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In many cases, the near-horizon geometry encodes sufficient information to compute conserved charges
of a gravitational solution, including thermodynamic quantities. These charges are Noether charges
associated to asymptotic isometries that preserve appropriate boundary conditions at the future horizon.
For isolated, compact horizons these charges turn out to be integrable, conserved and finite, and they have
been studied in many examples of interest, notably in 3þ 1 dimensions. In higher dimensions, where the
variety of horizon structures is more diverse, it is still possible to apply the same method, although explicit
examples have so far been limited to simple topologies. In this paper, we demonstrate that such
computations can also be applied to higher-dimensional solutions with event horizons whose spacelike
cross sections exhibit nontrivial topology. We provide several explicit examples, with particular focus on
the 5-dimensional black ring.
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I. INTRODUCTION

The black hole topology theorem, as originally presented
by Hawking in [1], states that the cross section of the
event horizon of a stationary black hole in 4-dimensional
spacetime, provided the dominant energy condition is
satisfied, must have topologically spherical boundary.
More precisely, each connected component of the 2-surface
in the event horizon has to have topology S2. This theorem
has been a cornerstone of black hole theory for decades,
providing a powerful constraint on the possible shapes that
black holes can take in the quasistationary regime of
general relativity. The topology theorem is motivated by
the physical requirement that outgoing null geodesics from
the horizon must not converge in the future, as this would
imply the existence of a caustic in the spacetime. If the
horizon had any other topology besides that of a sphere, it
would be possible to find an outer-trapped 2-surface
outside the horizon; that is to say, it would be possible
to deform the horizon outwards into the exterior region in
such a way that the future-directed outgoing null geodesics
orthogonal to it would be converging, this leading to an
inconsistency. This seems to be a quite robust theorem that
has been exhaustively revised and generalized [2–5];
however, it is only valid in dimension 4. In spacetime

dimension 5, the topology censorship argument does not
hold and, in addition to the Myers-Perry solution, which
describes a family of stationary axisymmetric black holes
with horizon topology of S3, solutions with event horizons
of different topology also exist [6]. The first explicit
example of a smooth, nonspherical black hole solutions
was discovered by Emparan and Reall in 2001 [7]; this is
the black ring. The black ring has a horizon topology of
S1 × S2, which is fundamentally different from that of the
Myers-Perry black holes and is a result of the nontrivial
topology of the extra dimension. The discovery of black
rings was a significant breakthrough in the study of
black holes in higher dimensions and has led to
numerous subsequent studies and investigations into their
properties and behavior [8–10] as well as their general-
izations [11,12]. In this paper, we are interested in
investigating the geometry of the black ring from a
different viewpoint; we will study the symmetries that
the black ring exhibit in their near horizon region and the
associated conserved charges.
In [13], Hawking proposed that the geometry describing

the near horizon region of black holes must exhibits an
infinite-dimensional symmetry known as supertranslation.
This was made precise in [14], where it was shown that,
indeed, black holes in 4-dimensional spacetime do exhibit
infinite-dimensional symmetry near their horizons. By
prescribing a physically sensible set of boundary conditions
at the horizon, the authors of [15] derived the algebra of
asymptotic Killing vectors, which turns out to be infinite-
dimensional; it includes the supertranslations conjectured
by Hawking together with the 2-dimensional local
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conformal algebra. The Noether charges associated to the
asymptotic diffeomorphisms that preserve the boundary
conditions at the (isolated) horizon are integrable, finite and
conserved, and they carry important information about the
black hole, like the angular momentum, gauge charges, and
entropy. The computation of horizon charges done in [15]
was later generalized to higher dimensions in [16],
although explicit examples have so far been limited to
simple topologies. Here, we will demonstrate that such
computations can also be applied to solutions with non-
trivial topology, such as topological black holes, black
strings and branes, and the black ring.
The paper is organized as follows: In Sec. II, in order to

prepare the ground, we address a simple example of black
hole solution with nontrivial topology; we compute the
near horizon charges of topological black holes in asymp-
totically AdS5 spacetime, showing that one of them, the one
associated to global translations in the advanced time at the
horizon, correctly reproduces the Bekenstein-Hawking
entropy. In Sec. III, we briefly review the asymptotic
boundary conditions and the associated Noether charges
for an arbitrary 5-dimensional black object. In Sec. IV we
study the near-horizon geometry of the black ring solutions,
including the cases with angular momentum along the S1

direction and along one of the directions of the S2. We
explicit find the coordinate system to accommodate the
black ring geometry in the asymptotic conditions defined
in [15], we discuss the symmetries and we compute the
charges at the horizon. We also perform the analysis for
static configurations that exhibit horizons with defects.

II. TOPOLOGICAL BLACK HOLES

The simplest examples of a black hole solution with
horizon of nontrivial topology is the often-called topologi-
cal black hole [17]. A particular case with locally flat
horizon is given by

ds2 ¼ −HðrÞdv2 þ 2dvdrþ r2δABdxAdxB ð2:1Þ

with t ∈ R, r ∈ R≥0, and xA ∼ xA þ 2πλA, λA ∈ R>0,
A;B ¼ 1; 2; 3. δAB is the Kronecker tensor, so that the
topology of the constant-v slices of the horizon is
S1 × S1 × S1. The function HðrÞ is given by

HðrÞ ¼ r4 − r4þ
L2r2

; ð2:2Þ

where rþ ∈ R≥0 is an integration constant that corresponds
to the location of the event horizon location. L is a
dimension −1 parameter related to the cosmological con-
stant Λ ¼ −6=L2. Metric (2.1) and (2.2) is a solution to
Einstein equations with negative cosmological constant that
describes asymptotically locally AdS5 black holes written
in Eddington-Filkenstein type coordinates. The mass of the
solution is given by

M ¼ 3π2r4þ
2GL2

λ1λ2λ3: ð2:3Þ

The form that the metric takes in the near horizon limit is
easily obtained by defining the coordinate ρ ¼ r − rþ and
considering the small ρ limit. This yields

ds2 ≃ −
4rþ
L2

ρdv2 þ 2dvdρþ r2þδABdxAdxB þ � � � ; ð2:4Þ

where the ellipsis stand for subleading orders in the near
horizon expansion ρ ≃ 0. A straightforward application of
the formalism of [15] to this particular case yields the
following result for the Noether charge

Q½∂v� ¼
1

16πG
lim
ρ→0

Z
H
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gAB

p
ρ−1gvv ¼

2π2r4þ
L2G

λ1λ2λ3:

ð2:5Þ

This is the Noether charge associated to the rigid trans-
lations in the retarded time v on the horizon. The integral is
over the constant-v, constant-ρ sections of the horizon in
the limit r → rþ, and this is what the subindex H refers to.
Charge (2.5) coincides with Wald entropy [18] and so it
gives the product of the Hawking temperature and the
Bekenstein-Hawking entropy of the topological black hole;
namely

T ¼ κ

2π
¼ rþ

πL2
; S ¼ A

4G
¼ 2π3r3þλ1λ2λ3

G
; ð2:6Þ

respectively. κ is the surface gravity and A is the volume of
the 3-torus at the horizon (ρ ¼ 0; v ¼ const). Entropy (2.5)
is a particular case of the infinite set of conserved charges
defined in [14,15]. The calculation can easily be extended
to other 5-dimensional solutions, such as black holes
with horizons of negative constant curvature. The latter
are constructed by shifting HðrÞ → HðrÞ − 1 in (2.2) and
replacing the Kronecker symbol in the component gAB
in (2.1) by a constant curvature metric on the quotient space
H3=Γ, being Γ a discrete subgroup of the isometries of the
unit hyperbolic space H3. For those quotients yielding
noncompact horizons, the solutions can be regarded as
black 3-branes, for which the computation of charges and
thermodynamic quantities per unit of volume is still well-
defined. The case of Myers-Perry black holes with two
independent angular momenta can also be addressed [16].
Here, we are interested in the black ring, which is notably
more involved. For the solutions with horizons of topology
S1 × S2, we will show that: a) the asymptotic form of the
metric is compatible with the near-horizon analysis done
in [14,15], which implies that the black ring exhibits an
infinite symmetry enhancement in its vicinity; b) the zero
modes of Noether charges associated to such symmetries
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correctly reproduce the conserved quantities and thermo-
dynamic variables of the black ring.

III. SYMMETRIES AND NOETHER CHARGES

In this section we briefly review the asymptotic boun-
dary conditions and the associated Noether charges in the
5-dimensional case. We do this in order to introduce our
notation; the details can be found in [14–16].
Our goal is to study the black ring geometry in the near

horizon limit. In order to do so, we need to find a system of
coordinates that, near the horizon, makes it evident that the
geometry satisfies the boundary conditions prescribed
in [15]. This would imply that in the vicinity of the black
ring the asymptotic Killing vectors form an infinite-
dimensional algebra.
Near the horizon, consider the following expansion in

powers of ρ

gμν ¼ gð0Þμν þ gð1Þμν ρþ gð2Þμν ρ2 þOðρ3Þ ð3:1Þ

where gðnÞμν are functions of v and xA, A ¼ 1; 2; 3, and are
independent of ρ. The horizon is at ρ ¼ 0. Next, we impose
boundary conditions defined by

gð0Þvv ¼ 0; gð1Þvv ¼ −2κ; gð0ÞvA ¼ 0; ð3:2Þ

together with the gauge condition

gρv ¼ −1; gρρ ¼ 0; gρA ¼ 0; ð3:3Þ

constant κ is the surface gravity. Boundary conditions
(3.1)–(3.3) are the near horizon form studied in [14,15]
and they were considered in many different contexts
[19,20]. It was shown in [14–16] that the asymptotic
Killing vectors preserving these asymptotic boundary
conditions (3.1)–(3.3), but allowing the subleading com-
ponents in the small ρ expansion to change, form an
infinite-dimensional algebra that includes supertranslations
generated by PðxAÞ∂v together with transformations gen-
erated by LAðxAÞ∂xA, with P and LA being arbitrary
functions of the angular variables. These asymptotic
Killing vectors have associated the following Noether
charges

Q½P; LA� ¼ 1

16πG

Z
H
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð0ÞAB

q �
2κP − LAgð1ÞvA

�
; ð3:4Þ

where, again, we are using Latin indices A;B ¼ 1; 2; 3 to
denote the angular coordinates; we will later use coordi-
nates x1 ¼ x, x2 ¼ ϕ, and x3 ¼ ψ , with ∂ϕ and ∂ψ being the
Killing vectors corresponding to two independent angular
momenta. The charges are calculated as integrals over
constant-v slices on the horizon.

For sufficiently symmetric solutions, the relevant
information is encoded in the zero modes of the
charges, for which P and LA are constants. In particular,
we find

Q½1; 0� ¼ TS; Q½0; δAψ � ¼ Jψ ; Q½0; δAϕ� ¼ Jϕ;

ð3:5Þ

where Jψ and Jϕ refer to the angular momentum around ψ
and ϕ, respectively. T ¼ κ=ð2πÞ is the Hawking temper-
ature and S ¼ A=ð4GÞ is the Bekenstein-Hawking entropy.
In the next section we will see how this can be applied to
the black ring.

IV. BLACK RING

Black rings are solution to Einstein equations in dimen-
sion greater than 4 that describe black holes with an event
horizon that has a ring shape. In contrast to Myers-Perry
black hole, which has an event horizon with the topology of
the 3-sphere, the black ring has an event horizon that is
toroidal in shape, resembling a hyperdonut of topology
S1 × S2. We will focus on the case in which the solution
only has angular momentum along the S1 direction. Later,
we will consider the case in which the ring exhibits angular
momentum in the S2.

A. Rotation along the S1 direction

The metric of a neutral black ring rotating in the S1

direction [9] can be written as

ds2 ¼ R2FðxÞ
ðx − yÞ2

�
−
GðyÞ
FðyÞ dψ

2 −
dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ dϕ

2

�

−
FðyÞ
FðxÞ

�
dt − CR

1þ y
FðyÞ dψ

�
2

; ð4:1Þ

where

FðξÞ ¼ 1þ λξ; GðξÞ ¼ ð1 − ξ2Þð1þ νξÞ;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞ 1þ λ

1 − λ

r
; 0 < ν ≤ λ < 1: ð4:2Þ

R, λ, and ν are constants; by taking both λ and ν to zero, flat
spacetime is recovered. This observation is useful to gain
intuition about the coordinate system. The coordinates are
such that the asymptotic infinity is at x; y → −1. The event
horizon is located where the function GðyÞ vanishes; we
will denote this root yH and hereafter we will denote
ΔðyÞ≡GðyÞ. At x ¼ −1, the period of ϕ for the horizon to
be regular is δϕ ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
=ð1 − νÞ; on the other hand,

at x ¼ þ1 the analogous requirement demands δϕ ¼
2π

ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
=ð1þ νÞ and we also need to regularize at
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y ¼ −1. These regularity conditions are compatible if only
if the following relation between parameters holds

λ ¼ 2ν

1þ ν2
; ð4:3Þ

yielding the periods

δϕ ¼ δψ ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p

1 − ν
¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2
p : ð4:4Þ

That is to say, the black ring has effectively only two free
parameters, ν and R; while the former gives the ratio
between the radii of the S1 and the S2, the latter gives the
radius of the S1. The parameter λ carries information about
the rotation speed, and the fact that it is determined by ν
through the regularity condition means that the solution is
supported by its own rotation. This can be understood in
many different ways; notice that the coordinates in (4.1) are
reminiscent of the ones used to describe the C metric in 4
dimensions. In fact, the black ring can be thought of as a
nontrivial dimensional oxidation of a pair of accelerated
black holes in the presence of electromagnetic background
in dimension 4. Therefore, regularity of the black ring
horizon is the 5-dimensional analog of tuning the accel-
eration of the 4-dimensional charged black hole to match
the electromagnetic force per unit of mass.
In order to study the black ring in the near horizon limit,

we need to find the explicit coordinate transformation that
brings the metric into the form that obeys the boundary
conditions prescribed in [15]. In order to achieve so, we
follow the approach of [20]. First, we rewrite the metric
as follows:

ds2 ¼ Λðx; yÞR2

�
ΔðyÞ
Σðx; yÞ dt

2 −
dy2

ΔðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ dϕ

2

�
þ gψψ ðdψ − ωðx; yÞdtÞ2; ð4:5Þ

where we have defined the functions

Λðx; yÞ ¼ FðxÞ
ðx − yÞ2 ;

gψψ ¼ −
C2R2ð1þ yÞ2
FðxÞFðyÞ −

ΔðyÞR2Λðx; yÞ
FðyÞ ;

ωðx; yÞ ¼ −
CRð1þ yÞ
FðxÞgψψ

;

Σðx; yÞ ¼ −Λðx; yÞR2
C2ð1þ yÞ2ðx − yÞ2 þ ΔðyÞFðxÞ2

FðxÞFðyÞ :

ð4:6Þ

It is easy to check that the functions Σðx; yÞ and ωðx; yÞ
take constants values when evaluated on the horizon; that
is, they do not depend on the variable x when are evaluated

at y ¼ yH. Second, we propose the following change of
coordinates

ψ 0 ¼ ψ − ωHt;

v ¼ tþ
Z

y

yH

dy0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; y0Þp
Δðy0Þ ;

ψ̃ ¼ ψ 0 þ
Z

y

yH

dy0ðωðx; y0Þ − ωHÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; y0Þp
Δðy0Þ ; ð4:7Þ

which, in differential form, read

dψ 0 ¼ dψ − ωHdt;

dv ¼ dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; yÞp
ΔðyÞ dyþ γðx; yÞdx;

dψ̃ ¼ dψ 0 þ ðωðx; yÞ − ωHÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; yÞp
ΔðyÞ dyþ hðx; yÞdx;

ð4:8Þ

with

γðx; yÞ ¼
Z

y

yH

dy0

Δðy0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; y0Þ

p
;

hðx; yÞ ¼
Z

y

yH

dy0

Δðy0Þ ∂x
h
ðωðx; yÞ − ωHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; y0Þ

p i
: ð4:9Þ

ωH stands for the value of the function ωðx; yÞ at
the horizon. In these new coordinates, the black ring
metric reads

ds2 ¼ gψψ ðdψ̃ − ðωðx; yÞ−ωHÞdv
þ ½ðωðx; yÞ−ωHÞγðx; yÞ− hðx; yÞ�dxÞ2

þΛðx; yÞR2

"
ΔðyÞ
Σðx; yÞdv

2 −
2dvdyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; yÞp

− 2
γðx; yÞΔðyÞ
Σðx; yÞ dvdx− 2

γðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðx; yÞp dydxþGðxÞ

FðxÞ dϕ
2

þ
�

ΔðyÞ
Σðx; yÞ γðx; yÞ

2 þ 1

GðxÞ
�
dx2

#
: ð4:10Þ

Provided the correct angular periods are chosen, this
coordinate system is regular at the horizon, where the
following metric is induced

ds2jH ¼ ΛHR2

�
dx2

GðxÞ þ
GðxÞ
FðxÞ dϕ

2

�
þ gψψ jHdψ̃2: ð4:11Þ

The subindex H means that the functions are evaluated
at the horizon. Then, the horizon can be thought of as a
3-dimensional spacelike hypersurface given by constant-v
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slices with l ¼ ∂v being a null vector on it. We can also
find a second null vector on the horizon, normalized such as
lμnμ ¼ 1; namely

n ¼ −
ffiffiffiffiffiffi
ΣH

p
R2ΛH

∂y: ð4:12Þ

Now, we consider a family of geodesics that cross the
horizon, whose tangent vector is nμ and with affine
parameter ρ, such that ρjH ¼ 0. Up to first order in ρ, this
congruence of curves defines the vector field

Ξμðv; ρ; θ;ϕ; ψ̃Þ ¼ fv; yH; θ;ϕ; ψ̃gμ þ ρnμ þOðρ2Þ:
ð4:13Þ

Using this, we compute the Lie derivative of the metric
along the geodesics of tangent nμ, so the expansion of the

full metric will have the form (3.1) with gð0Þμν ¼ gμνjH and

gð1Þμν ¼ ðLngμνÞjH. Because of how the vectors at the horizon
have been chosen, the radial components of the metric
remain gρv ¼ nμlμ ¼ 1, gρρ ¼ nμnμ ¼ 0, gρA ¼ nμδ

μ
A ¼ 0,

with A ¼ x;ϕ; ψ̃ . This guarantees that the boundary con-

ditions (3.1)–(3.3) are satisfied. The components gð0Þμν can be
directly obtained from (4.11), while the next-to-leading

orders gð1Þμν are given by

gð1Þvv ¼ −
Δ0

Hffiffiffiffiffiffi
ΣH

p ;

gð1Þvψ̃ ¼
ffiffiffiffiffiffi
ΣH

p
ΛH

C2ð1þ yHÞ2
FðyHÞFðxÞ

∂yωðx; yÞjH;

gð1Þvx ¼ −
∂xðΛHÞ
ΛH

;

gð1Þxx ¼ −
ffiffiffiffiffiffi
ΣH

p
ΛHGðxÞ

∂yΛðx; yÞjH;

gð1Þϕϕ ¼ −
ffiffiffiffiffiffi
ΣH

p
ΛH

GðxÞ
FðxÞ ∂yΛðx; yÞjH;

gð1Þxψ̃ ¼ −
ffiffiffiffiffiffi
ΣH

p
ΛH

C2ð1þ yHÞ2
FðyHÞFðxÞ

∂yhðx; yÞjH;

gð1Þψ̃ ψ̃ ¼ −
ffiffiffiffiffiffi
ΣH

p
R2ΛH

∂ygψψ jH: ð4:14Þ

From the results above, we can read the surface gravity

on the horizon κ ¼ − 1
2
gð1Þvv , while the Jacobian det gð0ÞAB is

given in (4.11). Then, we are ready to calculate the Noether
chargeQ½P ¼ 1; 0�, associated to the rigid translation ∂v on
the horizon. This yields the product of the temperature and
the entropy of the black ring horizon. We get

S ¼ 2π2R3

G
ν3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1 − λ2Þ

p
ð1 − νÞ2ð1þ νÞ ; ð4:15Þ

which exactly reproduces the entropy of the black ring [21].

Analogously, we can compute the charge associated to
the local Killing vector ∂ψ̃ ; namely

Q½0; δAψ̃ � ¼ −
πνð1þ νÞ3=2R3

G
ffiffiffi
2

p ð1 − νÞ3=2ðν2 þ 1Þ : ð4:16Þ

However, before we rush to conclude that this quantity is
the angular momentum of the black ring, we must notice
that coordinate ψ̃ has not the right periodicity as seen
from infinity. Therefore, in order to identify the correct
normalization of the Killing vector we must redefine it as
follows ∂ψ̃ ¼ − δϕ

2π ∂ψ . After having done so, charge (3.4)
becomes

Q½0; δAψ � ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2
p Q½0; δAψ̃ �; ð4:17Þ

more precisely, we find

Jψ ¼ Q½0; δAψ � ¼
πR3

2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞðλþ 1Þp
ð1 − νÞ2 : ð4:18Þ

This can be rewritten in terms of only two parameters by
replacing

λ¼ 2ν

1þν2
; λ−ν¼νð1−ν2Þ

1þν2
; λþ1¼ð1þνÞ2

1þν2
: ð4:19Þ

Expression (4.18) exactly matches the result of [9]. This
shows that the near horizon computation of the conserved
charges does reproduce the correct quantities for the black
ring, at least in the case where a single angular momentum
is turned on. In the next section we will consider the case in
which there is also rotation in the S2 section.

B. Rotation in the S2 section

The metric for the black ring spinning along ϕ can be
written as follows [22]:

ds2 ¼ R2Hðy; xÞ
ðx − yÞ2

�
−

dy2

ð1 − y2ÞNðyÞ −
ð1 − y2ÞNðxÞ

Hðx; yÞ dψ2

þ dx2

ð1 − x2ÞNðxÞ þ
ð1 − x2ÞNðyÞ

Hðy; xÞ dϕ2

�

−
Hðy; xÞ
Hðx; yÞ

�
dt −

λayð1 − x2Þ
Hðy; xÞ dϕ

�
2

; ð4:20Þ

where

NðξÞ ¼ 1þ λξþ
�
aξ
R

�
2

;

Hðξ1; ξ2Þ ¼ 1þ λξ1 þ
�
aξ1ξ2
R

�
2

: ð4:21Þ
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The coordinates are the same as in the previous case, and
the parameters now satisfy the relation

2a
R

< λ < 1þ 2a2

R2
; ð4:22Þ

which guarantees the absence of closed timelike curves and
the existence of event horizons. The horizons are located at
the roots of NðyÞ, which are

y� ¼ −λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4a2=R2

p
2a2=R2

: ð4:23Þ

In order to avoid conical singularities at x ¼ −1 and
y ¼ −1, we need to choose the periods

δϕ ¼ δψ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λþ a2=R2

p : ð4:24Þ

With these periods, the black ring is asymptotically
globally flat. As before, we can rewrite the metric as
follows:

ds2¼Λðx;yÞR2

�
ΔðyÞ
Σðx;yÞdt

2−
dy2

ΔðyÞ−
MðxÞ
Wðx;yÞdψ

2þ dx2

MðxÞ
�

þgϕϕðdϕ−ωðx;yÞdtÞ2; ð4:25Þ

where now the functions are

ΔðyÞ ¼ NðyÞð1 − y2Þ;
MðxÞ ¼ NðxÞð1 − x2Þ;

Wðx; yÞ ¼ Hðx; yÞð1 − x2Þ
ð1 − y2Þ ;

Λðx; yÞ ¼ Hðx; yÞ
ðx − yÞ2 ;

Σðx; yÞ ¼ −λ2R2ð1 − y2Þ

− R2ΔðyÞHðx; yÞ
Hðy; xÞ

�
Λðx; yÞ − λ2

Hðx; yÞ
�
:

ð4:26Þ

Performing the change of coordinates (4.7) and (4.8) to
obtain an expression similar to (4.10), with

gð1Þvv ¼ −
Δ0

Hffiffiffiffiffiffi
ΣH

p ;

gð1Þxx ¼ −
ffiffiffiffiffiffi
ΣH

p
ΛH

1

MðxÞ ∂yΛðx; yÞjH;

gð1Þ
ϕ̃ ϕ̃

¼ −
ffiffiffiffiffiffi
ΣH

p
R2ΛH

∂ygϕϕjH;

gð1Þ
vϕ̃

¼
ffiffiffiffiffiffi
ΣH

p
R2ΛH

gϕϕ∂yωjH;

gð1Þvx ¼ ΛH∂x

�
1

ΛH

�
;

gð1Þ
xϕ̃

¼
ffiffiffiffiffiffi
ΣH

p
R2ΛH

gϕϕ∂yhðx; yÞjH;

gð1Þψψ ¼
ffiffiffiffiffiffi
ΣH

p
ΛH

MðxÞ∂y
�
Λ
W

�
jH
: ð4:27Þ

This enables us to compute the charges

Q½P;LA� ¼ 1

16πG

Z
dxdϕ̃dψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð0ÞAB

q �
2κP − LAgð1ÞvA

�
;

ð4:28Þ

where

det gð0ÞAB ¼ −
λ2R6ð1 − y2HÞ
ðx − yHÞ4

: ð4:29Þ

The black ring entropy would follow from the computation
of the charge Q½1; 0� ¼ TS; namely

S ¼ 2πR3λ

Gð1 − λþ a2=R2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2H − 1
p ; ð4:30Þ

with the temperature,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − 4a2=R2Þðy2H − 1Þ

p
4πRλ

; ð4:31Þ

being given by the surface gravity. Formula (4.30) matches
the correct results for the entropy as it satisfies the area
law S ¼ A=ð4GÞ.
Last, by considering the correct normalization for the

Killing vector ∂ϕ, we obtain

Jϕ ¼ Q½0; δAϕ� ¼ −
πR2λa

Gð1 − λþ a2=R2Þ3=2 ; ð4:32Þ

which is also found to match the correct result for the black
ring angular momentum.
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C. Static black ring and defects

As the last example, we can consider the particular
case λ ¼ ν in (4.10), which corresponds to the static black
ring geometry [10]. In this case, the metric functions take
the form

gψψ ¼ Σðx;yÞ ¼ ðy2− 1ÞFðxÞ2
ðx− yÞ2 R2; Λðx;yÞ ¼ FðxÞ

ðx− yÞ2 :

ð4:33Þ

Performing a similar analysis as the one in the previous
section, we find the following constraints for the periods of
the angular coordinates: for y ¼ −1; x ¼ −1 we have

δψ ¼ δϕ ¼ 2πffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p ; ð4:34Þ

while for x ¼ þ1 we have

δϕ ¼ 2πffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p ; ð4:35Þ

which cannot be simultaneously satisfied if ν ≠ 0. That is to
say, the horizon unavoidably exhibits a singularity, which
represents a defect: While satisfying the condition in (4.34)
would correspond to a black ring sitting on the rim of a disc
shaped deficit membrane, satisfying the condition in (4.35)
would correspond to a black ring sitting on the rim of a disc
shaped hole in an infinity extended deficit membrane.
These defects can be thought of as dimensional extensions
of the cosmic string—or rod—that provides the acceler-
ation of the 4-dimensional accelerated black hole. Let us be
reminded of the fact that the black ring can be pictured as
the extension of the Cmetric. This observation is important
for our purpose as the analysis of the near horizon charges
for the C metric has been done in [23]. By considering the
defect location such that the solution is asymptotically flat,
we can follow the near horizon analysis of the previous
sections and compute the entropy of the static black ring.
This yields

S ¼ A
4G

with T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p

4πRν
: ð4:36Þ

These results are in exact agreement with those obtained
in [22].

V. CONCLUSION

The results obtained in this paper show that:
(a) The 5-dimensional black ring solution can be accom-

modated in a coordinate system that fulfills the asymp-
totic boundary conditions defined in [14], which
implies that the black ring geometry exhibits an infinite
isometry enhancement in its near horizon limit.

(b) The zero modes of the Noether charges associated
to the aforementioned infinite-dimensional symmetry
correctly reproduce the conserved quantities and
thermodynamic variables of the black ring. This has
been shown explicitly in the case of angular momen-
tum in either the S1 or the S2 section of the horizon.
The computation also works in the case of static
configurations, which exhibit defects in the horizons.

(c) The approach we followed is systematic enough to be
straightforwardly extended to higher dimensions or
adapted to other cases of the vast bestiary of topol-
ogies, such as the black Saturn, blackfolds, and their
generalizations.

Having a method to calculate the conserved charges
of solutions such as the black ring or its generalizations
from the point of view of the horizon is interesting for many
reasons. Firstly, it is important to remember that many
techniques for generating solutions to Einstein solutions
with horizons of nontrivial topology resort to near-horizon
expansions that then extends outwards into the exterior
region, cf. [24–27]. Secondly, many of these solutions have
multiple asymptotic regions [28], so the way to carry out
the standard calculation of the charges is, in many cases,
not totally clear.
Lastly, let us make a remark about the Gauss phenome-

non that is behind the agreement between the calculation
of conserved charges from the point of view of the horizon
and the standard calculation in the asymptotic region.
A priori, this might look surprising as the topology of the
horizon and that of spatial infinity are generically differ-
ent. However, there is a theorem that states that both
computations have to agree in the case of a symmetry that
is generated by an exact Killing vector. This result is
general, independent of the topology; it can actually be
proven [29] that, given an exact isometry, there exists a
unique, finite and conserved surface charge 1-form in field
space. Upon integrating this 1-form on any codimension 2
surface, one computes the infinitesimal variation of the
charge associated with the symmetry that is enclosed in
that surface. Since the form is conserved on shell, one can
smoothly deform the surface, as long as it does not cross
any source, and the result is unchanged. In particular,
one can start with the surface S1 × S2 enclosing the cross
section of the horizon of a 5-dimensional black ring and
smoothly deform it into an S3 that approaches spatial
infinity; the result of the charge will be identical as the
form is conserved. The next step would be, of course, to
go from the infinitesimal variation to the actual Noether
charge. That is to say, one has to integrate the functional
variation of the 1-form in the phase space. This works as
long as the charge is a total variation; and in the case of
isolated horizons the charges are integrable [15]. This
enables to obtain the finite charge of the nonlinear
solution [30,31] and explains why the near horizon
computation does work.
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