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We investigate the scalar absorption spectrum of wormhole solutions constructed via the recently
developed thin-shell formalism for Palatini fðRÞ gravity. Such wormholes come from the matching of two
Reissner-Nordström spacetimes at a timelike hypersurface (shell), which, according to the junction
conditions in Palatini fðRÞ, can be stable and have either positive or negative energy density. In particular,
we identified a new physically interesting configuration made out of two overcharged Reissner-Nordström
spacetimes, whose absorption profile departs from that of black holes and other previously considered
wormholes in the whole range of frequencies. Unlike in symmetric wormhole solutions, the asymmetry of
the effective potential causes the dilution of the resonances associated to the quasibound states for the high-
frequency regime. Therefore, slight asymmetries in wormhole space-times could have a dramatic impact on
the observable features associated to resonant states.
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I. INTRODUCTION

Though wormholes are generally regarded as exotic
geometric objects, they are gaining increasing attention
in theoretical physics [1], with efforts made to understand
and simulate their features [2–5], and also to characterize
their observational signatures [6–9]. The chronicles of
wormholes began to be written in 1935 with the seminal
paper of Einstein and Rosen [10], where they were used as
a geometrical model that could avoid some undesired
features of point particles.
The revival of wormholes in physics came with the

conception of traversable wormholes in general relativity
[11–14], which could provide a way to travel to distant
places (and times). The price to pay for traversability was
the violation of some energy conditions [2,15], which
requires exotic matter sources. In order to construct that
new class of wormholes and minimize the amount of
exotic matter, one can apply the thin-shell formalism
[16], grafting two spacetimes at a hypersurface, giving

rise to a geodesically complete space-timewhere the energy
conditions are violated only in a small region [17–20].
More recently, and motivated by an astrophysical inter-

est, different kinds of wormholes and other ultracompact
objects have been studied as black hole mimickers [21–31],
since they can share similarities with Schwarzschild/Kerr-
like objects [32–34]. The reason is that these objects can
present features that allow to tell them apart from their black
hole cousins, and future measurements of gravitational
waves, and advances in very-long-baseline interferometry
could, in principle, find some characteristic imprints of
them [35–37]. The case of wormholes is particularly inter-
esting, because the possibility of having large amounts of
exotic energy sources at their throats offers a unique
opportunity to study new phenomenology that could affect
aspects such as shadows [38–40], gravitational waves ring-
down echoes [41–43] and, in general, the propagation of
waves and quantum fields in those regions. We will focus in
the latter aspect, considering the propagation of scalar waves
in a thin-shell wormhole background.
Absorption and scattering of particles and fields by black

holes [44–56] and ultra compact objects [57] has been
studied in the literature over the years also in an effort to
improve our understanding of the spectroscopy of compact
objects [58]. In particular, fields living in the vicinity of
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compact objects may give rise to phenomena such as the
emergence of quasibound states [57,59,60], clouds [61,62],
and superradiant scattering [53,63]. Wormholes are
among the objects that might have quasibound states
around them. As a consequence, this may create resonances
in their absorption spectra [64,65], and also change their
ringdown profile [41,66]. Exploring how these properties
are modified in configurations characterized by positive
and negative energy densities is the main goal of this paper.
In addition, this allows to investigate whether the absorp-
tion spectrum is sensitive to the sign of the energy density at
the throat. A massless scalar field represents the simplest
quantum probe that one may consider and, at the same time,
it offers basic phenomenology that one may expect to occur
in more complex field distributions.
Besides their existence, the stability of solutions is a

fundamental aspect to have into account when modeling
exotic objects [17,18]. In this regard, stable thin-shell
wormholes in four dimensional general relativity generi-
cally require negative energy densities. Though this may
not be a problem in an accelerating expanding universe
thought to be driven by some kind of exotic energy source
with repulsive gravitational properties [67–69], it is always
desirable to find stable solutions that do not necessarily
require negative energies. It has been recently shown that
this is indeed the case in fðRÞ extensions in the Palatini
formulation [70,71], where stable wormhole solutions can
be generically found in thin-shell scenarios with positive
and negative energy densities. Moreover, due to the
peculiarities of their thin-shell equations, that property is
independent of the particular choice of the fðRÞ function,
which contrasts with the purely metric formulation of
fðRÞ theories. In the metric fðRÞ case, the thin-shell
dynamics depends on the specific fðRÞ function chosen
[72], thus making any analysis strongly model dependent.
For this reason, in this paper we focus on thin-shell
wormholes constructed in the Palatini formulation of
fðRÞ. Nonetheless, it is important to point out that the
cut-and-paste procedure can also produce thin-shell worm-
holes supported by positive energy matter in other modified
theories of gravity [73–75], and in general relativity in
higher dimensions [76].
In the Palatini formalism, connection and metric are

regarded as independent geometrical objects [77]. In
the general relativity case, this has no impact at all in
the field equations, but for fðRÞ extensions the differ-
ence is certainly relevant [78,79]. Unlike other theories
of modified gravity, the Palatini dynamics exhibits non-
linear contributions induced by the matter sources,
having no new dynamical degrees of freedom. This
allows them to rather generically satisfy current solar
system constraints and also be compatible with recent
gravitational wave astronomy results [80,81], though
some exceptions also exist. Furthermore, its versatility
and effectiveness have been proven in a wide range of
scenarios and scales [81–83].

We study the propagation of a massless scalar field in a
background constructed by gluing together two Reissner-
Nordström solutions. The junction conditions for these
configurations correspond to those of Palatini fðRÞ theo-
ries, which involve a thin-shell that stabilizes the solution
for a certain range of positive or negative energy densities,
depending on model parameters. As a result, we can deal
with symmetric and asymmetric wormholes that represent
electrovacuum spacetimes, which can have the same or
different charge and mass on each side. The asymmetric
configurations will be referred to as RN-AWH, which
stands for Reissner-Nordström asymmetric wormhole.
The content of this paper is organized as follows. In

Sec. II we review the construction of the RN-AWH in
Palatini fðRÞ gravity, and specify the parameter space
that we will consider in the following sections. The
absorption problem is described in Sec. III, where we
present a selection of our numerical results and provide a
discussion about the emergence of resonant peaks in the
absorption cross section. Finally, we summarize our results
and discuss some perspectives in Sec. IV.

II. ASYMMETRIC WORMHOLES
IN PALATINI f ðRÞ

A. Framework: Spacetime surgery

The spacetime surgery is a well-known technique to
construct wormhole spacetimes [14,17]—which are called
thin-shell wormholes. In 4-dimensions general relativity,
these objects are constructed in such a way that they violate
the energy conditions just in a thin layer of the manifold.
However, modified theories of gravity and also general
relativity in higher dimensions enable the construction
of thin-shell wormholes supported by nonexotic matter
[71,73–76]. The construction follows from the cut and
paste procedure. By considering two smooth manifolds,
say M� (with associated metrics g�μν), one may cut them
so that each one becomes bounded by a timelike surface
Σ�. After that, one may paste them together at their
boundary timelike surfaces, producing a single manifold
M ¼ M− ∪ Mþ with a thin hypersurface Σ ¼ Σ� ¼
M− ∩ Mþ that connects two regions with geometries
governed by g−μν and gþμν. In fact, across the hypersurface Σ
several discontinuities on geometric and matter quantities
may exist [84], then one needs to use a suitable framework
to describe these structures (one may use tensorial distri-
butions instead of tensorial functions). In essence, the
geometric and matter quantities must satisfy at the hyper-
surface Σ the so-called junction conditions [85]. Among
them, the simplest one is to require the metric to be
continuous across the hypersurface, gþμνjΣ ¼ g−μνjΣ, while
the other junction conditions are usually deeply dependent
on the chosen gravity model.
Here we will consider the family of fðRÞ gravity

theories constructed à la Palatini, i.e., with the spacetime
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metric and the affine connection being independent gravity
fields. Here fðRÞ denotes a function of the Ricci scalar
R≡ gμνRðμνÞðΓÞ, with gμν being the contravariant compo-
nents of the spacetime metric and RðμνÞðΓÞ the symmetric
part of the Ricci tensor, constructed only as a function of
the affine connection Γ (with components Γα

μν). The action
of the fðRÞ model is

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞþ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lmðgμν;ψmÞ; ð1Þ

where κ2 is the gravitational constant in suitable units, g is
the metric determinant and Lm is the matter Lagrangian,
which depends on the metric and matter fields. In the
Palatini picture, by varying the action (1) with respect to
the metric and the affine connection, one finds the field
equations

fRRðμνÞ −
1

2
fðRÞgμν ¼ κ2Tμν; ð2Þ

∇Γ
λ ð

ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0; ð3Þ

where Tμν ≡ 2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν is the so-called energy-

momentum tensor and fR ≡ df=dR. The right-hand side
of Eq. (3) is zero because we assume that the matter
Lagrangian is independent of the affine connection [86].
Taking the trace of Eq. (2), one finds that there is an
algebraic relation between the Ricci scalar and the matter
fields, such that R≡RðTÞ, where T is the trace of the
energy-momentum tensor. This relation, together with the
bimetric structure introduced by Eq. (3) (Γ is Levi-Civita of
an auxiliary metric qμν ≡ fRðTÞgμν), allows one to inter-
pret the Palatini fðRÞ as similar to general relativity plus
additional couplings in the matter fields.
In order to analyse the glued spacetimes, we move to a

consistent mathematical framework to study geometric and
matter fields, i.e., we start to consider tensorial distributions
instead of tensorial functions. In this approach, the metric
and energy-momentum distributions can be written as [84]

g
μν

¼ gþμνθ þ g−μνð1 − θÞ; ð4Þ

Tμν ¼ Tþ
μνθ þ T−

μνð1 − θÞ þ SμνδΣ; ð5Þ

where underlined quantities denote distributions. In Eq. (4)
we used the continuity condition of the metric across the
hypersurface. T�

μν are the energy-momentum tensors on
each side of the hypersurface, respectively M�; θ is the
Heaviside step function, which takes the value 1 in Mþ, 0
inM− and any reference value on the hypersurface; δΣ is a
Dirac’s delta-type distribution with support on the hyper-
surface, defined by hδΣ; Xi≡ R

Σ X, for any function X; and
Sμν is the singular part of the energy-momentum tensor on

the hypersurface. Analogously to Eq. (5), the distributional
form of the trace of the energy-momentum tensor is
given by

T ¼ Tþθ þ T−ð1 − θÞ þ SδΣ; ð6Þ

where S ¼ Sρρ is the trace of the singular part of the energy-
momentum tensor.
As mentioned above, although the metric is continuous

(but not differentiable) across the hypersurface, other
curvature and matter distributions are not. In order to
identify the allowed discontinuities of these quantities
across the hypersurface, one has to make use of the junction
conditions, which introduces constrains in the discontinu-
ities of curvature and matter quantities in both sides of the
hypersurface. These junction conditions are highly influ-
enced by the considered gravitational framework, and in
alternative theories of gravity these conditions may change
significantly from general relativity. Considering the
Palatini fðRÞ framework, the junction conditions are

½gμν� ¼ 0 and ½hμν� ¼ 0; ð7Þ

½T� ¼ 0 and S ¼ 0; ð8Þ

1

3
hμν½Kρ

ρ� − ½Kμν� ¼ κ2
Sμν
fRjΣ

; ð9Þ

DρSρν ¼ −nρhσν ½Tρσ�; ð10Þ

ðKþ
ρσ þ K−

ρσÞSρσ ¼ 2nρnσ½Tρσ� −
3R2

Tf
2
RR

fR
½b2�; ð11Þ

where the brackets denote discontinuity of the quantity
inside them, across the hypersurface Σ, i.e., ½A�≡
AþjΣ − A−jΣ. (For details in the derivation of these junction
conditions see Ref. [70].) hμν ¼ gμν − nμnν is the pullback
of the first fundamental form (the induced metric on the
hypersurface Σ), with nμ being the unit vector normal
to Σ, and K�

μν ≡ hρμhσν∇�
ρ nσ is the pullback of the second

fundamental form (the extrinsic curvature). In the last two
junction conditions, Dρ ≡ hρα∇a is the covariant derivative
on the hypersurface, RT ≡ dR=dT and b≡ nμ½∇μT�.
In general relativity, both the metric and Palatini for-

malisms result in the same set of field equations. However,
by considering a fðRÞ Lagrangian, the metric and Palatini
approaches lead to completely different sets of equations of
motion. Consequently, the junction conditions of Palatini
fðRÞ largely depart from the corresponding expressions in
general relativity and in the metric version of fðRÞ. A
remarkable aspect of the Palatini fðRÞ junction conditions
is the vanishing of brane tension, S. In the framework of
general relativity, one has hμν½Kρ

ρ� − ½Kμν� ¼ κ2Sμν instead
of Eq. (9), and the brane tension in general is nonvanishing,
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κ2S ¼ 2½Kρ
ρ�. In the framework of Palatini fðRÞ it does

happen regardless of the behavior of ½Kρ
ρ�.

B. Asymmetric RN-RN wormholes

With the junction conditions [Eqs. (7)–(11)] one can
match two static and spherically symmetric spacetimes
M� on a given hypersurface Σ, constructing a wormhole
that connects two regions by a throat. The line elements of
each side of the throat can be written as

ds2� ¼ −A�ðr�Þdt2 þ B−1
� ðr�Þdr2� þ r2�dΩ2; ð12Þ

where dΩ ¼ dθ2 þ sin2 θdϕ2 is the line element of a unit
sphere and A�ðr�Þ and B�ðr�Þ are the metric functions on
each side of the throat, which depend only on r�, i.e., the
radial coordinate on each side. The hypersurface Σ has
coordinates xμ ¼ ðt; R; θ;ϕÞ, where r� ¼ R is the areal
radius of it. One can parametrize this hypersurface in terms
of the proper time τ of an observer comoving to it. Hence,
the line element on Σ can be written as [19]

ds2Σ ¼ −dτ2 þ R2ðτÞdΩ2: ð13Þ

The tangent vectors to the hypersurface are eμθ ¼ ð0;0;1;0Þ,
eμϕ ¼ ð0; 0; 0; 1Þ, and Uμ ¼ ð_t; _R;0;0Þ, while the unit vector
normal to Σ on each side is nμ� ¼ �ð _R= ffiffiffiffiffiffiffi

AB
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ _R2

p
;

0; 0Þ, where the overdot denotes derivatives with respect to
the proper time, and the functions A ¼ A�ðRÞ and B ¼
B�ðRÞ are the metric functions evaluated at r� ¼ R.
One can compute the components of the extrinsic

curvature on each side of the hypersurface (in general they
are not equal, since although the metric is continuous
over Σ, its derivative is not) via K�

ij ¼ eμi e
ν
j∇�

μ nν [70].
Therefore, the nonvanishing components of the second
fundamental form are Ki

j
� ¼ diagðKτ

τ
�; Kθ

θ
�; Kθ

θ
�Þ,

with [40]

Kτ
τ
� ¼ �B2

�AR� þ ðB�AR� − A�BR�Þ _R2 þ 2A�B�R̈

2A�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� þ _R2

p ;

ð14Þ

Kθ
θ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� þ _R2

p
R

; ð15Þ

where AR ≡ dA=dR and BR ≡ dB=dR.
The matter content of the thin shell (the singular part of

the energy-momentum tensor) can be modeled as a perfect
fluid distribution, i.e., Sμν ¼ diagð−σ;P;PÞ, where σ and
P are the surface energy density and the tangential surface
pressure density, respectively. Due to Eq. (8) one finds that
the pressure density P ¼ σ=2 is fully determined by the
energy density σ (particularly inheriting its sign), hence in
Palatini fðRÞ no equation of state P ¼ PðσÞ is required to

close the system, which contrasts with general relativity
and metric fðRÞ [71], and the number of effective degrees
of freedom is reduced to just one.
With the junction condition (9), one moves the problem

to determine the energy density of the system to compute
the difference between the discontinuities of the extrinsic
curvature components, i.e.,

½Kτ
τ� − ½Kθ

θ� ¼
3κ2

2fRjΣ
σ: ð16Þ

Finally, we look for the energy conservation relation (10),
which in the spherically symmetric case reduces to

−DρSρν ¼
�
_σ þ 2 _R

R
ðσ þ PÞ

�
δτν ¼ nρhσν½Tρσ�; ð17Þ

where δτν ¼ ð1; 0; 0Þ. Using the relation between the
pressure and energy densities, one finds that

1

R3

dðσR3Þ
dτ

δτν ¼ nρhσν½Tρσ�; ð18Þ

which leads to simple solutions for σ in the case where its
right-hand side vanishes, namely σ ¼ C=R3, where C is an
integration constant. Fortunately, in the electrovacuum
scenario this is true. To see it, we recall that for any
electrostatic, spherically symmetric field described by a
nonlinear electrodynamics, the energy-momentum tensor
associated to it can be written as Tρ

σ ¼ diagð−ϕ1ðrÞ;
−ϕ1ðrÞ;ϕ2ðrÞ;ϕ2ðrÞÞ, where the functions ϕi characterize
each particular configuration. (In Maxwell electrodynam-
ics, ϕiðrÞ ¼ −q2=r4, with q being the charge per unit
mass of the system. In vacuum, ϕi ¼ 0.) By contracting
the normal vector to the hypersurface with the energy-
momentum tensor, one finds that nρTρ

ν ¼ −ϕ1ðrÞnν, hence
the right-hand side of Eq. (18) becomes

nρhσν½Tρσ� ¼ nρhσν½Tρ
σ� ¼−ðϕþ

1 ðrÞ−ϕ−
1 ðrÞÞnσhσν; ð19Þ

which is identically zero, since

nσhσν ¼ nσðgσν − nσnνÞ ¼ nν − nν ≡ 0: ð20Þ

Therefore, any two electrovacuum spacetimes supported by
electrostatic and spherically symmetric fields can be glued
together at a hypersurface Σ with surface energy density
σ ¼ C=R3. Here, in particular, we are interested in cutting
and pasting two Reissner-Nordström (RN) spacetimes, that
have different charges and masses, being described by the
following line elements

ds2� ¼ −f�ðr�Þdt2 þ
dr2�

f�ðr�Þ
þ r2�dΩ2; ð21Þ

MAGALHÃES, MASÓ-FERRANDO, OLMO, and CRISPINO PHYS. REV. D 108, 024063 (2023)

024063-4



with f�ðr�Þ ¼ 1–2M�=r� þQ2
�=r

2
�, where M� and Q�

are the mass and charge on each RN spacetime, respec-
tively. We point out that we do not impose the restriction
Q < M. For Q > M, the line element (21) describes an
overcharged RN space-time, which is a naked singularity.
We emphasize that all wormholes studied here are geo-
desically complete, since the matching surface is located
beyond where the singularity would be.
One can use the field equation on the shell (16) to

write [40]

R̈ ¼
γ − 3MþR−2Q2

þ−R2ð _R2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞþ _R2

p − 3M−R−2Q2
−−R2ð _R2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f−ðRÞþ _R2
p

R3

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fþðRÞþ _R2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f−ðRÞþ _R2
p

� ; ð22Þ

where γ ¼ 3κ̃2C=2 is the energy parameter, with κ̃2 ¼
κ2=fRjΣ being a constant, once R ¼ RðTÞ in any Palatini
fðRÞ theory is determined, and we are considering a trace-
free energy-momentum tensor. In order to study the linear
stability of these (asymmetric) wormhole solutions, one
assumes that there is an equilibrium configuration, such
that _R ¼ 0, and expands Eq. (22) in Taylor series around
the throat radius of the equilibrium configuration R0 [40],
which at first order gives

R̈ ≈ C1ðR0Þ þ C2ðR0ÞðR − R0Þ þOðR − R0Þ2; ð23Þ

where C1 and C2 are cumbersome functions of R0, γ, and
of the masses and charges of each side. As discussed in
Ref. [40], to have an equilibrium configuration, the first
term of the expansion must vanish, and the second one must
be negative for a stable equilibrium.
Before we discuss the stability condition, it will be

convenient to introduce a set of dimensionless variables, in
order to simplify the expressions, namely

r� ¼ x�M−; R ¼ xM−; R0 ¼ x0M−;

τ ¼ τ̃M−; t ¼ t̃M−; Q2
− ¼ yM2

−;

Q2þ ¼ ηQ2
−; Mþ ¼ ξM−; γ ¼ γ̃M2

−;

where x� are the dimensionless radial coordinates on each
side of the throat, x is the dimensionless radius of the throat,
x0 is the dimensionless radius of the throat of an equilib-
rium configuration, y is the charge-to-mass ratio in M−, η
gives the relation between the charge content inMþ and in
M− (for simplicity, we shall later on refer to η as charge-to-
charge ratio), τ̃ and t̃ are dimensionless time variables, and
ξ is the mass-to-mass ratio between the two sides, which
due to the continuity of the metric across Σ, must satisfy

ξ ¼ 1 −
y
2x

ð1 − ηÞ: ð24Þ

Now we can continue our discussion about the stability
of equilibrium solutions. The equilibrium condition
(C1 ¼ 0) leads us to

γ̃ ¼ −x0
4ðx0 − 3Þx0 þ ðηþ 7Þy
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx0 − 2Þx0 þ y
p ; ð25Þ

and substituting this expression in Eq. (23), one finds an
equation of the form

d2δðτ̃Þ
dτ̃2

þϖ2δðτ̃Þ ¼ 0; ð26Þ

where δðτ̃Þ≡ xðτ̃Þ − x0 and ϖ2 is given by

ϖ2 ¼ −
4x0yðη − ðη − 7Þx0 − 17Þ þ ððη − 1Þ2 þ 16Þy2

8x40ððx0 − 2Þx0 þ yÞ

−
8ð2x20 − 8x0 þ 9Þx20
8x40ððx0 − 2Þx0 þ yÞ : ð27Þ

Therefore, the stability condition ðC2 < 0Þ is obtained by
requiring that ϖ2 > 0.

C. Parameters space

Equations (25) and (27) can be used to track the set of
parameters fx0; η; yg that describes stable ðϖ2 > 0Þ thin
shells wormhole solutions supported by positive ðγ̃ > 0Þ or
negative ðγ̃ < 0Þ surface energy densities. Let us inves-
tigate these two scenarios.

1. Positive energy stable configurations

By requiring ϖ2 > 0 and γ̃ > 0, one finds that the
dimensionless parameters fx0; η; yg are constrained by

2

15
ð10 −

ffiffiffiffiffi
10

p
Þ < x0 <

2

15
ð10þ

ffiffiffiffiffi
10

p
Þ ð28Þ

η−1 < η < ηþ1 ; ð29Þ

y−1 < y < yþ1 ; ð30Þ

where

η�1 ¼ −15þ 34x0 − 12x20
33 − 28x0 þ 6x20

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð216 − 504x0 þ 399x20 − 130x30 þ 15x40Þ

q
33 − 28x0 þ 6x20

;

ð31Þ

y−1 ¼ a − 2
ffiffiffi
b

p

η2 − 2ηþ 17
; ð32Þ
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yþ1 ¼ 4x0ð3 − x0Þ
ηþ 7

; ð33Þ

with a ¼ 2x0ð17 − ηþ ðη − 7Þx0Þ and b ¼ −x20ð17−
2η þ 17η2 − 2x0ð17 þ 8η þ 7η2Þ þ x20ð19 þ 3ηðη þ 2ÞÞÞ.
Equations (28)–(30) determine the possible stable, positive
energy (SPE) configurations allowed by gluing two RN
spacetimes in Palatini fðRÞ framework. The banana-
shaped blue region in Fig. 1 represents the parameter
space of SPE wormholes.

2. Negative energy stable configurations

Now, looking for ϖ2 > 0 and γ < 0, one finds stable,
negative energy (SNE) wormhole configurations—that are
associated with two different parameter spaces. The first
group of solutions lies in the region identified by the
constraints:

If
2

3
< x0 ≤

2

15
ð10 −

ffiffiffiffiffi
10

p
Þ; η−2 < η < ηþ2 ; ð34Þ

if
2

15
ð10 −

ffiffiffiffiffi
10

p
Þ < x0 < 1;

η−2 < η ≤ η−1 or ηþ1 < η < ηþ2 ; ð35Þ

if 1 ≤ x0 <
2

15
ð10þ

ffiffiffiffiffi
10

p
Þ;

η−2 < η < η−1 or ηþ1 < η < ηþ2 ; ð36Þ

if x0 ¼
2

15
ð10þ

ffiffiffiffiffi
10

p
Þ;

η−2 < η < η−1 or η−1 < η < ηþ2 ; ð37Þ

if
2

15
ð10þ

ffiffiffiffiffi
10

p
Þ < x0 < 2; η−2 < η < ηþ2 ; ð38Þ

with dimensionless charge (in M−) bounded by

y−1 < y < yþ2 ; ð39Þ

where

η�2 ¼ 1þ 8x0 − 3x20
x0ð3x0 − 14Þ þ 17

�
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð6x40 − 40x30 þ 99x20 − 104x0 þ 36Þ

q
x0ð3x0 − 14Þ þ 17

;

yþ2 ¼ aþ 2
ffiffiffi
b

p

η2 − 2ηþ 17
: ð40Þ

The second group of solutions lies in the region identified
by the constraints:

If
2

15
ð10 −

ffiffiffiffiffi
10

p
Þ < x0 < 1; η−1 < η < ηþ1 ; ð41Þ

if 1 < x0 <
2

15
ð10þ

ffiffiffiffiffi
10

p
Þ; η−1 ≤ η ≤ ηþ1 ; ð42Þ

if x0 ¼
2

15
ð10þ

ffiffiffiffiffi
10

p
Þ; η ¼ η−1 ; ð43Þ

with dimensionless charge constrained by

yþ1 < y < yþ2 : ð44Þ

The union of the two parameter spaces that identify SNE
asymmetric wormholes is plotted in red in Fig. 1.
As we can see in Fig. 1 SPE space of parameters is

embedded onto the SNE space of parameters. However it
has to be pointed out that there is not any intersection
between both regions. Then, as one can expect, there is not
any configuration for which we can have positive and
negative energy at the same time. In Fig. 13 of Appendix an
orthographic projection of Fig. 1 is depicted for the sake of
showing in a more clear way the features explained above.
Henceforth, we will consider only stable configurations,

i.e., for now on we will always locate the throat of the
wormhole at x0.

3. Event horizon location

Since (two-way) traversable wormholes must have their
two sides causally connected, an important point to set up is
whether a RN-AWH has an event horizon, and if it does,
whether the throat covers it. Using the dimensionless
variables, one finds that the event horizon location, on
each side, is given by

FIG. 1. Parameter spaces for positive (blue region) and negative
(red region) energy stable asymmetric wormholes.
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xh− ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
; ð45Þ

xhþ ¼ ξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − ηy

q
: ð46Þ

Then, in order to prevent the two universes to be causally
disconnected, x0 must be put above xh� on each side of
the wormhole. This requirement leads to the following
constraints:

0 < y ≤ 1 and x0 > 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
; ð47Þ

y > 1 and 0 < x0 <
y
2

or x0 >
y
2
; ð48Þ

0 < η ≤ 1þ 2x0ðx0 − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx0 − 2Þ þ y

p Þ
y

: ð49Þ

In the subsequent sections, we investigate only stable
two-way traversable wormholes, that is either a RN black
hole glued with a RN naked singularity or two naked
singularities glued together. The possibility of having two
RN black holes glued together is excluded because it leads
to unstable configurations. Note that, when we refer to
either RN black hole or RN naked singularity, we are
referring to their space-times beyond the event horizon and
the singularity, respectively.

III. ABSORPTION AND SPECTRAL LINES

A. Wave equation

Let us consider a massless scalar field, Φ, lying in a
RN-AWH background. The dynamics of this field, on each
side of the wormhole, is described by the Klein-Gordon
equation

□�Φ� ¼ 0; ð50Þ

where □� and Φ� denote the d’Alembertian operator and
the scalar field, respectively, on each side of the throat.
Due to spherical symmetry, the solution of Eq. (50) can be
written as

Φ� ¼ ψ�ðx�Þ
x�

Ylmðθ;ϕÞe−iω̃ t̃; ð51Þ

where ω̃ is a dimensionless frequency (defined by
ω̃≡ ωM−), and the radial functions ψ� satisfy

f�ðx�Þ
d

dx�

�
f�ðx�Þ

dψ�
dx�

�
þ ðω̃2 − Ṽ�ðx�ÞÞψ� ¼ 0;

ð52Þ

with Ṽ� being the dimensionless effective potential on each
side of the throat, given by

Ṽ�ðx�Þ ¼
f�ðx�Þ
x�

df�
dx�

þ f�ðx�Þ
x2�

lðlþ 1Þ: ð53Þ

The metric functions f�ðx�Þ explicitly written in terms of
the dimensionless radial coordinates are

f−ðx−Þ ¼ 1 −
2

x−
þ y
x2−

; ð54Þ

fþðxþÞ ¼ 1 −
2ξ

xþ
þ ηy
x2þ

: ð55Þ

One could think that the nondifferentiability of the metric
would introduce a delta-type contribution at the throat
in the effective potential. However, one can argue that,
since the metric is continuous across the shell and the
d’Alembertian operator contributes only with the first
derivative of the metric, ∂μgαβ, and the first derivative of
the metric determinant, ∂μg ¼ ggαβ∂μgαβ; no delta-type
distribution will appear in the effective potential. In the
distributional approach, we have [84]

∂μgαβ ¼ ∂μg
þ
αβθ þ ∂μg−αβð1 − θÞ þ nμ½gαβ�δΣ; ð56Þ

and analogously

∂μg ¼ ∂μgþθ þ ∂μg−ð1 − θÞ þ nμ½g�δΣ: ð57Þ

If the metric is continuous across the shell, both ½gαβ�
and [g] must vanish, therefore no delta-type distribution
appears in the effective potential. However, if the metric is
discontinuous across the shell, as in the case of dirty black
holes [87], one expects the appearance of a delta-type
contribution in the effective potential.
It will be convenient to introduce a global radial

coordinate to describe the spacetime, which is implicitly
defined by

dx⋆ ¼ � dx�
f�ðx�Þ

: ð58Þ

The main advantage of this new coordinate is that it
combines the information of two independent domains,
namely x− ∈ ½x0;∞Þ and xþ ∈ ½x0;∞Þ, in a single domain
x⋆ ∈ ð−∞;∞Þ. Moreover, with a suitable choice of inte-
gration constant, the throat location moves to x⋆ðx0Þ ¼ 0.
By using the global radial coordinate (58), one may write
Eq. (52) as a Schrödinger-like equation, namely

d2ψ
dx2⋆

þ ðω̃2 − Ṽðx⋆ÞÞψ ¼ 0; ð59Þ

where we dropped the � in the subscripts, since the global
radial coordinate allows us to express the radial function
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and the effective potential as functions of x⋆, respectively,
ψðx⋆Þ and Ṽðx⋆Þ.

B. Effective potential

The effective potential plays a key role in understanding
the dynamics of the scalar field. Since the RN-AWH
consists of two RN spacetimes glued, it is convenient to

analyze the effective potential of the RN spacetime first.
The effective potential of a RN spacetime is [88]

VRNðrÞ ¼
fðrÞ
r

df
dr

þ fðrÞ
r2

lðlþ 1Þ; ð60Þ

where fðrÞ ¼ 1–2M=rþQ2=r2, with M and Q being the
mass and charge of the black hole, respectively. Similar
to Eq. (58), one may define a new radial coordinate, the
so-called tortoise coordinate, that moves the event horizon
location to −∞, namely dr⋆ ¼ dr=fðrÞ, so that the
causally connected part of the manifold is described
by r⋆ ∈ ð−∞;∞Þ. From Eq. (60) we notice that the

effective potential vanishes at the event horizon r ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and at the spacial infinity, i.e., VRN → 0,

r⋆ → �∞. In Fig. 2 we plot the effective potential, for
Q2=M2 ¼ 0.5 and some angular momentum numbers l, as
a function of the tortoise coordinate. As can be seen from
Fig. 2, the effective potential has a peak that varies with l.
In the eikonal limit (l ≫ 1) the dominant term of the
effective potential is proportional to fðrÞ=r2, i.e., it has the
same dependence on r as the classical scattering potential
that appears when studying the motion of null-like particles

FIG. 2. Effective potential of a RN black hole with
Q2=M2 ¼ 0.5.

FIG. 3. Typical behaviors of the effective potential of RN-AWHs. In the top row we plot the effective potential for two SPE
configurations and in the bottom row we plot the effective potential for two SNE configurations.
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in the RN background. Consequently, for large values of l,
the location of the effective potential peak is at the photon
sphere, namely

rγ ¼
3M
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
: ð61Þ

In the classical scattering process, the peak of the effective
potential has the value VRNðrγÞ ¼ fðrγÞ=r2γ ¼ 1=b2c, where
bc is the so-called critical impact parameter.
Now we can discuss the effective potential of RN-

AWHs. Just like in the black hole case, the effective
potential of the RN-AWH vanishes far from the throat,
i.e., Ṽ → 0, x⋆ → �∞. As we get closer to the throat, the
effective potential increases and it may have a peak on each
side of the throat, depending on the shell location. Since the

metric function is not differentiable at x⋆ ¼ 0, the effective
potential may have a discontinuity (“jump”) at the throat,
that is, ½Ṽ� ≠ 0, when gluing different spacetimes. In Fig. 3
we plot some typical behaviors of the effective potential for
RN-AWHs. We notice that the number of peaks varies,
depending on the throat location, since it may be located
before or after the peak of the effective potential on each
side. By gluing a RN black hole with a RN naked
singularity at least one peak is present. By gluing two
different RN naked singularities a sharp discontinuous peak
appears apart from the possible smooth peaks; however, it
is important to point out that, at this peak, dṼ=dx⋆ ¼ 0 is
not satisfied. Actually, Ṽ is not differentiable at x⋆ ¼ 0
(one can also find discontinuous effective potentials in
Refs. [87,89,90]). In Fig. 4, we exhibit the embedding
diagrams of the RN-AWHs considered in Fig. 3.

FIG. 4. Embedding diagrams of the RN-AWHs considered in Fig. 3 (the display order is the same as in Fig. 3).
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C. Boundary conditions

In Fig. 5, using the Carter-Penrose diagram of RN-
AWHs, we illustrate the scattering process. Let us consider
a monochromatic plane scalar wave incoming from the past
null infinity of Mþ, I−

Mþ
. This wave will interact with the

effective potential; part of it will be reflected to the future
null infinity ofMþ, Iþ

Mþ
; and part of it will be transmitted

to the future null infinity of M−, I
þ
M−

. Therefore, the
stationary boundary conditions of this phenomenon consist
of a composition of ingoing and outgoing (distorted) plane
waves far from the object in one side of the wormhole,
and purely outgoing waves far from the object on the other
side, i.e.,

ψðx⋆Þ ∼
�
e−iω̃x⋆ þRω̃leiω̃x⋆ ; x⋆ → þ∞;

T ω̃le−iω̃x⋆ ; x⋆ → −∞;
ð62Þ

whereRω̃l and T ω̃l are complex coefficients related to the
reflection and transmission coefficients, respectively. In
order to obtain Rω̃l and T ω̃l, one performs an integration
from one asymptotic region to the other.
We have also to specify the behavior of the field at the

throat. Just like the metric, we assume that the field is
continuous across the throat, i.e., ½Φ� ¼ 0 (hence ½ψ � ¼ 0),
and since no delta-type distribution appears in the effective

potential, we can assume that the field is also differentiable
at the shell, that is, ½dψ=dx⋆� ¼ 0 (see Refs. [36,41] for
some works in the literature considering the differenti-
ability of the field, despite the nondifferentiability of the
metric function).

D. Scalar absorption

By using the partial wave expansion together with the
boundary conditions (62), one can write the (dimension-
less) total scalar absorption cross section of RN and
RN-AWHs as [65,88]

σ̃abs ¼
X∞
l¼0

σ̃l; ð63Þ

where σ̃l ≡ πð2lþ 1ÞΓω̃l=ω̃2 are the (dimensionless)
partial absorption cross sections, and Γω̃l ≡ 1 − jRω̃lj2 ¼
jT ω̃lj2 is the so-called graybody factor, i.e., the trans-
mission probability of a mode with frequency ω̃ [91]. In
black hole scenarios, the total absorption cross section (63)
has two well-known limits for stationary geometries,
namely, the low-frequency regime ðω̃ → 0Þ, where the
absorption cross section goes to the area of the black
hole [92], and the high-frequency regime ðω̃ → ∞Þ, where
the absorption cross section oscillates around the geomet-
rical absorption cross section [93] (the area of a disk with
radius equal to the critical impact parameter). In wormhole
scenarios these limits are not so clear. For instance, some
previous results in the literature show that, in the zero-
frequency regime, the total absorption cross section for
wormholes can differ from black hole cases [64,65].
In Fig. 6 we plot the total absorption cross section of

two SPE wormholes, namely fx0 ¼ 1.7;η¼ 2.5; y¼ 0.92g
and fx0 ¼ 1.5; η ¼ 2; y ¼ 0.95g, and compare it with the
total absorption cross section of a RN black hole with the
same charge-to-mass ratio as for the case of M−, i.e.,
y ¼ Q2

−=M2
− ¼ Q2=M2. The effective potential of the two

wormhole configurations considered in Fig. 6 are exhib-
ited in Fig. 3. We notice that, in the high-frequency
regime, the total absorption cross section of RN-AWHs
(constructed with a RN black hole in M−) goes to the RN
black hole profile, i.e., it oscillates around the classical
absorption cross section. However, at low-frequencies the
behavior of the absorption spectra is different from the
corresponding black hole case. In the zero-frequency
limit, the total absorption cross section of RN-AWHs is
much smaller than the corresponding black hole one, in
accordance to what has been obtained in other wormhole
configurations [64,65].
In order to investigate how the energy density of the

shell that supports the wormhole configuration affects
the absorption spectra, let us first analyze SPE and SNE
configurations with the same wormhole throat, x0,
and charge-to-charge ratio, η, but with dimensionless
charge, y, constrained in different ways. By fixing x0 ¼ 1.5

FIG. 5. Carter-Penrose diagram of a RN-AWH. Each triangle
represents an asymptotically flat spacetime, connected by a
wormhole throat, represented by the vertical dotted line. The
arrows illustrate the scattering process. Here, Iþ and I−

represent, respectively, the future and past null infinities, i0

indicates the spacelike infinity and iþ and i− are, respectively,
the future and past timelike infinities. (Labels without subscript
represent regions of the two sides of the wormhole that are
superposed in the Carter-Penrose diagram.)
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and η ¼ 2, the energy parameter of the shell diminishes
as one increases the charge-to-mass ratio y [see Eq. (25)].
For these parameters, one finds that shells with positive-
energy density can support stable solutions with dimen-
sionless charge 0.919184 < y < 1. However, to support
stable wormholes with higher values of dimensionless
charge, shells with negative energy content are required.
With this choice of parameters, a negative-energy shell
can support a stable wormhole with dimensionless charge
1 < y < 1.72787. A glance at Fig. 3 shows that these two
families of configurations have solutions with significant
differences in their effective potentials. For instance, we
can have SPE configurations with x0 ¼ 1.5 and η ¼ 2,
presenting two local maxima and a discontinuous valley
between them for moderate-to-high values of l, while we
can have SNE configurations, with x0 ¼ 1.5 and η ¼ 2,
without a local maximum (where dṼ=dx⋆ ¼ 0), but with a
sharp peak near the shell for moderate-to-high values of l.
One may expect that these differences in the effective
potential lead to different behaviors of the absorption
profile. This will be explored later in this section.
In Fig. 7, we exhibit the absorption cross section of

some SPE (top panel) and SNE (bottom panel) RN-AWHs

configurations. We notice that increasing the dimensionless
charge in M− diminishes the total absorption cross section
for moderate-to-high frequencies for both SPE and SNE
wormholes. For SPE configurations, as we decrease y
(consequently increasing the energy parameter of the
shell γ̃) additional peaks arise. These new peaks get
higher and are shifted to the left as the positive-energy
density of the shell increases. The new peaks are related
with quasibound states that can exist around the throat
[64,65], that appear due to the presence of valleys in the
effective potential (a discussion about them will follow in
Sec. III E). On the other hand, for SNE configurations, as
y increases (hence requiring “more” negative shells) the
behavior of the total absorption cross section can differ
significantly from previous absorption profiles found in
the literature. For this family of parameters, in the zero-
frequency limit, as the energy density of the shell becomes
more negative, the absorption cross section increases,
getting bigger than the ones of standard black holes. This
result should be related with the effective potential for

FIG. 7. Absorption spectra of RN-AWHs with x0 ¼ 1.5 and
η ¼ 2, supported by SPE- (top panel) and SNE (bottom panel)
thin shells. The dashed lines are the shadow areas associated
with the highest peak of the effective potential in the eikonal
limit (l ≫ 1).

FIG. 6. Comparison of the absorption cross section of RN-
AWHs and RN black holes with the same charge-to-mass ratio.
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l ¼ 0. Additionally, the oscillatory pattern of the total
absorption cross section slowly diminishes and
approaches a straight line. This high-frequency behavior
is related with the sharp peaks that appear in the effective
potential at the throat. In the eikonal limit, the total
absorption cross section of spherically symmetric black
holes oscillates around their shadow area, with the shadow
radius being the critical impact parameter, which is
associated with null geodesics trapped in the last photon
orbit—the photon sphere. In wormholes scenarios, it is
possible to have an effective photon sphere at the throat,
and it may cast novel shadows and different gravitational
lensing features compared with black holes [39,94,95].
Here we notice that, the throat, where we have the sharp
peak of the effective potential, acts like an effective
photon sphere, which can be associated with an effective
critical impact parameter, bec ¼ x0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðx0Þ

p
, that gets

smaller as one increases the dimensionless charge y (i.e.,
the sharp peak gets higher as y approaches y ≈ 1.72787).
Hence, one expects that in the high-frequency regime, the
absorption cross section goes to the area of this novel
shadow, Ans ¼ πx20=f�ðx0Þ.
Since 0 < y < 1, the absorption spectra of RN-AHWs

goes to the RN one in the eikonal limit, and the effects of
the other parameters, namely x0 and η, are less relevant in
the limit that ω̃ ≫ 1. However, for low-energy waves the
absorption profile has a deep dependence on the shell
location, x0, and on the charge-to-charge ratio between the
wormhole sides, η. In order to investigate how the param-
eters beyond the charge-to-mass ratio influence the absorp-
tion process, let us first fix the dimensionless charge and the
shell location, namely let us set y ¼ 0.92 and x0 ¼ 1.5. For
fixed values of x0 and y, the energy parameter of the shell
decreases as we increase the charge-to-charge ratio η. Then,
one finds that with this choice of parameters, wormholes
are supported by SPE shells if 1.98959 < η < 2.78261 and
are supported by SNE shells if 2.78261 < η < 3.27128. In
Fig. 8 we plot SPE (top panel) and SNE (bottom panel)
configurations with x0 ¼ 1.5 and y ¼ 0.92 for different
choices of η. In the high-frequency regime the total
absorption cross section oscillates around the classical
absorption cross section, as in the RN case, and the role
of η is less relevant. However, we notice that the charge-to-
charge ratio strongly affects the absorption spectra for
ω̃ < 1. From Fig. 8 we notice that the narrower peaks that
arise in the wormhole absorption spectra are shifted to the
left as we increase the value of η, and the first peak gets
higher for greater values of η, regardless of the sign of the
shell’s energy-density. The behavior of the other narrower
peaks is different depending on the energy content of the
shell, namely: (i) if the shell has a positive-energy density,
then increasing the charge-to-charge ratio (which corre-
sponds to decrease the energy parameter γ̃) diminishes the
other narrower peaks; and (ii) if the shell has negative-
energy density, increasing η (consequently going to more

negative values of γ̃) also increases the other narrower
peaks.
In order to investigate how the shell location affects

the absorption cross section, let us first consider a
configuration with dimensionless charge y < 1. In
Fig. 9 we plot the total absorption cross section for
some RN-AWHs with y ¼ 0.92, η ¼ 2.5 and different
shell locations, x0. We also compare the absorption
spectra of those AWH configurations with the one of
a RN black hole with the same value as dimensionless
charge. Again, we notice that in the high-frequency
regime, the total absorption cross section of these
configurations presents the RN profile, oscillating around
the classical absorption cross section. However, in the
low-frequency regime, the behavior of the absorption
spectra is significantly modified by the shell location,
since the shape of the effective potential is particularly
dependent on the throat location. From Fig. 9, we notice
that configurations with smaller shell radius have bigger
absorption peaks, slightly shifted to the left, in the low-
frequency regime, and may exhibit additional sharp peaks
as x0 diminishes.

FIG. 8. Absorption spectra of RN-AWHs with x0 ¼ 1.5 and
y ¼ 0.92, supported by SPE (top panel) and SNE (bottom panel)
thin shells.
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When considering y > 1, both η and x0 may remarkably
affect the absorption spectra. If M− is a naked RN
spacetime, then the charge-to-charge ratio may be η < 1,
which leads to an effective potential with a higher peak
in Mþ instead of M−, and consequently with a total
absorption cross section, in the high-frequency regime,
smaller than for η ≥ 1. We show this behavior in Fig. 10
where we plot the high-frequency regime of the total
absorption cross section of a symmetric wormhole
(η ¼ 1) and two asymmetric wormholes (η ¼ 0.85 and
η ¼ 1.15) with x0 ¼ 1.1 and y ¼ 1.01. It is important to
point out that in both asymmetric configurations the
presence of sharp peaks is attenuated in the high-frequency
regime when compared with a symmetric configuration.
The role of the symmetry in the presence of the sharp peaks
will be discussed in the next section.

The throat location, x0, may also imply interesting
features when y > 1. In Fig. 11 we plot the total absorption
cross section for some RN-AWHwith y ¼ 1.1, η ¼ 0.8 and
different values of the shell radius, x0. We notice that,
differently from the y < 1 case, the shell radius plays a
non-negligible role in the moderate-to-high frequency
regime. We see that smaller values of x0 present bigger
absorption peaks in the low-frequency regime. However,
for moderate-to-high frequencies the absorption peaks
of those configurations are smaller if compared with the
ones of bigger shell radius. Additionally, wormholes with
smaller shell radius may present new absorption peaks in
the high frequency regime, differently from the y < 1 case,
where the new peaks appear usually in the low-frequency
region.

E. Quasibound states

A remarkable feature that appears in wormhole scenarios
is the existence of sharp peaks in the absorption spectra.
These peaks are associated with the shape of the effective
potential. If the effective potential has a valley, quasibound
states can exist around the wormhole throat, producing
resonant amplifications in the absorption cross section.
These modes are similar to the trapped modes found in
ultracompact objects [57], which in the eikonal limit may
be associated with a stable light ring [96].
The quasibound states are characterized by complex

frequencies with small imaginary part. In order to find the
trapped modes one considers the boundary conditions

ψðx⋆Þ ∼
�
eiω̃x⋆ ; x⋆ → þ∞;

e−iω̃x⋆ ; x⋆ → −∞:
ð64Þ

These boundary conditions generate an eigenvalue problem
to ω̃, and one may apply standard methods to determine
those frequencies. From an approximation based on the
Breit-Wigner expression for nuclear scattering [97,98], one

FIG. 11. Absorption spectra of RN-AWHs with y ¼ 1.1 and
η ¼ 0.8 and some choices of x0.

FIG. 10. High-frequency absorption spectra of wormholes
with x0 ¼ 1.1 and y ¼ 1.01 and some choices of η. The dashed
lines represent the classical absorption cross sections for each
spacetime.

FIG. 9. Absorption spectra of RN-AWHs with y ¼ 0.92 and
η ¼ 2.5 and some choices of x0 compared with the absorption of
a RN black hole with the same dimensionless charge as M−.
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can relate the graybody factor with the trapped modes,
namely [57]

jT ω̃lj2jω̃≈ω̃r
∝

1

ðω̃ − ω̃rÞ2 þ ω̃2
i
: ð65Þ

Hence, one notices that the position of the resonant peaks in
the transmission coefficients is determined by the real part
of the mode, ω̃r, while the imaginary part, ω̃i, determines
the sharp shape and height of the peaks.
Due to the freedom that we have to construct worm-

holes in Palatini fðRÞ gravity, the effective potential of
those configurations may present different asymmetries

(cf. Fig. 3), which, as we saw in the previous section, may
lead to more or less additional peaks in the absorption
spectra. In Fig. 12 we plot the effective potential (top row),
the total absorption cross section (middle row), and the
transmission coefficients (bottom row) of a symmetric
(left column) and an asymmetric (right column) wormhole
supported by SNE shells. We notice that both configura-
tions present sharp peaks for ω̃ < 1. By using the direct
integration method, and a standard root-finder method, one
can find the frequencies that solve the eigenvalue problem
and characterize the trapped modes. In Table I we present
some trapped modes for the asymmetric wormhole con-
sidered in Fig. 12.

FIG. 12. Effective potential (top row), absorption spectra (middle row), and transmission coefficients (bottom row) of a RN symmetric
wormhole (left column) and of a RN-AWH with η ¼ 1.3 (right column). Both wormholes have y ¼ 1.01 and x0 ¼ 1.1.
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For the asymmetric configuration, as the frequency
increases we can barely see the additional peaks in the
absorption spectra. This can be understood by analyzing
the asymmetry in the effective potential as one increases
the l number. For lower values of the angular momentum
mode, the difference between the heights of the peaks in
the effective potential is much smaller when compared
with that difference for large values of l. Hence, low-
frequency trapped modes lie between two potential peaks
with almost the same height, creating the resonances in the
absorption spectra for ω̃ < 1. For larger values of l the
difference between the heights of the effective potential
peaks becomes non-negligible, and since in the high-
frequency regime the higher effective potential peak
determines the absorption behavior, we almost do not
see resonant amplifications in the absorption cross sec-
tion. However, a glance at the transmission coefficients of
the asymmetric configuration shows that we still have
trapped modes around the wormhole in the eikonal limit,
notwithstanding we cannot see the resonant peaks in the
absorption profile. Therefore, the presence of spectral
lines is more evident as one restores the symmetry of the
thin shell wormholes.

IV. DISCUSSION AND FINAL REMARKS

We have studied the absorption properties of stable RN-
AWHs constructed via the thin-shell formalism in Palatini
fðRÞ gravity. The configurations considered in this paper
are either a RN black hole spacetime glued to a RN naked
singularity spacetime or two RN naked singularities

spacetimes glued together. The latter represents a novel
configuration within the wormhole literature.
The Palatini formulation and the (usual) metric formu-

lation of general relativity yield the same field equations
and junction conditions. However, beyond Einstein’s grav-
ity (for nonlinear Lagrangians) this equivalence no longer
holds, resulting in different field equations and junction
conditions. The distinct junction conditions imply that all
discussions regarding the stability of thin shell solutions
must be reconsidered within the fðRÞ framework. In fact,
this led to the discovery of stable solutions with positive
energy density at the matching surface, something not
allowed according to the standard general relativity junc-
tion conditions.
By analyzing the massless scalar field in the vicinity of

stable RN-AWHs (see Fig. 1), we found basically four
effective potential behaviors, namely: (i) two smooth
peaks connected by a discontinuous valley (for all values
of l); (ii) a single smooth peak in the effective potential
for l ≥ 1, and a discontinuous valley for l ¼ 0; (iii) a
discontinuous sharp peak at the throat for l ≥ 1, and a
discontinuous well for l ¼ 0; and (iv) a sharp discon-
tinuous peak at the throat followed by a smooth valley and
a smooth peak on each side for l ≥ 1 (for l ¼ 0 the sharp
discontinuous peak is replaced by a discontinuous well).
Cases (i) and (ii) occur when one BH spacetime is used to
build the wormhole, while cases (iii) and (iv) occur when
both sides are composed by naked singularity spacetimes.
Since the shape of the effective potential varies consid-
erably with the chosen parameters, one expects noticeable
changes in the absorption profile of RN-AWHs. In order to
investigate how the throat location and the charge values
influence the absorption, we analyzed several SPE and SNE
configurations.
If the effective potential has a valley (continuous or

discontinuous), quasibound states emerge around the throat
of the wormhole. These quasitrapped modes create reso-
nances in the absorption spectra (sharp peaks appear in the
absorption cross section), which make the RN-AWH
absorption profiles very different from the ones of RN
black holes. These new peaks are highly influenced by the
symmetry of the potential well. If the effective potential
exhibits a symmetric valley, the resonances are noticeable
in the whole range of frequency. On the other hand, the
presence of an asymmetry in the effective potential results
in the attenuation of the resonant peaks associated with
quasibound states for higher l-modes. Thus, the high-
frequency regime of the absorption cross section becomes
degenerate with the prediction for the standard RN black
hole, in contrast to symmetric wormhole configurations.
Consequently, even minor deviations from symmetry in
wormhole spacetimes can yield significant differences on
the observable characteristics associated to quasibound
states. Therefore, the RN-AWH can present a remarkable
absorption profile compared with previous results where

TABLE I. Trapped modes frequencies for RN-AWHs.

x0 ¼ 1.1, y ¼ 1.01, η ¼ 1.3

l ω̃r ω̃i

0 0.0919 −2.4781 × 10−3

0.1707 −8.7901 × 10−3

0.2535 −9.2636 × 10−3

0.3404 −9.3142 × 10−3

0.4401 −9.8017 × 10−3

0.5155 −9.9624 × 10−3

1 0.1985 −1.5661 × 10−5

0.2809 −6.4116 × 10−4

0.3500 −6.1025 × 10−3

0.4176 −6.3230 × 10−3

0.5753 −6.6483 × 10−3

0.6614 −6.7927 × 10−3

2 0.3024 −4.6635 × 10−8

0.3907 −4.6659 × 10−6

0.4695 −1.5562 × 10−4

0.5383 −2.1412 × 10−3

0.6023 −1.7040 × 10−2

0.6722 −1.7339 × 10−2
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those spectral lines were found (see, for instance,
Ref. [57] for resonant peaks in ultracompact objects and
Refs. [64,65] for resonant peaks in solutions that interpolate
between black holes and compact objects with wormhole
topology). If the resonances of the symmetric case persist at
very high frequencies, one could expect nontrivial effects
even in the geometrical optics approximation. This could
lead to unexpected features in gravitational waves spectra
and electromagnetic shadows. Further research in this
direction is currently underway.
By considering an asymmetric configuration with

dimensionless charge y < 1, the wormhole can mimic
the standard RN black hole absorption. This can be
understood by the fact that the total absorption cross
section depends on the dominant light ring (associated
with the highest peak of the effective potential in the
eikonal limit [99]). Therefore, by grafting a RN black hole
(before its photon sphere) with a RN naked singularity
spacetime, the dominant light ring will be the one of the RN
black hole and it will dictate the absorption cross section
profile in the eikonal limit. By restoring the symmetry
(η → 1), although the absorption cross section oscillates
around the classical value of RN black hole, it can be
distinguished by the presence of the spectral lines.
An interesting and, to our knowledge, new absorption

behavior appears when we cut and paste two naked
singularities, presenting discontinuous sharp peaks at the
throat in the effective potential. In these scenarios, the
throat acts like an effective photon sphere [39,94].
Since, at the throat, the effective potential reaches a
maximum value, the effective light ring related to it is
the dominant light ring; therefore, the total absorption
cross section will go to the area of the shadow
associated with the effective light ring. Interestingly,
the oscillatory pattern of the absorption profile rapidly
attenuates and the absorption cross section slowly goes
to the shadow area associated with null geodesics
trapped on the throat.
The SPE configurations studied here present a low-

frequency limit of the total absorption cross section
much smaller than the corresponding black hole ones,
analogously to other wormhole cases previously analy-
zed [64,65]. On the other hand, although several SNE
configurations also present this typical almost zero
low-frequency regime, we found configurations supported
by negative energy shells such that, as we intensify
the charge contents on both sides of the wormhole, the

total absorption cross section noticeably increases in the
low-frequency regime. This indicates that the low-
frequency absorption properties are sensitive to the worm-
hole model parameters, having no obvious trend, which
might be related with the presence of a discontinuous well
in the effective potential for l ¼ 0. A deeper analysis
concerning the zero-frequency limit of the total absorption
cross section of wormholes should be done in order to
better understand those features.
Our results indicate that asymmetric wormholes may

carry different observational imprints, compared to either
black holes or symmetric wormholes. These asymmetries
in the spacetime may lead, for example, to significant
features in the quasinormal mode spectrum and the possible
presence of echoes. We are currently performing such
investigations.
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APPENDIX: ORTHOGRAPHIC PROJECTION
OF THE PARAMETER SPACE

The orthographic projection is a common way to
represent three dimensional objects in two dimensions. It
is a representation of each side of an object as would be
seen by an observer infinitely far away.

MAGALHÃES, MASÓ-FERRANDO, OLMO, and CRISPINO PHYS. REV. D 108, 024063 (2023)

024063-16



[1] J. Maldacena and L. Susskind, Cool horizons for entangled
black holes, Fortschr. Phys. 61, 781 (2013).

[2] M. Visser, Lorentzian Wormholes: From Einstein to Hawk-
ing (AIP Press, New York, 1995).

[3] S. Krasnikov, Electrostatic interaction of a pointlike charge
with a wormhole, Classical Quantum Gravity 25, 245018
(2008).

[4] K. Jusufi and A. Övgün, Gravitational lensing by rotating
wormholes, Phys. Rev. D 97, 024042 (2018).

[5] D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer,
S. I. Davis, N. Lauk, H. Neven, and M. Spiropulu, Travers-
able wormhole dynamics on a quantum processor, Nature
(London) 612, 51 (2022).

[6] D. C. Dai and D. Stojkovic, Observing a wormhole, Phys.
Rev. D 100, 083513 (2019).

[7] V. De Falco, E. Battista, S. Capozziello, and M. De
Laurentis, General relativistic Poynting-Robertson effect
to diagnose wormholes existence: Static and spherically
symmetric case, Phys. Rev. D 101, 104037 (2020).

[8] C. Bambi and D. Stojkovic, Astrophysical wormholes,
Universe 7, 136 (2021).

[9] J. H. Simonetti, M. J. Kavic, D. Minic, D. Stojkovic, and
D. C. Dai, Sensitive searches for wormholes, Phys. Rev. D
104, L081502 (2021).

[10] A. Einstein and N. Rosen, The particle problem in the
general theory of relativity, Phys. Rev. 48, 73 (1935).

FIG. 13. The six orthographic projections of the 3D plot shown in Fig. 1. The blue region represents the SPE space of parameters while
the red region represents the SNE space of parameters. Transparency has been applied to the regions in order to make more noticeable
that the SPE region (blue) is embedded onto the SNE region (red).

ASYMMETRIC WORMHOLES IN PALATINI fðRÞ … PHYS. REV. D 108, 024063 (2023)

024063-17

https://doi.org/10.1002/prop.201300020
https://doi.org/10.1088/0264-9381/25/24/245018
https://doi.org/10.1088/0264-9381/25/24/245018
https://doi.org/10.1103/PhysRevD.97.024042
https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/10.1103/PhysRevD.100.083513
https://doi.org/10.1103/PhysRevD.100.083513
https://doi.org/10.1103/PhysRevD.101.104037
https://doi.org/10.3390/universe7050136
https://doi.org/10.1103/PhysRevD.104.L081502
https://doi.org/10.1103/PhysRevD.104.L081502
https://doi.org/10.1103/PhysRev.48.73


[11] H. G. Ellis, Ether flow through a drainhole: A particle
model in general relativity, J. Math. Phys. (N.Y.) 14, 104
(1973).

[12] M. S. Morris and K. S. Thorne, Wormholes in spacetime and
their use for interstellar travel: A tool for teaching general
relativity, Am. J. Phys. 56, 395 (1988).

[13] M. S. Morris, K. S. Thorne, and U. Yurtsever, Wormholes,
TimeMachines, and theWeak Energy Condition, Phys. Rev.
Lett. 61, 1446 (1988).

[14] M. Visser, Traversable wormholes from surgically modified
Schwarzschild spacetimes, Nucl. Phys. B328, 203 (1989).

[15] M. Visser, S. Kar, and N. Dadhich, Traversable Wormholes
with Arbitrarily Small Energy Condition Violations, Phys.
Rev. Lett. 90, 201102 (2003).

[16] W. Israel, Singular hypersurfaces and thin shells in general
relativity, Nuovo Cimento B 44, 1 (1966); Nuovo Cimento
B 48, 463(E) (1967).

[17] M. Visser, Traversable wormholes: Some simple examples,
Phys. Rev. D 39, 3182(R) (1989).

[18] E. Poisson and M. Visser, Thin-shell wormholes: Lineari-
zation stability, Phys. Rev. D 52, 7318 (1995).

[19] M. Ishak and K. Lake, Stability of transparent spherically
symmetric thin shells and wormholes, Phys. Rev. D 65,
044011 (2002).

[20] E. F. Eiroa and G. E. Romero, Linearized stability of
charged thin-shell wormholes, Gen. Relativ. Gravit. 36,
651 (2004).

[21] E.W. Mielke and F. E. Schunck, Boson stars: Alternatives to
primordial black holes?, Nucl. Phys. B564, 185 (2000).

[22] M. Visser and D. L. Wiltshire, Stable gravastar–An alter-
native to black holes?, Classical Quantum Gravity 21, 1135
(2004).

[23] T. Damour and S. N. Solodukhin, Wormholes as black hole
foils, Phys. Rev. D 76, 024016 (2007).

[24] C. Bambi, A. Cardenas-Avendano, G. J. Olmo, and D.
Rubiera-Garcia, Wormholes and nonsingular spacetimes
in Palatini fðRÞ gravity, Phys. Rev. D 93, 064016 (2016).

[25] R. A. Konoplya and A. Zhidenko, Wormholes versus black
holes: Quasinormal ringing at early and late times, J.
Cosmol. Astropart. Phys. 12 (2016) 043.

[26] E. Battista, E. Di Grezia, M. Manfredonia, and G. Miele,
Spin, torsion and violation of null energy condition in
traversable wormholes, Eur. Phys. J. Plus 132, 537 (2017).

[27] J. L. Rosa, J. P. S. Lemos, and F. S. N. Lobo, Wormholes in
generalized hybrid metric-Palatini gravity obeying the
matter null energy condition everywhere, Phys. Rev. D
98, 064054 (2018).

[28] V. I. Afonso, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia,
New scalar compact objects in Ricci-based gravity theories,
J. Cosmol. Astropart. Phys. 12 (2019) 044.

[29] V. De Falco, E. Battista, S. Capozziello, and M. De
Laurentis, Reconstructing wormhole solutions in curvature
based extended theories of gravity, Eur. Phys. J. C 81, 157
(2021).

[30] J. L. Rosa and J. P. S. Lemos, Junction conditions for
generalized hybrid metric-Palatini gravity with applications,
Phys. Rev. D 104, 124076 (2021).

[31] R. A. Konoplya and A. Zhidenko, Traversable Worm-
holes in General Relativity, Phys. Rev. Lett. 128, 091104
(2022).

[32] J. P. S. Lemos and O. B. Zaslavskii, Black hole mimickers:
Regular versus singular behavior, Phys. Rev. D 78, 024040
(2008).

[33] J. L. Blázquez-Salcedo, X. Y. Chew, and J. Kunz, Scalar
and axial quasinormal modes of massive static phantom
wormholes, Phys. Rev. D 98, 044035 (2018).

[34] C. A. R. Herdeiro, A. M. Pombo, E. Radu, P. V. P. Cunha,
and N. Sanchis-Gual, The imitation game: Proca stars that
can mimic the Schwarzschild shadow, J. Cosmol. Astropart.
Phys. 04 (2021) 051.

[35] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F.
Rúnarsson, Shadows of Kerr Black Holes with Scalar Hair,
Phys. Rev. Lett. 115, 211102 (2015).

[36] S. Aneesh, S. Bose, and S. Kar, Gravitational waves from
quasinormal modes of a class of Lorentzian wormholes,
Phys. Rev. D 97, 124004 (2018).

[37] N. K. Johnson-McDaniel, A. Mukherjee, R. Kashyap, P.
Ajith, W. Del Pozzo, and S. Vitale, Constraining black hole
mimickers with gravitational wave observations, Phys. Rev.
D 102, 123010 (2020).

[38] M. Wielgus, J. Horák, F. Vincent, and M. Abramowicz,
Reflection-asymmetric wormholes and their double shad-
ows, Phys. Rev. D 102, 084044 (2020).

[39] X. Wang, P.-C. Li, C.-Y. Zhang, and M. Guo, Novel
shadows from the asymmetric thin-shell wormhole, Phys.
Lett. B 811, 135930 (2020).

[40] M. Guerrero, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia,
Double shadows of reflection-asymmetric wormholes sup-
ported by positive energy thin-shells, J. Cosmol. Astropart.
Phys. 04 (2021) 066.

[41] V. Cardoso, E. Franzin, and P. Pani, Is the Gravitational-
Wave Ringdown a Probe of the Event Horizon?, Phys. Rev.
Lett. 116, 171101 (2016); Phys. Rev. Lett. 117, 089902(E)
(2016).

[42] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela, and
P. Pani, Gravitational-wave signatures of exotic compact
objects and of quantum corrections at the horizon scale,
Phys. Rev. D 94, 084031 (2016).

[43] R. A. Konoplya, Z. Stuchlik, and A. Zhidenko, Echoes of
compact objects: New physics near the surface and matter at
a distance, Phys. Rev. D 99, 024007 (2019).

[44] R. A. Matzner, Scattering of massless scalar waves by a
Schwarzschild “singularity”, J. Math. Phys. (N.Y.) 9, 163
(1968).

[45] R. Fabbri, Scattering and absorption of electromagnetic
waves by a Schwarzschild black hole, Phys. Rev. D 12, 933
(1975).

[46] W. G. Unruh, Absorption cross section of small black holes,
Phys. Rev. D 14, 3251 (1976).

[47] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Low-
frequency absorption cross section of the electromagnetic
waves for extreme Reissner-Nordstrom black holes in
higher dimensions, Phys. Rev. D 82, 124038 (2010).

[48] E. S. Oliveira, L. C. B. Crispino, and A. Higuchi, Equality
between gravitational and electromagnetic absorption cross
sections of extreme Reissner-Nordstrom black holes, Phys.
Rev. D 84, 084048 (2011).

[49] L. C. B. Crispino, S. R. Dolan, A. Higuchi, and E. S.
Oliveira, Inferring black hole charge from backscattered
electromagnetic radiation, Phys. Rev. D 90, 064027 (2014).

MAGALHÃES, MASÓ-FERRANDO, OLMO, and CRISPINO PHYS. REV. D 108, 024063 (2023)

024063-18

https://doi.org/10.1063/1.1666161
https://doi.org/10.1063/1.1666161
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1016/0550-3213(89)90100-4
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1103/PhysRevLett.90.201102
https://doi.org/10.1007/BF02710419
https://doi.org/10.1007/BF02712210
https://doi.org/10.1007/BF02712210
https://doi.org/10.1103/PhysRevD.39.3182
https://doi.org/10.1103/PhysRevD.52.7318
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1103/PhysRevD.65.044011
https://doi.org/10.1023/B:GERG.0000016916.79221.24
https://doi.org/10.1023/B:GERG.0000016916.79221.24
https://doi.org/10.1016/S0550-3213(99)00492-7
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1103/PhysRevD.76.024016
https://doi.org/10.1103/PhysRevD.93.064016
https://doi.org/10.1088/1475-7516/2016/12/043
https://doi.org/10.1088/1475-7516/2016/12/043
https://doi.org/10.1140/epjp/i2017-11799-6
https://doi.org/10.1103/PhysRevD.98.064054
https://doi.org/10.1103/PhysRevD.98.064054
https://doi.org/10.1088/1475-7516/2019/12/044
https://doi.org/10.1140/epjc/s10052-021-08958-4
https://doi.org/10.1140/epjc/s10052-021-08958-4
https://doi.org/10.1103/PhysRevD.104.124076
https://doi.org/10.1103/PhysRevLett.128.091104
https://doi.org/10.1103/PhysRevLett.128.091104
https://doi.org/10.1103/PhysRevD.78.024040
https://doi.org/10.1103/PhysRevD.78.024040
https://doi.org/10.1103/PhysRevD.98.044035
https://doi.org/10.1088/1475-7516/2021/04/051
https://doi.org/10.1088/1475-7516/2021/04/051
https://doi.org/10.1103/PhysRevLett.115.211102
https://doi.org/10.1103/PhysRevD.97.124004
https://doi.org/10.1103/PhysRevD.102.123010
https://doi.org/10.1103/PhysRevD.102.123010
https://doi.org/10.1103/PhysRevD.102.084044
https://doi.org/10.1016/j.physletb.2020.135930
https://doi.org/10.1016/j.physletb.2020.135930
https://doi.org/10.1088/1475-7516/2021/04/066
https://doi.org/10.1088/1475-7516/2021/04/066
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.99.024007
https://doi.org/10.1063/1.1664470
https://doi.org/10.1063/1.1664470
https://doi.org/10.1103/PhysRevD.12.933
https://doi.org/10.1103/PhysRevD.12.933
https://doi.org/10.1103/PhysRevD.14.3251
https://doi.org/10.1103/PhysRevD.82.124038
https://doi.org/10.1103/PhysRevD.84.084048
https://doi.org/10.1103/PhysRevD.84.084048
https://doi.org/10.1103/PhysRevD.90.064027


[50] L. C. B. Crispino, S. R. Dolan, A. Higuchi, and E. S.
Oliveira, Scattering from charged black holes and super-
gravity, Phys. Rev. D 92, 084056 (2015).

[51] L. C. S. Leite, S. R. Dolan, and L. C. B. Crispino, Absorp-
tion of electromagnetic and gravitational waves by Kerr
black holes, Phys. Lett. B 774, 130 (2017).

[52] L. C. S. Leite, S. R. Dolan, and L. C. B. Crispino, Absorp-
tion of electromagnetic plane waves by rotating black holes,
Phys. Rev. D 98, 024046 (2018).

[53] C. L. Benone and L. C. B. Crispino, Massive and charged
scalar field in Kerr-Newman spacetime: Absorption and
superradiance, Phys. Rev. D 99, 044009 (2019).

[54] M. A. A. Paula, L. C. S. Leite, and L. C. B. Crispino, Electri-
cally charged black holes in linear and nonlinear electro-
dynamics: Geodesic analysis and scalar absorption, Phys.
Rev. D 102, 104033 (2020).

[55] R. B. Magalhães, L. C. S. Leite, and L. C. B. Crispino,
Schwarzschild-like black holes: Light-like trajectories and
massless scalar absorption, Eur. Phys. J. C 80, 386 (2020).

[56] R. B. Magalhães, L. C. S. Leite, and L. C. B. Crispino,
Parametrized black holes: Scattering investigation, Eur.
Phys. J. C 82, 698 (2022).

[57] C. F. B. Macedo, T. Stratton, S. Dolan, and L. C. B.
Crispino, Spectral lines of extreme compact objects, Phys.
Rev. D 98, 104034 (2018).

[58] M. Cabero, J. Westerweck, C. D. Capano, S. Kumar, A. B.
Nielsen, and B. Krishnan, Black hole spectroscopy in the
next decade, Phys. Rev. D 101, 064044 (2020).

[59] S. Chandrasekhar and V. Ferrari, On the non-radial oscil-
lations of a star. III. A reconsideration of the axial modes,
Proc. R. Soc. A 434, 449 (1991).

[60] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa,
and P. Pani, Light rings as observational evidence for event
horizons: Long-lived modes, ergoregions and nonlinear
instabilities of ultracompact objects, Phys. Rev. D 90,
044069 (2014).

[61] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu,
Kerr-Newman scalar clouds, Phys. Rev. D 90, 104024
(2014).

[62] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu,
Acoustic clouds: Standing sound waves around a black hole
analogue, Phys. Rev. D 91, 104038 (2015).

[63] C. L. Benone and L. C. B. Crispino, Superradiance in static
black hole spacetimes, Phys. Rev. D 93, 024028 (2016).

[64] A. Delhom, C. F. B. Macedo, G. J. Olmo, and L. C. B.
Crispino, Absorption by black hole remnants in metric-
affine gravity, Phys. Rev. D 100, 024016 (2019).

[65] H. C. D. Lima Junior, C. L. Benone, and L. C. B. Crispino,
Scalar absorption: Black holes versus wormholes, Phys.
Rev. D 101, 124009 (2020).

[66] M. S. Churilova, R. A. Konoplya, Z. Stuchlik, and A.
Zhidenko, Wormholes without exotic matter: Quasinormal
modes, echoes and shadows, J. Cosmol. Astropart. Phys. 10
(2021) 010.

[67] J. A. Frieman, M. S. Turner, and D. Huterer, Dark energy
and the accelerating universe, Annu. Rev. Astron. As-
trophys. 46, 385 (2008).

[68] R. R. Caldwell and M. Kamionkowski, The physics of
cosmic acceleration, Annu. Rev. Nucl. Part. Sci. 59, 397
(2009).

[69] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Observational probes of
cosmic acceleration, Phys. Rep. 530, 87 (2013).

[70] G. J. Olmo and D. Rubiera-Garcia, Junction conditions in
Palatini f(R) gravity, Classical Quantum Gravity 37, 215002
(2020).

[71] F. S. N. Lobo, G. J. Olmo, E. Orazi, D. Rubiera-Garcia, and
A. Rustam, Structure and stability of traversable thin-shell
wormholes in Palatini fðRÞ gravity, Phys. Rev. D 102,
104012 (2020).

[72] J. M. M. Senovilla, Junction conditions for FðRÞ gravity and
their consequences, Phys. Rev. D 88, 064015 (2013).

[73] E. Gravanis and S. Willison, “Mass without mass” from thin
shells in Gauss-Bonnet gravity, Phys. Rev. D 75, 084025
(2007).

[74] T. Harko, F. S. N. Lobo, M. K. Mak, and S. V. Sushkov,
Modified-gravity wormholes without exotic matter, Phys.
Rev. D 87, 067504 (2013).

[75] P. H. R. S. Moraes and P. K. Sahoo, Nonexotic matter
wormholes in a trace of the energy-momentum tensor
squared gravity, Phys. Rev. D 97, 024007 (2018).

[76] O. Svítek and T. Tahamtan, Nonsymmetric dynamical thin-
shell wormhole in Robinson-Trautman class, Eur. Phys. J. C
78, 167 (2018).

[77] M. Ferraris, M. Francaviglia, and C. Reina, Variational
formulation of general relativity from 1915 to 1925 “Pala-
tini’s method” discovered by Einstein in 1925, Gen. Relativ.
Gravit. 14, 243 (1982).

[78] G. J. Olmo, Post-Newtonian constraints on fðRÞ cosmolo-
gies in metric and Palatini formalism, Phys. Rev. D 72,
083505 (2005).

[79] G. J. Olmo, The Gravity Lagrangian According to Solar
System Experiments, Phys. Rev. Lett. 95, 261102 (2005).

[80] G. J. Olmo, Palatini approach to modified gravity: f(R)
theories and beyond, Int. J. Mod. Phys. D 20, 413 (2011).

[81] G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, Stellar
structure models in modified theories of gravity: Lessons
and challenges, Phys. Rep. 876, 1 (2020).

[82] A. Wojnar, Stellar and substellar objects in modified gravity,
arXiv:2205.08160.

[83] A. Masó-Ferrando, N. Sanchis-Gual, J. A. Font, and G. J.
Olmo, Boson stars in Palatini gravity, Classical Quantum
Gravity 38, 194003 (2021).

[84] C. J. S. Clarke and T. Dray, Junction conditions for
null hypersurfaces, Classical Quantum Gravity 4, 265
(1987).

[85] M. Mars and J. M.M. Senovilla, Geometry of general
hypersurfaces in spacetime: Junction conditions, Classical
Quantum Gravity 10, 1865 (1993).

[86] V. I. Afonso, C. Bejarano, J. Beltran Jimenez, G. J. Olmo,
and E. Orazi, The trivial role of torsion in projective
invariant theories of gravity with nonminimally coupled
matter fields, Classical Quantum Gravity 34, 235003
(2017).

[87] P. T. Leung, Y. T. Liu, W.M. Suen, C. Y. Tam, and
K. Young, Perturbative approach to the quasinormal modes
of dirty black holes, Phys. Rev. D 59, 044034 (1999).

[88] L. C. B. Crispino, S. R. Dolan, and E. S. Oliveira, Scattering
of massless scalar waves by Reissner-Nordström black
holes, Phys. Rev. D 79, 064022 (2009).

ASYMMETRIC WORMHOLES IN PALATINI fðRÞ … PHYS. REV. D 108, 024063 (2023)

024063-19

https://doi.org/10.1103/PhysRevD.92.084056
https://doi.org/10.1016/j.physletb.2017.09.048
https://doi.org/10.1103/PhysRevD.98.024046
https://doi.org/10.1103/PhysRevD.99.044009
https://doi.org/10.1103/PhysRevD.102.104033
https://doi.org/10.1103/PhysRevD.102.104033
https://doi.org/10.1140/epjc/s10052-020-7909-7
https://doi.org/10.1140/epjc/s10052-022-10612-6
https://doi.org/10.1140/epjc/s10052-022-10612-6
https://doi.org/10.1103/PhysRevD.98.104034
https://doi.org/10.1103/PhysRevD.98.104034
https://doi.org/10.1103/PhysRevD.101.064044
https://doi.org/10.1098/rspa.1991.0104
https://doi.org/10.1103/PhysRevD.90.044069
https://doi.org/10.1103/PhysRevD.90.044069
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1103/PhysRevD.90.104024
https://doi.org/10.1103/PhysRevD.91.104038
https://doi.org/10.1103/PhysRevD.93.024028
https://doi.org/10.1103/PhysRevD.100.024016
https://doi.org/10.1103/PhysRevD.101.124009
https://doi.org/10.1103/PhysRevD.101.124009
https://doi.org/10.1088/1475-7516/2021/10/010
https://doi.org/10.1088/1475-7516/2021/10/010
https://doi.org/10.1146/annurev.astro.46.060407.145243
https://doi.org/10.1146/annurev.astro.46.060407.145243
https://doi.org/10.1146/annurev-nucl-010709-151330
https://doi.org/10.1146/annurev-nucl-010709-151330
https://doi.org/10.1016/j.physrep.2013.05.001
https://doi.org/10.1088/1361-6382/abb924
https://doi.org/10.1088/1361-6382/abb924
https://doi.org/10.1103/PhysRevD.102.104012
https://doi.org/10.1103/PhysRevD.102.104012
https://doi.org/10.1103/PhysRevD.88.064015
https://doi.org/10.1103/PhysRevD.75.084025
https://doi.org/10.1103/PhysRevD.75.084025
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.87.067504
https://doi.org/10.1103/PhysRevD.97.024007
https://doi.org/10.1140/epjc/s10052-018-5628-0
https://doi.org/10.1140/epjc/s10052-018-5628-0
https://doi.org/10.1007/BF00756060
https://doi.org/10.1007/BF00756060
https://doi.org/10.1103/PhysRevD.72.083505
https://doi.org/10.1103/PhysRevD.72.083505
https://doi.org/10.1103/PhysRevLett.95.261102
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1016/j.physrep.2020.07.001
https://arXiv.org/abs/2205.08160
https://doi.org/10.1088/1361-6382/ac1fd0
https://doi.org/10.1088/1361-6382/ac1fd0
https://doi.org/10.1088/0264-9381/4/2/010
https://doi.org/10.1088/0264-9381/4/2/010
https://doi.org/10.1088/0264-9381/10/9/026
https://doi.org/10.1088/0264-9381/10/9/026
https://doi.org/10.1088/1361-6382/aa9151
https://doi.org/10.1088/1361-6382/aa9151
https://doi.org/10.1103/PhysRevD.59.044034
https://doi.org/10.1103/PhysRevD.79.064022


[89] E. Barausse, V. Cardoso, and P. Pani, Can environmental
effects spoil precision gravitational-wave astrophysics?,
Phys. Rev. D 89, 104059 (2014).

[90] C. F. B. Macedo, L. C. S. Leite, and L. C. B. Crispino,
Absorption by dirty black holes: Null geodesics and scalar
waves, Phys. Rev. D 93, 024027 (2016).

[91] P. Kanti, Grey-body factors, irreversibility and multiple
island saddles, Int. J. Mod. Phys. A 19, 4899 (2004).

[92] A. Higuchi, Low-frequency scalar absorption cross sections
for stationary black holes, Classical Quantum Gravity 18,
L139 (2001); Classical Quantum Gravity 19, 599 (2002).
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