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This paper investigates the integrability properties of Einstein’s theory of gravity in the context of
accelerating Newman-Unti-Tamburino (NUT) spacetimes by utilizing Ernst’s description of stationary and
axially symmetric electrovacuum solutions. We employ Ehlers transformations, Lie point symmetries of
the Einstein field equations, to efficiently endorse accelerating metrics with a nontrivial NUT charge. Under
this context, we begin by rederiving the known C-metric NUT spacetime described by Chng, Mann, and
Stelea in a straightforward manner and in the new form of the solution introduced by Podolský and Vrátný.
Next, we construct for the first time an accelerating NUT black hole dressed with a conformally coupled
scalar field. These solutions belong to the general class of type I spacetimes and, therefore, cannot be
obtained from any limit of the Plebanśki-Demiański family whatsoever, and their integration needs to be
carried out independently. Including Maxwell fields is certainly permitted; however, the use of Ehlers
transformations is subtle and requires further modifications. Ehlers transformations not only partially rotate
the mass parameter such that its magnetic component appears, but also rotate the corresponding gauge
fields. Notwithstanding, the alignment of the electromagnetic potentials can be successfully performed via
a duality transformation, hence providing a novel Reissner-Nordström-C-metric NUT black hole that
correctly reproduces the Reissner-Nordström-C-metric and Reissner-Nordström-NUT configurations in the
corresponding limiting cases. We describe the main geometric features of these solutions and discuss
possible embeddings of our geometries in external electromagnetic and rotating backgrounds.
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I. INTRODUCTION

In the understanding of the gravitational interaction,
exact solutions of Einstein field equations play a funda-
mental role. In many cases, these solutions allow one to
study, by means of analytic computations, several phenom-
ena of classical and semiclassical gravity with significant
astrophysical implications. As a matter of fact, the most
iconic exact spacetimes are given by black holes, today
widely accepted to be primordial for the formation of
galaxies [1,2] and the production of gravitational waves as
a result of binary black hole mergers [3]. In addition, their
mechanic and thermodynamic features are essential in the
semiclassical description of gravitational systems, provid-
ing a first glance on the interplay of gravity and quantum
field theory. It is fair to state that the Schwarzschild [4]
and Kerr spacetimes [5], describing the gravitational field
of a static and a rotating source, respectively, are the
most famous black hole spacetimes in general relativity
(GR). Along with their charged extensions, the Reissner-
Nordström [6,7] and Kerr-Newman [8] spacetimes, and the

so-called C-metric [9] and Taub-NUT geometries [10,11],
known to represent accelerating black holes and twisted
spacetimes with a gravitomagnetic interpretation, respec-
tively, they make part of the general class of spacetimes
known as the Plebanśki-Demiański family [12]. The
Plebanśki-Demiański spacetime is the most general type D
solution of Einstein-Maxwell equations, and it represents
a pair of charged rotating black holes, endowed with
Newman-Unti-Tamburino (NUT) charge, that accelerate
from each other in opposite directions. Including the
presence of a cosmological constant, this family depends
on seven continuous parameters, which can be (although
not straightforwardly) identified with the mass m, angular
momentum a, NUT charge l, acceleration parameter α, and
electric e and magnetic g charges. In practice, subfamilies
of black holes and their combinations need to be obtained
from the general Plebanśki-Demiański line element [12]
by performing special limiting procedures, a process that
differs from being direct and that, on occasion, clouds the
interpretation of the metric parameters [13]. The Plebanśki-
Demiański geometry has been initially studied by several
authors, especially the case which represents a spinning
C-metric, a pair of rotating black holes accelerating from
each other in opposite directions [14–18]. Along these
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lines, Hong and Teo [19] found a convenient set of
coordinates in which the metric polynomials of the
C-metric can be easily factorized. This allowed one not
only to rapidly identify the corresponding Killing horizons,
but also to perform a deeper analysis of the causal structure
of this spacetime. These findings motivated Griffiths and
Podolský [14] to perform a similar construction for the
Plebanśki-Demiański metric, which on this new form1

depends on the six independent parameters m, a, α, l, e,
and g and a seventh parameter, the so-called twisted
parameter ω that is ultimately related to both angular
momentum and NUT charge. In this form, almost all limits
on the Plebanśki-Demiański metric are direct to take, from
which highlight the spinning C-metric and the Kerr-NUT
spacetimes and their charged generalizations. As the
Plebanśki-Demiański line element represents at the end
of the day a sort of spinning C-metric with NUT charge,
it seems natural to wonder what the nonrotational limit of
this spacetime is. In this form of the line element, there is
no direct obstruction for this limit to be performed, and
actually a simple stationary metric is obtained. However,
this metric is found to not possess any conical singularities,
as it is known, the sources of the acceleration, and, even
more, the acceleration parameter α becomes a redundant
parameter that can be removed by a suitable coordinate
transformation. It was then conjectured that an accelerating
NUT line element does not exist, at least in the wide class
of the Plebanśki-Demiański family. Notwithstanding, an
accelerating NUT family of black holes was introduced by
Chng, Mann, and Stelea [20] by using a precise generating
solution technique based on the symmetries of the dimen-
sionally reduced Lagrangian of GR obtained by a timelike
compactification from dimension four to three. This sol-
ution, which in fact does represent a NUT black hole with a
nontrivial acceleration, was proven to not belong to the
special type D family given by Plebanśki-Demiański and
to have general algebraic properties and, in fact, is of the
general type I. As a consequence, this metric could have
not been obtained by any limiting process acting on the
Plebanśki-Demiański solution. A more convenient form
of the metric and a full geometric analysis of this novel
solution was given by Podolský and Vrátný [21], where
Killing horizons, algebraic classification, conformal com-
pletion, and causal structures were studied in detail.
Recently, the same authors have found a refined set of
coordinates to represent the Plebanśki-Demiański metric,
with and without a cosmological constant [22,23],2 and
have finally cleaned out the presence of the nonindependent

twist parameter ω. This represents the final form of the
Plebanśki-Demiański spacetime and is constructed in such
a manner that all limiting cases are clearly obtained with no
need for further changes of coordinates; it reads3

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt−

�
a sin2 θþ 4l sin2

1

2
θ

�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2þ P

ρ2
sin2 θ½adt− ðr2þðaþ lÞ2Þdφ�2

�
;

ð1:1Þ

where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð1:2Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð1:3Þ

PðθÞ ¼
�
1 −

αa
a2 þ l2

rþðlþ a cos θÞ
�

×

�
1 −

αa
a2 þ l2

r−ðlþ a cos θÞ
�
; ð1:4Þ

QðrÞ ¼ ðr − rþÞðr − r−Þ
�
1þ αa

a − l
a2 þ l2

r

�

×

�
1 − αa

aþ l
a2 þ l2

r

�
: ð1:5Þ

The roots of the metric polynomial QðrÞ define the two
black hole Killing horizons

rþ ≔ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð1:6Þ

r− ≔ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
ð1:7Þ

that are accompanied by two accelerating horizons
located at

rα ≔ � 1

α

a2 þ l2

aða� lÞ : ð1:8Þ

The a → 0 limit is, therefore, completely transparent,
showing the outsider behavior of the NUT C-metric black
hole with respect to the Plebanśki-Demiański family.
Indeed, Ω and P tend to one; no conical singularities
emerge and, therefore, no acceleration whatsoever. The
metric simply represents a charged NUT black hole.
In this work, we aim to rederive the Chng, Mann, and

Stelea solution [20] by making use of a different, but

1In this paper, we focus on the case in which the cosmological
constant vanishes. This is strictly related with the fact that the
generating solution technique we shall use to construct our new
geometries does not apply for Λ ≠ 0.

2An extension of the Plebanśki-Demiański solutions with a
cosmological constant has been constructed in the framework of
metric-affine gravity [24].

3We follow the same notation given by Podolský and
Vrátný [22,23] and constrain ourselves to the case Λ ¼ 0.
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theoretically close, solution generating technique. The
Ernst scheme [25,26] describes stationary and axially
symmetric spacetimes in Einstein-Maxwell theory. It is
known that Einstein-Maxwell theory written in terms of the
Ernst potentials enjoys a set of Lie point symmetries known
as Ehlers symmetries [13], from which the nontrivial,
Harrison [27] and Ehlers [28] transformations can be
used to obtain novel solutions in electrovacuum. In their
electric and magnetic versions,4 Harrison transformations
electrify a given seed spacetime or embed the seed on an
electromagnetic background, respectively [29–32]. On the
other hand, Ehlers transformations are known to add NUT
charge or to embed the seed on a rotating (swirling)
background [33]. We shall apply an Ehlers transformation
on the standard C-metric, written in intuitive spherical
coordinates, to find in a few steps the convenient form of
the Chng, Mann, and Stelea solution [20] provided by
Podolský and Vrátný [21]. Then we present, for the first
time, an accelerating NUT black hole dressed by a
conformally coupled scalar field. This requires a specific
treatment in order for the Ernst scheme to be appli-
cable [34]. Several solutions of this kind have been
previously reported [35–39]; however, none of them are
in the context of accelerating NUT spacetimes. In technical
terms, this is due to the algebraically general nature of
accelerating NUT metrics. A natural step forward is to
endorse these spacetimes with electromagnetic charges.
At first glance, this could be achieved by simply adding
NUT charge via an Ehlers transformation acting onto a
Reissner-Nordström C-metric. Nonetheless, it has been
shown that in order to add NUT parameter on a given
charged spacetime an enhanced Ehlers transformation is
required that, along with the usual Ehlers map, includes an
extra duality transformation that restores the alignment of
the corresponding gauge fields [40]. As a matter of fact,
Ehlers transformations rotate the mass parameter in such a
manner that its magnetic component becomes nontrivial but
rotating at the same time the electromagnetic potentials.
Here, we construct the NUT extension of the Reissner-
Nordström C-metric spacetime, showing how the corre-
sponding line element correctly reproduces the NUT
Reissner-Nordström limit with an aligned gauge potential
if the naive Ehlers map used in the uncharged case is
improved with a simple duality transformation.
This paper is structured as follows: In Sec. II, we shortly

review the Ernst scheme for stationary and axially sym-
metric solutions in Einstein-Maxwell theory. We put
particular emphasis in explaining how to produce new
solutions by means of Harrison and Ehlers symmetry
transformations. Section III is devoted to rederive the

Chng, Mann, and Stelea solution à la Podolský and
Vrátný by making use of an electric Ehlers transformation.
We continue with Sec. IVextending our findings to the case
in which a conformally coupled scalar field is introduced in
the matter sector. We explain how the Ernst scheme is
extended to this theory and how to integrate such a solution.
Section V is destined to the construction of NUT Reissner-
Nordström C-metric configurations, where we explicitly
show the line element, its corresponding nonaccelerating
limit, and how the alignment of the gauge field can be
retrieved by a duality transformation. Finally, we conclude
in Sec. VI with a discussion of our results and with a list of
possible avenues that can be explored to continue studying
these geometries.

II. ERNST SCHEME

The Ernst scheme [25,26] provides an elegant frame-
work in which to study stationary and axially symmetric
spacetimes within Einstein-Maxwell theory. It usefulness
relies in the ability it has to disclose certain symmetries
of the electrovacuum theory that allow the generation
of nontrivial solutions starting from a known seed. In
concrete terms, Einstein-Maxwell field equations for a
general stationary and axisymmetric spacetime given by
the LWP metric and a stationary and axially symmetric
Maxwell field

ds2 ¼ −fðdt − ωdφÞ2 þ f−1½ρ2dφ2 þ e2γðdρ2 þ dz2Þ�;
ð2:1Þ

A ¼ Atdtþ Aφdφ ð2:2Þ

can be cast in a completely equivalent form, the Ernst
equations

ðRe E þ jΦj2Þ∇2E ¼ ∇E · ð∇E þ 2Φ�∇ΦÞ; ð2:3aÞ

ðRe E þ jΦj2Þ∇2Φ ¼ ∇Φ · ð∇E þ 2Φ�∇ΦÞ; ð2:3bÞ

where ∇! and the various vectorial quantities are under-
stood in Euclidean space with cylindrical coordinates
ðρ;φ; zÞ. The so-called Ernst potentials are defined as

E ¼ f − jΦj2 þ iχ; Φ ¼ At þ iÃφ; ð2:4Þ

where Ãφ and χ, known as twisted potentials, are charac-
terized via the differential equations

φ̂ ×∇Ãφ ¼ ρ−1fð∇Aφ þ ω∇AtÞ ð2:5Þ

and

φ̂ × ∇χ ¼ −ρ−1f2∇ω − 2φ̂ × ImðΦ�∇ΦÞ: ð2:6Þ

4Electric and magnetic versions differ by a doubleWick rotation
on the corresponding Levis-Weyl-Papapetrou (LWP) line element,
and their names are given by the effect that, in particular, Harrison
transformations exert on a given seed spacetime.
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It is important to remark that, due to the integrability features
of the Einstein-Maxwell system, the function γðρ; zÞ decou-
ples, and it is uniquely determined by the functions fðρ; zÞ
and ωðρ; zÞ. This form of the electrovacuum field equations
can be proven to enjoy a set of Lie point symmetries, known
as Ehlers symmetries [13], given by

E ¼ jλj2E0; Φ ¼ λΦ0; ð2:7aÞ

E ¼ E0 þ ib; Φ ¼ Φ0; ð2:7bÞ

E ¼ E0

1þ i|E0

; Φ ¼ Φ0

1þ i|E0

; ð2:7cÞ

E ¼ E0 − 2β�Φ0 − jβj2; Φ ¼ Φ0 þ β; ð2:7dÞ

E ¼ E0

1 − 2α�Φ0 − jαj2E0

; Φ ¼ αE0 þΦ0

1 − 2α�Φ0 − jαj2E0

;

ð2:7eÞ

where α, β, and λ are complex parameters while b and | are
real. After reducing the pure gauge transformations, we are
left with (2.7c) and (2.7e), the so-called Ehlers [28] and
Harrison [27] transformations. Because of their Lie point
symmetry nature, the action of the transformations leaves
the Ernst equations unchanged while at the same time
producing new nonequivalent geometries. Notice that LWP
metric (2.1) is not the unique choice for a general stationary
and axisymmetric line element. As a matter of fact, we can
act on it with a discrete double-Wick rotation producing the
nonequivalent configuration

ds2 ¼ fðdφ−ωdtÞ2þf−1½e2γðdρ2þdz2Þ− ρ2dt2�; ð2:8Þ

A ¼ Atdtþ Aφdφ; ð2:9Þ

that gives rise to the very same Ernst equations (2.3). Here,
Φ ¼ Aφ þ iÃt and

φ̂ × ∇Ãt ¼ ρ−1fð∇At þ ω∇AφÞ: ð2:10Þ

This ansatz is usually referred to as the magnetic LWP
ansatz. Then, the effect of Harrison and Ehlers transforma-
tions on a given seed spacetime crucially depends on which
ansatz they act [30], i.e., (2.1) or (2.8). The Harrison map is
known to electrify a given seed when acting on (2.1), while it
embeds a seed spacetime of the form (2.8) in an electro-
magnetic universe [29]. On the other hand, Ehlers trans-
formations add a NUT parameter to a given seed when
acting on (2.1) while embedding the initial spacetime in a
rotating (swirling) background when acting on (2.8) [33].
For our purposes, it is useful to consider the enhance-

ment in which a minimally coupled scalar field is intro-
duced in the matter sector. It was proven in Ref. [34] that
the Ernst scheme survives the addition of such a field; in

fact, the reduced action principle in terms of the Ernst
potentials reveals that in the Einstein-Maxwell-scalar case
the set of Ehlers symmetries (2.7) needs to be comple-
mented by the trivial transformation Ψ → Ψ0 ¼ Ψ, while
Ernst equations are complemented with the corresponding
Klein-Gordon equation forΨ. This ensures the feasibility of
Ehlers transformations as an effective solution generating
technique when dealing with black holes with scalar hair.
Most spacetimes with scalar hair are easily found in the
so-called Einstein-Maxwell-conformal-scalar theory; this
means in the Jordan frame in which the scalar field is
conformally coupled to the curvature scalar [41–47]. Both
theories, with minimally and conformally coupled scalar
fields, are related by means of the conformal map known as
Bekenstein transformations [48]. These transformations
provide a vehicle to transport all the machinery of the
Ernst scheme to theories with conformally coupled scalars.
It is then enough to consider a seed spacetime in the Jordan
frame, transform it to the minimally coupled frame (in
which Ehlers transformations can be applied), and move
back to the conformally couple theory to obtain new
solutions in the Einstein-Maxwell-conformal-scalar sector.
With these tools at hand, in the next sections we will

rederive the Chng, Mann, and Stelea solution [20], apply
these results to the case in which a conformally coupled
scalar field is considered in the matter sector, and explore
the construction of charged accelerating NUT geometries.

III. DRESSING THE C-METRIC WITH NUT

The aim of this section is to construct the accelerating
NUT black hole of Chng, Mann, and Stelea [20], written
in the coordinates provided by Podolský and Vrátný [21].
The steps are very clear. We take the known C-metric in
spherical-like coordinates, and we dress it with a NUT
charge via an electric Ehlers transformation [28]. Thus, we
start from

ds2 ¼ 1

ΩðR; θÞ2
�
−QðRÞdt2 þ dR2

QðRÞ þ
R2dθ2

PðθÞ

þ R2PðθÞ sin2 θdφ2

�
; ð3:1Þ

where

ΩðR; θÞ ¼ 1þ AR cos θ; ð3:2Þ

QðRÞ ¼ ð1 − A2R2Þ
�
1 −

2M
R

�
; ð3:3Þ

PðθÞ ¼ 1þ 2AM cos θ: ð3:4Þ

Here, A andM stand for the acceleration parameter and the
mass of the black hole, respectively [49]. The standard use
of the Ernst scheme requires one to compare metric (3.1)
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with the electric LWP ansatz (2.1), from which it is direct to
recognize the seed functions

f0 ¼
Q
Ω2

; ð3:5aÞ

ρ ¼
ffiffiffiffiffiffiffi
PQ

p
R sin θ

Ω2
; ð3:5bÞ

ω0 ¼ 0: ð3:5cÞ

This is done in order to write the seed Ernst potentials.
Note that seed quantities are denoted by the subindex 0.
Therefore, the seed potentials are given by

E0 ¼
Q
Ω2

; Φ0 ¼ 0; ð3:6Þ

where indeed the potential Φ0 vanishes and the seed is
uncharged. In addition, E0 is real, corresponding with the
static character of the seed metric. With these at hand, we
apply the Ehlers transformation5 (2.7c) and obtain the
transformed Ernst potential (free of any subindex)

E ¼ E0

1þ icE0

¼ Q=Ω2

Λ
; ð3:7Þ

where we have defined the quantity

ΛðR; θÞ ¼ 1þ ic
Q
Ω2

: ð3:8Þ

The electromagnetic potential remains null:Φ ¼ 0. To read
the transformed metric components, we make use of the
definition of the Ernst potential, which now is composed by
real and imaginary parts. From the real part, we identify

f ¼ ReðEÞ ¼ Q=Ω2

jΛj2 ¼ f0
jΛj2 ; ð3:9Þ

where jΛj2 ¼ ΛΛ̄. The imaginary part of E,

χ ¼ ImðEÞ ¼ −c
Q2=Ω4

jΛj2 ; ð3:10Þ

provides us, via Eq. (2.6),6 with the form of the rotating
function ω:

ωðR; θÞ ¼ 2c
�
2M cos θ þ APðθÞR2 sin2 θ

ΩðR; θÞ2
�
: ð3:11Þ

Ehlers transformations always endorse an imaginary part
on the transformed Ernst potential. Therefore, it always
implies the appearance of some sort of rotation [via (2.6)],
NUT charge in the electric case, or swirling rotation in the
magnetic one [30]. Recalling that Ehlers transformations
do not affect the metric function γ; γ ¼ γ0, it is possible to
verify that

e2γ0ðdρ2 þ dz2Þ ¼ e2γðdρ2 þ dz2Þ ¼
�
dR2

Q
þ R2

P
dθ2

�
f0;

ð3:12Þ

a result that, along with the definitions for f and ω, can be
plugged into the LWP ansatz (2.1) to deliver the trans-
formed metric

ds2 ¼ 1

ΩðR;θÞ2
�
−

QðRÞ
jΛðR;θÞj2

�
dt− 2c

�
2M cos θ

þAPðθÞR2

ΩðR;θÞ2 sin2 θ

�
dφ

�
2

þ jΛðR;θÞj2

×

�
R2PðθÞ sin2 θdφ2 þ dR2

QðRÞ þR2
dθ2

PðθÞ
��

: ð3:13Þ

At this stage, the construction is completed, and it remains
only to establish the connection between the real parameter
c and the NUT charge l. For this to be done, we define a
new mass parameter via the relation

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − l2

p
; ð3:14Þ

which together with the definitions

rþ ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; ð3:15Þ

r− ≡m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ð3:16Þ

allows one to find a proper change of coordinates to bring
down the metric in an explicit NUT form. Keeping in mind
that

rþ þ r− ¼ 2m; ð3:17Þ

rþ − r− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
; ð3:18Þ

rþðrþ − r−Þ ¼ r2þ þ l2; ð3:19Þ

we perform the change of coordinates R → ðr − r−Þ and
t → ðrþ−r−Þ

rþ
τ together with the reparametrization c → l=rþ.

The metric terms change as

5Aiming to maintain the notation given by Podolský and
Vrátný, we change the real parameter | to c.

6We use the orthonormal frame defined by the ordered triad
ðe⃗R; e⃗φ; e⃗θÞ, so then e⃗φ × e⃗R ¼ −e⃗θ and e⃗φ × e⃗θ ¼ e⃗R. The

gradient operator is then defined as ∇!∝
ffiffiffiffi
Q

p
R ∂

∂R e⃗R þ
ffiffiffiffi
P

p
∂

∂θ e⃗θþ
1ffiffiffi

P
p

sin θ
∂

∂φ e⃗φ.
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−
QðRÞ

jΛðR; θÞj2
�
dt − 2c

�
2M cos θ þ APðθÞR2

ΩðR; θÞ2 sin2 θ

�
dφ

�
2

→ −
rþ − r−

rþ

QðrÞ
R2ðr; θÞ ½dτ − 2lðcos θ þ AT ðr; θÞ sin2 θÞdφ�2;

ð3:20Þ

jΛðR; θÞj2R2 →
rþ − r−

rþ
R2ðr; θÞ;

jΛðR; θÞj2
QðRÞ →

rþ − r−
rþ

R2ðr; θÞ
QðrÞ ; ð3:21Þ

where we have defined the new metric functions

Ωðr; θÞ ¼ 1þ Aðr − r−Þ cos θ; ð3:22Þ

PðθÞ ¼ 1þ Aðrþ − r−Þ cos θ; ð3:23Þ

QðrÞ ¼ ð1 − A2ðr − r−Þ2Þðr − r−Þðr − rþÞ; ð3:24Þ

T ðr; θÞ ¼ PðθÞðr − r−Þ2
ðrþ − r−ÞΩðr; θÞ2

; ð3:25Þ

R2ðr; θÞ ¼ 1

r2þ þ l2

�
r2þðr − r−Þ2 þ l2

½1 − A2ðr − r−Þ2�2
Ωðr; θÞ4

× ðr − rþÞ2
�
: ð3:26Þ

Up to a conformal factor that can be disregarded by a
conformal rescaling of the line element, we find the final
form of the spacetime to be

ds2 ¼ 1

Ωðr; θÞ2
�
−

QðrÞ
R2ðr; θÞ ½dτ − 2lðcos θ

þ AT ðr; θÞ sin2 θÞdφ�2 þR2ðr; θÞ

×

�
PðθÞ sin2 θdφ2 þ dr2

QðrÞ þ
dθ2

PðθÞ
��

: ð3:27Þ

This precisely coincides with the accelerating NUT space-
time presented by Podolský and Vrátný [21]. The corre-
sponding limits are clean, either A → 0 or l → 0; thus, we
recover the NUT or C-metric black holes with no further
changes of coordinates. We do not intend to provide a
detailed description of the geometric features of this
solution, as it has been already done in Ref. [21].

IV. ACCELERATINGNUT BLACKHOLESWITHA
CONFORMALLY COUPLED SCALAR DRESS

The Ernst solution generating technique is, in principle,
intrinsic to four-dimensional Einstein-Maxwell theory;
then it is expected that Ehlers transformations apply only
in the context of black holes with scalar hair. However,
a few counterexamples have been found. A particular

symmetry of the Einstein-dilaton-Maxwell theory has been
identified, of which the effect is to embed a given seed on
an external magnetic field [50]. Moreover, this system has
been shown to exhibit internal symmetries allowing for
a deeper exploration of its black hole spectrum [51,52].
On the other hand, in higher dimensions, a magnetizing
transformation has been also identified, providing Melvin
solutions in arbitrary dimensions [53]. A particularly
appealing extension of the Ernst scheme is the one in
which a minimally coupled scalar field is included in the
matter sector [34]. As explained before, Harrison and
Ehlers symmetries remain as valid Lie point transforma-
tions of this theory and, therefore, open the road for the
exploration of the integrability properties of Einstein-
Maxwell-scalar theory in a wide variety of cases. Making
use of Bekenstein transformations [48], all these new
solutions can be mapped to the Einstein-Maxwell-
conformal-scalar scenario, in which they often represent
black hole spacetimes. In this section, we apply all this
machinery to construct an accelerating NUT black hole
with a conformally coupled scalar dress. Black holes with a
conformally coupled scalar field have been deeply inves-
tigated in many contexts, but in the case where acceleration
and NUT charge are combined in the absence of rotation.
This is, again, due to the fact that when doing so we depart
from the Plebanśki-Demiański family. The strategy follows
from the previous section, now augmented with the use of
the Bekenstein map.
Thus, we start by considering a C-metric spacetime in the

context of a conformally coupled scalar theory. We proceed
by translating the solution to the Einstein frame by means
of an inverse Bekenstein map and by applying an electric
Ehlers transformation to add the corresponding NUT
charge. The final form of the solution is obtained by
moving back to the Jordan frame. Our guide action is

I ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − κ

�
gμν∂μϕ∂νϕþ 1

6
Rϕ2

��
; ð4:1Þ

for which C-metric black holes with conformal scalar
hair have been identified in Refs. [43,44]. In terms of
the acceleration conformal factor, the metric and scalar are
written, respectively, as

ds2 ¼ 1

ΩðR; θÞ2
�
−
QðRÞ
R2

dt2 þ R2

QðRÞ dR
2 þ R2

PðθÞ dθ
2

þ PðθÞR2 sin2 θdφ2

�
; ð4:2Þ
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ϕðR; θÞ ¼
ffiffiffi
6

κ

r
kΩðR; θÞ

Rþ kðΩðR; θÞ − 2Þ ; ð4:3Þ

where

ΩðR;θÞ ¼ 1þAR cos θ; ð4:4aÞ

QðRÞ ¼ ð1−A2R2ÞðR−MÞ
�
R−

M
1þ 2AM

�
; ð4:4bÞ

PðθÞ¼ ð1þAM cos θÞ
�
1þ AM

1þ2AM
cos θ

�
; ð4:4cÞ

k ¼ M
1þ AM

: ð4:4dÞ

In order to proceed, we move to the Einstein frame

I ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g̃

p
½R̃ − κg̃μν∂μΨ∂νΨ�; ð4:5Þ

where the metric and scalar read, respectively,

ds2 ¼ ΩBðR; θÞ
ΩðR; θÞ2

�
−
QðRÞ
R2

dt2 þ R2

QðRÞ dR
2 þ R2

PðθÞ dθ
2

þ PðθÞR2 sin2 θdφ2

�
; ð4:6Þ

ΨðR; θÞ ¼
ffiffiffi
6

κ

r
tanh−1

� ffiffiffi
κ

6

r
ϕðR; θÞ

�
: ð4:7Þ

Here, the Bekenstein factor is given by

ΩBðR; θÞ ¼ 1 −
κ

6
ϕðR; θÞ2: ð4:8Þ

Now, we apply an electric Ehlers transformation in order to
add the NUT charge. We do not repeat every step, as they
are identical to the previous case, no electromagnetic
charges are here included, and the identification of the
seed and transformed Ernst potentials follows in full
analogy with those of the previous section. Thus, we get

ds2 ¼ ΩBðR; θÞ
ΩðR; θÞ2

�
−

QðRÞ
jΛðR; θÞj2R2

ðdt − ωðR; θÞdφÞ2

þ jΛðR; θÞj2R2

�
PðθÞ sin2 θdφ2 þ dθ2

PðθÞ þ
dR2

QðRÞ
��

;

ð4:9Þ
with

jΛðR; θÞj2 ¼ 1þ c2
ΩBðR; θÞ2QðRÞ2

ΩðR; θÞ4R4
;

ωðR; θÞ ¼ 2cð2M cos θ − AT ðR; θÞÞ; ð4:10Þ

and where the function T ðR; θÞ is given by

T ðR; θÞ ¼ 1

ð1þ AMÞ2ð1þ 2AMÞΩðR; θÞ2ðRþ kðΩðR; θÞ − 2ÞÞ2 ½2A
3M3R4ð1þ 2AMÞ cos5 θ

þ A2M2R2ð8A2M2R2 − 6AM2Rþ 14AMR2 þ 6M2 − 6MRþ 5R2Þ cos4 θ
þ 2AMR2ð2þ AMÞð2A2M2R2 − 2AM2Rþ 3AMR2 þ 2M2 − 2MRþ R2Þ cos3 θ
þ ð12A3M4R3 − 2A4M4R4 − 6A3M3R4 − 14A2M4R2 þ 12A2M3R3 þ A2M2R4

þ 4AM4R − 4AM3R2 − 2AM2R3 þ 4AMR4 − 2M4 þ 4M3R − 2MR3 þ R4Þ cos2 θ
− 2MðA4M3R4 − 5A3M3R3 þ 5A3M2R4 þ 4A2M3R2 − 10A2M2R3 þ 6A2MR4

þ 2AM3Rþ 3AM2R2 − 5AMR3 þ 2AR4 −M3 þ 2M2R −MR2Þ cos θ
− 2A3M3R4 þ 3A2M4R2 þ 4A2M3R3 − 5A2M2R4 − 6AM4Rþ 2AM3R2

þ 6AM2R3 − 4AMR4 þ 3M4 − 6M3RþM2R2 þ 2MR3 − R4�: ð4:11Þ
Contrary to the previous construction, the function χ is more involved, and usually solving (2.6) becomes cumbersome. To
circumvent these technicalities, we have solved ω from the different, but equivalent expression

∇⃗ω ¼ jΛj2∇⃗ω0 −
ρ

f0
ðΛ̄∇⃗Λ − Λ∇⃗Λ̄Þ: ð4:12Þ

Hence, back to the conformal frame, the solution takes the form

ds2 ¼ 1

ΩðR; θÞ2
�
−

QðRÞ
jΛðR; θÞj2R2

ðdt − ωðR; θÞdφÞ2 þ jΛðR; θÞj2R2

�
PðθÞ sin2 θdφ2 þ dθ2

PðθÞ þ
dR2

QðRÞ
��

; ð4:13Þ
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where the scalar field and metric functions are given by
(4.3) and (4.4). As a final step, it remains only to make up
the metric in such a way that the NUT parameter naturally
emerges. This proceeds in analogy with the case of
accelerating NUT in GR, yielding

ds2¼ 1

Ω̄ðr;θÞ2
�
−

Q̄ðrÞ
R̄2ðr;θÞ½dτ−2lðcos θ−AT̄ ðr;θÞÞdφ�2

þR̄2ðr;θÞ
�
P̄ðθÞsin2θdφ2þ dθ2

P̄ðθÞþ
dr2

Q̄ðrÞ
��

;

ð4:14aÞ

ϕ̄ðr;θÞ¼
ffiffiffi
6

κ

r
kΩ̄ðr;θÞ

r−r−þkðΩ̄ðr;θÞ−2Þ ; ð4:14bÞ

where

Ω̄ðr; θÞ ¼ 1þ Aðr − r−Þ cos θ; ð4:15aÞ

Q̄ðrÞ ¼ ð1 − A2ðr − r−Þ2Þ
�
r − r− −

rþ − r−
2

�

×

�
r − r− −

rþ − r−
2ð1þ Aðrþ − r−ÞÞ

�
; ð4:15bÞ

P̄ðθÞ ¼
�
1þ Aðrþ − r−Þ

2
cos θ

�

×

�
1þ Aðrþ − r−Þ

2ð1þ Aðrþ − r−ÞÞ
cos θ

�
; ð4:15cÞ

T̄ ðr; θÞ ¼ T ðr; θÞ
rþ − r−

; ð4:15dÞ

R̄2ðr; θÞ ¼ 1

r2þ þ l2

�
r2þðr − r−Þ2

þ l2
Ω̄Bðr; θÞ2

Ω̄ðr; θÞ4ðr − r−Þ2
Q̄ðrÞ2

�
: ð4:15eÞ

Let us now briefly analyze the main features of this
solution.7 It is instructive to start by taking the l ¼ 0
and A ¼ 0 limits. The former case, indeed, allows us to
recover the original seed, namely, the accelerating solution
with a conformally coupled scalar dress [43,44]. Recalling
that in the limit l ¼ 0we have rþ ¼ 2m and r− ¼ 0, we can
obtain

Ω̄ðr; θÞ ¼ 1þ Ar cos θ; ð4:16aÞ

P̄ðθÞ ¼ ð1þ 2Am cos θÞ
�
1þ Am cos θ

1þ 2Am

�
; ð4:16bÞ

Q̄ðrÞ ¼ ð1 − A2r2Þðr −mÞ
�
r −

m
1þ 2Am

�
; ð4:16cÞ

R̄ðr; θÞ ¼ r2; ð4:16dÞ

on which we can replace m byM and r by R, providing the
seed metric configuration

ds2 ¼ 1

ð1þ AR cos θÞ2
�
−
Q̄ðRÞ
R2

dt2 þ R2dR2

Q̄ðRÞ þ dθ2

P̄ðθÞ

þ P̄ðθÞr2 sin2 θdφ
�
; ð4:17Þ

ϕðR; θÞ ¼
ffiffiffi
6

κ

r
kð1þ AR cos θÞ

R − kð1 − AR cos θÞ : ð4:18Þ

More informative in terms of the NUT nature of our
solution is the nonaccelerating limit. Taking A → 0 and
recalling that rþ þ r− ¼ 2m, we get

Ω̄ðr; θÞ ¼ 1; ð4:19aÞ

P̄ðθÞ ¼ 1; ð4:19bÞ

Q̄ðrÞ ¼ ðr −mÞ2; ð4:19cÞ

R̄ðr; θÞ ¼ r2 þ l2; ð4:19dÞ

that results into the NUT black hole with scalar conformal
dress presented in Refs. [45,46]:

ds2 ¼ −
ðr −mÞ2
ðr2 þ l2Þ ðdt − 2l cos θdφÞ2 þ ðr2 þ l2Þ

ðr −mÞ2 dr
2

þ ðr2 þ l2Þðdθ2 þ sin2 θdφ2Þ; ð4:20Þ

ϕðrÞ ¼
ffiffiffi
6

κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p

r −m
: ð4:21Þ

This ensures that our NUT charge has been properly
added into the original C-metric seed. As a matter of
fact, both solutions, the seed and the NUT conformally
coupled configuration, retrieve the well-known Bocharova-
Bronnikov-Melnikov-Bekenstein (BBMB) black hole [41,42]
in the corresponding A ¼ 0 and l ¼ 0 limits, a solution that
finally lands on the Minkowski spacetime in the vanishing
mass case. As a matter of fact, the BBMB solution is not
connected with the Schwarzschild black hole; there is no
continuous limit that renders the spacetime free from the
scalar field profile while keeping the mass. This hierarchy of
scalar dressed solutions is depicted in Fig. 1. The horizon
structure of our accelerating NUT solution (4.14) is easily7A detailed study of this geometry will be given in Ref. [54].
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obtainable due to the factorizable form of Q̄ðrÞ. Four
Killing horizons are identified:

r−a ¼ r− −
1

A
¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
−
1

A
; ð4:22aÞ

rþa ¼ r− þ 1

A
¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
þ 1

A
; ð4:22bÞ

r−H ¼ m −
2Aðm2 þ l2Þ

1þ 2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p ; ð4:22cÞ

rþH ¼ m; ð4:22dÞ

which are given in two pairs, two acceleration horizons and
two black hole horizons. Their appearance on the causal
structure of (4.14) is directly dependent on the range of
the radial coordinate r. A brute-force inspection of the

Kretschmann curvature scalar reveals, through a particu-
larly lengthly and ugly expression, that the spacetime is free
of curvature singularities. As a matter of fact, the initial
singularity at r ¼ 0 of the seed configuration is completely
softened by the addition of the NUT parameter, rendering
our metric fully regular. In consequence, the four Killing
horizons (4.22) are present in our geometry. It is direct to
observe that rþa > r−a and rþH > r−H; however, to completely
determine the relative position of all Killing horizons with
respect to themselves, an extra assumption is needed. A
physically plausible condition is to consider the slowly
acceleration regime, which, in turn, restricts the parameters
A, m, and l according with

A <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ l2
p ¼ 1

M
: ð4:23Þ

Hence, the horizons satisfy r−a < r−H < rþH < rþa . It is
interesting to observe that, contrary to what occurs in the
hairless case, here r−H is not necessarily negative, and a
causal structure might arise with three positive Killing
horizons r−H, r

þ
H, and rþa , namely, one acceleration horizon

and a black hole and internal horizon.
On the other hand, it is important to establish a possible

pole of the scalar field profile (r0), a pole that could render
the scalar field profile singular on the outer domain of
communications. In the case of (4.14), the θ dependence in
the scalar field profile transforms such a locus in a region.
In fact, it lies at

r0ðθÞ ¼ m −
Aðm2 þ l2Þðcos θ þ 1Þ

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
ðcos θ þ 1Þ þ 1

: ð4:24Þ

We observe that for any value θ ≠ π such a divergence of
the scalar field profile always lies behind the event horizon
rþH. However, the conflictive locus remains located at the
south pole. This is an awkwardness that has been inherited
from the seed ancestor and that can be removed by applying
a conformal transformation to a very specific frame [54].
Accelerating and NUT spacetimes are, from the scratch,

geometrically intricate solutions. It is known that the
acceleration in the former case is due to the presence of
conical defects, defects that are better represented by either
cosmic strings or struts that pull or push the black hole
to infinity, causing its acceleration. On the other hand,
the NUT spacetime possesses the so-called Misner string
topological defect, a sort of topological defect usually
regarded as a semi-infinite rod with spin [55]. Solution
(4.14), as it has been studied already in great detail in
Ref. [21] for the bold case, also contains both type of
topological structures. Its full analysis, along with a proper
study of the algebraic classification of the solution (that
here we have anticipated to be of the algebraically general
type I), will be presented in Ref. [54].

FIG. 1. This diagram represents a hierarchy of solutions with a
scalar conformal dress that continuously connect with the
solution described in this section. On top, there is a spacetime
that includes rotation, acceleration, and NUT charge and that
might be obtained by adding rotation on our spacetime (4.14). As
discussed in our conclusions, it is expected to be of type I and,
therefore, has not been yet found. The corresponding limits l ¼ 0
and/or A ¼ 0 bring us to the well-known type D solutions with
scalar conformal dress.
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V. REISSNER-NORDSTRÖM ACCELERATING
NUT BLACK HOLE

In this section, we tackle the construction of a NUT
version of the Reissner-Nordström C-metric. As roughly
mentioned before, the presence of electromagnetic charges
restricts the usefulness of the standard electric Ehlers
transformation as a mechanism of endorsing NUT to a
given spacetime. It was proven in Ref. [40], by adding
NUT onto the Kerr-Newman solution, that the Ehlers map
requires to be complemented with a duality transformation
affecting the electromagnetic potential. Specifically, the
Ehlers map rotates not only the mass, producing the
appearance of the NUT parameter, but also the gauge
vector generating its misalignment. In order to obtain a
properly aligned gauge field, a further duality transforma-
tion, that can be seen as a subcase of (2.7a), is required
to act on the electromagnetic potential. Then, the Kerr-
Newman-NUT solution is obtained. An enhanced Ehlers
transformation, superposing the effect of the original Ehlers
map and the aforementioned duality transformation, was
also provided and shown to correctly add NUT to a
nonaccelerating charged spacetime while simultaneously
maintaining the correct alignment of the electromagnetic
potential. Here, we shall see that complementing the usual
Ehlers map with the aforementioned duality transformation
correctly produces an accelerating NUT Reissner-
Nordström solution with the correct alignment of the
electromagnetic potential in the corresponding limiting
cases. To proceed, we start from the line element (3.1)
with metric functions

QðRÞ ¼ ð1 − A2R2Þ
�
1 −

2M
R

þ e2 þ g2

R2

�
; ð5:1Þ

PðθÞ ¼ 1þ 2AM cos θ þ A2ðe2 þ g2Þ cos2 θ ð5:2Þ

and with the electromagnetic potential

A ¼ −
e
R
dtþ g cos θdϕ: ð5:3Þ

We consider both electric and magnetic charges. Again, by
comparison, we can easily find the seed metric functions
which take the same form as those of the uncharged
case (3.5). However, due to the presence of the electro-
magnetic charges, we also need to identify the electromag-
netic potentials composing the seed potential Φ0. This, in
turn, implies the computation of the seed twisted potential
Ãφ0. Using (2.5), we obtain

Ãφ0 ¼ −
g
R

ð5:4Þ

and identify the seed Ernst potentials

E0 ¼
Q
Ω2

−
e2 þ g2

R2
; Φ0 ¼ −

eþ ig
R

; ð5:5Þ

which by means of the corresponding Ehlers transforma-
tions deliver

E ¼
Q
Ω2 − e2þg2

R2

Λ
; Φ ¼ − eþig

R

Λ
: ð5:6Þ

Here, we have defined

ΛðR; θÞ ¼ 1þ ic

�
Q
Ω2

−
e2 þ g2

R2

�
: ð5:7Þ

As usual, the new metric functions and the new electro-
magnetic potential can be easily obtained by taking the real
and imaginary parts of E and Φ. For the metric functions,
we have

f ¼ Re E þ jΦj2 ¼
Q
Ω2

jΛj2 ; ð5:8Þ

while the imaginary part

χ ¼ Im E ¼ −c

�
Q
Ω2 − e2þg2

R2

�
2

jΛj2 ð5:9Þ

provides, via (2.6), the corresponding function ω. We
obtain

ωðR; θÞ ¼ 2c

�
2M cos θ − Aðe2 þ g2Þ sin2 θ

þ APR2 sin2 θ
ð1þ AR cos θÞ2

�
: ð5:10Þ

On the other hand, for the gauge potentials, we observe that

AtðR; θÞ ¼ ReðΦÞ ¼ −
e
R

jΛj2 − c

g
R

�
Q
Ω2 − e2þg2

R2

�
jΛj2 ; ð5:11Þ

ÃφðR; θÞ ¼ ImðΦÞ ¼ −
g
R

jΛj2 þ c
e
R

�
Q
Ω2 − e2þg2

R2

�
jΛj2 : ð5:12Þ

Notice that here we have obtained ÃφðR; θÞ and not the real
magnetic field. It is then necessary to use Eq. (2.5) to obtain
Aφ, for which it is first mandatory to know the explicit form
of the rotation function ω. The magnetic field is found to be

AφðR; θÞ ¼ c
eP sin2 θ

ð1þ AR cos θÞ2 cos θ
þ g cos θ

− c
e

cos θ
− ωAt: ð5:13Þ

JOSÉ BARRIENTOS and ADOLFO CISTERNA PHYS. REV. D 108, 024059 (2023)

024059-10



At this stage, it is useful to proceed with the same
reparametrization of the mass parameter and change of
coordinates performed in the uncharged case provided in
Sec. III. The line element is given by (3.27) with metric
functions

Ωðr; θÞ ¼ 1þ Aðr − r−Þ cos θ; ð5:14Þ

PðθÞ ¼ 1þ Aðrþ − r−Þ cos θ þ A2ðe2 þ g2Þ cos2 θ;
ð5:15Þ

QðrÞ ¼ ð1 − A2ðr − r−Þ2Þðr2 − 2mr − l2 þ e2 þ g2Þ;
ð5:16Þ

T ðr; θÞ ¼ PðθÞðr − r−Þ2
ðrþ − r−ÞΩðr; θÞ2

−
e2 þ g2

rþ − r−
; ð5:17Þ

R2ðr; θÞ ¼ 1

r2þ þ l2

�
r2þðr − r−Þ2

þ l2
ðQðrÞ − ðe2 þ g2ÞΩðr; θÞ2Þ2

Ωðr; θÞ4ðr − r−Þ2
�
; ð5:18Þ

ωðr; θÞ ¼ 2lðrþ − r−Þ
rþ

ðcos θ þ AT ðr; θÞ sin2 θÞ; ð5:19Þ

while the corresponding electromagnetic potentials turn
to be

Aτðr; θÞ ¼
ðr − r−Þ2
R2ðr; θÞ

�
−

e
ðr − r−Þ

− gl
ðQðrÞ − ðe2 þ g2ÞΩðr; θÞ2Þ

rþΩðr; θÞ2ðr − r−Þ3
�
;

Aφðr; θÞ ¼ l
ePðθÞ sin2 θ

rþ cos θΩðr; θÞ2 þ g cos θ

− l
e

rþ cos θ
− ωðr; θÞAτðr; θÞ: ð5:20Þ

It can be observed that from the line element it is direct
to obtain the NUT Reissner-Nordström metric in the limit
of vanishing acceleration. However, as we have pointed
out before, the Ehlers transformation also rotates the vector
potential, and, as a consequence, the usual gauge field of
the NUT Reissner-Nordström configuration is not retrieved.
It has been proposed in Ref. [40] that an extra duality
rotation acting on the vector potential

Φ → Φ̄ ¼ eiβΦ; ð5:21Þ

with β a constant, fixes the problem. This was proven for
the case in which the Kerr-Newman solution is affected
by an Ehlers transformation in order to obtain the Kerr-
Newman-NUT spacetime. In addition, the usual Ehlers and

the previous duality transformations were combined to
produce an enhanced Ehlers transformation that automati-
cally adds a NUT parameter onto a charged spacetime with
no extra rotation of the gauge potential. For the sake of
simplicity, here we consider g ¼ 0 and apply the duality
transformation (5.21) in order to align the gauge field in the
corresponding subcases in which either the acceleration or
the NUT parameter vanishes. Before moving to the ðτ; rÞ
coordinates and previous to the redefinition of the mass M,
the duality transformed electric and twisted magnetic
potentials are given, respectively, by

ĀtðR; θÞ ¼ ReðΦ̄Þ ¼ −
e
R

jΛj2 cos β − c
e
R ðQΩ2 − e2

R2Þ
jΛj2 sin β;

¯̃AφðR; θÞ ¼ ImðΦ̄Þ ¼ c
e
R ðQΩ2 − e2

R2Þ
jΛj2 cos β −

e
R

jΛj2 sin β;

ð5:22Þ

from where the dipole magnetic potential is extracted:

Āφ ¼ ce
Ω2

½e2A2 sin2 θ cos θ þ 2AM sin2 θ − ðΩþ 1ÞAR
− cos θ� cos β þ e cos θ sin β − ωĀt: ð5:23Þ

In the A → 0 limit, we get that

Āφ ¼ −ce cos θ cos β þ e cos θ sin β − ωĀt; ð5:24Þ

an expression that can be easily rearranged into the fashion
Āφ ¼ −ωĀt, by suitably selecting the constant parameter β.
Passing to τ, r, and m and rescaling the coordinates τ and r
and the parameters m, l, and e by the constant factorffiffiffiffiffiffiffiffiffiffi

rþ
rþ−r−

q
, the electric potential reduces to

Āτ ¼ −
er

r2 þ l2
; ð5:25Þ

namely, to the standard NUT Reissner-Nordström gauge
field.8 A hierarchy of solutions of this kind is depicted
in Fig. 2.

VI. OUTLOOK

Our study leverages Ernst’s insightful description of
axially symmetric and stationary spacetimes to devise a
novel and more computationally efficient approach for
constructing accelerating NUT black holes. Specifically,
we employed an electric Ehlers transformation on the
conventional C-metric to rederive Chng, Mann, and
Stelea’s solution [20] while also presenting for the first
time its scalar conformally dressed generalization.

8An accelerating version of the NUT Reissner-Nordström
black has been also constructed in Ref. [56].
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In addition, we provide the Reissner-Nordström accelerat-
ing NUT black hole of Einstein-Maxwell theory, providing
the charged extension of the Chng, Mann, and Stelea
solution written in Podolský and Vrátný coordinates. A
duality transformation has been applied on top of the usual
Ehlers map in order to restore the alignment of the gauge
field in the corresponding nonaccelerating limit. As a
matter of fact, the outcome of this procedure is the
obtention of the proper Reissner-Nordström NUT black
hole configuration in the vanishing acceleration case.
Indeed, this solution is of type I algebraic nature. In our
constructions, we have found the coordinate system intro-
duced by Podolský and Vrátný [21] to be particularly
useful, as it allows for the transparent identification of the
NUT charge. Moreover, it is the appropriate change of

coordinates, no matter the presence of electromagnetic
charges, that allows for clean nonaccelerating limits. Our
metric in the conformally coupled case possesses clear
limits to well-known subcases, including the conformally
dressed C-metric [43,44] and NUT [45,46] black holes,
which are obtained by taking the limits l → 0 and A → 0 on
Eq. (4.15), respectively. These conformally dressed space-
times, which depart from the Plebanśki-Demiański family,
could not have been obtained from the wide family of
metrics presented in Ref. [44].
It is known that the source of acceleration in these

spacetimes is given by the presence of cosmic strings or
struts, which is an unavoidable consequence of a nontrivial
function PðθÞ causing a deficit or excess angle on the
metric. To construct accelerating spacetimes with no

FIG. 2. Hierarchy of solutions contained in the Reissner-Nordström accelerating NUT spacetime.
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conical singularities, it is necessary to provide an alter-
native mechanism for the acceleration. Therefore, it would
be interesting to explore immersing these types of solutions
in external magnetic fields [34] or in rotating backgrounds
as has recently been done for the standard
C-metric [39]. This can be easily performed by using
magnetic Harrison and Ehlers transformations. There are
several other avenues that can be explored to continue
studying these geometries. In the context of our charged
and hairy accelerating NUT black hole, it would be
desirable to study its Euclidean version and its Eguchi-
Hanson formulation [57,58]. This would allow us to
explore charged and hairy accelerating gravitational sol-
itons, an avenue that has thus far been explored only for the
nonaccelerating case [59]. Additionally, the thermody-
namic analysis of these solutions offers a highly nontrivial
arena for exploration. As is known, the C-metric and NUT
solutions in GR already offer interesting subtleties regard-
ing the computation of their conserved charges and
thermodynamic behavior [60–63]. Therefore, accelerating
NUT geometries provide an interesting class of spacetimes
to test standard methods for computing charges and black
hole thermodynamic laws. On the contrary, investigating
the geodesic motion of accelerating NUT black holes
presents a promising avenue for exploration. Recent find-
ings have demonstrated that geodesic observers in NUT
spacetimes can avoid encountering the Misner string or
experiencing any causality violations, provided that the
constant parameter resulting from the coordinate trans-
formation that determines the position of the Misner
string is appropriately restricted [64]. This allows for
reinterpretation of NUT black holes, in some cases as
traversable wormhole geometries with no energy violation
whatsoever [65,66]. Then, it would be interesting to seek

for accelerating NUT traversable wormholes, especially in
the charged case scenario.
Last but not least, a major challenge will be the

construction of a rotating (Kerr-like) extension of these
(charged) accelerating NUT spacetimes. As pointed out in
Ref. [67], an educated guess indicates that adding rotation
to these spacetimes would guide us to a different solution
than the metric contained in the Plebanśki-Demiański
family. This is expectable from the fact that, contrary to
the spinning C-metric with NUT charge contained in the
Plebanśki-Demiański line element, here our accelerating
NUT spacetimes are not centered with respect to r ¼ 0 but
with respect to the position of the inner horizon r ¼ r−.
This can be observed from the ðr − r−Þ dependence of the
conformal factor and accelerating horizons. In addition,
the nonrotating solution already departs from the wide
Plebanśki-Demiański class, and rotation is not expected to
restore the special algebraic character of this spacetime. An
analytic construction of such a spacetime would be hard to
imagine without the utilization of sophisticated solution
generating techniques; we expect that some light might be
shed on this problem by considering the inverse scattering
method [68].
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