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We are interested in the charged dust solutions of the Einstein field equations in stationary and axially
symmetric spacetimes and inquire if the naked singularities of the Israel-Wilson-Perjes (IWP) metrics can be
removed. The answer is negative in four dimensions. We examine whether this negative result can be
avoided by adding scalar or dilaton fields. We show that IWP metrics also arise as solutions of the Einstein-
Maxwell system with a stealth dilaton field. We determine the IWP metrics completely in terms of one
complex function satisfying the Laplace equation. With the inclusion of the stealth dilaton field, it is now
possible to add a perfect fluid source. In this case, the field equations reduce to a complex cubic equation.
Hence, this procedure provides interior solutions to each IWP metric, and it is possible to cover all naked
singularities inside a compact surface where there is matter distribution.
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I. INTRODUCTION

In four dimensions, the conformastatic or conformastat
metrics [1]

ds2 ¼ −λ−2ðx⃗Þdt2 þ λ2ðx⃗Þdx⃗ · dx⃗ ð1Þ

solve the Einstein-Maxwell-dust field equations with the
vector potential Aμ ¼ ð2λðx⃗Þ; 0; 0; 0Þ if the metric function
λðx⃗Þ satisfies

∇2λþ 1

2
ρmλ

3 ¼ 0; ð2Þ

where∇2 denotes the three-dimensional Laplace operator in
flat Cartesian coordinates, and ρm is the mass density of the
dust distribution with the four-velocity uμ ¼ δtμ=λðx⃗Þ [2,3].
The electric charge density ρe and the mass density ρm
are equal; hence, the system is “extremely” charged. The
ρm ¼ 0 case, i.e., the conformastatic solutions of the
Einstein-Maxwell equations, the so-called Majumdar-
Papapetrou (MP) metrics [1,4,5], represent gravitational
fields of multiple extremely charged black holes [6] of
electrovacuum. One can extend these solutions by adding a
charged dust distribution ([2,3,7] and references therein)
where several interesting thin shell charged dust solutions
without the singularities of the MP metrics were obtained.

The extension of the static MP solutions to the stationary
case was done in [8,9], and a relevant question is to
generalize the conformastatic MP metrics with extremely
charged dust to conformastationary Israel-Wilson-Perjes
(IWP) metrics with charged dust. This problem, in a sense,
asks one to search for dust sources for the IWP metrics.
Here we show that conformastationary spacetimes do not
support charged dust solutions [10]. The integrability
conditions of the rotation velocity and the magnetic
potential vectors reduce the problem either to the source-
less case, i.e., the IWP metrics [8,9], or to MP metrics with
dust [2,3,7].
To summarize our physical motivations and our findings

in this work, let us note the following: Hartle and Hawking
wrote the influential paper [6], in which, among other things
related to the stationary solutions, in their own words they
claim the following: “We also analyse some of stationary
solutions of the Einstein-Maxwell equations discovered by
Israel and Wilson. If space is asymptotically Euclidean we
find that all of these solutions have naked singularities.” As
the nature of the singularity in gravity is an extremely
important issue, this work received a lot of attention. There
are, in principle, solutions of Einstein-Maxwell theory in
which naked singularities are unavoidable. What we show
below is an answer to the following question: By adding a
source to the Einstein-Maxwell system, can one avoid these
naked singularities? There are two nontrivial facets to this
problem: First of all, the full theory with the source must
admit the Israel-Wilson-Perjes metrics as solutions, and
second, the naked singularities must be avoided. Both of
these questions have, by no means obvious, answers. In fact,
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our first attempt to add a perfect fluid source (with pressure
and density) will yield field equations that do not support
these solutions with a nonzero pressure. However, the field
equations force one to consider the dust source (i.e., a perfect
fluid with zero pressure). So, with the inclusion of a dust, the
Einstein-Maxwell system still supports these solutions,
which is an answer to the first question. But, unfortunately,
the introduced dust does not remove the naked singularity.
Thus, this is our theorem (see the theorem below): The
IWP metrics with charged perfect source reduce to either
Majumdar-Papapetrau metrics (the no rotation case) or to the
IWP metrics without a source. This theorem by itself is an
important contribution to general relativity. Hence, the
Hartle-Hawking no-go result is extended to the case of
Einstein-Maxwell-dust theory in our work. We then answer
the second question, that is, the question of removing the
singularities, with the addition of a scalar field. It really is
remarkable that such a complicated system both allows the
IWP metrics as solutions and removes their stubborn naked
singularities.
The layout of the paper is as follows: In Sec. II, we study

the conformostationary spacetimes as solutions of Einstein-
Maxwell field equations with a perfect fluid distribution and
show that such a configuration is not possible. In Sec. III,
we introduce the dilaton field to the previous system and we
show that in four dimensions, IWP metrics with a dust
source is possible if the dilaton field has a vanishing energy-
momentum tensor (that is, the dilaton becomes a stealth
field). In Sec. IV, we reduce the field equations to a complex
potential equation. In Sec. V, we discuss the nonvacuum
cases. In the Appendix, we give an action formulation of the
field equations.

II. CONFORMOSTATIONARY SPACETIMES

Einstein-Maxwell-perfect fluid field equations are
given as

Gμν ¼
1

2
Tμν þ ðρm þ pÞuμuν þ pgμν; ð3Þ

∇αFαμ ¼ ρeuμ; ð4Þ

where the Einstein tensor Gμν is defined as Gμν≡
Rμν − 1

2
gμνR, ρm and ρe are the mass and electric charge

densities, Fμν ¼ ∂μAν − ∂νAμ with Aμ ¼ ðA0; A⃗Þ, and the
energy-momentum tensor of the Maxwell field reads

Tμν ¼ FμαFν
α −

1

4
gμνF2; ð5Þ

with the definition F2 ¼ FσρFσρ. Taking the metric as

ds2 ¼ −f2ðdtþ Ω⃗ · dx⃗Þ2 þ 1

f2
dx⃗ · dx⃗; ð6Þ

where the metric functions f and Ω⃗ depend on the spatial
coordinates x⃗, one has uμ ¼ fð1; Ω⃗Þ. The spatial indices are
raised and lowered with the Kronecker delta δij. The field
equations (3) and (4) reduce to

∂iΩj − ∂jΩi ¼ 2ϵijkℑðλ∂kλ̄Þ; ð7Þ

∂iAj − ∂jAi ¼
1

f2
ϵijk∂kχ þΩj∂iA0 −Ωi∂jA0; ð8Þ

where λ is a complex function, with real and imaginary parts
given asℜðλÞ, ℑðλÞ, while jλj is its magnitude, and in terms
of λ, the real functions f, A0, and χ are given as

χ ¼ 2ℑðλÞ
jλj2 ; f ¼ 1

jλj ; A0 ¼ −
2ℜðλÞ
jλj2 : ð9Þ

Then, the remaining field equations give vanishing pressure
p ¼ 0, and the mass ρm and charge ρe densities are
determined via

ℜðλ∇2λ̄Þ þ 1

2
ρmjλj4 ¼ 0; ð10Þ

ℜðλ2∇2λ̄Þ þ 1

2
ρejλj5 ¼ 0: ð11Þ

Defining the vector potential as A⃗ ¼ B⃗þ Ω⃗A0, one finds

∂iBj − ∂jBi ¼ −2ϵijk∂kℑðλÞ: ð12Þ

We have the following lemma.
Lemma 1.—Integrability of (7) and (12) implies that

ℑðλ∇2λ̄Þ ¼ 0; ð13Þ

∇2ℑðλÞ ¼ 0: ð14Þ

Proof of the Lemma 1 is easier when we convert Eqs. (7)
and (12) to the following forms:

ϵijk∂iΩj ¼ 2ℑðλ∂kλ̄Þ; ð15Þ

ϵijk∂iBj ¼ 2∂kℑðλÞ: ð16Þ

Taking the divergence of both sides of these equations,
we find (13) and (14). Integrability condition (13) implies,
from (10),

∇2λþ 1

2
ρmλ

2λ̄ ¼ 0; ð17Þ

and the integrability condition (14) implies, from (11),

ℜðλÞρm ¼ jλjρe: ð18Þ
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Then we have the following theorem.
Theorem 1.—Conformostationary metrics (9) do not

support Einstein-Maxwell-dust field equations. They reduce
to either Israel-Wilson-Perjes metrics, i.e., ρm ¼ ρe ¼ 0, or
to Majumdar-Papapetrou metrics, i.e., Ω⃗ ¼ 0.
Proof of the theorem comes from the integrability

conditions (13) and (14), and hence from (17), one has

∇2ℑðλÞ þ 1

2
ρmjλj2ℑðλÞ ¼ 0: ð19Þ

Since the first term on the left-hand side of (19) vanishes
due to (14), then the second term gives ρmℑðλÞ ¼ 0. Hence,
either ρm ¼ 0 (Israel-Wilson-Perjes spacetimes) or λ ¼ λ̄

leading to, without losing any generality, Ω⃗ ¼ 0 which
corresponds to the Majumdar-Papapetrou spacetimes and λ
satisfies (2).
Remark: Our theorem is consistent with the results of

[10]. In [10], the authors consider also a magnetic current.
In the absence of the magnetic current density, their result
reduces to our result.

III. INCLUSION OF A DILATON FIELD

Following [11,12], we take the metric as gμν ¼
e

2ϕ
2−Dð−uμuν þ hμνÞ in D dimensions, where uμ¼eϕð1; q⃗Þ,
and hμν is a constant two tensor with uμhμν ¼ 0. Taking
Fαβ ¼ ∂αuβ − ∂βuα, one finds

Gμν ¼
4 −D

2ð2 −DÞT
ϕ
μν þ 1

2
e

2ϕ
2−DTM

μν þ ðρm þ pÞvμvν þ pgμν;

ð20Þ

∇α

�
e

2ϕ
2−DFα

ν

�
−
1

4
e

4ϕ
2−DF2uν ¼ ðρe þ pÞα2uν; ð21Þ

□ϕþ 1

4
e

2ϕ
2−DF2 ¼ ρe − p; ð22Þ

where vμ ¼ αuμ with α ¼ e
ϕ

2−D, we have gμνuμuν ¼ −1=α2
and gμνvμvν ¼ −1. In addition, the energy-momentum
tensor of the dilaton field is defined as

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμν∂ρϕ∂ρϕ; ð23Þ

while the energy-momentum tensor for the electromagnetic
field TM

μν is given in (5).
For D ¼ 4, we have

gμν ¼ e−ϕð−uμuν þ hμνÞ;

and the gravitational field equation takes a special form for
which the backreaction of the scalar field disappears as the
energy-momentum tensor of the dilaton field drops from

the gravitational field equation, and ϕ becomes a stealth
dilaton field

Gμν ¼
1

2
e−ϕTM

μν þ ðρþ pÞvμvν þ pgμν; ð24Þ

∇αðe−ϕFα
νÞ −

1

4
e−2ϕF2uν ¼ ðρþ pÞe−ϕuν; ð25Þ

□ϕþ 1

4
e−ϕF2 ¼ ρ − p: ð26Þ

We find that p ¼ 0, then

Gμν ¼
1

2
e−ϕTM

μν þ ρvμvν; ð27Þ

∇αðe−ϕFα
νÞ −

1

4
e−2ϕF2uν ¼ ρe−ϕuν; ð28Þ

□ϕþ 1

4
e−ϕF2 ¼ ρ: ð29Þ

The last equation is also the zeroth component of the first
Maxwell equation. The spatial components of Maxwell
equation (28) reduce to

∂iðe−2ϕFijÞ ¼ 0: ð30Þ

The dilaton equation (29) is not independent and can be
obtained by contracting uν with Maxwell equation (28).
The matter density ρm needs to be equal to the charge
density ρe as ρ ¼ ρm ¼ ρe.

IV. SIMPLIFIED FIELD EQUATIONS

The Maxwell and dilaton field equations take the form

∂kðeϕfikÞ ¼ 0; ð31Þ

∇2ϕ −
1

2
∇!ϕ · ∇!ϕþ 1

2
e2ϕfikfik ¼ ρe−ϕ; ð32Þ

where fij ¼ ∂iqj − ∂jqi. Maxwell equation (31) implies
that

fij ¼ e−ϕεijk∂kχ; ð33Þ

where χ is a function satisfying ∇! · ðe−ϕ∇!χÞ ¼ 0. Then,

∇2ϕ −
1

2
∇!ϕ · ∇!ϕþ 1

2
∇!χ · ∇!χ ¼ e−ϕρ: ð34Þ

Electrovacuum case: For ρ ¼ 0, we have

fij ¼ e−ϕεijk∂kχ; ð35Þ
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where χ is a function satisfying the equation

∇!·ðe−ϕ∇!χÞ¼0. Then,

∇2ϕ −
1

2
∇!ϕ · ∇!ϕþ 1

2
∇!χ · ∇!χ ¼ 0: ð36Þ

We obtain the solutions of the field equation by solving the
coupled nonlinear differential equations:

∇! · ðe−ϕ∇!χÞ ¼ 0; ð37Þ

∇2ϕ −
1

2
∇!ϕ · ∇!ϕþ 1

2
∇!χ · ∇!χ ¼ 0: ð38Þ

The metric is

ds2 ¼ −eϕðdtþ q⃗ · dx⃗Þ2 þ e−ϕdx⃗ · dx⃗: ð39Þ

Equations (37) and (38) can be combined as one complex
equation by defining ξ ¼ ϕ ∓ iχ,

∇2ξ −
1

2
∇!ξ · ∇!ξ ¼ 0; ð40Þ

or ∇2e−
1
2
ξ ¼ 0. Hence, e−

1
2
ξ ¼ ψ1 þ iψ2 where both ψ1 and

ψ2 satisfy the Laplace equation. We find that

e−ϕ ¼ ψ2
1 þ ψ2

2; χ ¼ �2 tan−1
�
ψ2

ψ1

�
; ð41Þ

and

fij ¼ ∂iqj − ∂jqi ¼ εijkðψ1∂kψ2 − ψ2∂kψ1Þ: ð42Þ

The solution of the above equation for q⃗ is given by

q⃗ ¼ x⃗ × E⃗; ð43Þ

where [13]

E⃗ ¼
Z

1

0

½ψ1ðsx⃗Þ∇!ψ2ðsx⃗Þ − ψ2ðsx⃗Þ∇!ψ1ðsx⃗Þ�sds: ð44Þ

Hence, the metric is completely determined:

ds2 ¼ −
1

ψ2
1 þ ψ2

2

ðdt − E⃗ · ðx⃗ × dx⃗ÞÞ2 þ ðψ2
1 þ ψ2

2Þdx⃗ · dx⃗:

ð45Þ
V. NONVACUUM CASE

The metric (45) may have singularities without a horizon
enclosing them. To avoid such situations, consider the case
with ρ ≠ 0. In this case, the field equations become

∇2ξ −
1

2
∇!ξ · ∇!ξ ¼ e−ϕρ; ð46Þ

where ξ ¼ ϕ� iχ. The above equation can be converted to

∇2Λþ 1

2
ρðΛΛ̄ÞΛ ¼ 0; ð47Þ

where Λ ¼ e−
1
2
ξ. The vector q⃗ remains the same as in the

vacuum case (43). For the thin shell model and other
nonvacuum cases, it is better to have a different and useful
parametrization other than Λ ¼ e−

1
2
ξ used in Sec. IV. Let

Λ ¼ Reiθ, and then one has

R ¼ e−ϕ=2; θ ¼ � χ

2
:

With this parametrization, (47) reduces to two real equa-
tions as

∇2R− ∇!θ · ∇!θþ 1

2
ρR3 ¼ 0; ∇! · ðR2∇!θÞ ¼ 0: ð48Þ

We have the following interesting cases:
(i) When θ ¼ constant, then the IWP metrics reduce to

the MP metrics, but when R ¼ constant, the source

density is ρ ¼ 2
R2 ∇!θ · ∇!θ, and the resulting metric

is given by

ds2 ¼ −
1

R2
ðdt − E⃗ · ðx⃗ × dx⃗ÞÞ2 þ R2dx⃗ · dx⃗; ð49Þ

with

E⃗ ¼ R2∇!
Z

1

0

θðsx⃗Þsds; ð50Þ

where ∇2θ ¼ 0. The spacetime obtained is a dust
filled rotating universe.

(ii) When ρ ¼ ρ0θðFÞ, where ρ0 is the density function
in a region F > 0, F ¼ 0 defines a compact surface
outside of which is the vacuum (IWP) metric (45).
Hiding the singularities of the IWP metrics inside
the compact surface F ¼ 0, we get rotating regular
charged solutions of Einstein field equations with a
dilaton field.

(iii) For ρ ¼ ρ0δðFÞ where ρ0 is the density function on
the thin shell F ¼ 0, we have a shell model. In both
sides of the thin shell, the spacetime is described by
the IWP metric (45) with ρ ¼ 0. As an example of
such a model, let ρðx; y; zÞ ¼ ρ0ðx; yÞδðzÞ. Above
the thin shell (z > 0), the metric is an IWP metric
with the metric functions ðR1; θ1Þ and below the thin
shell (z < 0), the metric is also an IWP metric with
the metric functions ðR2; θ2Þ (see Fig. 1). These
metric functions are continuous at z ¼ 0, but ∂R

∂z is
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not continuous and satisfies the following jump
condition:

∂R1

∂z
−
∂R2

∂z
þ 1

2
R3ρ0ðx; yÞ ¼ 0; at z ¼ 0: ð51Þ

VI. CONCLUSIONS AND DISCUSSION

We have considered the IWP metrics in four dimensions
and have shown that these metrics have many interesting
properties which can be summarized as follows:

(i) We have shown that the IWP metrics, with Fμν ¼
∂μAν − ∂νAμ where Aμ ¼ ðA0; A⃗Þ, solve the Einstein-
Maxwell field equations but do not admit charged
perfect fluids as sources. Furthermore, these metrics
contain naked singularities; hence, they do not
represent the gravitational fields of black holes [6].

(ii) We have shown that the IWP metrics in four
dimensions gμν ¼ e−ϕð−uμuν þ hμνÞ or

ds2 ¼ −eϕðdtþ q⃗ · dx⃗Þ2 þ e−ϕdx⃗ · dx⃗; ð52Þ

for Fμν ¼ ∂μuν − ∂νuμ admit charged dust distribu-
tions as sources with a stealth (having a vanishing
energy-momentum tensor) dilaton field ϕ.

(iii) For ρ ¼ 0, we have given the complete solution in
terms of two harmonic functions ψ1 and ψ2. For
ρ ≠ 0, the field equations reduce to a cubic equation
for a complex function Λ. It is now possible to cover
all naked singularities inside a compact surface
F ¼ 0 where the matter density ρ ≠ 0. Outside of
the compact surface F ¼ 0 where we allow matter
distribution, the geometry is described by the IWP
metrics with ρ ¼ 0.

(iv) It is possible to obtain exact solutions for multi-IWP
universes separated by thin shells represented with
the matter density

ρ ¼
XN
i¼1

ρ0;iðxÞδðFiÞ; ð53Þ

where ρ0;i; ði ¼ 1; 2;…; NÞ are functions defined on
layers Fi ¼ 0; ði ¼ 1; 2;…; NÞ. Here the layers are
parallel 2-surfaces in R3 having the same normal
vectors n̂. Examples are (a) planar multilayers
Fi ¼ z − ai ¼ 0, (b) spherical cocentrical layers
Fi ¼ r − ai, (c) cylindrical cocentrical layers
Fi ¼ r − ai ¼ 0, etc. In all of these cases, the jump
conditions across the surfaces are given by

ffiffiffi
γ

p �
∂Riþ1

∂n
−
∂Ri

∂n

�
þ 1

2
R3
i ρ0;i ¼ 0 at Fi ¼ 0;

i ¼ 1; 2;…; N; ð54Þ

where γ is the determinant of the metric on the two
surfaces, and ∂R

∂n is the derivative along the normal
direction.

Finally, let us comment on the scalar field sector of the full
theory we have used here. From the vantage point of theory,
scalar fields show up in many different settings, yet from
the experimental point of view besides the Higgs field, no
fundamental scalar field has yet been detected. This, of
course, should not deter one to consider gravity theories
that have scalar fields, as they could be relevant in the early
Universe or in the strong field regime of gravity pertaining
to compact objects. Including the inflaton field that is
employed to explain in the initial inflation phase of the
Universe, there are several we can mention which are
consistent with observations. For example, string-loop
modification of the low-energy couplings of the dilaton
may provide a mechanism for fixing the vacuum expect-
ation value of a massless dilaton in a way which is naturally
compatible with the existing experimental data [14]. The
string expansion involves massless fields other than gravi-
tation, the most relevant being the dilaton [15]. In a string
model, there have been some discussions in which the
dilaton field changes the dynamical properties of the
system drastically [16]. A wide class of scalar-tensor
theories can pass the present Solar System tests [17] and
still exhibit large, strong field-induced observable devia-
tions in systems involving neutron stars [18].

APPENDIX: FIELD EQUATIONS FROM
AN ACTION

Let us obtain the field equations (27)–(29) from an
action. For this, first consider the Einstein-Maxwell-dilaton
action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂

μϕ −
1

4
eγϕF2

�
; ðA1Þ

which is widely studied in the literature; see, for example,
[19,20] or [21] where the Lagrangian density is augmented
with the Liouville potential VðϕÞ ¼ 2Λe−δϕ. The field
equations of this action are

FIG. 1. The thin shell is located at z ¼ 0 as an infinite plane on
which the charge density is ρ0ðx; yÞ. The thin shell separates two
different IWP spacetimes described by the metric functions
ðR1; θ1Þ and ðR2; θ2Þ.
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Gμν ¼
1

2
Tϕ
μν þ 1

2
eγϕTM

μν; ðA2Þ

∇μðeγϕFμνÞ ¼ 0; ðA3Þ

□ϕ ¼ γ

4
eγϕF2: ðA4Þ

On the other hand, the Einstein-Maxwell action with a
constraint on the norm of the electromagnetic four-potential
vector Aμ of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
R − 2Λ −

c1
2
F2 þ ζðuμuμ þ 1Þ

i
ðA5Þ

was studied in the literature in the context of Einstein aether
theories (see, for example, [22] and the references therein)
with the field equations

Gμν þ Λgμν ¼ c1TM
μν − ζuμuν; ðA6Þ

∇μFμν ¼ −
ζ

c1
uν; ðA7Þ

uμuμ ¼ −1: ðA8Þ

The action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

4
e−ϕF2 þ ζðuμuμ þ eϕÞ

�
; ðA9Þ

where the kinetic term for the scalar field is removed, yields
the field equations

Gμν ¼
1

2
e−ϕTM

μν − ζuμuν; ðA10Þ

∇μðe−ϕFμνÞ ¼ −2ζuν; ðA11Þ

1

4
e−ϕF2 þ ζeϕ ¼ 0; ðA12Þ

uμuμ ¼ −eϕ: ðA13Þ

The equation coming from the variation of the scalar field
yields the Lagrange multiplier ζ as

ζ ¼ −
1

4
e−2ϕF2: ðA14Þ

Then, the electromagnetic field equation becomes

∇μðe−ϕFμνÞ − 1

2
e−2ϕF2uν ¼ 0: ðA15Þ

At this point, to have a match with (28), ρ needs to be

ρ ¼ 1

4
e−ϕF2; ðA16Þ

which reduces (29) to

□ϕ ¼ 0: ðA17Þ

At this point, we must emphasize that the variational
principle yields a special case of the equations of motion
that we provided in (27)–(29).
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