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Black holes in general relativity are famously characterized by two “hairs” only, the mass and the spin of
the Kerr spacetime. Theories extending general relativity, however, allow in principle for additional black
hole charges, which will generally modify the multipole structure of the Kerr solution. Here, we show that
gravitational wave observations of the postmerger ringdown signal from black hole binaries may permit
measuring these additional hairs. We do so by considering spacetime geometries differing from the Kerr
one at the level of the quadrupole moment, and computing the differences of their quasinormal mode
frequencies from the Kerr ones in the eikonal limit. We then perform a Bayesian analysis with current and
future gravitational wave data and compute posterior constraints for the quadrupole deviation away from
Kerr. We find that the inclusion of higher modes, which are potentially observable by future detectors, will
allow for constraining deviations from the Kerr quadrupole at percent level.
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I. INTRODUCTION

The most generic stationary and asymptotically flat
black hole (BH) spacetimes of general relativity (GR)
are given by the Kerr-Newman solution [1–4], which is
characterized by three parameters (mass, spin and electric
charge). Since the electric charge is currently believed to be
astrophysically unimportant [5], astrophysical BHs
are expected to possess only two charges (or “hairs”),
i.e. the mass and the spin. This is usually referred to as
the “no-hair theorem” of GR. Theories extending GR,
however, may allow for BHs different from the Kerr (or
Kerr-Newman) geometry [6]. These BH spacetimes will
generally present additional hairs, see e.g. [7] for a review.
As a result, they will present a multipole structure different
from that of Kerr BHs, from which they may deviate
already at the quadrupole order (or higher).
Gravitational wave (GW) observations of extreme mass-

ratio inspirals have long been understood to hold the
potential to test these putative deviations from Kerr [8,9],
with projected bounds on the quadrupole deviation
with the Laser Interferometer Space Antenna (LISA) [10]
reaching a fractional order of 10−5 [11]. Similar constraints
on deviations from Kerr can also be obtained with
x-ray observations of accretion disks around BHs (either
ones of the continuum spectrum [12,13] or fluorescent
iron lines [14,15]) or, more recently, with the Event
Horizon Telescope [16,17]. Moreover, with the growing
number of GW signals detected by the LIGO-Virgo-
KAGRA (LVK) collaboration [18–26], attempts have

also been made at exploiting the inspiral phase of
stellar-origin BH binaries for similar tests of the no-hair
theorem [27–32].
Tests of GR with the postmerger ringdown signal, known

as “BH spectroscopy,” also have a long history, dating back
to [33–35]. These tests hinge on the fact that within GR the
(complex) quasinormal mode (QNM) frequencies are only
a function of mass and spin (again due to the no-hair
theorem), a hypothesis that can be tested by measuring two
independent modes. The LVK detections are so far in
agreement with the QNM ringdown frequencies predicted
by GR, with evidence for the presence of the dominant
l ¼ m ¼ 2, n ¼ 0 mode (in GW150914) and possibly1

also the l ¼ m ¼ 3, n ¼ 0 (in GW190521) and
l ¼ m ¼ 2, n ¼ 1 (in GW150914) modes. However, tests
of GR with QNMs require higher signal-to-noise
ratio, which will only be possible with next generation
detectors [43–46]. In the meantime, much work has already
gone into developing theory agnostic parametrizations
of the deviations of the ringdown signal from the GR
prediction [47–55].
In this paper, we will study what constraints on the

deviation of the quadrupole moment away from the Kerr
spacetime’s value can be obtained from the ringdown signal

1These claims have been shown to depend on the characteri-
zation of the detector noise, the data analysis methods, the choice
of starting time for the ringdown phase, and even nonlinear
effects in the ringdown modeling [36–42].
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of the GW150914 event. We will also show how these
constraints will improve with next-generation detectors
such as the Einstein Telescope. In order to describe the
non-Kerr BH spacetime, we will utilize two metric ansatze
commonly employed in the literature on tests of the
quadrupole moment of the Kerr metric, i.e. the Manko-
Novikov (MN) metric [56] and the Johannsen-Psaltis (JP)
metric [57].
The former is a vacuum stationary and axisymmetric

solution of the Einstein equations of GR, which can
describe the exterior of a rotating star or exotic compact
object (see e.g. [58]), but which is also defined in the strong
field region. In that regime, however, pathologies neces-
sarily appear (because of the no-hair theorem of GR), i.e.
the spacetime presents a partial event horizon with a
curvature singularity on the equatorial plane, as well as
closed timelike curves. These pathologies are “covered” by
the star’s or exotic compact object’s matter if the metric
describes one such body. The MN metric allows for
deviations from the Kerr geometry at any multipole order,
but in this work we will only study quadrupole deviations.
The JP metric, instead, is not a solution of the GR field
equations nor of those of any extensions of GR. It is a
purely phenomenological parametrization of possible
deviations from the Kerr hypothesis (see also [59–63]
for a similar metric ansatz), and it has been widely used
for tests of the no-hair theorem with electromagnetic
observations [64–67].
Starting from either of these two geometries, we com-

pute the deviations of the QNM frequencies of the
dominant l ¼ m ¼ 2, n ¼ 0 mode from the Kerr values,
in the eikonal (i.e. geometric optics) approximation.
Although this approximation is formally only valid in
the limit of large l, it has been shown to approximately
describe also the low-l modes in GR, and it has also been
applied beyond GR [29,68,69].
We then use Bayesian methods to obtain posterior

constraints on the quadrupole moment’s deviation from
Kerr, using existing ringdown data (GW150914) and future
simulated ones [assuming detections by the Einstein
Telescope (ET)]. We find that the posteriors for the
quadrupole deviation obtained from GW150914 are con-
sistent with Kerr. Similar systems detected by ETwill allow
us to further improve this constraint, and break parameter

degeneracies that appear between the remnant mass, spin
and the quadrupole deviation.
This paper is organized as follows: In Sec. II, we discuss

the MN and the JP metric ansatze. In Sec. III we describe
the eikonal approximation technique for the calculation of
QNMs. The analysis techniques adopted in this paper are
introduced in Sec. IV, followed by a discussion of the
results in Sec. V. We explore how future detectors might
effect this analysis in Sec. VI.

II. QUADRUPOLE DEVIATION FROM KERR

In the most general case, the gravitational field around a
GR compact object can be described by a stationary,
axisymmetric and asymptotically flat vacuum spacetime.
The corresponding metric can be expressed in terms of the
Geroch-Hansen moments [70,71] Ml; Sl, where Ml and
Sl are respectively the mass and current moments. It can be
shown that the nonzero mass moments are respectively the
mass M0 ¼ M, the mass quadrupole M2 ¼ Q, and higher
order even moments, and the nonzero current moments are
the angular momentum S1 ¼ J, S3 and higher order odd
moments. In the case of a Kerr spacetime, the following
relation connects Ml and Sl:

Ml þ iSl ¼ M

�
i
J
M

�
l
: ð1Þ

This is the celebrated no-hair theorem. However, if the
compact object is not a Kerr BH, Eq. (1) may not hold true
and the quadrupole moment Q may deviate from its
expected Kerr value of −a2M. In this paper, we consider
two geometries (the MN and JP ones) that describe
compact objects with quadrupole moments different
from Kerr.

A. Manko Novikov spacetime

The MNmetric [56] describes a stationary, axisymmetric
and asymptotically flat vacuum solution of Einstein’s
equations with arbitrary mass multipoles moments. In its
full form, it has an infinite number of free parameters, but it
can also reduce to the Kerr metric under appropriate
conditions. The MN metric can be written in prolate
spheroidal coordinates as [12,13]

ds2 ¼ −fðdt − ωdϕÞ2 þ k2e2γ

f
ðx2 − y2Þ

�
dx2

x2 − 1
þ dy2

1 − y2

�
þ k2

f
ðx2 − 1Þð1 − y2Þdϕ2; ð2Þ

where

f ¼ e2ψ
A
B
; ω ¼ 2ke−2ψ

C
A
−

4kα
1 − α2

; e2γ ¼ e2γ
0 A
ðx2 − 1Þð1 − α2Þ2 ; ψ ¼

Xþ∞

n¼1

αnPn

Rnþ1
; ð3Þ
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γ0 ¼ 1

2
log

x2 − 1

x2 − y2
þ

Xþ∞

m;n¼1

ðmþ 1Þðnþ 1Þαmαn
ðmþ nþ 2ÞRmþnþ2

ðPmþ1Pnþ1 − PmPnÞ

þ
Xþ∞

n¼1

αn

�
ð−1Þnþ1 − 1þ

Xn
k¼0

x − yþ ð−1Þn−kðxþ yÞ
Rkþ1

Pk

�
; ð4aÞ

A ¼ ðx2 − 1Þð1þ ã b̃Þ2 − ð1 − y2Þðb̃ − ãÞ2; ð4bÞ

B ¼ fxþ 1þ ðx − 1Þã b̃g2 þ fð1þ yÞãþ ð1 − yÞb̃g2; ð4cÞ

C ¼ ðx2 − 1Þð1þ ã b̃Þfb̃ − ã − yðãþ b̃Þg þ ð1 − y2Þðb̃ − ãÞf1þ ã b̃þxð1 − ã b̃Þg; ð4dÞ

ã ¼ −α exp
�Xþ∞

n¼1

2αn

�
1 −

Xn
k¼0

x − y
Rkþ1Pk

��
; ð4eÞ

b̃ ¼ α exp

�Xþ∞

n¼1

2αn

�
ð−1Þn þ

Xn
k¼0

ð−1Þn−kþ1ðxþ yÞ
Rkþ1

Pk

��
; ð4fÞ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

p
and Pn are Legendre poly-

nomials such that

Pn ¼ Pn

�
xy
R

�
; ð5Þ

PnðζÞ ¼
1

2nn!
dn

dζn
ðζ2 − 1Þn: ð6Þ

These can also be expressed in Boyer-Lindquist coordi-
nates ðr; θÞ using

r ¼ kxþM; cos θ ¼ y: ð7Þ

We note that the metric used in this paper is the same as
in [12], which fixed some typos in the original MN
metric [56]. Here, k is related to the mass of the spacetime,
α to the spin and αn to the mass multipole moments,
indexed by n ¼ 1 (dipole), n ¼ 2 (quadrupole), and so on.
The MN metric reduces to the Schwarzschild metric when
α ¼ 0 and αn ¼ 0, and to the Kerr metric when αn ¼ 0.
In its most general form, the MN metric is not free from

pathologies. This is expected because the only asymptoti-
cally flat and stationary BH solution of Einstein’s vacuum
equations that is non-singular on and outside the event
horizon is the Kerr metric (no-hair theorem). In fact, the
event horizon of the MN metric lies at x ¼ 1, and it has (in
general) a naked singularity on the equatorial plane (at
x ¼ 1, y ¼ 0) [13,56]. It is however possible that this
curvature singularity will not exist, as it may be covered
by the exotic compact object’s matter, whose gravitational
field will only be described by theMNmetric in the exterior.
In this study, we will not consider the MN metric in its

general form. Instead, we will focus on the special case of
αn ¼ 0 for all n ≠ 2. This corresponds to Kerr with an

additional quadrupole deviation. Accordingly, the nonzero
parameters in the MN metric are k, α, and α2, which are
related to the mass M and dimensionless spin para-
meter χ by

k ¼ M
1 − α2

1þ α2
; ð8Þ

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
− 1

χ
; ð9Þ

α2 ¼ q
M3

k3
; ð10Þ

where q is the anomalous quadrupole moment, given by
q ¼ −ðQ −QKÞ=M3, with Q and QK respectively the MN
and Kerr quadrupole moments.
This MN metric is interesting because it allows one to

perform null tests of the no-hair theorem, by measuring q.
In more detail, q ¼ 0 corresponds to Kerr, q > 0 would
imply that the compact object under consideration is more
oblate than a Kerr BH, while q < 0 would point at a more
prolate object. A statistically significant measurement of a
nonzero value of q would signal a violation of the no-hair
theorem. Such a use of the MN metric for inference using
GWs was proposed, e.g., in [72]. This metric has also been
used in studies trying to constrain quadrupole deviations
using x-ray observations [12,13].

B. Johannson-Psaltis spacetime

The JP metric [57] is another example of a spacetime that
describes parametric deviations from Kerr. This metric
originates with the familiar Kerr metric, to which deviations
are added that are proportional to
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hðr; θÞ ¼
X∞
k¼0

�
ϵ2k þ ϵ2kþ1

Mr
Σ

��
M2

Σ

�
k

; ð11Þ

where Σ ¼ r2 þ a2 cos2 θ and ϵk are deviation parameters.
It was shown in [57] that asymptotic flatness requires
ϵ0 ¼ ϵ1 ¼ 0. In the following, we will consider the special

case of ϵk ¼ 0 for k > 3. In that case, the deviations from
Kerr are proportional to the “quadrupole” term

hðr; θÞ ¼ ϵ3
M3r
Σ2

ð12Þ

and the resulting metric is of the form

ds2 ¼ −ð1þ hðr; θÞÞ
�
1 −

2Mr
Σ

�
dt2 −

4aMrsin2θ
Σ

ð1þ hðr; θÞÞdtdϕþ Σð1þ hðr; θÞÞ
Δþ hðr; θÞa2sin2θ dr

2

þ Σdθ2 þ
�
sin2θ

�
r2 þ a2 þ 2a2Mrsin2θ

Σ

�
þ hðr; θÞ a

2ðΣþ 2MrÞsin4θ
Σ

�
dϕ2; ð13Þ

where Δ ¼ r2 − 2Mrþ a2. In the limit ϵ3 → 0, the JP
metric reduces to Kerr. From the asymptotic structure of the
metric, it is clear that this JP metric has a quadrupole
deviation from Kerr proportional to ϵ3M3 in the Newtonian
limit.
As in the case of the MN metric, the properties of the

event horizon in the JP metric are quite different from Kerr.
For negative values of ϵ3, the event horizon is always
closed. However, for positive values of ϵ3, for any given
value of the spin a there exists a maximum value of ϵ3
beyond which the event horizon is no longer closed [57]. A
“break” in the event horizon appears on the equatorial
plane, transforming the central object into a naked singu-
larity. In our analysis, we avoid this kind of pathology by
excluding the part of the parameter space that corresponds
to the aforementioned singularity.
Since its introduction, the JP metric has seen wide-

spread use in testing GR under various frameworks. The
simplicity of the parametrized metric makes it a particu-
larly interesting tool in performing null tests of gravity. It
has been used in conjunction with x-ray observations to
study accretion disks [64,67]. In the context of the GW
ringdown, this metric has been used in [29,68], where the
analysis is performed assuming small ϵ3. Typical values of
ϵ3 that agree with data may be as large as ∼14, which casts
some doubt on the validity of such an assumption. We
avoid these restrictions in our study, and allow ϵ3 to vary
within a wide range while estimating the posterior dis-
tribution from data.

III. EIKONAL APPROXIMATION

Given an alternative theory of gravity, the first step
toward testing it with ringdown signals is to devise a way to
calculate its QNMs. This is not easy to do in arbitrary
spacetimes. The usual prescription involves solving the BH
perturbation equations under appropriate boundary con-
ditions. On the Kerr spacetime, such equations can be

solved by separation of variables, but this is typically not
possible on more generic background and/or beyond GR.
This calls for alternative formalisms/approximations for
calculating QNMs.
Fortunately, QNMs and unstable null geodesics of the

background are closely related in the eikonal, or short-
wavelength, approximation. The latter was initially inves-
tigated by Press [73] (see also Goebel’s comment on the
same [74]). It has since been understood that the real part of
the QNM frequencies in Kerr is related to the frequency
of the unstable light ring, and their imaginary part is
related to its instability timescale. Ferrari and Mashhoon
provided seminal contributions to extending this line of
thought [75,76]. In more recent times, this has also been
explored in [77–81].
QNMs are indexed by three numbers—n, l and m. n is

the overtone number and l and m are the indices of the
ðl; mÞ multipole. In the eikonal regime (l; m ≫ 1), the
Kerr QNM frequency for the maximally corotating mode
l ¼ m is

ωQNM ¼ lΩ − iγ

�
nþ 1

2

�
; ð14Þ

where Ω is the orbital frequency of light rays on the
unstable equatorial circular orbit, and γ is the Lyapunov
exponent of the same orbit. The Lyapunov exponent
characterizes the timescale on which the cross section of
a congruence of null rays increases under radial
perturbations. Though Eq. (14) is only strictly valid for
l; m ≫ 1, it works remarkably well for low values of l as
well [82,83].
The eikonal approximation is clearly an incredibly

powerful tool, because one only needs to calculate the
radius and Lyapunov exponent of the unstable circular
equatorial null orbit to calculate the QNM frequencies,
without having to solve the BH perturbation equations.
In the following, as in Ref. [68], we will make the
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physically reasonable (although unproven2) assumption
that the relation between null orbits and QNM frequencies
also holds on (stationary and axisymmetric) backgrounds
different from Kerr and in theories beyond GR (see
however [85]).
For equatorial null geodesics in a generic stationary and

axisymmetric spacetime, one has

gttðutÞ2 þ 2gtφutuφ þ grrðurÞ2 þ gφφðuφÞ2 ¼ 0; ð15Þ

where ðut; ur; uθ; uφÞ is the four-velocity. From the space-
time symmetries, the conserved quantities are the energy E
and angular momentum L, defined by E ¼ −ut and
L ¼ uφ. Accordingly, one has

ut ¼ 1

g2tφ − gttgφφ
ðgφφEþ gtφLÞ; ð16Þ

and

uφ ¼ −
1

g2tφ − gttgφφ
ðgttLþ gtφEÞ: ð17Þ

Using then Eqs. (16) and (17) in Eq. (15), one obtains

ðurÞ2 ¼ 1

grrðg2tφ − gttgφφÞ
ðgφφE2 þ 2gtφELþ gttL2Þ;

≡ Veff : ð18Þ

This equation is of the form ðurÞ2 ¼ Veff , where Veff is an
effective potential for the radial motion. The turning points
of the orbital motion then correspond to locations at which
ur vanishes. In other words, the radial coordinate r0 at the
turning points must satisfy

gφφðr0Þ þ 2gtφðr0Þbþ gttðr0Þb2 ¼ 0; ð19Þ

where b ¼ L=E is the orbit’s impact parameter. The
angular frequency can then be defined from Eqs. (16)
and (17) as Ω ¼ uφ=ut. Using this in Eq. (15), one has

gttðr0Þ þ 2gtφðr0ÞΩ0 þ gφφðr0ÞΩ2
0 ¼ 0; ð20Þ

where Ω0 ≡Ωðr0Þ. From Eqs. (19) and (20), one finds that
at the turning points one has

Ω0 ¼ 1=b: ð21Þ

For circular orbits to exist at r ¼ r0, r0 must also extremize
the effective potential, i.e. r0 must satisfy the conditions

Veffðr0Þ ¼ 0 V 0
effðr0Þ ¼ 0: ð22Þ

Solving these equations, one obtains the radius of the
unstable light ring rph ¼ r0 and the impact parameter b.
Next, let us turn our attention to calculating the

Lyapunov exponent, which is related to the decay time
of the QNMs. We start with a simple change of radial
coordinate,R ¼ 1=r. Eliminating ur and uφ from Eqs. (17)
and (18), one obtains

�
dR
dφ

�
2

¼ R4
ðg2tφ − gttgφφÞ2
ðgttbþ gtφÞ2

Veff

≡ fðRÞ: ð23Þ

For a circular orbit of radius r0, or equivalently
R0 ¼ 1=r0, fðRÞ ¼ f0ðRÞ ¼ 0. Perturbing the circular
null orbit, one can then write

R ¼ R0 þ ϵR1 þOðϵ2Þ; ð24Þ

where ϵ ≪ 1 is a perturbative parameter. It can then be
shown [68] that Eq. (23) leads to

dR1

dφ
¼ �κ0R1; ð25Þ

where

κ20 ¼
1

2R4
0

f00ðR0Þ ¼
1

2

V 00
eff

ðuφÞ2 ð26Þ

is to be evaluated at r ¼ r0. This leads to solutions for R1

of the form R1 ¼ Ae�κ0φ, where A is a constant. With Ω0

known, one can write φ ¼ Ω0tþ φ0 where φ0 is a constant.
Using this in Eq. (24), one arrives at

R ¼ R0 þ ϵAe�γ0t; ð27Þ

where

γ ¼ κ0Ω0;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

V 00
eff

ðutÞ2
s

: ð28Þ

To summarize, r0 and Ω can be found by imposing
circular orbit conditions on the effective potential.
Subsequently, γ can be calculated at r0, providing us with
all the tools necessary to calculate QNM frequencies with
Eq. (14). Although this process is quite straightforward,

2Although the correspondence between QNM frequencies and
unstable circular orbits is not necessarily automatic beyond GR, it
can be proven in some regimes. For instance, if one makes the
assumption that the equation for the gravitational perturbations
has a principal part given by □hμν, where the □ operator is
computed with the modified (e.g. MN or JP) metric, then the
correspondence can be established rather rigorously. See, e.g.,
discussion in Sec. II B of [51] and in Sec. III of [84].
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solving the light ring equations can be non-trivial and
analytical solutions may not always be possible, in which
case one has to resort to numerical solutions.

IV. METHODOLOGY

The GW signal from the ringdown of a binary BH
merger can be decomposed into a superposition of damped
sines and cosines. If hþ and h× are the two GW polar-
izations,

hþ − ih× ¼
X
lm

hlmðtÞ−2Ylmðι;φÞ; ð29Þ

where −2Ylm are the spin-weighted spherical harmonics.3

The functions hlmðtÞ can be expressed as

hlmðtÞ ¼
X
n

Almne−t=τlmne−iωlmntþϕlmn : ð30Þ

Here, Almn and ϕlmn are the amplitude and phase of the
ðl; m; nÞ mode, and ωlmn and τlmn are its frequency and
damping time, respectively.
For quasicircular binary mergers, the dominant mode is

l ¼ m ¼ 2, and in our analysis of GW150914 we
restrict ourselves to it. For fixed ðl; mÞ, the QNMs can
be arranged by their overtone number n, with n ¼ 0 being
the “fundamental” mode and higher values denoting the
“overtones.” The question of the detection of over-
tones in the GW150914 signal is still hotly debated.
Although [87,88] claimed a positive detection of the
n ¼ 1 overtone of the l ¼ m ¼ 2 mode, subsequent
work [36] questioned this claim. In the absence of a
consensus on this topic, we shall restrict our analysis of
GW150914 to the fundamental mode alone.
The ringdown parameter estimation analysis of

GW150914 is obviously accompanied/preceded by the full
signal’s analysis, which includes the inspiral and merger
phases as well. As a result, the sky position, time of merger,
and luminosity distance are known quite well. These can
then be considered as fixed parameters in the ringdown
analysis. The detector measures hstrain ¼ Fþhþ þ F×h×,
where Fþ and F× are the detector pattern functions, which
depend on the right ascension (¼ 1.95 rad), declination
(¼ −1.27 rad), polarization (¼ 0.82 rad). Following pre-
vious studies on the GW150914 ringdown [36,87], we also
fix ðι;φÞ ¼ ðπ; 0Þ. For the likelihood computation, we use
the time domain method described in [88]. The latter
consists of truncating the signal just before the ringdown
phase and using the noise covariance matrix to calculate the

likelihood in the time domain, without venturing into the
frequency domain. This avoids potential data loss due to
windowing during fast Fourier transforms. We use the
software package RINGDOWN [89] (based on [88]) for data
truncation, calculation of the noise covariance matrix and
detector pattern functions. We use the publicly available
sampler DYNESTY [90], which uses a nested sampling
algorithm, to sample the parameter space and calculate
the posterior distributions. As for the waveform model, we
use the procedure outlined in Sec. III to calculate the QNMs
for both metric ansatze under consideration. We solve the
light ring equations numerically to obtain QNM frequen-
cies as functions of mass, spin and deviation parameter
(q for the MN metric and ϵ3 for the JP metric). The
resulting GW strain is then calculated by projecting hþ and
h× onto the detector using the pattern functions. We sample
the following parameters—remnant mass (M), dimension-
less spin (χ), amplitude ðAlmnÞ and phase ðϕlmnÞ of the
(l; m; n) mode, along with the deviation parameter (q or
ϵ3). In our analysis of GW150914, we consider only the
fundamental l ¼ m ¼ 2 mode. This means that our
model has five free parameters, including q or ϵ3. Flat
priors are assumed on all parameters—M ∈ ½20; 200�M⊙,
χ ∈ ½0; 0.99�, A220 ∈ ½0; 5 × 10−20� and ϕ220 ∈ ½0; 2π�. As
for the deviation parameters, we choose q ∈ ½−0.16; 0.16�
and ϵ3 ∈ ½−30; 100�. As for the data itself, we consider the
GW150914 data from both the Hanford and Livingston
detectors. We choose the truncation time for the signal from
these detectors to be respectively 1126259462.423 s and
1126259462.4160156 s, and a sampling rate of 4096 Hz.
The posteriors obtained are presented in Sec V.

V. RESULTS

Let us start by applying the formalism described above to
the MN geometry. As is clear from Eqs. (2)–(4), the MN
metric is quite involved to work with, and developing
BH perturbation theory in such a spacetime is a non-
trivial task. In fact, the perturbation equations in general do
not separate. This is also the case for many alternative
theories of gravity. Fortunately, the procedure outlined in
Sec. III is still within reach, and Eq. (22) can indeed
be solved.
Starting from the equatorial MN metric, we can easily

calculate the effective potential Veff and its radial deriva-
tive. We then solve the system (22) numerically to obtain
rph and b as functions of the spin χ and the quadrupole
parameter q. The remnant mass enters as a prefactor. We
use the data for GW150914, conditioned as described in
Sec. IV. The eikonal QNM frequencies are used along with
the data to calculate the likelihood for arbitrary values of
the sampled parameters—ðM; χ; A220;ϕ220; qÞ. As men-
tioned above, we use DYNESTY and the resulting posterior
distributions are shown in Fig. 1. As can be clearly seen, the
posterior distribution for q is strongly peaked around zero,
which is the Kerr case. This suggests that the Kerr

3The −2Ylm are used as an approximation to the spin-weighted
spheroidal harmonics −2Slm, which reduce to −2Ylm when
aω̃lm ¼ 0, where ω̃lm is the QNM frequency and a is the BH
spin. It was however shown that −2Slm ≈ −2Ylm also for nonzero
spins [86].
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hypothesis is indeed favored by the data, although jqj as
large as ∼0.05 are also compatible with the data at
95% confidence level. Another point to note is that the
marginalized bounds on χ are uninformative. This is
because a change in q can compensate for variations
introduced by changes in χ. This is in stark contrast to
the Kerr metric, where this degeneracy obviously does not
exist and the spin can be bound quite well. It can also be
seen that the recovered posterior for M is different from its
Kerr counterpart, again due to the degeneracy with q.
The JP metric has been previously used for ringdown

analyses [29], but using the Fisher matrix formalism.
Moreover, the QNMs were calculated using the prescrip-
tion described in [68], which involves an expansion in the
“small” deviation parameter ϵ3. However, it is unclear
whether this expansion is justified by the data, which may

not bound ϵ3 to a significant degree. In this paper, we use
the full form of the JP metric, without imposing any
restrictions on the value of ϵ3, and adopt a Bayesian
framework in place of a Fisher matrix one for the estimation
of the posterior distributions. Similar to the MN metric
case, we use the equatorial JP metric and calculate the
QNM frequencies following the procedure outlined in
Sec. IV. The estimated posterior distributions are shown
in Fig. 2.
While the distribution for ϵ3 does have a peak near the

Kerr value ϵ3 ¼ 0, it is highly skewed towards ϵ3 > 0, with
virtually no support for negative value. The estimated
posteriors for mass M are also quite different from the
Kerr and MN ones. In particular, they show support for
comparatively larger values of M and smaller values of χ
than those predicted for the Kerr metric [87].

FIG. 1. Posterior distributions for the parameters obtained from the GW150914 data, assuming MN and Kerr background spacetimes.
The darker shade in the contours denotes the 1σ confidence level, while the lighter shade denotes the 2σ level. The shaded areas in the
one-dimensional histograms correspond to 1σ confidence levels. q ¼ 0 (where the MN metric reduces to Kerr) is also highlighted in the
distribution with a dotted black line.
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The differences between the posteriors for Kerr and JP
are quite striking, especially for χ. This can be understood
by examining the analytic form of the QNM frequencies of
the JP metric. While such analytic expressions are difficult
to compute for arbitrary ϵ3 [we calculate them by solving
Eq. (22) numerically], they can be obtained for small values
of ϵ3. Reference [29] found that for small ϵ3

ωJP
R ¼ωK

Rþϵ3

�
1

81
ffiffiffi
3

p
M

þ 10

729M
χþ 47

1458
ffiffiffi
3

p
M
χ2
�
; ð31Þ

ωJP
I ¼ ωK

I − ϵ3

�
1

486M
χ þ 16

2187
ffiffiffi
3

p
M

χ2
�
: ð32Þ

According to Eq. (31), the effect of the deviation parameter
can be countered by smaller values of χ and larger values of
M. This is reflected in the posterior distribution for the

JP metric, which favors higher M and lower χ compared
to Kerr.
Note, however, that the mass of the remnant can be

estimated independently from the ringdown and from the
inspiral phase. These measurements must of course be
consistent [91]. Unfortunately, estimating the mass from
the inspiral requires knowledge of the (non-GR) field
equations, which do not simply follow from knowledge
of the JP geometry. Therefore, performing such a consis-
tency test is not possible in our setting. We can, however,
assume that deviations from Kerr and GR are “small”, and
that the inspiral determination of the mass within GR is
approximately correct even if the remnant is described by
the JP spacetime (rather than by the Kerr one). Under this
assumption, we impose a conservative prior bound on
the remnant mass M ∈ ½55; 100�M⊙. (Note that the bound
from the inspiral calculated using GR is actually much
tighter [92]. We deliberately choose a larger bound to

FIG. 2. The same as in Fig. 1, but for the JP spacetime (with large priors on the remnant mass). ϵ3 ¼ 0 (where the JP metric reduces to
Kerr) is also highlighted in the distribution with a dotted black line.
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account for the different remnant geometry.) The resulting
posteriors for the JP metric are shown in Fig. 3. While the
posteriors for ϵ3 are still skewed towards positive values,
they are now much smaller and consistent with those
from [29,64].
We now turn our attention to understanding the asym-

metry of the posterior distribution of ϵ3 about zero. A linear
ringdown model of the form of Eq. (30) implies that while
performing parameter estimation, the sampler is trying to fit
the data to some unknown frequency and damping time
along with an amplitude and a phase. The frequency and
damping time depend on the remnant mass, spin and
deviation parameter. For the GW150914 data, the fitted
frequency and damping time lie in the range ∼210–240 Hz
and ∼3–7 ms, respectively. The sampler then searches the
parameter space for combinations of mass, spin and
deviation parameter that correspond to values in this range.
In Fig. 4, we show the dependence of QNM frequency and
damping time on spin and ϵ3, for different values of the

remnant mass. The solid black lines denote the portion of
the parameter space where the bounds on frequency and
damping time are simultaneously satisfied. These lines are
not present for low values values of M (≲50M⊙), because
the QNM frequencies are too large and the damping times
are too small to agree with the data. As M increases, we
start to observe that some points in the parameter space
become accessible. For intermediate values of M < 60M⊙,
the predicted frequencies lie within the observed bounds for
both positive and negative values of ϵ3, but the bounds on
the damping time are satisfied only for positive values (the
support for negative values is minimal, as seen in Fig. 4).
For higher values of M > 60M⊙, the opposite is true, i.e.
the bounds on the damping time are satisfied by a wide
range of values of ϵ3, but the frequency bounds are met
mostly for ϵ3 > 0, with minimal support for negative
values. In other words, over a wide range of M, ϵ3 > 0
leads to frequencies and damping time that simultaneously
lie within their respective bounds. This results in ϵ3 > 0

FIG. 3. The same as in Fig. 2, but with a remnant mass prior M ∈ ½55; 100�M⊙.
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being favored in the posterior distribution shown in
Figs. 2 and 3.
With the asymmetry in the posterior distribution of ϵ3

now understood, we turn our attention to the difference in
the estimates of q and ϵ3. Upon a cursory glance, both
denote a quadrupole deviation from Kerr. Multipole
moments can be calculated for axisymmetric, asymptoti-
cally flat and vacuum spacetimes by performing an
asymptotic expansion of the metric functions [93]. This
method can be applied to the MN metric and the quadru-
pole momentQMN isQKerr − qM3. For the JP metric, using
a similar asymptotic expansion one finds the quadrupole
moment to be QJP ¼ QKerr þ ϵ3M3 [68]. The JP metric is,
however, not a vacuum spacetime if it is to satisfy the
Einstein field equations, which casts doubts on the above
result.
Even after restricting the mass priors (in Fig. 3), one can

still observe an order of magnitude difference in the
posterior bounds on q and ϵ3. In the eikonal prescription
used in this paper, the central quantity of interest is the
effective potential Veff defined in Eq. (22). Let us then turn
to this potential to understand this discrepancy. Since the
MN potential is too cumbersome to work with, we perform
an expansion assuming small spin and small quadrupolar
deviation (q or ϵ3).
Solving then Eq. (22) at leading order, the impact

parameter is

bMN
ph =M ≈ 3

ffiffiffi
3

p
− 2χ þ q ð33Þ

bJPph=M ≈ 3
ffiffiffi
3

p
− 2χ −

ϵ3
6

ffiffiffi
3

p ð34Þ

in the two geometries. The impact parameter is related to
the real part of the QNM frequency through Eqs. (14)
and (21). For the two geometries to predict the same QNM
frequencies, we must have

ϵ3 ¼ −6
ffiffiffi
3

p
q ≈ −10q: ð35Þ

This relation, however, is not sufficient to explain the
posteriors of q and ϵ3, which differ by a factor ∼Oð100Þ. To
properly understand this discrepancy, and whether a map-
ping between the two metrics is even possible at all, we also
look at the imaginary part of the QNM frequencies,
as given by Eqs. (14) and (28), under the same small
parameter expansion. We find

γMN ≈
1

3
ffiffiffi
3

p þ 1

54
ð−13þ 12

ffiffiffi
3

p
Þq; ð36Þ

γJP ≈
1

3
ffiffiffi
3

p : ð37Þ

FIG. 4. Dependence of the frequency and damping time of the
dominant 220 mode on ϵ3, for different values of spin and
remnant mass. Different spins are denoted by the color axis,
which goes from 0 to 1. The blue lines indicate the GW150914
bounds on frequency and damping time. The black lines denote
the parameter values for which both bounds are satisfied.
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This shows that at the lowest order in spin and deviation
parameter, γJP is independent of ϵ3 whereas γMN depends
on q. Therefore, an exact mapping between the parameters
q and ϵ3 does not exist, which explains the different
posteriors for the two parameters.
We also calculate log10 BMN

Kerr and log10 B
JP
Kerr which are the

log10-Bayes factors for the MN and JP metrics compared to
Kerr. The value of these factors indicates whether the MN
and/or JP hypothesis fits the data better than Kerr. We find
log10 BMN

Kerr ¼ −0.71 and log10 BJP
Kerr ¼ −0.25. The negative

values indicate that the Kerr hypothesis is better supported
by the GW150914 data.

VI. FUTURE DETECTORS

The LIGO-Virgo-Kagra (LVK) detectors, along with
LIGO-India in the coming years, make up the second
generation of interferometric GW detectors. These will be
followed up by third generation detectors—the Einstein
Telescope (ET) [94] and Cosmic Explorer (CE) [95]—and
by space based detectors like LISA [10]. These future
detectors are designed to allow for lower noise levels,
boosting the SNR of detected sources in comparison to
LVK. High SNR is an important requirement of ringdown
analysis because of the fast decay of QNMs. Indeed low
SNRs prevent the use of most GW events for ringdown
analyses. GW150914 (and GW190521 [26,96]) is an
outlier in this regard. Future detectors are expected to
improve on this by providing more eligible sources and
higher SNRs [43]. Additionally, higher SNRs will likely
lead to detection of higher modes. These modes can also
potentially break the degeneracy in M and χ that is
observed due to the inclusion of quadrupole deviations
in both the MN and JP geometries.
Higher SNR is beneficial for parameter estimation and

will lead to an overall shrinkage in the posterior volume.
We simulate two different types of signals detectable by
ET—one injection containing only the l ¼ m ¼ 2 mode
and one injection containing the l ¼ m ¼ 3 in addition to
the dominant l ¼ m ¼ 2mode. The remnant mass and spin
of the injected signals areM ¼ 84M⊙ and χ ¼ 0.75, which
are similar to GW150914, allowing for a comparison
between the posterior bounds across detectors. In order
to have a nonzero contribution from the l ¼ m ¼ 3 mode,
we assume ðι;φÞ ¼ ðπ=3; 0Þ [in Eq. (29)] for the injections
under consideration. As for the amplitude and phase of the
higher mode, we use the fitting formulas provided in [97].
With the l ¼ m ¼ 2 mode as the reference, the amplitude
and phase of the higher mode are redefined as

AR
330 ¼

A330

A220

; δϕ330 ¼
3

2
ϕ220 − ϕ330: ð38Þ

We consider a system where the mass ratio is 3. Using
the fitting formulas from [97], we get AR

330 ¼ 0.255 and
δϕ330 ¼ 2.95. The parameters A220 and ϕ220 are randomly

chosen to be 0.44 × 10−20 and 5.37. Moreover, we inject a
Kerr signal, with no quadrupole deviations. To this injec-
tion, we add simulated noise compatible with the design
sensitivity of ET (ET-D sensitivity curve), considering for
simplicity a single interferometer in the planned ET
“xylophone” configuration [98]. The SNRs of the resulting
signals are 176 for the l ¼ m ¼ 2 only mode, and 179 with
the inclusion of the l ¼ m ¼ 3 mode (as a comparison, the
ringdown SNR for GW150914 is ∼13). While sampling,
we use the parameters ðM; χ; A220; AR

330;ϕ220;ϕ330Þ, along
with the deviation q=ϵ3 for the MN/JP geometries.
The simulated signal is analyzed according to the

process outlined in Sec. IV, with the LIGO detector
swapped for ET. We perform this analysis both in the
presence and absence of the higher mode for the MN and JP
geometries. The results are shown in Figs. 5 and 6, and
compared to those obtained with LIGO. The posterior
distributions obtained from LIGO GW150914 (in blue) and
those from ET (2,2) (in green) are mostly similar, but with a
general reduction in the posterior volume. The lower noise
levels imply that the QNM frequencies and damping times
can be estimated with greater accuracy, but that does not
eliminate the degeneracies among M, χ and q (ϵ3). The
decrease in posterior volume in the contours is, on the other
hand, quite visible. As for the quadrupolar deviation, the 1σ
limits of the posterior distribution decrease by ∼24% for q,

FIG. 5. Posterior distributions for M, χ and q obtained using
ET. In red, we show the distributions observed while including
the (3,3) mode in addition to the dominant (2,2) mode. The
distributions with only the (2,2) mode are shown in green. For
reference, the posteriors for GW150914 (which have similar
remnant mass and spin) observed with LIGO are shown in blue.
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while remaining mostly unchanged for ϵ3, compared to
those from LIGO.
Including the l ¼ m ¼ 3 mode, however, has a much

more drastic effect on the posterior distribution. The
degeneracy in M, χ and the quadrupole deviation, which
is observed in its absence, is no longer seen, and the
posterior distributions are mostly peaked around their
injected values. In addition, the quadrupole deviation is
also much better constrained, with the 1σ limits decreasing
by ∼90% for q and ∼94% for ϵ3, compared to LIGO
GW150914. The two-dimensional contours are also con-
strained much better, signifying a low posterior volume.

VII. CONCLUSION

In this paper, we apply the eikonal approximation to the
analysis of real GW data to test the Kerr hypothesis. The
ringdown phase of the GW signal contains information
about the QNMs emitted by the remnant BH. Measuring
these QNMs allows one to gather information about the
remnant BH spacetime and the theory of gravity describing
BH perturbations. While it has been shown that the final
compact object produced by GW150914 is compatible with
a Kerr BH, the viability of other alternatives has not been
ruled out. We focus here on remnant geometries differing
from Kerr as a result of an anomalous quadrupole moment.
Its measurement will tell whether the observed data
supports the Kerr hypothesis, and whether it is compatible
with alternative spacetime geometries as well.
The main difficulty in performing such ringdown

analyses is the calculation of the QNM frequencies
in an arbitrary axisymmetric and stationary background

spacetime. Although this is a non-trivial task, the eikonal
approximation allows one to calculate QNM frequencies
without having to explicitly solve the BH perturbation
equations, by relating the QNM frequencies to the
orbital frequency and Lyapunov exponent of the unstable
light ring.
We concentrate our efforts on two spacetime metrics for

the remnant—the MN and the JP metric. We use restricted
versions of these metrics, where deviations from Kerr are
regulated by one single parameter, the anomalous quadru-
pole moment. (We stress that our program can also be
applied to remnant geometries whose deviations from Kerr
are regulated by two or more parameters.) We use
GW150914 data and the eikonal approximation as
described in Sec. IV to calculate the posterior distribution
for M; χ; A220;ϕ220 and the anomalous quadrupole param-
eter (q or ϵ3). Our analysis to recover the posterior
distributions does not assume deviations from Kerr to be
small, and uses full Bayesian methods to calculate the
posteriors. The results obtained are shown in Figs. 1 and 2.
While the recovered posteriors are compatible with Kerr,
for the JP metric ansatz the remnant mass is poorly
constrained. However, restricting the mass prior by utiliz-
ing information from the inspiral-merger analysis, we arrive
at bounds on ϵ3 that are comparable to those from x-ray
observations [64,67]. The distribution for ϵ3 is also quite
asymmetric and seems to favor positive values. This can be
attributed to the dependence of QNM frequencies and
damping time on spin, mass and ϵ3. We discuss in Sec. V
that the frequency and damping times calculated from the
sampled parameters must simultaneously satisfy the obser-
vational bounds from GW150914, resulting in a skewed
distribution. The recovered posteriors for q and ϵ3 also
differ by ∼Oð100Þ. As the metrics under consideration are
quite involved, we study this feature by assuming a small
parameter expansion. We find that the two deviation
parameters cannot be mapped to one another, which
explains the different width of their posteriors.
We also consider future (third-generation) detectors

capable of detecting GW150914-like signals, such as the
Einstein Telescope. Starting from simulated injections we
recover posterior distributions using the same approach as
for GW150914. The posterior distribution covers a smaller
volume, but the degeneracies between remnant mass,
spin and the anomalous quadrupole remain qualitatively
unchanged if one only includes the fundamental mode.
However, future detectors will also allow for detecting
higher order QNM modes. We find that the inclusion of the
(3, 3) mode in the analysis of ET simulated data allows
for constraining deviations from the Kerr quadrupole at
percent level.

ACKNOWLEDGMENTS

We thank Nicola Franchini, Sebastian H. Völkel and
Emanuele Berti for providing useful feedback on the

FIG. 6. The same as in Fig. 5, but for the JP case.

DEY, BARAUSSE, and BASAK PHYS. REV. D 108, 024064 (2023)

024064-12



manuscript. We also thank the referee for useful
comments and suggestions. K. D. acknowledges IISER
Thiruvananthapuram for providing high-performance com-
puting resources at HPC Padmanabha. E. B. acknowledges
support from the European Union’s H2020 ERC

Consolidator Grant “GRavity from Astrophysical to
Microscopic Scales” (Grant No. GRAMS-815673) and
the EU Horizon 2020 Research and Innovation
Programme under the Marie Sklodowska-Curie Grant
Agreement No. 101007855.

[1] R. P. Kerr, Gravitational Field of a Spinning Mass as an
Example of Algebraically Special Metrics, Phys. Rev. Lett.
11, 237 (1963).

[2] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A.
Prakash, and R. Torrence, Metric of a rotating, charged
mass, J. Math. Phys. (N.Y.) 6, 918 (1965).

[3] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

[4] D. C. Robinson, Uniqueness of the Kerr Black Hole,
Phys. Rev. Lett. 34, 905 (1975).

[5] E. Barausse, V. Cardoso, and P. Pani, Can environmental
effects spoil precision gravitational-wave astrophysics?,
Phys. Rev. D 89, 104059 (2014).

[6] E. Barausse and T. P. Sotiriou, Perturbed Kerr Black Holes
Can Probe Deviations from General Relativity, Phys. Rev.
Lett. 101, 099001 (2008).

[7] E. Berti et al., Testing general relativity with present and
future astrophysical observations, Classical Quantum
Gravity 32, 243001 (2015).

[8] F. D. Ryan, Gravitational waves from the inspiral of a
compact object into a massive, axisymmetric body with
arbitrary multipole moments, Phys. Rev. D 52, 5707
(1995).

[9] F. D. Ryan, Accuracy of estimating the multipole moments
of a massive body from the gravitational waves of a binary
inspiral, Phys. Rev. D 56, 1845 (1997).

[10] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna, arXiv:1702.00786.

[11] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta,
C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and
A. Klein, Science with the space-based interferometer
LISA. V: Extreme mass-ratio inspirals, Phys. Rev. D 95,
103012 (2017).

[12] C. Bambi and E. Barausse, Constraining the quadrupole
moment of stellar-mass black-hole candidates with the
continuum fitting method, Astrophys. J. 731, 121 (2011).

[13] C. Bambi and E. Barausse, The final stages of accretion onto
non-Kerr compact objects, Phys. Rev. D 84, 084034 (2011).

[14] Y. Ni, J. Jiang, and C. Bambi, Testing the Kerr metric with
the iron line and the KRZ parametrization, J. Cosmol.
Astropart. Phys. 09 (2016) 014.

[15] Y. Dabrowski and A. N. Lasenby, Reflected iron line from a
source above a Kerr black hole accretion disc, Mon. Not. R.
Astron. Soc. 321, 605 (2001).

[16] P. Kocherlakota et al. (Event Horizon Telescope Collabo-
ration), Constraints on black-hole charges with the 2017
EHT observations of M87*, Phys. Rev. D 103, 104047
(2021).

[17] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First Sagittarius A* event horizon telescope results. VI.
Testing the black hole metric, Astrophys. J. Lett. 930, L17
(2022).

[18] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[19] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017); 121, 129901(E) (2018).

[20] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170814: AThree-Detector Observation of Gravi-
tational Waves from a Binary Black Hole Coalescence,
Phys. Rev. Lett. 119, 141101 (2017).

[21] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[22] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170608: Observation of a 19-solar-mass binary
black hole coalescence, Astrophys. J. Lett. 851, L35
(2017).

[23] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW190425: Observation of a compact binary coa-
lescence with total mass ∼3.4M⊙, Astrophys. J. Lett. 892,
L3 (2020).

[24] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190412: Observation of a binary-black-hole coales-
cence with asymmetric masses, Phys. Rev. D 102,
043015 (2020).

[25] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190814: Gravitational waves from the coalescence of a
23 solar mass black hole with a 2.6 solar mass compact
object, Astrophys. J. Lett. 896, L44 (2020).

[26] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW190521: A Binary Black Hole Merger with a Total Mass
of 150M⊙, Phys. Rev. Lett. 125, 101102 (2020).

[27] E. Barausse, N. Yunes, and K. Chamberlain, Theory-
Agnostic Constraints on Black-Hole Dipole Radiation with
Multiband Gravitational-Wave Astrophysics, Phys. Rev.
Lett. 116, 241104 (2016).

[28] A. Cardenas-Avendano, S. Nampalliwar, and N. Yunes,
Gravitational-wave versus x-ray tests of strong-field
gravity, Classical Quantum Gravity 37, 135008 (2020).

[29] Z. Carson and K. Yagi, Probing beyond-Kerr spacetimes
with inspiral-ringdown corrections to gravitational waves,
Phys. Rev. D 101, 084050 (2020).

MEASURING DEVIATIONS FROM THE KERR GEOMETRY WITH … PHYS. REV. D 108, 024064 (2023)

024064-13

https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1063/1.1704351
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1103/PhysRevLett.101.099001
https://doi.org/10.1103/PhysRevLett.101.099001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1103/PhysRevD.56.1845
https://arXiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1088/0004-637X/731/2/121
https://doi.org/10.1103/PhysRevD.84.084034
https://doi.org/10.1088/1475-7516/2016/09/014
https://doi.org/10.1088/1475-7516/2016/09/014
https://doi.org/10.1046/j.1365-8711.2001.03972.x
https://doi.org/10.1046/j.1365-8711.2001.03972.x
https://doi.org/10.1103/PhysRevD.103.104047
https://doi.org/10.1103/PhysRevD.103.104047
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.1088/1361-6382/ab8f64
https://doi.org/10.1103/PhysRevD.101.084050


[30] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Tests of general relativity with the binary black hole
signals from the LIGO-Virgo catalog GWTC-1, Phys. Rev.
D 100, 104036 (2019).

[31] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Tests of general relativity with binary black holes from the
second LIGO-Virgo gravitational-wave transient catalog,
Phys. Rev. D 103, 122002 (2021).

[32] R. Abbott et al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), Tests of general relativity with GWTC-3,
arXiv:2112.06861 [Phys. Rev. D (to be published)].

[33] S. Detweiler, Black holes and gravitational waves. III—The
resonant frequencies of rotating holes, Astrophys. J. 239,
292 (1980).

[34] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison,
and R. Lopez-Aleman, Black hole spectroscopy: Testing
general relativity through gravitational wave observations,
Classical Quantum Gravity 21, 787 (2004).

[35] E. Berti, V. Cardoso, and C. M. Will, On gravitational-wave
spectroscopy of massive black holes with the space inter-
ferometer LISA, Phys. Rev. D 73, 064030 (2006).

[36] R. Cotesta, G. Carullo, E. Berti, and V. Cardoso, Analysis of
Ringdown Overtones in GW150914, Phys. Rev. Lett. 129,
111102 (2022).

[37] E. Finch and C. J. Moore, Searching for a ringdown over-
tone in GW150914, Phys. Rev. D 106, 043005 (2022).

[38] M. Isi and W.M. Farr, Revisiting the ringdown of
GW150914, arXiv:2202.02941.

[39] C. D. Capano, J. Abedi, S. Kastha, A. H. Nitz, J.
Westerweck, Y.-F. Wang, M. Cabero, A. B. Nielsen, and
B. Krishnan, Statistical validation of the detection of a sub-
dominant quasi-normal mode in GW190521, arXiv:2209.
00640.

[40] L. Sberna, P. Bosch, W. E. East, S. R. Green, and L. Lehner,
Nonlinear effects in the black hole ringdown: Absorption-
induced mode excitation, Phys. Rev. D 105, 064046 (2022).

[41] M. H.-Y. Cheung et al., Nonlinear Effects in Black Hole
Ringdown, Phys. Rev. Lett. 130, 081401 (2023).

[42] K. Mitman et al., Nonlinearities in Black Hole Ringdowns,
Phys. Rev. Lett. 130, 081402 (2023).

[43] E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K.
Belczynski, Spectroscopy of Kerr Black Holes with Earth-
and Space-Based Interferometers, Phys. Rev. Lett. 117,
101102 (2016).

[44] M. Cabero, J. Westerweck, C. D. Capano, S. Kumar, A. B.
Nielsen, and B. Krishnan, Black hole spectroscopy in the
next decade, Phys. Rev. D 101, 064044 (2020).

[45] I. Ota and C. Chirenti, Black hole spectroscopy horizons
for current and future gravitational wave detectors,
Phys. Rev. D 105, 044015 (2022).

[46] S. Bhagwat, C. Pacilio, E. Barausse, and P. Pani, Land-
scape of massive black-hole spectroscopy with LISA and
the Einstein Telescope, Phys. Rev. D 105, 124063
(2022).

[47] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and
B. S. Sathyaprakash, Testing the no-hair theorem with black
hole ringdowns using TIGER, Phys. Rev. D 90, 064009
(2014).

[48] A. Maselli, P. Pani, L. Gualtieri, and E. Berti, Parametrized
ringdown spin expansion coefficients: A data-analysis

framework for black-hole spectroscopy with multiple
events, Phys. Rev. D 101, 024043 (2020).

[49] V. Cardoso, M. Kimura, A. Maselli, E. Berti, C. F. B.
Macedo, and R. McManus, Parametrized black hole qua-
sinormal ringdown: Decoupled equations for nonrotating
black holes, Phys. Rev. D 99, 104077 (2019).

[50] R. McManus, E. Berti, C. F. B. Macedo, M. Kimura, A.
Maselli, and V. Cardoso, Parametrized black hole quasi-
normal ringdown. II. Coupled equations and quadratic
corrections for nonrotating black holes, Phys. Rev. D
100, 044061 (2019).

[51] S. H. Völkel and E. Barausse, Bayesian metric
reconstruction with gravitational wave observations,
Phys. Rev. D 102, 084025 (2020).

[52] R. A. Konoplya and A. Zhidenko, First few overtones probe
the event horizon geometry, arXiv:2209.00679.

[53] S. H. Völkel, N. Franchini, and E. Barausse, Theory-
agnostic reconstruction of potential and couplings from
quasinormal modes, Phys. Rev. D 105, 084046 (2022).

[54] S. H. Völkel, N. Franchini, E. Barausse, and E. Berti,
Constraining modifications of black hole perturbation po-
tentials near the light ring with quasinormal modes, Phys.
Rev. D 106, 124036 (2022).

[55] N. Franchini and S. H. Völkel, A parametrized quasi-normal
mode framework for non-Schwarzschild metrics, Phys. Rev.
D 107, 124063 (2023).

[56] V. S. Manko and I. D. Novikov, Generalizations of the Kerr
and Kerr-Newman metrics possessing an arbitrary set of
mass-multipole moments, Classical Quantum Gravity 9,
2477 (1992).

[57] T. Johannsen and D. Psaltis, Metric for rapidly spinning
black holes suitable for strong-field tests of the no-hair
theorem, Phys. Rev. D 83, 124015 (2011).

[58] E. Berti and N. Stergioulas, Approximate matching of
analytic and numerical solutions for rapidly rotating neutron
stars, Mon. Not. R. Astron. Soc. 350, 1416 (2004).

[59] L. Rezzolla and A. Zhidenko, New parametrization for
spherically symmetric black holes in metric theories of
gravity, Phys. Rev. D 90, 084009 (2014).

[60] R. Konoplya, L. Rezzolla, and A. Zhidenko, General
parametrization of axisymmetric black holes in metric
theories of gravity, Phys. Rev. D 93, 064015 (2016).

[61] P. H. C. Siqueira and M. Richartz, Quasinormal modes,
quasibound states, scalar clouds, and superradiant instabil-
ities of a Kerr-like black hole, Phys. Rev. D 106, 024046
(2022).

[62] A. Allahyari, H. Firouzjahi, and B. Mashhoon, Quasinormal
modes of generalized black holes: δ-Kerr spacetime,
Classical Quantum Gravity 37, 055006 (2020).

[63] A. Allahyari, H. Firouzjahi, and B. Mashhoon, Quasinormal
modes of a black hole with quadrupole moment,
Phys. Rev. D 99, 044005 (2019).

[64] L. Kong, Z. Li, and C. Bambi, Constraints on the spacetime
geometry around 10 stellar-mass black hole candidates
from the disk’s thermal spectrum, Astrophys. J. 797, 78
(2014).

[65] C. Bambi, Can we constrain the maximum value for the spin
parameter of the super-massive objects in galactic nuclei
without knowing their actual nature?, Phys. Lett. B 705, 5
(2011).

DEY, BARAUSSE, and BASAK PHYS. REV. D 108, 024064 (2023)

024064-14

https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.103.122002
https://arXiv.org/abs/2112.06861
https://doi.org/10.1086/158109
https://doi.org/10.1086/158109
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevLett.129.111102
https://doi.org/10.1103/PhysRevLett.129.111102
https://doi.org/10.1103/PhysRevD.106.043005
https://arXiv.org/abs/2202.02941
https://arXiv.org/abs/2209.00640
https://arXiv.org/abs/2209.00640
https://doi.org/10.1103/PhysRevD.105.064046
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.1103/PhysRevLett.130.081402
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1103/PhysRevD.101.064044
https://doi.org/10.1103/PhysRevD.105.044015
https://doi.org/10.1103/PhysRevD.105.124063
https://doi.org/10.1103/PhysRevD.105.124063
https://doi.org/10.1103/PhysRevD.90.064009
https://doi.org/10.1103/PhysRevD.90.064009
https://doi.org/10.1103/PhysRevD.101.024043
https://doi.org/10.1103/PhysRevD.99.104077
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.100.044061
https://doi.org/10.1103/PhysRevD.102.084025
https://arXiv.org/abs/2209.00679
https://doi.org/10.1103/PhysRevD.105.084046
https://doi.org/10.1103/PhysRevD.106.124036
https://doi.org/10.1103/PhysRevD.106.124036
https://doi.org/10.1103/PhysRevD.107.124063
https://doi.org/10.1103/PhysRevD.107.124063
https://doi.org/10.1088/0264-9381/9/11/013
https://doi.org/10.1088/0264-9381/9/11/013
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1111/j.1365-2966.2004.07740.x
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.106.024046
https://doi.org/10.1103/PhysRevD.106.024046
https://doi.org/10.1088/1361-6382/ab6860
https://doi.org/10.1103/PhysRevD.99.044005
https://doi.org/10.1088/0004-637X/797/2/78
https://doi.org/10.1088/0004-637X/797/2/78
https://doi.org/10.1016/j.physletb.2011.10.005
https://doi.org/10.1016/j.physletb.2011.10.005


[66] C. Bambi, Probing the space-time geometry around black
hole candidates with the resonance models for high-
frequency QPOs and comparison with the continuum-fitting
method, J. Cosmol. Astropart. Phys. 09 (2012) 014.

[67] C. Bambi, J. Jiang, and J. F. Steiner, Testing the no-hair
theorem with the continuum-fitting and the iron line
methods: A short review, Classical Quantum Gravity 33,
064001 (2016).

[68] K. Glampedakis, G. Pappas, H. O. Silva, and E. Berti, Post-
Kerr black hole spectroscopy, Phys. Rev. D 96, 064054
(2017).

[69] K. Glampedakis and H. O. Silva, Eikonal quasinormal
modes of black holes beyond general relativity, Phys.
Rev. D 100, 044040 (2019).

[70] R. O. Hansen, Multipole moments of stationary space-times,
J. Math. Phys. (N.Y.) 15, 46 (1974).

[71] R. P. Geroch, Multipole moments. II. Curved space,
J. Math. Phys. (N.Y.) 11, 2580 (1970).

[72] J. R. Gair, C. Li, and I. Mandel, Observable properties of
orbits in exact bumpy spacetimes, Phys. Rev. D 77, 024035
(2008).

[73] W. H. Press, Long wave trains of gravitational waves from a
vibrating black hole, Astrophys. J. 170, L105 (1971).

[74] C. J. Goebel, Comments on the “vibrations” of a black hole,
Astrophys. J. 172, L95 (1972).

[75] V. Ferrari and B. Mashhoon, New approach to the quasi-
normal modes of a black hole, Phys. Rev. D 30, 295 (1984).

[76] B. Mashhoon, Stability of charged rotating black holes in
the eikonal approximation, Phys. Rev. D 31, 290 (1985).

[77] S. R. Dolan, Quasinormal mode spectrum of a Kerr black
hole in the eikonal limit, Phys. Rev. D 82, 104003 (2010).

[78] H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z.
Zhang, and Y. Chen, Quasinormal-mode spectrum of Kerr
black holes and its geometric interpretation, Phys. Rev. D
86, 104006 (2012).

[79] H. Yang, A. Zimmerman, A. Zenginoğlu, F. Zhang, E. Berti,
and Y. Chen, Quasinormal modes of nearly extremal Kerr
spacetimes: Spectrum bifurcation and power-law ringdown,
Phys. Rev. D 88, 044047 (2013).

[80] H. Yang, F. Zhang, A. Zimmerman, D. A. Nichols, E. Berti,
and Y. Chen, Branching of quasinormal modes for nearly
extremal Kerr black holes, Phys. Rev. D 87, 041502 (2013).

[81] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Geodesic stability, Lyapunov exponents and qua-
sinormal modes, Phys. Rev. D 79, 064016 (2009).

[82] E. Berti and K. D. Kokkotas, Quasinormal modes of Kerr-
Newman black holes: Coupling of electromagnetic and
gravitational perturbations, Phys. Rev. D 71, 124008 (2005).

[83] S. Iyer, Black hole normal modes: A WKB approach. 2.
Schwarzschild black holes, Phys. Rev. D 35, 3632 (1987).

[84] R. Ghosh, N. Franchini, S. H. Völkel, and E. Barausse,
Quasi-normal modes of non-separable perturbation equa-
tions: The scalar non-Kerr case, arXiv:2303.00088.

[85] G. Khanna and R. H. Price, Black hole ringing, quasinormal
modes, and light rings, Phys. Rev. D 95, 081501 (2017).

[86] E. Berti, V. Cardoso, and M. Casals, Eigenvalues and
eigenfunctions of spin-weighted spheroidal harmonics in
four and higher dimensions, Phys. Rev. D 73, 024013
(2006); 73, 109902(E) (2006).

[87] M. Isi, M. Giesler, W.M. Farr, M. A. Scheel, and S. A.
Teukolsky, Testing the No-Hair Theorem with GW150914,
Phys. Rev. Lett. 123, 111102 (2019).

[88] M. Isi and W.M. Farr, Analyzing black-hole ringdowns,
arXiv:2107.05609.

[89] M. Isi and W.M. Farr, maxisi/ringdown: Initial ringdown
release, 10.5281/zenodo.5094068 (2021).

[90] S. Koposov, J. Speagle et al., joshspeagle/dynesty: v1.2.3,
10.5281/zenodo.6609296 (2022).

[91] A. Ghosh et al., Testing general relativity using golden
black-hole binaries, Phys. Rev. D 94, 021101 (2016).

[92] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Properties of the Binary Black Hole Merger
GW150914, Phys. Rev. Lett. 116, 241102 (2016).

[93] F. D. Ryan, Spinning boson stars with large self-
interaction, Phys. Rev. D 55, 6081 (1997).

[94] M. Punturo et al., The Einstein Telescope: A third-gener-
ation gravitational wave observatory, Classical Quantum
Gravity 27, 194002 (2010).

[95] D. Reitze et al., Cosmic Explorer: The U.S. contribution to
gravitational-wave astronomy beyond LIGO, Bull. Am.
Astron. Soc. 51, 035 (2019).

[96] C. D. Capano, M. Cabero, J. Westerweck, J. Abedi, S.
Kastha, A. H. Nitz, A. B. Nielsen, and B. Krishnan, Ob-
servation of a multimode quasi-normal spectrum from a
perturbed black hole, arXiv:2105.05238.

[97] X. J. Forteza, S. Bhagwat, S. Kumar, and P. Pani, Novel
Ringdown Amplitude-Phase Consistency Test, Phys. Rev.
Lett. 130, 021001 (2023).

[98] S. Hild et al., Sensitivity studies for third-generation
gravitational wave observatories, Classical Quantum
Gravity 28, 094013 (2011).

MEASURING DEVIATIONS FROM THE KERR GEOMETRY WITH … PHYS. REV. D 108, 024064 (2023)

024064-15

https://doi.org/10.1088/1475-7516/2012/09/014
https://doi.org/10.1088/0264-9381/33/6/064001
https://doi.org/10.1088/0264-9381/33/6/064001
https://doi.org/10.1103/PhysRevD.96.064054
https://doi.org/10.1103/PhysRevD.96.064054
https://doi.org/10.1103/PhysRevD.100.044040
https://doi.org/10.1103/PhysRevD.100.044040
https://doi.org/10.1063/1.1666501
https://doi.org/10.1063/1.1665427
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1086/180849
https://doi.org/10.1086/180898
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.31.290
https://doi.org/10.1103/PhysRevD.82.104003
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevD.88.044047
https://doi.org/10.1103/PhysRevD.87.041502
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevD.71.124008
https://doi.org/10.1103/PhysRevD.35.3632
https://arXiv.org/abs/2303.00088
https://doi.org/10.1103/PhysRevD.95.081501
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.109902
https://doi.org/10.1103/PhysRevLett.123.111102
https://arXiv.org/abs/2107.05609
https://doi.org/10.5281/zenodo.5094068
https://doi.org/10.5281/zenodo.6609296
https://doi.org/10.1103/PhysRevD.94.021101
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevD.55.6081
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://arXiv.org/abs/2105.05238
https://doi.org/10.1103/PhysRevLett.130.021001
https://doi.org/10.1103/PhysRevLett.130.021001
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013

