value of the regularization parameter a:

(i) If a < xh, it is a regular black hole, but now,
unlike (1) [see Fig. 1(a)], it has two horizons at
u ¼ uh� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h − a2

p
[Fig. 1(b)]. At u ¼ 0 there

2In the whole paper, to avoid confusion, we denote by r the
quantity

ffiffiffiffiffiffiffiffiffiffi−g22
p ¼ ffiffiffiffiffiffiffiffiffiffi−g33

p
that has a clear geometric meaning of a

scale factor of 2-surfaces (cylinders) parametrized by x2 ¼ z and
x3 ¼ φ (similar to the spherical radius r in the case of spherical
symmetry). For the radial coordinate x1 we use other letters, x or u.
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is a minimum of rðuÞ in a T region, in other words, a
black bounce.

(ii) If a ¼ xh, it is a regular black hole with a single
extremal horizon at u ¼ 0, it separates two R regions
[Fig. 1(c)].

(iii) If a > xh, it is a cylindrically symmetric wormhole
with a throat at u ¼ 0.

The physical properties of space-time (2) are discussed
in detail in [52].

C. The regularized inverted black hole

The inverted black-hole line element (3) contains the
metric functions in terms of (6)

AðxÞ ¼ 16ð1 − xÞk4
q2x2

; r2ðxÞ ¼ q2x2

4k2
> 0: ð10Þ

This space-time contains a horizon at x ¼ 1 and a singu-
larity at x ¼ 0, where r → 0 [a singular axis in cylindrically

symmetric space-time that may be interpreted as a charged
thread repelling neutral particles since g00 ¼ AðxÞ → ∞
there]. The horizon at x ¼ 1 has a common feature with a
de Sitter horizon in that the metric has a cosmological,
time-dependent nature at larger values of r. The “far end,”
x → �∞, corresponds to an infinitely remote past or future
in which the universe is highly anisotropic (x is a time
coordinate there, the scale factor in the t direction, now
spatial, is at ∼ jxj−1=2 → 0, while the other two scale
factors are az ¼ aφ ∼ jxj → ∞). The corresponding global
causal structure diagram is presented in Fig. 2(a).
In the regularized metric (4), we have, in terms of the

new coordinate u,

AðuÞ ¼
16k4

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p �
q2ðu2 þ a2Þ ; r2ðuÞ ¼ q2ðu2 þ a2Þ

4k2
;

u ∈ R: ð11Þ

(a) (b) (c)

FIG. 2. Carter-Penrose diagrams for the inverted black-hole metric (3) [panel (a)] and its regularized version (4): panel (b) for a < 1,
and panel (c) for a ¼ 1. All inner solid lines in the diagrams depict horizons, the letters R and T mark static (R) and dynamic (T) regions,
respectively. The dashed line in panel (b) shows the wormhole throat u ¼ 0. Diagrams (b) and (c) are infinitely continued to the left and
to the right.

(a)
(b) (c)

FIG. 1. Carter-Penrose diagrams for the black string metric (1) [panel (a)] and its regularized version (2): panel (b) for a < xh, and
panel (c) for a ¼ xh. All inner lines in the diagrams depict horizons, the letters R and T mark static (R) and dynamic (T) regions,
respectively. The dashed line in panel (b) shows the black bounce instant u ¼ 0. Diagrams (b) and (c) are infinitely continued upward
and downward.
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As was the case with the black string metric, the global
properties of this space-time depend on the value of the
parameter a:

(i) If a < 1, we obtain a cylindrically symmetric
wormhole with a throat at u ¼ 0, surrounded by
two cosmological-type horizons at u ¼ uh� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
[see Fig. 2(b)].

(ii) If a ¼ 1, it is a regular Bianchi-type I cosmological
model with a single extremal horizon at u ¼ 0 that
separates two T regions [Fig. 2(c)].

(iii) If a > 1, it is a regular Bianchi-type I cosmological
model with a bounce (minimum of r) at u ¼ 0.

By substituting (11) to the expressions (7) for Ki it is
straightforward to verify that this metric is globally regular.
Still we present, for completeness, the corresponding
expression for the Kretschmann scalar:

K¼ 256k8½−3a4ðu2 − 4Þ− 40a2u2þ 9a6þ 4u4ð3u2þ 14Þ�
q4ða2þu2Þ6

−
1024k8ð−11a2u2þ 5a4þ 12u4Þ

q4ða2þu2Þ11=2 ; ð12Þ

where it is evident, in particular, that K is finite at u ¼ 0

and decays as u−6 at large juj.
Substituting the quantities (11) to (8), we find the

components of the Einstein tensor:

G0
0 ¼ −

16k4½2a2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
− 1Þ þ u2�

q2ða2 þ u2Þ3 ; ð13Þ

G1
1 ¼ −

16k4u2

q2ða2 þ u2Þ3 ; ð14Þ

G2
2 ¼

8k4ð2u2 − a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
Þ

q2ða2 þ u2Þ3 : ð15Þ

Using theEinstein equations,we can find the effective stress-
energy tensor that can be a material source of the metric, and
analyze the fulfillment or violation of various energy con-
ditions by a source of metric under consideration.
It is, however, necessary to bear in mind that only in a

static region (A > 0) we deal with the usual relations

ρ ¼ −G0
0; pr ¼ G1

1; p⊥ ¼ G2
2; ð16Þ
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FIG. 3. Plots characterizing the fulfillment of energy conditions at k ¼ 1, q ¼ 0.5, and different values of a. Solid lines present the
functions inside the horizon (at A > 0), and dashed lines outside the horizon (at A < 0).
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where ρ is the density, pr the radial pressure, and p⊥ the
tangential pressure. In T regions, where A < 0, we must
identify

ρ ¼ −G1
1; pr ¼ G0

0; p⊥ ¼ G2
2: ð17Þ

As we are working with solutions containing throats or
bounces that require exotic sources, it is of interest to
analyze the fulfillment of the null (NEC), weak (WEC),
strong (SEC), and dominant (DEC) energy conditions:
They can be presented as follows:

NEC1;2 ¼ WEC1;2 ¼ SEC1;2 ⇔ ρþ pr;⊥ ≥ 0; ð18Þ

SEC3 ⇔ ρþ pr þ 2p⊥ ≥ 0; ð19Þ

DEC1;2 ⇒ ρ − pr;⊥ ≥ 0 and ρþ pr;⊥ ≥ 0; ð20Þ

DEC3 ¼ WEC3 ⇔ ρ ≥ 0: ð21Þ

In essence, all energy conditions are violated once the NEC
is violated, and in our case the condition NEC1 is every-
where violated once r00=r > 0. The condition DEC1 is also
violated since it includes NEC1 as its component. In Fig. 3
we illustrate the behavior of the other energy conditions. At
small values of a, these conditions are satisfied outside the
horizon (i.e., where A < 0).
In these and all subsequent figures we restrict ourselves

to positive values of u; for u < 0 the plots are unnecessary
due to the symmetry u ↔ −u.

III. FIELD SOURCES FOR THE
REGULARIZED METRICS

A. General consideration

By analogy with [18,37], let us find field sources for
the cylindrically symmetric metrics (2) and (4) in
GR as NED plus a self-interacting scalar field, with the
total action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x½Rþ 2hðϕÞgμν∂μϕ∂νϕ − 2VðϕÞ − LðFÞ�;

ð22Þ

where g is the determinant of the metric gμν, ϕ is the scalar
field, VðϕÞ is its potential, LðFÞ is the NED Lagrangian,
F ¼ FμνFμν, and Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic
field tensor. The function hðϕÞ is included here not only for
generality (expressing the freedom of scalar field para-
metrization), but also to include possible cases where ϕ
changes its nature from canonical (h > 0) to phantom
(h < 0), exhibiting a “trapped ghost” behavior [40,46].
Varying the action (22) with respect to ϕ, Aμ, and gμν, we

obtain the field equations

∇μ½LFFμν� ¼ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
LFFμν� ¼ 0; ð23Þ

2hðϕÞ∇μ∇μϕþ dh
dϕ

∂
μϕ∂μϕþ dVðϕÞ

dϕ
¼ 0; ð24Þ

Gν
μ ¼ −Tν

μ½ϕ� − Tν
μ½F�; ð25Þ

where LF ¼ dL=dF, Tν
μ½ϕ� and Tν

μ½F� are the stress-energy
tensors of the scalar and electromagnetic fields, respec-
tively:

Tν
μ½F� ¼

1

2
δμνLðFÞ − 2LFFναFμα; ð26Þ

Tν
μ½ϕ� ¼ 2hðϕÞ∂νϕ∂μϕ − δνμðhðϕÞ∂αϕ∂αϕ − VðϕÞÞ: ð27Þ

Let us show that any static, cylindrically symmetric
metric of the form (6) can be presented as a solution to
Eqs. (23)–(25) with a proper choice of ϕ and Fμν, quite
similarly to the static, spherically symmetric case studied
in [40]. The symmetry of the metric (6) makes us assume
ϕ ¼ ϕðxÞ and single out among Fμν either a “radial”
electric field with the only nonzero component F01 ¼
−F10 or a “radial” magnetic field with F23 ¼ −F32 ≠ 0.
For certainty, let us consider a magnetic field, so that
Fθφ ¼ −Fφθ ¼ Q ¼ const, and Q may be interpreted as a
magnetic charge, while Eq. (23) is trivially satisfied. Then
the electromagnetic invariant F is given by F ¼ 2Q2=r4,
and the stress-energy tensors (27) and (26) take the form

Tν
μ½ϕ� ¼ hðϕÞAðxÞϕ02diagð1;−1; 1; 1Þ þ δνμVðϕÞ; ð28Þ

Tν
μ½F� ¼

1

2
diag

�
L;L; L −

4Q2

r4
LF; L −

4Q2

r4
LF

�
: ð29Þ

For an arbitrary metric (6), all three components (8) of
the Einstein tensor are different; therefore, taken separately,
a scalar or electromagnetic field cannot solve the problem
because of the equalities T0

0½F� ¼ T1
1½F� for the electro-

magnetic field and T0
0½ϕ� ¼ T2

2½ϕ� for the scalar field. So we
will consider them together.
Assuming that AðxÞ and rðxÞ are known and substituting

them to Eq. (25), we find

G2
2 −G0

0 ¼ T0
0 − T2

2 ¼
2Q2

r4
LF ð30Þ

[the scalar field does not contribute to this combination of
Eq. (25)]. Hence we know LF as a function of x, and
recalling that FðxÞ ¼ 2Q2=r4ðxÞ is also known, we can
write from (30)

L0 ¼ F0

F
ðG2

2 − G0
0Þ ¼ −

4r0

r
ðG2

2 −G0
0Þ ð31Þ
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and integrate. We thus know LðxÞ, FðxÞ, and finally LðFÞ,
at least in a range where rðxÞ is monotonic.
Furthermore, from (25) we have

T0
0 − T1

1 ¼ 2hðϕÞAðxÞϕ02 ¼ G1
1 −G0

0 ¼ −2AðxÞ r
00

r
; ð32Þ

which gives us hðϕÞϕ02 as a function of x. It is easy to
notice that we have hðϕÞ ≥ 0 (the scalar field is canonical)
as long as r00 ≤ 0 and hðϕÞ ≤ 0 (the scalar field is phantom)
if r00 ≥ 0. In the general case, r00ðxÞ can change its sign and
then the sign of hðϕÞ also varies. In all cases we can freely
choose the scalar field parametrization and conclude that
we know the functions ϕðxÞ and hðxÞ. The only still
unknown quantity, the potential VðϕÞ, can now be found
from any components of Eq. (25), for example, Gt

t ¼ −Tt
t.

The scalar field equation (24) is known to follow from
the Einstein equations (25) [actually, as long as ϕ ≠ const,
Eq. (24) directly follows from the “conservation” law
∇νTν

μ, which is in turn a consequence of the Einstein

equations]. So we can assert that the whole set of equations
is fulfilled.
Another algorithm consists in using again (32) to

determine ϕ and hðϕÞ and then finding VðϕðxÞÞ from
the scalar field equation (24). With known VðxÞ, the
function LðFðxÞÞ is found from one more combination
of the Einstein equations,

LðxÞ ¼ −2VðxÞ −G0
0 −G1

1; ð33Þ
and with known FðxÞ it is then easy to find LðFÞ. Needless
to say that both algorithms must lead to the same result, up
to the choice of integration constants when finding LðxÞ in
the first algorithm and VðxÞ in the second one.
For our particular regular metrics (2) and (4), r00 > 0,

hence we will inevitably deal with a phantom scalar field
and can safely put hðϕÞ ¼ −1.
We can note that a representation of any metric (6) using

an electric instead of magnetic field is also possible but is
slightly more complicated.
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B. A field source for a regularized black string

According to the above, since r00 > 0 in the metric (2),
we put hðϕÞ ¼ −1. Let us try to model the solution with a
magnetically charged source and a phantom scalar field.
The magnetic field and the invariant F are given by

F23 ¼ Q; FðuÞ ¼ 2Q2

ðu2 þ a2Þ2 : ð34Þ

Let us use the second algorithm described above.
From (32) we find

ϕðuÞ ¼ arctanðu=aÞ; ð35Þ
and from the scalar equation (24) we determine, choosing
the integration constant so that V vanishes at large juj,

VðuÞ ¼ 2a2
�

b

5αða2 þ u2Þ5=2 þ
α2

a2 þ u2

�
: ð36Þ

Next, Eq. (33) yields

LðuÞ ¼ 6a2b

5αðu2 þ a2Þ5=2 − 6α2; ð37Þ

while the combination (30) leads to

LFðuÞ ¼
3a2b

4αQ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p : ð38Þ

These quantities satisfy the condition

LF −
dL
du

�
dF
du

�
−1

¼ 0; ð39Þ

confirming the correctness of our calculations. We can now
write LðFÞ and VðϕÞ as
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LðFÞ ¼ 6a2bF
5α

�
F
2Q2

�
5=4

− 6α2; ð40Þ

VðϕÞ ¼ 2α2 cos2 ϕþ 2b
5αa3

cos5 ϕ: ð41Þ

Their behavior as functions of u is illustrated in Figs. 4 and
5. The magnitude of VðuÞ and LðuÞ decreases as a and α
increase, and increases as b increases.

C. A field source for a regularized inverted black hole

Again, for a magnetically charged source, the magnetic
field is given by

F23 ¼ Q; FðuÞ ¼ 2Q2

r4
¼ 32Q2k4

q4ðu2 þ a2Þ2 : ð42Þ

Let us note that the magnetic charge Q of our anticipated
source has nothing to do with the initial charge q belonging
to the “seed” solution with the metric (3) and involved in
the regularized metric (4). However, as a special case, they
can coincide.
As before, with hðϕÞ ¼ −1, for the scalar field we obtain

from (32)

ϕðuÞ ¼ arctanðu=aÞ: ð43Þ

Then the scalar field equation (24) yields

VðuÞ ¼ 32a2k4

15q2ðu2 þ a2Þ3
�
−5þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p �
: ð44Þ

From the Einstein equations we then obtain

LðuÞ ¼ 32k4

15q2ðu2 þ a2Þ3

×
h
15ðu2 þ a2Þ þ 9a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
− 20a2

i
; ð45Þ

LFðuÞ ¼
q2

Q2

�
3a2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p þ u2 − a2

u2 þ a2

�
: ð46Þ

As in the previous case, the correctness of calculations
is verified by Eq. (39). With our magnetic source, the
knowledge of uðFÞ and uðϕÞ enables us to write the
Lagrangian LðFÞ and the potential VðϕÞ as follows:

LðFÞ ¼ q2F
Q2

�
1þ 3a2

5x
−
4a2

3x2

�
; x ¼ 2k

q

�
2Q2

F

�
1=4

;

ð47Þ

VðϕÞ ¼ 32k4

15q2a4
cos5 ϕð3a − 5 cosϕÞ: ð48Þ

There is good reason to suppose the equalityQ ¼ q since it
provides L ≈ F as F → 0, the asymptotically Maxwell
behavior of LðFÞ at small magnetic fields. So in what
follows we put Q ¼ q.
The behavior of VðuÞ is shown in Fig. 6. With other

values of the parameters, the potential behaves qualitatively
in the same way. As the charge q increases, the peaks of the
potential become lower, while they grow at increasing
values of the parameter a. The function LðuÞ is plotted in
Fig. 7. The peaks in the electromagnetic Lagrangian
become lower as a or q increase.
The behavior of LðFÞ and VðϕÞ is presented in Figs. 8

and 9. At small F, the dominating term in the electromag-
netic Lagrangian is LðFÞ ≈ F. The first nonlinear term that
appears is of the order F5=4. The potential looks like a
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barrier as the scalar field changes. At zero scalar, the
potential tends to a constant, and the first correction term is
proportional to ϕ2, simulating a scalar field mass such
that m2

ϕ ¼ 8ð2 − aÞ=ða2q2Þ.

IV. CONCLUSION

In this paper, we have considered SV-type regulariza-
tions for two cylindrically symmetric space-times with
Killing horizons: (i) the black string proposed by Lemos
[50] (previously analyzed by Lima et al. [52]), and (ii) the
so-called inverted black hole [51, 52]. For both families of
regularized space-times, we have studied the global causal
structures, constructing the appropriate Carter-Penrose
diagrams, and found possible field sources in the frame-
work of GR, consisting of a phantom minimally coupled
scalar field with a nonzero potential and a nonlinear
magnetic field. The global regularity of these regularized
metrics (2) and (4) is verified by finiteness of the Riemann
tensor components (7) or the Kretschmann invariant.
Next, we proposed a way to find, in the framework of

GR, field sources for a class of cylindrically, planarly, or
toroidally symmetric metrics of the form (6), by combining
a minimally coupled scalar field ϕ with a self-interaction
potential VðϕÞ and a nonlinear magnetic field described by
a certain NED theory with a Lagrangian LðFÞ. As both
regularized metrics (2) and (4) belong to this class, we have
obtained explicit forms of field sources for both of them.
In particular, the regularized black string solution, which

may be called a black-bounce version of the black string
proposed by Lemos [50], has different structures, depend-
ing on the value of the regularization parameter a (at small
a we have a regular black hole with two horizons and a
black bounce at u ¼ 0, and at larger a we obtain a regular
black hole with a single extremal horizon at u ¼ 0) or a
cylindrically symmetric wormhole with a throat at u ¼ 0.
(A similar study was recently carried out by Lima et al. [55]
for the charged version of black strings [56].)
In the regularized inverted black-hole solution, at a < 1

there is a throat at u ¼ 0 surrounded by two cosmological-
type horizons. At a ¼ 1 a static region vanishes, and we
have a regular Bianchi-type I cosmology with an extremal
horizon at u ¼ 0. At a > 1, we have a regular Bianchi-type
I cosmology with a bounce at u ¼ 0.

In both regularized solutions, the null energy condition is
violated everywhere due to r00=r > 0, and the scalar part of
the source is necessarily phantom; still some of the standard
energy conditions are respected at least in a certain part of
space-time, as can be seen from Fig. 3.
The scalar field in both solutions is of kink type and

varies between two finite limits, while the potential VðϕÞ,
being everywhere finite, rapidly tends to zero as juj → ∞,
although these infinities are of drastically different nature
in the two solutions. Meanwhile, the NED sources of the
solutions are quite different in nature. In the case of a
regularized black string, LðFÞ has no Maxwell weak field
limit and has a constant contribution −6α2 [see Eq. (37)]
corresponding to the AdS asymptotic behavior of the
metric. Unlike that, in the regularized inverted black-hole
solution, both VðuÞ and LðuÞ tend to zero as juj → ∞, and
LðFÞ has a Maxwell weak field limit.
A common feature of these regular solutions is that the

magnetic fields exist without their own source (which could
be imagined as some distributed current or monopole
charge density), their lines of force stretching from one
infinity to the other.
We can conclude that SV-type regularization of known

solutions of GR with horizons and singularities leads to a
number of geometries of interest, and, in turn, their possible
field sources shed a certain new light on their properties and
can be useful, in particular, for studying their stability under
various kinds of perturbations.
It is clear that the SV regularization trick can be applied

to many other singular metrics, including general cylin-
drically symmetric ones, described by Eq. (5). Since they
contain one more degree of freedom as compared to (6),
they will require more general field sources than those
described here, and this can be a subject of a future study.
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