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The merger remnant of a binary neutron star coalescence is initially strongly differentially rotating. Some
properties of these remnants can be accurately modeled through building equilibrium neutron star models.
In the present paper, we study how a modification of general relativity, namely scalar-tensor theory with a
massive scalar field, will alter the picture. In contrast to previous studies, we implement a realistic
phenomenological differential rotational law which allows for neutron star models to attain maximal
angular velocity away from the center. We find that solutions with much higher masses and angular
momenta exist in scalar-tensor theory compared with general relativity. They keep their quasispherical
energy-density distribution for significantly higher values of the angular momentum before transitioning to
quasitoroidal models, in contrast to pure general relativity. Constructing such neutron star solutions is the
first step to our final goal that is studying how scalarization alters the stability and gravitational wave
emission of postmerger remnants.
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I. INTRODUCTION

Gravitational waves observations and the prospect for
multimessenger astronomy give us the tools to study nature’s
laws in their extreme. Among the best candidates are neutron
star (NS) merger events, such as GW170817 [1,2], that
allow us to study the behavior of matter in the condition of
extreme density and strong gravity. For that purpose,
mergers of binary NSs have been modeled in general
relativity (GR) with fully nonlinear three-dimensional
simulations; see e.g. [3–10]. Since one of the main goals
of gravitational wave observations is to test gravity in the
realm of strong gravitational fields (see e.g. [11–15] and
references therein), a natural extension of these results is to
include modified gravity effects. Even in the scope of pure
GR, though, merger simulations are very challenging and
computationally demanding. Hence, extending them for
modified theories of gravity is a highly nontrivial task and
has been done only in a handful of cases [16–20]. If one
concentrates only on studying certain properties of the
merger remnant, though, the problem can be simplified
considerably. Assuming that after the merger a neutron star
is formed instead of a direct collapse to a black hole, it will
be initially strongly differentially rotating. It is possible to

construct axisymmetric equilibrium models of such differ-
entially rotating NSs, with properties that resemble those of
merger remnants [21–24]. Such equilibrium models can
serve as a tool to gain important insight into the postmerger
dynamics, as detailed below.
In order for this to be done, a realistic differential rotation

law, which can reproduce the merger remnant rotational
profile, is needed. The well-known and widely used
j-constant differential rotation law [25] is very useful to
gain a first insight in the problem and help understand
the phenomenology. It was found that different types of
differentially rotating models can exist, including the
quasitoroidal (the so-called type C), the quasispherical
(type A) and some additional, more exotic types;
see [26–28]. The stability of such models was examined
through numerical simulations, e.g. in [29–33].
The j-constant law cannot model accurately, though,

the postmerger remnant. Perhaps the simplest extension
that performs better is the three-parameter law considered
in [34,35]. A more realistic improvement was developed by
Uryu et al. in [36,36] where a four-parameter differential
rotation law was proposed, which allows a neutron star
model to attain maximal angular velocity away from the
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center, a generic property of postmerger remnants seen in
all simulations. In [23,24] the authors constructed equilib-
rium sequences of differentially rotating relativistic stars
employing this four-parameter rotation law [36], with
parameters motivated by simulations of binary merger
remnants. Both polytropic and realistic equations of state
(EOS) were considered and both quasispherical (type A)
and quasitoroidal (type C) models were constructed.
The quasiequilibrium models of postmerger remnants

can have a variety of applications. This includes the
interpretation of the postmerger gravitational wave (GW)
spectrum [37,38], the study of the threshold mass to prompt
collapse to a black hole [34,39,40], the modeling of
processes taking place on longer secular timescales that
cannot be easily addressed with nonlinear simulations [41],
etc. Most of the studies on this topic, though, are performed
in pure GR. Modification of the theory of gravity can
significantly influence the neutron star equilibrium and
the gravitational wave emission in dynamical processes
(e.g. [42,43]). An example is the scalar-tensor theories
(STT), that are among the most natural and widely studied
modification of GR, where the additional scalar field can
lead to considerable increase of the stellar maximum mass,
especially in the case of rapid rotation [44–46]. The
quasinormal mode spectrum can be significantly altered
as well, e.g. [47–49] and new types of oscillations can
appear, e.g. [50]. All this hints toward the idea that the
predictions mentioned above in GR might change signifi-
cantly in the presence of additional fields. Thus, the
gravitational wave observations will allow us to put strong
constraints on modified gravity.
The study of quasiequilibrium rotating postmerger mod-

els in modified gravity is a practically undeveloped area.
As a matter of fact, there are just a handful of papers
constructing uniformly rotating neutron stars in modified
gravity [45,46,51,52], while differential rotation was
considered only in [53]. The differential rotation law
employed in the latter paper was the simplified j-constant
law that cannot model well postmerger remnants. It still
demonstrated, though, how different postmerger quasie-
quilibrium models can differ from GR (for results from
fully nonlinear dynamical merger simulations in modified
gravity see [17]). This motivates us to extend the above-
mentioned papers and study differentially rotating models
in scalar-tensor theory with the realistic four-parameter
rotation law of [36], which attains maximal angular
velocity away from the center. These models can be used
as a background for studying stability and gravitational
wave emission that will be done in a follow-up paper.
Another extension to [53] is that we consider the cases of

nonzero scalar field mass. Apart from the fact that this is an
interesting generalization of the model, the scalar field
mass has another very important role—to help us evade the
binary pulsar observation that for the moment has ruled
out completely scalarization in the classical scalar-tensor

theories with zero scalar field potential [54]. This property
comes from the fact that for a nonzero scalar field mass the
scalar field has a finite range of the order of its Compton
wavelength. Thus, if this Compton wavelength is below the
binary pulsar separation, the two orbiting compact objects
would not feel each other’s field [55,56]. A scalar field
mass as small as 10−16 eV is sufficient to evade all binary
pulsar constraints while leaving the equilibrium compact
object models and their dynamics almost indistinguishable
from the massless scalar field case.1

The structure of this paper is as follows: in Sec. II we
briefly present the mathematical background for the con-
sidered STT and for the differential rotation. In Sec. III
we present the numerical results. The paper ends with a
Conclusion.

II. SCALAR-TENSOR THEORY
AND DIFFERENTIAL ROTATION LAW

The general form of the Einstein frame action for scalar-
tensor theories is

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφ − 4VðφÞÞ

þ Sm½Ψm;A2ðφÞgμν�; ð1Þ

where G� is the bare gravitational constant, R is the Ricci
scalar with respect to the Einstein frame metric gμν, VðφÞ is
the scalar field potential and A2ðφÞ is the Einstein frame
coupling function between the matter and the scalar field
that appears in the action of the matter Sm. The matter fields
are collectively denoted by Ψm. The field equations
obtained after varying the action above have the form

Rμν −
1

2
gμνR ¼ 8πG�Tμν þ 2∂μφ∂νφ − gμνgαβ∂αφ∂βφ

− 2VðφÞgμν; ð2Þ

∇μ∇μφ ¼ −4πG�kðφÞT þ dVðφÞ
dφ

; ð3Þ

where Tμν is the Einstein frame energy-momentum tensor,
T is its trace and kðφÞ is the coupling function defined as

kðφÞ ¼ d lnðAðφÞÞ
dφ

: ð4Þ

In the present paper we will consider theory with massive
scalar field with potential

1The effect of the scalar field mass starts to be well pronounced
in the neutron star structure and dynamics only for a few orders of
magnitude larger mass than 10−16 eV.
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VðφÞ ¼ 1

2
m2

φφ
2; ð5Þ

where mφ is the mass of the scalar field, and coupling
function

kðφÞ ¼ βφþ α; ð6Þ

where β and α are constants. The case of α ≠ 0 and β ¼ 0
corresponds to the famous Brans-Dicke theory while for
α ¼ 0 and β ≠ 0 we have the Damour-Esposito-Farese
model allowing for neutron star scalarization [44].
Interestingly, when α ≠ 0 the radial perturbations of a
compact object also lead to gravitational wave emission
related with the presence of the so-called breathing polari-
zation modes.
The idea behind introducing a scalar field potential is not

only to explore possible modifications beyond GR in their
full richness. As discussed in the introduction, even more
important is that even a very smallmφ, that practically has a
negligible effect on the structure of compact objects, can
evade the binary pulsar constraints [54] and allow for larger
deviations from GR in the strong field regime.
We consider stationary and axisymmetric matter and

scalar field configurations that allow us to use the following
form of the metric:

ds2 ¼ −eγþσdt2 þ eγ−σr2sin2θðdϕ − ωdtÞ2
þ e2ηðdr2 þ r2dθ2Þ; ð7Þ

where the metric function γ, σ, ω and η depend only on r
and θ. The explicit form of the dimensionally reduced field
equations is quite lengthy, and that is why we refer the
interested reader to [45,46,57].
Having discussed the metric and the scalar field, let us

focus now on how the matter is treated. The conservation of
the energy-momentum tensor in the Einstein frame takes
the following form:

∇μTμ
ν ¼ kðφÞT∂νφ: ð8Þ

We will assume that the NS are made out of a perfect fluid
with an energy-momentum tensor being

Tμν ¼ ðεþ pÞuμuν þ pgμν; ð9Þ

where p and ε are the pressure and energy density of the
fluid. The Einstein frame fluid four velocity takes the form

uμ ¼ e−ðσþγÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ½1; 0; 0;Ω�; ð10Þ

where Ω ¼ uϕ
ut is the angular velocity, and the proper

velocity v of the fluid is given by v ¼ ðΩ−ωÞr sin θe−σ.
In the differentially rotating case we study hereΩ¼Ωðr;θÞ,

while for uniform rotation the angular velocity is a
constant.
The quantities defined so far are in the Einstein frame

which is more convenient for computations. The final
results presented in this paper, however, are transformed
back in the physical Jordan frame. The two frames are
related by a conformal transformation and a redefinition of
the scalar field. The interested reader can find the detailed
relations between the two frames in [45]. Here, wewill only
mention some of the relations we need for the presentation
of the results in the paper.
The energy-momentum tensor, the energy density, the

pressure and the four velocity transform between the two
frames as

Tμν ¼ A2ðφÞT̃μν;

ε ¼ A4ðφÞε̃;
p ¼ A4ðφÞp̃;
uμ ¼ A−1ðφÞũμ; ð11Þ

where the Jordan frame quantities are denoted with a tilde.
Ω and v remain the same in both frames. Let us comment
on the relation between the Jordan and the Einstein frame
mass, radius and angular momentum of the star. The tensor
mass of the neutron stars is by definition the Arnowitt-
Deser-Misner (ADM) mass in the Einstein frame, and this
mass coincides with the Jordan frame one for the consid-
ered coupling function (6). The angular momentum is by
definition the same in both frames as well. The circum-
ferential radius of the star, though, differs, and the physical
Jordan frame stellar radius is

Re ¼ AðφÞreðγ−σÞ=2jr¼re;θ¼π=2; ð12Þ

where re is defined to be the Einstein frame coordinate
equatorial radius of the star. re by itself is defined as the
location where the pressure vanishes: p̃ðre; θ ¼ π=2Þ ¼ 0.
The field equations and the equation for hydrostationary

equilibrium should be supplemented with an EOS. The
equation of state, however, is given in the physical Jordan
frame; hence it is more convenient to use ε̃ and p̃ for
the rest of the section. With the above assumptions and
notations, the hydrostationary equilibrium equation has the
following explicit form:

∂ip̃
ε̃þ p̃

− ½∂iðln utÞ − utuϕ∂iΩ − kðφÞ∂iφ� ¼ 0: ð13Þ

In the preset paper we will use a realistic four-parameter
differential rotation law [36]
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Ω ¼ Ωc

1þ
�

F
B2Ωc

�
p

1þ
�

F
A2Ωc

�
pþq ; ð14Þ

where F ¼ utuϕ is the gravitationally redshifted angular
momentum per unit rest mass and enthalpy, while p, q, A,
and B are constants. When implementing this differential
rotation law we will follow the procedure developed in GR
in [23] taking into account the needed modification related
to the addition of a scalar field. Two of the free parameters
should be fixed to p ¼ 1 and q ¼ 3, which allows the
equation for hydrostationary equilibrium to be cast in a
simpler form required by the RNS code [23,36]. Instead of
directly using the other two parameters A and B, though, we
introduce new parameters λ1 and λ2 which are given as
relations between the angular velocity at the center of the
star Ωc, the angular velocity at the equator Ωe, and the
maximal angular velocity Ωmax in the following way

λ1 ¼
Ωmax

Ωc
; ð15Þ

λ2 ¼
Ωe

Ωc
: ð16Þ

When one sets values for λ1 and λ2 and substitutes the
rotational law (14) in the above relations, the obtained
system is solved for A and B at each iteration. The
motivation behind the use of λ1 and λ2 roots in the fact
that it is easier to reproduce the Newtonian limit [36]
and it is more convenient for controlling the type of
differentially rotating model, e.g. whether it is quasitoroidal
or quasispherical. This problem is discussed in greater
detail in [23], and we refer the interested reader to this
paper for further information.
A subtle question is whether the differential rotation

law (14) is well suited for merger remnants in scalar-tensor
theories. In principle, it is a generic law for the fluid itself,
and thus it is not bounded to a specific theory of gravity. It
has one important feature, though—the maximum angular
velocity is away from the center. We already know from the
binary merger simulations in GR that this indeed happens
for the postmerger remnant. Avery strong scalar field might
eventually alter the picture and lead to qualitative different
angular momentum distribution. Indeed, as we will see in
the next section, the scalar field tends to bring the models
closer to spherical symmetry. A thorough exploration of
the parameter space of the merger simulations in STT is
lacking for the moment. Thus, a definite answer to the
question of whether the above differential rotation law is
well suited in STT for any field strength, cannot be given.
What gives us the confidence that an off-centered angular
velocity might survive is the fact that it is due to the true
nature of the merger, namely two neutron star cores which
orbit rapidly around each other merge. Our intuition speaks

in favor of the conjecture that the scalar field should be
really strong in order to be able to change such a
fundamental qualitative feature of the dynamical process
at least for the times right after the merger.

III. NUMERICAL RESULTS

The main goal of the present paper is to study the
effect of the scalar-tensor theory on differentially rotating
equilibrium neutron stars that can serve as a model of
postmerger remnants with the more realistic four-parameter
differential rotation law (14). Hence, it would be enough to
concentrate on a single realistic cold equation of state, and
we have chosen the MPA1 EOS [58]. It is in agreement
with the current observational constraints on the mass and
radius of neutron stars [59–65]. Of course, with the addition
of a scalar field, the stellar structure might change con-
siderably as we will see below. It is difficult to judge,
though, whether the scalarized neutron stars fall within
the observational bounds. The reason is that these bounds
are derived self-consistently only in GR. Performing data
analysis in a given modified theory of gravity will most
probably change them. Since the current paper concentrates
on the qualitative effects of a realistic differential rotation
law, we have decided not to focus on this open problem.
Still, in the calculations below the deviations from GR are
kept in a reasonable magnitude (at least in the static limit)
so that we are not too far away from the GR constraints.
Even with the single EOS, and fixing p and q in (14), we

are left with five free parameters, namely three connected to
the STT (β, α, mφ), and two connected with the differential
rotation (λ1, λ2). Since the focus of the paper is on the
modified gravity effects, and in order to keep the outline
concise, we have decided to fix λ1 and λ2 and concentrate
on the effect of changing the STT parameters (β, α, mφ).
The exploration of the former parameters, especially in
connection to actual merger simulation in STT, will be done
in a follow-up publication.
We will focus on a combination of (λ1, λ2) that leads

to quasitoroidal models in GR. In STT, though, the
quasitoroidal energy-density distribution appears only for
extremely large angular momenta. The simulations of
binary neutron star remnants, on the other hand, show that
such quasitoroidal models are a transient phase appearing
right after the merger. Shortly afterward, the remnants settle
into type A, quasispherical, models. Thus the fact that
producing a quasitoroidal model in the presence of a strong
enough scalar field is possible only in a very limited region
of the parameter space, can have interesting astrophysical
consequences.
Based on previous studies in GR [23,24] we have

chosen to work with λ1 ¼ 1.5, λ2 ¼ 0.5. For the numerical
calculations we developed a modification of the RNS

code [53,66]. All quantities presented in this section are
in the physical Jordan frame.
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For the rest of the paper by mass M of the star we will
mean the Einstein frame ADM mass that has natural
energylike properties. As commented above, for the con-
sidered coupling function it coincides with the Jordan
frame one. The baryon mass of the star, calculated as an
integral of the Jordan frame rest mass density over the
stellar volume, is denoted by M0. A more detailed dis-
cussion about the definitions of mass in scalar-tensor
theories can be found for example in [45] and references
therein.

A. General properties for sequences of differentially
rotating neutron stars

As a first step in our study we concentrate on the global
properties of the differentially rotating models in STT, and
how the parameters of the theory and the mass of the field
effect them. For that purpose it will be most suitable to
examine sequences of models with constant angular
momentum J (in dimensionless units J ¼ Jc

GM2
⊙
, where G

is the Newtonian gravitational constant, M⊙ is the mass of
the Sun and c is the speed of light) similar to the studies in
GR [23,24] since this is one of the conserved quantities. In
Fig. 1 we present the mass of the star as a function of the
maximal energy density in the left panel and as a function
of the equatorial radius in the right panel. The presented
sequences of models are for GR and massless STT with
some representative values of the parameters β ¼ −6,
α ¼ 0.01 and mφ ¼ 0. As we will see below, these results
are practically indistinguishable from the case of mφ ¼
10−16 eV that is roughly the minimum one allowing
one to safely evade binary pulsar observations. We should
also mention, that currently only very weak constraints
are imposed on the massive STT from other neutron

star observations [67] and the considered values of the
parameter in the present paper fall well within the
allowed range.
Let us first focus on the nonrotating case with J ¼ 0.

Strictly speaking, for α ≠ 0 all models are endowed with
scalar field. Thus, GR is not a solution of the field
equations, and spontaneous scalarization in the sense
of [44] is not possible. For the chosen parameters in the
STT, though, we observe a scenario which closely resem-
bles scalarization. For low compactness the GR and the
STT branches practically overlap since the scalar field is
negligible. After a certain critical compactness is reached
the scalar field sharply increases which resembles the onset
of scalarization, and the first bifurcationlike point is
formed. This scalarized branch reaches a maximum mass,
and afterward the scalar field decreases again to a very
small value and practically merges again with the GR one at
a second bifurcationlike point.
After discussing the J ¼ 0 sequences let us move to

larger J in Fig. 1. In the figure we start with J ¼ 4 (in
geometrical units) that corresponds already to a very fast
rotation. As seen, we could not obtain the first bifurcation-
like point numerically but at least the scalarized sequence
has a well pronounced shape with a maximum and second
bifurcationlike point appearing. With the increase of J the
sequences get increasingly short, and for very large J
we could obtain only a small part of the neutron star
sequence, both for GR and STT. The problem of generating
longer sequences of solutions is numerical as discussed in
detail in [23,24], namely the modified RNS code fails to
converge to a unique solution. Nevertheless, we invested a
lot of effort in obtaining long enough sequences of
deferentially rotating neutron stars so that we can judge
the new physics induced by the presence of a scalar field.

1015 2x1015
0

2

4

6

Line color:

J = 0
J = 4
J = 6
J = 8
J = 10
J = 12
J = 20
J = 30
J = 40

M
/M

max[g cm
-3]

12 16 20 24

2

4

6

M
/M

Re[km]

Line pattern:

GR

= -6, = 0.01

FIG. 1. Left: the neutron star mass as function of its maximal energy density Right: the neutron star mass as a function of its equatorial
radius. The presented models are for J (in geometrical units: J ¼ Jc

GM2
⊙
) spanning from J ¼ 0 to values close to the highest possible we

could calculate in GR and STT. GR is depicted with continuous lines while the STT models are plotted with in dashed lines. The
different values of the angular momentum are in different colors.
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The first important observation is that in GR we were
able to find solutions with J up to roughly J ¼ 12 as seen in
Fig. 1. In STT with β ¼ −6 and α ¼ 0.01, however, the
situation is dramatically different, and solutions with much
higher J exist. We managed to reach up to roughly J ¼ 50,
but we have indications that higher J might be also
possible. Similar indications for larger J sequences in STT
were already observed for neutron stars with j-constant
differential rotation law [53], but the maximum J that was
reached there was much smaller. As expected, with the
increase of J, we observe a significant increase of the
neutron star mass. Such high J models can have very
interesting astrophysical implications for the postmerger
evolution that will be discussed in the conclusions.
In Fig. 2 we focus on the behavior of the solutions with

varying theory parameters (β; α; mφ). In the left panel we
present the mass of the star as a function of its radius for
fixed β ¼ −4.5 and varying α (again for mφ ¼ 0). The
chosen value of β is relatively small (in absolute value) in
order to demonstrate better the effect of α. The presented
models are with two fixed angular momenta for which both
GR and scalarized solutions could be found, namely J ¼ 0
and J ¼ 8. As expected, the increase of α leads to a
stronger scalar field and thus deviations from GR, but the
qualitative picture remains similar. The only major differ-
ence is that for larger enough α there are no bifurcationlike
points anymore and the neutron star solutions always
deviate non-negligibly from GR.
The right panel of Fig. 2 serves as proof of the conjecture

expressed above, namely that a small scalar field mass that
can evade binary pulsar experiments, has no measurable
influence on the neutron star structure with respect to the
massless case. In order to demonstrate that we present
the mass of the star as a function of its radius for fixed

β ¼ −6 and α ¼ 0.01, and two masses, mφ ¼ 0 and mφ ¼
1.34 × 10−14 eV. As seen, there is no visible difference
between the massive and the massless case. This justifies
the fact that for simplicity and convenience from a
numerical point of view, a big portion of our results are
presented for mφ ¼ 0.

B. Profiles of scalarized differentially
rotating neutron stars

We continue our study of differentially rotating scalar-
ized neutron stars by examining individual models. In
Fig. 3 we compare the surface profiles of the stars, plotted
in the x-z plane (both coordinates are normalized to the
equatorial coordinate radius re) (top row) and the angular
velocity distributions in the equatorial plane as a function of
the circumferential radial coordinate rc, normalized to the
circumferential radius of the star Re (bottom row). All
models have fixed baryon mass M0 ¼ 3.2M⊙ and two
different values of the angular momentum, namely J ¼ 4
and J ¼ 8. The parameter α is fixed to α ¼ 0.01, and two
different values for β are presented. As one can see, for the
same J, the GR models are the most toroidal ones, and with
the decrease of β those models transition to quasispherical
ones. As a general observation we can say that in the STT,
the differentially rotating models stay spherical (or quasi-
spherical) for much higher values of J (even beyond those
allowed in GR). This was also observed for differentially
rotating models with j-constant law [53]. Concerning the
angular velocity, in the GR case it is the highest, and it
decreases with the decrease of β.
In Fig. 4 we study the effect of the scalar field mass on

individual models as well as the effect of extremely high J
for which only scalarized solutions exist. Thus, we present
two values of J, namely J ¼ 10 and J ¼ 20, and several

12 14 16 18 20

1

2

3

4

Line pattern:

GR

�= -4.5, = 0

�= -4.5, = 0.01

�= -4.5, = 0.1

M
/M

Re [km]

J = 0

J = 8

12 14 16 18 20

1

2

3

Line color

J = 0
J = 4
J = 6

M
/M

Re[km]

Line pattern

GR

= -6, = 0.01, m = 0 eV
= -6, = 0.01, m = 1.34x10-14 eV

FIG. 2. The neutron star mass as function of its equatorial radius. Left: different combinations of (β, α) for nonrotating models and
models with moderate values for J. Right: nonrotating models and models with two different values for J for fixed STT with nonzero
mass mφ > 0. The angular momentum is in geometrical units ðJ ¼ Jc

GM2
⊙
Þ. GR is depicted with continuous lines while the different cases

for the STT are plotted in different line patterns and symbols. The color coding of the angular momentum is the same as in Fig. 1.
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scalar field masses, while β ¼ −6 and α ¼ 0.01 are kept
fixed. The models we study are with fixed maximal energy
density ε̃max ¼ 1 × 1015 g cm−3. The reason is that this is
more convenient than a fixed baryon mass in the case of
high J where neutron star solutions exist in a much more
narrow range of parameters. As one can expect, based on
the known results for massive STT [46,56], the increase of
the scalar field mass suppresses the effect of scalarization,
and the results converge to the GR case (if it exists) as the
mass of the field goes to infinity. Therefore, the models
get more toroidal with the increase of mφ and the angular
velocity increases as well as seen in Fig. 4. For all
considered combinations of J and mφ, though, the toroidal
deformation remains still moderate in comparison with GR.
The reason why we observe less-toroidal profiles for

larger absolute values of β lies in the geometry of the scalar
field. As already observed even for uniformly rotating
models [45], despite the larger deformation of the neutron
star fluid shape away from a sphere in the case of very rapid
(differential) rotation, the geometry of the scalar field
remains nearly spherical. In order to better understand
the effect of the scalar field in our case, we proceed
with examining contour plots of the energy density and
the scalar field distribution. In the STT case we span from

J ¼ 10 up to J ¼ 40 and we plot models with the same
maximal energy density ε̃max ¼ 1 × 1015 g cm−3. Before
we proceed to the STT case, though, as a point of reference,
in Fig. 5 we present the contour plots of the energy density
distribution in GR for values of J in the range from J ¼ 4 to
J ¼ 10 (around the maximum one we could achieve in
GR). In this case as well, the maximal energy density is the
same for all models (for consistency with the STT case),
and it is the same as the one used in the STT case which
follows. For both the GR and the STT case the barion
masses of the models are given on the plots as a reference.
In Fig. 6 we present the contour plots of the energy

density (the left column) and the scalar field (right column)
in the massless STT with β ¼ −6 and α ¼ 0.01. The
behavior of the energy density distribution is qualitatively
similar in GR and STT—the maximal energy density shifts
away from the center with the increase of J. It is interesting
to note that this behavior is significantly delayed toward
larger J in STT compared with GR. In addition, we observe
here again that the fluid distribution of the GR models has a
more pronounced quasitoroidal structure, while in the STT
case, the models are flatter, although the quasitoroidal
structure is present as well. The reason for this behavior we
can potentially find in the scalar field distribution. With the
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increase of J the scalar field gets more oblate. The
maximum of the scalar field, though, does not shift from
the center of the star. This is the reason why STT models
can support such high values for the angular momentum,
compared with the GR case.

IV. CONCLUSION

A rapidly and strongly differentially rotating neutron star
can be born as an outcome of a binary neutron star merger.
The merger remnant can exist for a few tens of milliseconds
supported by the differential rotation before collapsing to a
black hole or relaxing to a rigidly rotating neutron star in
equilibrium. This final stage of the merger has the potential
to test the behavior of matter in the regime of strong
gravitational fields and high energy density, as well as the
underlying gravitational theory. Even though these rem-
nants are produced in a highly dynamical scenario, an
approximate but accurate method to explore them is to
build quasiequilibrium models of neutron stars using a
phenomenological differential rotational law matched to
the results from the nonlinear dynamical simulations.

In the present paper, we studied differentially rotating
neutron star models in massive scalar-tensor theory using
Uryu et al.’s realistic phenomenological four-parameter
rotation law. The models were computed with a modifica-
tion of the RNS code. We investigated a broad range of
theory parameters, and the scalar field coupling function
we have chosen allows for the presence of the so-called
breathing modes—an extra gravitational wave polarization
potentially detectable by the ground-based GW detectors.
The addition of a scalar field mass, on the other hand,
allows us to circumvent the binary pulsar constraints, that
are otherwise very restrictive in the massless scalar field
case. This widens the range of parameters to be studied and
opens up a possibility for larger deviations from GR.
Contrary to previous studies in STT, the realistic differ-

ential rotation law we consider allows the maximum of the
angular velocity to be shifted away from the stellar center
which is in agreement with the rotational profiles of the
remnants produced in merger simulations. Thus, Uryu
et al.’s law can produce both quasitoroidal (type C) and
quasispherical (type A) axisymmetric configurations which
can more or less accurately model different phases of the
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merger remnant evolution. The results show that the
scalarized neutron stars can reach significantly higher
angular momenta that are a few times the maximum ones
in GR. To be more precise, in GR we found solutions with
maximal angular momentum about J ¼ 13 (in geometrical
units) while in the STT case, we were able to reach beyond
J ¼ 50. In addition, we found that in STT a neutron star
stays quasispherical for values of the angular momentum
which are well above the maximal one allowed in GR,
and the models became quasitoroidal only for extremely
high values of J. The reason behind this is that even for
extremely rapid rotation the scalar field remains quasi-
spherical. The indirect influence of the scalar field on the
density and angular velocity distribution of the fluid leads
to less quasitoroidal STT models compared with GR. It will
be very interesting to confront these findings against results
from merger simulations to see whether the actual merger
remnants are also affected in a similar way by the presence
of a scalar field, i.e. up to what extent the presence of
scalar field can soften the quasitoroidal distribution and
transform it into quasispherical. This can potentially have
far-reaching implications such as affecting the structure of
the kilonova ejecta and making it more spherical as well.
This is actually supported by observations indicating that

the kilonova associated with GW170817 has a higher
degree of spherical symmetry than what is expected by
the present GR simulations [68].
The mass of the scalar field on the other hand, as

expected, suppresses the scalar field, and with the increase
of the mass, the results converge to the GR case. It is
interesting to point out, however, that for low masses of the
field, but high enough to evade the binary pulsar con-
straints, the results in the massive case coincide with the
massless case. This motivates studying the massless case
as a limit for maximum deviation from GR that can be
achieved even though strictly speaking the theory with
mφ ¼ 0 is excluded from binary pulsar observations.
The results presented in the paper open interesting and

important questions. The first one is whether the con-
structed models, especially with extremely high angular
momentum, are stable. The second one is if we can produce
such models in actual binary merger simulations. This is a
study underway. In any case, our results already give a hint
that the standard picture of the postmerger evolution in GR
can be significantly altered in STT. This would allow us to
test STT in a parameter regime inaccessible both by the
binary pulsars and the gravitational wave observations of
the inspiral.
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