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We derive novel analytical solutions describing timelike and null geodesics in the Kerr spacetime. The
solutions are parametrized explicitly by constants of motion—the energy, the angular momentum, and the
Carter constant—and initial coordinates. A single set of formulas is valid for all null and timelike geodesics,
irrespectively of their radial and polar type. This uniformity has been achieved by applying a little-known
result due to Biermann and Weierstrass, regarding solutions of a certain class of ordinary differential
equations. Different from other expressions in terms of Weierstrass functions, our solution is explicitly real
for all types of geodesics. In particular, for the first time the so-called transit orbits are now expressed by

explicitly real Weierstrass functions.
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I. INTRODUCTION

Few results in general relativity have more astrophysical
implications than the theory of timelike and null Kerr
geodesics. Properties of geodesic motion in the Kerr
spacetime are key in modeling accretion disks [1,2] or
the propagation of light in the Kerr geometry [3.,4].
Geodesic motion is used as a zero-order approximation
in the self-force approach [5] and serves as a basis for our
understanding of the Penrose process [6].

The theory of Kerr geodesics developed quickly after a
fundamental discovery made by Carter that the Hamilton-
Jacobi equation is completely separable in the Kerr
spacetime [7,8]. The geometrical nature of this fact was
understood by Walker and Penrose in terms of Killing
tensors [9], and equatorial orbits were soon analyzed,
see e.g. [10—12]. An analysis of nonequatorial geodesics
is, of course, much more involved. Vortical orbits were
first discussed by De Felice and Calvani in [13] and later
in [14]; in [15] Wilkins described bound orbits. Another
account of timelike and null geodesics can be found in
Bardeen’s lectures [16]. An early review of the theory of
geodesics in black hole spacetimes was given by Sharp
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in [17], and an extensive text-book discussion of various
generic types of Kerr geodesics was provided in
Chandrasekhar’s book [18].

Much has been achieved in subsequent years. Another
detailed text-book introduction to the theory of Kerr
geodesics was published by O’Neill in [19]. Negative
energy geodesics within the ergosphere were studied
in [20] and later in [21,22]. Spherical orbits were inves-
tigated in [23-25]. A particularly convenient geodesic
parametrization, allowing for partial decoupling of geo-
desic equations, was introduced by Mino in [5]. In [26]
Schmidt derived action-angle variables for Kerr geodesics
and computed corresponding fundamental frequencies. A
combination of Schmidt’s results and the Mino paramet-
rization was given in [27]. Analytic solutions for bound
timelike orbits (and the associated characteristic frequen-
cies) were obtained in [28,29], using Jacobian elliptic
functions and Legendre’s integrals. Various solutions
expressed in terms of Jacobian elliptic functions were
also given in [30,31]. General methods of obtaining
analytical solutions in terms of Weierstrass elliptic func-
tions were described by Hackmann and Lammerzahl
in [32-34].

The phase-space picture of Kerr geodesics was
investigated by Levin, Perez-Giz, Stein, and Warburton
in [35-37]. In particular, Ref. [35] discusses equatorial
homoclinic orbits and the separatrix between stable orbits
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and orbits plunging into the black hole. In [37] Stein and
Warburton considered nonequatorial orbits as well. Special
classes of orbits characterized by constants of motion that
also describe circular orbits were recently analyzed by
Mummery and Balbus in [38,39] (see also [40]). The
separatrix problem has also been discussed earlier in the
context of gravitational radiation by Glampedakis,
Kennefick and O’Shaughnessy [41,42], and it appears
naturally in the study of accretion of the Vlasov gas onto
the Kerr black hole [43]. Periodic orbits in the Kerr
spacetime were studied in [44]. Reference [45] provides
a relation between scattering and bound geodesics in the
Kerr spacetime using the Hamilton-Jacobi action.

In [46] Gralla and Lupsasca revisited null geodesics in
the Kerr exterior, providing a convenient classification and
analytic solutions. A very detailed classification of radial
motion for timelike and null geodesics has recently been
provided in [47].

In addition, many authors investigated geodesic motion
in the near-horizon approximation for high-spin black
holes (see, e.g., [48-52]). References [51,52] contain
solutions for the generic polar motion in the Kerr spacetime
as well. Last but not least, an important progress was
recently made in the analysis of intricate properties of null
Kerr geodesics, related to strictly observational problems—
gravitational lensing, observable properties of photon rings,
etc. [3,4,53-56].

In this paper we give exact solutions of the geodesic
equations in the Kerr spacetime. Using an old, but relatively
little known result by Biermann and Weierstrass [57] (see
also [58] and [59-61] for the proof), we were able to find a
single set of formulas, valid for all generic timelike and null
geodesics, that yield an explicitly real solution for arbitrary
admissible initial data. Our analysis is a sequel to Ref. [61],
which is also based on the Biermann-Weierstrass theorem
and provides solutions for generic timelike and null geo-
desics in the Schwarzschild spacetime. Benefits of this new
approach are at least twofold. All solutions can be effec-
tively written in terms of Weierstrass elliptic functions g, o,
and ¢, and a single set of formulas remains valid for all
generic geodesics. Solutions are explicitly specified by
prescribing constants of motion—the energy, the angular
momentum, the Carter constant—and the initial position.
This means, in practice, that no a priori knowledge about
the type of the orbit is required in order to select an
appropriate formula. Secondly, radial motions of the so-
called transit type [19], for which the radial potential has no
real zeros, can be described in a straightforward way, by
explicitly real formulas.

Many geodesic types, which are usually treated as
special, nongeneric cases in other approaches, are incorpo-
rated naturally in our formalism. Interesting examples of
such types include “whirling” near-separtartix orbits.

All our formulas have been coded in Wolfram
Mathematica [62], and a collection of sample solutions is

plotted in Sec. V of this paper. A Wolfram Mathematica
package implementing our formulas is available at
PANGAEA and at the GitHub [63].

The remainder of this paper is organized as follows.
Section II contains preliminary material: we introduce our
notation conventions, discuss a simple classification of
orbital types, and recall the Biermann-Weierstrass theo-
rem. Section III provides general solutions to the geodesic
equations. We discuss the general method of deriving
our solutions, but many technical details are given in
Appendix A. Sections IV and V give a short description of
our implementation in Wolfram Mathematica and a col-
lection of examples, respectively. Section VI provides a
short discussion of our results. Appendix B is devoted to
Schwarzschild and extreme-Kerr limits of our solutions. In
Appendix C we provide a table of integrals to which we
refer in our derivation.

II. PRELIMINARIES

A. Metric conventions

We use standard geometric units with ¢ = G = 1, where
¢ denotes the speed of light, and G is the gravitational
constant. The signature of the metric is (—, +, +, +).

We will work in Boyer-Lindquist coordinates x* =
(t,7,0,¢). The Kerr metric can be written as

9 = Gudx'dx”
= gudt* 4 2g,,dtdp + g,,dr* + geed6* + g,,de*, (1)
where

2Mr

G =—1+—7—, (2a)
p
2Mar sin®
gl(/) = - 2 ) (2b)
p
2
p
=2 2
9rr =75 (2¢)
Joo = Pz, (2d)
2Mda?rsin? @
Gpp = <r2 +a*+ ar2s1n> sin?@,  (2e)
p
and we denote
A =r*—=2Mr+d?, (3a)
p* = r? +a*cos’ 0. (3b)

The Kerr spacetime is characterized by the mass M and
the angular momentum J = Ma. The two solutions of the
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equation A = 0, r5; = M + VM?* — a?, correspond to the
inner and outer Kerr horizons.

B. Equations of motion

Timelike and null geodesic equations can be expressed in
the Hamiltonian form

dx*  oH
Z-Z, (4a)
di  dp,
dp, oH
=——, 4b
dz ox¥ (4b)

where p/ = dx/dT, H(x", py) = 3 ¢ (x*) pup, = =3 m’,

and m denotes the particle rest mass. The above normali-
zation of the four-momentum p# is a useful convention.

The four-velocity u#* is normalized as g, u"u” = -6y,
where
1 for timelike geodesics, (5)
"7 1o fornull geodesics.

Thus, for timelike geodesics, p* = mu*, and the proper
time can be expressed as T = m7.

By standard arguments, H, p, =—E and p, =1, are
constants of motion. The fourth constant—the so-called
Carter constant —follows from the separation of variables
in the Hamilton-Jacobi equation [7,18]. In explicit terms,
geodesic equations can be written as

2dr

Tl R(r).
do

PQ?:% 0(0).
T

2do a[(r? + a*)E - al.] 1

= A + szg(lZ — aEsin®0),
ng = (" + aQ)[(FZI @*)E - al] + a(l, — aEsin®0).
Here
R(r)=[(r*+a*)E-al]> - Am*r* +K)  (6)
and

I 2
— 22020 [
0(0) = K — m*a* cos* 0 (sine as1n6’E> . (7

With a slight abuse of terminology, we will refer to R(r) and
©(6) as radial and polar potentials, respectively. The signs
€, and ¢, correspond to directions of motion in r and 6,
respectively. More precisely,

Pr =€ IZ(V) ’ (8)
and
Po = €9/ ©(0). )

There is a convenient way to partially decouple the
above equations, introduced by Mino in [5]. It consists in
reparametrizing geodesics so that

dx*  dxt
2 =— 10
dir  ds (10)
or
7= /pzds. (11)
0
This yields
d
47; = e /R(7), (12a)
do
% = €g @(9), (12b)

dp al(r*+d*)E—al)] 1
ds A sin” 9

(I, — aEsin? ), (12c)

dr (r*+a®)[(r*+a®)E—al)
ds A

+a(l,—aEsin?@). (12d)

It is convenient to work in dimensionless rescaled
variables. For timelike geodesics, we define dimensionless
variables as in [64,65], i.e., by
a=Ma,

K = M*m?«,

t=MT,  r=ME
I, = Mm,. (13)

E = me,

In addition, the rescaled Mino time s is defined by

1
=—3y.
Mm

i

(14)

For null geodesics m = 0, and the parameter m in Egs. (13)
should be replaced with any positive mass parameter 771 > 0.

In terms of dimensionless variables, geodesic equa-
tions (12) can be written as

e
== e VR, (15a)
% — ¢,V 0, (15b)
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dp a[(& + a?)e — aly] 1
ds & =284 a? sin® @

(A, —aesin’ @), (15¢)

ar 52_’_ 2 €2+ 2\ /12 )
a:( aé’)z[(—%fa); ¢ ]—I—a(/lz—aesmzﬁ), (15d)

where
R=[(& + e —al ] = (& -28+ a?)(6,8 +x), (16)

O =x—0,a°cos* 6 —

1
70 (A, — aesin® 6)2. (17)
In Sec. III we give explicit solutions of Eqs. (15) for the
functions &(s), 0(s), ¢(s), and T(s). They are specified by
prescribing &, and the constants of motion €, 1., and «,
which in turn can be computed from initial velocities.
Defining, for timelike geodesics, components of the veolc-
ity ol =u'/u' = p'/p', i =r,0,¢, we get

(=) 1
m) " G+ 2900+ (0 + oo (1) + G (1)

(18)
Constants ¢, 4,, and x can be expressed as
e =2 (g, + gyr7). (19)
m
'
b = 2 (G + Gp”): (20)

Mm

PV arova [0V 9
“ 22’ )"+ sin @

2
+asind(g, + g,,,,v‘/’)} } +a’cos?d.  (21)

It is well known [18,46] that for null geodesics solutions
of Egs. (12) depend on E, [, and K via the ratios /_/E and
KC/E?. This corresponds to the choice /i = E in Egs. (13)
and (15), which, assuming E > 0, yields ¢ = 1. Constants
E, 2, and k can be then expressed as

E=—g,p" = 91,0’ (22)
2=t t ¢ 23
z = m (gt(pp + 9P )’ ( )
K = pt (p?)? + —5— (1. — asin® 6)?, (24)
M2E? sin2g ¢

where p# is a null vector.

C. Types of orbits

Although the main idea of this paper is to provide a
single set of formulas describing solutions of all generic
timelike and null geodesic trajectories, it is useful to
introduce a general classification of different types of
possible orbits and some terminology, which can facilitate
the discussion. A detailed discussion of various orbital
types can be found, e.g., in [19].

Generic orbits can be classified according to the type of
radial motion. Allowing, in the discussion, for negative
values of &, we adopt the following terminology from [19]
(p- 209, Def. 4.6.3): A geodesic is said to be of transit type,
if £(s) goes from 400 to F oo, as the parameter s goes from
—o0 to +00. A geodesics, for which &(s) goes from t-oo to
+o0 is called a flyby. Both types represent unbound orbits.
A geodesic is said to be interval-bound, if &; < &(s) < &,
for some —oo < &; < &, < +o0. All other geodesics are
exceptional in some sense, and this includes orbits termi-
nating in the p> = 0 singularity or geodesics related with an
occurrence of multiple zeros of R. The character of generic
orbits is mainly governed by the number of real zeros of the
radial potential R. The following cases are generically
possible:

(I) The potential R has no real zeros, and R > 0 for all

&. This allows for transit orbits.

(Il) The potential R has two real zeros &, < &, and R > 0
for £ < &, and & < & This case allows for flyby
orbits.

(IIT) The potential R has four real zeros & < &, <
& <&,and R>0for & <E< & and & < &<
&,. Interval-bound orbits are possible.

(IV) The potential R has four real zeros & < & <
& <&, and R>0 for E< ¢, & <E< &, and
&y < & Both flyby and interval-bound orbits are
possible.

(V) The potential R has two real zeros &, < &,and R > 0
for & <& < &. Only interval-bound orbits are
possible.

Since Boyer-Lindquist coordinates used in this paper are
singular at Kerr horizons (¢ = &), solutions of the whole
system of equations (15) cannot be continued through
&= &5, On the other hand, the radial and polar equa-
tions (15a) and (15b) remain unaffected by horizon
singularities of Boyer-Lindquist coordinates, and this fact
allows for the general classification given above, without
invoking explicitly regular coordinate systems.

A very detailed classification of the radial geodesic
motion has recently been given in [47] for timelike
trajectories. In contrast to the terminology summarized
above, the authors of [47] concentrate on possible con-
figurations of roots of R in the region outside the outer Kerr
horizon, which is of course of main physical relevance. A
similar classification for null geodesics was given in [46]
and subsequently slightly expanded in [47].
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A classification with respect to the range of the 6
coordinate is simpler [18,19]. Defining y = cosf, one
can express © as © = g(u)/sin’>6, where g(u) is a
biquadratic polynomial defined in Eq. (37) below. It allows
for one or two zeros in the range 0 < ,uz < 1. Moreover,
glu=0)=x—(ae—2,)* and g(u = 1) = =12 <0. The
condition ® > 0, or equivalently g(u) > 0, leads to two
generic types of motion. For x— (ae—4.)* >0, the
trajectory oscillates around the equator. In this case
u> < p% <1, where p, is a zero of the polynomial g(u).
For k — (ae — Az)z < 0, if the motion is at all possible, it
is restricted to one hemisphere, and the allowed range of x>
is 0 <p? <p?<p% <1, where again u, denote zeros
of g(u).

D. Biermann—Weierstrass theorem

Solutions derived in this work are largely based on the
following result due to Biermann and Weierstrass. The
original formulation of this theorem was published in [57].
More detailed proofs can be found in [59-61].

|

—V/f(x0) ¢/ (2) + 3.1 (x0) [9(2) = 35" (%0)] + 3.f (x0)f" (o)

Let
f(x) = agx* + 4a,x* + 6a,x* + dazx +a,  (25)

be a quartic polynomial, and let g, and g3 denote
Weierstrass invariants of f, i.e.,

g» = apay — 4a,az + 3a3, (26a)
g3 = agasay + 2a,a,a3 — a3 — apal — ata,.  (26b)
Let
dx’
) (1)

VI

where x; is any constant, not necessarily a zero of f(x).
Then,

X = Xp + N (28)
2[p(2) = 3¢.S" (x0)]* = 75/ (x0) S (xo)
[
where p(z) = p(z; 92, g3) is the Weierstrass function cor- |
responding to invariants (26), i.e., the function z(x) canbe  a, = —— (§,0? + k — 2a%€> + 2ael.), (31c)
inverted. In addition 6
VI (o) +f(x0) | fx) " (x0) . 31d
= S 29 613 - K, ( )
o(2) 2-x) a-xy 24 0 P 2
/
J(z) = _{ f(x) - f'(x) 2] F(x0) a, = a*e? — a’k — 2ad’ed, + a*2} = —a*[k — (ae — A.)?].
(x—xp)*  4(x—xo) (31e)
f(x f'(x
(x = xo) (x —xo) For a segment of a trajectory for which e, is constant,

III. SOLUTIONS OF THE GEODESIC EQUATIONS

A. Radial motion

A solution for &(s) can be obtained by a direct appli-
cation of the Biermann-Weierstrass theorem to Eq. (15a).
The polynomial R(&) can be written as

R(&) = apé* +4a,8 + 6,8 + dazé +ay,  (30)

where
ay = & -4, (31a)
16 (31b)
a) == )
=50

we get

s—e,/ i3 , (32)

where & is an arbitrarily chosen (initial) radius correspond-
ing s = 0. Weierstrass invariants of the polynomial R read

Oro = Qpay —4ajaz + 3a%, (33a)

Gk = Goaray + 2a,a,a3 — a3 — agaj — atay. (33b)

Using the Biermann-Weierstrass theorem, we can write the
formula for £ = &£(s) as
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R(E)0(s) + 3R (&) | or(s) - % R

()| + 2 R(E)R" (&)

&(s) =&+

where ©z(s) = ©(s:9r2. gr3), and the polynomial R is
defined in Egs. (30) and (31).

It is important to stress that the above solution remains
valid also when the sign €, changes along a trajectory. In
this case €, in Eq. (34) should be understood as an initial
sign value, corresponding to s = 0. A longer discussion of
this fact in the context of Schwarzschild geodesics can be
found in [61].

Note that if &, is chosen as a root of the polynomial R,
ie., R(&) = 0, expression (34) can be reduced to

R'(&)
(s) = & + oo (39)
4pp(s) —§R" (%)
This can be a useful parametrization for trajectories with
radial turning points. On the other hand, if no real zeros of
R exist, Eq. (34) still provides a valid, explicitly real
solution. This is the case of transit orbits of radial type I.

B. Polar motion

Equation (15b) can be transformed to the Biermann-
Weierstrass form by a substitution v = cos? @ or u = cos 6.
The first option yields a convenient form of a third order

2 orl(s) = HR"(&)|* ~ HREIRO(E)

) (34)

[
d =
9 _ —€p sin 9\/6 =

—epV'sin? 00 = —egr/g(u),  (36)

ds
where

9g(p) = bou* + 6boy® + by (37)
and
by = —a*(e? — §,) = —a’ay, (38a)
b, = é(—azél +2a%e* —k —2ael,) = a (38b)
by = —a?e* + k +2aed, — A2 =k — (ae = 1,)> = —%.

(38¢)

The fact that the coefficients b, b,, and b, are directly
related to the coefficients ay, a,, and a4 is somewhat
surprising, since Eqs. (15a) and (15b) are decoupled. The
appropriate Weierstrass invariants read

polynomial under the square root in Eq. (15b), but it does 992 = bobs + 3b3, (39a)
not constitute a one to one function in the region
0 <60 < #. In this work we choose the second possibility 93 = bobyby — b3, (39b)
and define y = cos 8, which yields a one to one mapping
for 0 < 0 <. We get, in this case, and the solution for g = p(s) can be written as
|
u(s) = po + €0/ (ko) 9y (s 29’ (Ho)[y(s) _2—149”(/10)] +ﬁ9(ﬂ0)9m(ﬂo) (40)
z[pg( s) — ﬂg (/40)]2 - ﬁg(ﬂo)g(4> (Ho)
[

where ©,(s) = (53 972.9,3) and g = u(0) = cos €y = C. Azimuthal motion

cos0(0) is the initial value corresponding to s = 0. Here,
as in the radial case, the sign €y is to be understood as
referring to the polar momentum component at the initial
location 6.

Note that due to the relation between by, b,, b, and a,
a,, a,, we have

IR2 = 9g2 — 01K, (41a)

k3 = Yg3 T 2a1a2a3 — agas — ajay. (41b)

In order to find solutions for ¢(s), we split the right-hand
side of Eq. (15c) into two parts depending on & and 6,
respectively. Integrating the result with respect to the Mino
time s, we get

al(£(5)* + a?)e — al,]
£(5)* - 28(5) + &

p(s) —9(0) = /
0

[ AP
+/m[ﬂz—a.€sm29(s)}ds
0

= 1:(s) + Iy(s), (42)
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where

B y 28(3)e — al, _
e [ Gy -am s W

and

Io(s) = 7, / s (44)

The first step in computing the integral /.(s) consists in
applying the partial fraction decomposition with respect to
&(s). Note that &2 —2& 4 a? = (€ — &) (E— &), where
& =14 V1 —a? denote the dimensionless radii of the
inner and outer Kerr horizons. This yields, assuming
—1 < a < 1, the following partial fraction decomposition

lels) = 5;6:85,;/{< i _a7> 55 - &

0

. al, 1 5
- <§H2 ot T) EF) - é,;}ds

lz
~F-5 K W _%)N;(s)

- (ézﬁ +a’ - %) Nﬁ(s)] , (45)

where

+ — | 1 5
N (s) ._{g(g)_ﬁd. (46)

One way of computing integrals N7 (s) would be to
express the integrand in terms of derivatives of the
Weierstrass { function, and to adhere to a general integra-
tion scheme described in [32]. Here, we decided to follow a
more straightforward approach, which once again makes
use of the Biermann-Weierstrass result. We start with the
following substitution

1
up(s) = O (47)

so that

s

N7 = /ui(i)ds“. (48)

0

Differentiating u, with respect to s, we get, using
Eq. (15a),

d -1
= et [R( i) = —e/AT), (49)
+

where
h(us) = cout + 4cyud + 6c,u3 + desuy + ¢y, (50)
and

co = (2&5e —al,)?, (51a)

1
=5 {EE[—a?8) + 20%e* — 2al ¢
+ & (=28185 + 361 +255¢%)] — k(& — 1)}, (51b)

1
¢y :6[_“2(5‘ —26%) —k—2ael, +6(5, — 8,&5 + 255 &5,

(51c)
€3 =96 (% - ffr) + e85, (51d)
Cqy = 82 - 51. (516)

A simpler expression for ¢; can be obtained by replacing
the terms & with & = 1 £ V1 — a®. This yields

1
¢, = —2a’? +§a251 (:i:\/ 1—a®+ 2)
1
—51(j: 1—a2+1) 5V - (862 x)
—aﬁzs(j: -+ 1) + 4, (52)

One can check that invariants of the polynomial / are the
same as for the polynomial R, i.e., they are given by
Eq. (33). This is not surprising. It can be easily proved [59]
that a substitution (we keep the original notation of [59] at
this point)

X +m
X=—"
I'x' +m'

(53)

transforms a differential form dx/\/X(x), where X(x)
denotes a 4th order polynomial in x, into

(Im' = U'm)dx’ 54
TR0 (54)

where X’(x’) is a 4th order polynomial of x'. The
Weierstrass invariants g, and g; of the polynomial X(x)
and the invariants ¢, g5 of X'(x") are related:
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dh = (Im' = 'm)*g,, (55a)
¢ = (In’  Im)fg, (55)
In our case, &(s) = [Efus(s)+1]/us(s), ie, m=1,

=&, I'=1, and m' =0 in substitution (53).
Consequently I'm — Im’ = 1, and ¢} = g5, ¢ = gs.

Before proceeding further, let us note that Eqs. (47)
and (49) give

1 1 +
, + &, 56
uzi 5 U §H ( )

rvV uOi pR

and thus
h(uy) = uiR(f) (57)

It follows that /(u. ) is positive, as long as R(£) remains
positive. Note, however, that & — 5}1, corresponds to
uy — o0, i.e., the change of variables given by Eq. (47)
is singular at one of horizons.

Keeping the above fact in mind, we can now apply the
Biermann-Weierstrass theorem to Eq. (49) and express u..
as a function of s:

311" (1o )] + 55 h(ug )R (g )

o) = s+ 20iR(s) -

where uy. = uy (0) = 1/(& — &;). Formula (58) is written
in terms of the Weierstrass function gz = ©(s; 972, 9%3)
since both polynomials R and h are characterized by the
same Weierstrass invariants.

Expression (58) can be integrated. To simplify sub-
sequent calculations, we introduce the following new
symbols:

1 1
Ay = &h(u()i)h’”(u()i) - 9_6h (uos )" (uos), (59a)
1 !
Arp = Zh (MO:I:)’ (59b)
1
Ay = Eer h(ugy ). (59¢)
Ase = ﬁh (o), (594d)
1 )
Asy = %h(u(&)h (o), (59)
A
pre = Ass + /55 (59f)
A
ore = Agy — % (59¢)
Hence Eq. (58) takes the form
u (5) = tigs + 2A5.0%(s) + 240 pp(s) + 24,4 (60)
+\8) = Upx ;

2[pr(s) =

and integral (46) can be written as

01+][0r(5) = po=]

) +3 1 "‘Oi)[ r(s) —
2

0212 — 25 h (1o ) A (uo ) : (58)

s

Nlj-}:/{MOi"F
0

=uprs + ALK (i pro. pas) + Aos Ko (5 p1ss oy )
+ A3 K3(85p1+, Pos)s (61)

Aps + Apror(5) + Aﬁp}e(g)}di
[0r(3) — 012][9r(5) — ©2+]

where

Ki(s;p1e,p / - ds, (62a

155 P1 P2z A (5) =12l (S) — 2] (622)

KZ(SQPI:taPZi)::/ p(Zv) - ds, (62b)
g [0(3) = p1:][0(5) — ©2]

Ks(s;pia.p / ds, 62c

(8:P1s P2c) g @li (S) pZi] (62¢)

and pyy and p,y satisfy p(pi.;9ga. 9r3) = Asx + %

and (pr1:9ra-9ra) = Aar — % Weierstrass func-

tions appearing in the expressions for K, K,, and K5 in
Eq. (61) should be computed assuming invariants gz, and
9r 3- Integrals (62) are calculated in Appendix C [Egs. (C1),
(C2), (C7), and (C27)—~(C29)].

Note that h*)(ug, ) = 24cy = 24(2&5e — al.)? is non-
negative, and hence A5, must also be non-negative. Thus
both g, and g, are real. Nevertheless p;,. or p,, may be
complex, even though both Weierstrass invariants gz 5, gz 3
are real. This happens, for instance, when ©(p; gz . 9z 3) 18
strictly positive on the real line, and @ or g, becomes
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negative. However, even in this case, the integral K, given
by Egs. (C1) and (C27) is explicitly real. A potentially
complex term in the expression for K; [Eq. (C27)] has
the form

o(s—p)
o(s+p)|’

Ii(s;p) = p,(lp) 2{(p)s +1n

where s is real. In specific examples I,(s; p) can indeed

where €, = sgnu. On the other hand

4q*w*g(u) = 4q(q — 1)[bo(q — 1)* + 6b5(¢* — q) + bsq’]
= w(q). (65)

Thus ¢ satisfies the equation

dq(s)

become complex, but the imaginary part of I,(s;p) is ds 0% w(g). (66)
independent of s, and hence it cancels out in the definite
integral K. This fact follows immediately from Eq. (C1), where
which we write as
J ] w(q) = dog* +4d,q* + 6d,q” + dsq, (67)
—ILi(s;p) =———.
P = =) and
Since both d 1, t
ince both p(p) and p(s) are real, one gets dy = —472, (68a)
d Im/,(s;p) =0
2 Im/i(s:p) =0. dy = —a?6; + k + 2ael, + 12, (68b)
In a similar way, one can demonstrate that K, must be real. )
The integral K5 is given by an explicitly real formula. d, = 3 [a?(26, — &%) — k — 2ael,), (68c)
The integral [, defined in Eq. (44) can be computed
sing the substitution y = cos . We have
aeing The SUbSTIHHOn # v dy = (=6, + ¢2). (68d)
1 1 _
sin? 6(s) 12 12(s) =q(s). (63) Weierstrass invariants of the polynomial w(g) read
The derivative of ¢(s) reads Gwo = —4d ds + 3d5, (69a)
dq du
7, = 20 H = =2e0a’ i/ g(1) = —€oeu /49" W g () g3 = 2d1dyds — d3 — dyds. (69b)
(64) Thus,
|
o(5)— o 4 S0V POIELS) 1 @0)n(5) = 0 (g0)] + Fywlao)” (40) 0
prm— 0 b
2[pu(s) = 3" (90)]* = 75 w(q0)w™ (q0)
where ©,,(s) = (53 g2, gw3)- Since w(q) = 4¢°u*g(u), 1
w(q) is non-negative, whenever g(u) remains non-negative. By = 7 w”(qy). (71d)
Note also that ¢ — 400 at the axes, while 4 = 0 at the
equatorial plane. We define 1
Bs = EW(CIO)WW (90)- (71e)
1 1
By = =w(q0)w"(q0) =gz W(q0)W'(q0).  (71a)
48 96 B
Pua =By +14/7 (71f)
1
By = 7 (a0) (71b)
Bs
Pwa = B4 — o (71g)
1
By = 5 CoeuV w(qo), (71c) Hence
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N

Io(s) = 4, / 4(5)ds

0

ZAZZ{W[& TR TR

pw(g) - pw,l] [pvv(‘?) — Pw2

= )“Z[QOS + BIKI(S;pw,l’pw,Z)
+ B2K2<S; Pw,1> pw,2) =+ B3K3 (S;pw,h pw,2>]’ (72)

1 B
where pw,l and pw,2 SaUSfy p<pw.1;gw,2’ gw,3) = 64 + \/;

and p(py,25 G Gw3) = By — \/g Moreover, Weierstrass
functions appearing in the expressions for K, K,, K3 in the
above formula should be computed with the invariants g, ,
and g,,3.

Integrals K, K,, and K3 appearing in Eq. (72) are again
real, although the constants p,;, p,, are in general
complex. The situation encountered here is, however,
different than the one described for integrals N7 (s). We
|

@/<P2) = p,(znm
C(pZ) = C(an

o(x+ p2) = o(x = p1 + Zum)

have Bs <0, and thus g, ; and g, , are, in general,
complex. The fact that the integral K; is real can be
demonstrated as follows. Observe that

o(p1) =By + \/% = p(p2) = p(P2), (73)

where the bar denotes complex conjugation, and where, for
simplicity, we omit the Weierstrass invariants g,,, and g, 3,
as well as the subscript w in the symbols p,,; and p,,,.
Therefore, p; and p, are the two solutions, in the period

parallelogram, of the equation p(x) = By + \/E, and
hence they are related by

D2 = Znm — D1 (74)

where zy,; = 2Nw + 2Ma' is a period of p, and N, M are
integers. Keeping in mind that Zy,, = z,,, 1S a period of
as well (this happens for real Weierstrass invariants), we
find the following relations:

- p1) =—¢'(P1) = —¢'(p1)s (75)

= p1) = =C(p1) +2nn +2my' = =L(py) + 2nn + 2my, (76)

= (=)o (x = py) exp [2(nn + mn) (nw + me' + x = py)], (77)

O'()C - p2) = G()C + pl - an)

= (=1)7"™o(x + py) exp [2(—nn — mn)(—nw — ma' + x + py)], (78)
ZE;C ; 1;2)) = Z((); i— 53 exp [—4(nn + mn')x], (79)

where 7 and ' are the periods of the second kind. Inserting the above formulas in the expressions for integrals K; and K,
[see Egs. (C1), (C7), (C27), and (C28)], we find, for instance,

L L (Ee) B Astmtm) 1 els—p)
K=o —en |2 (mpl) p’(pn) GF) o) Mot o)
1 n 6(s+pl>e—4s(nn+mn’)
WEIR (G(S—l’n) )]
_ 1 _S {(py)  <(py) 1 o(s—p1) 1 o(s — p1)
= oo = o) |- (mpl) p’(po) T Mol ) P Mols + hr) (80)

We see that pairs of the type x — X appear in Eq. (80) both in the nominator and the denominator and, therefore, K is real.
Similarly, the integral K, is basically of the same form. Integral K5 does not involve any sigma functions and reads

K; =

_ Infp(s) = p(py)] =~ Infp(s) — p(p1)] (81)

o(p1) —o(p1)
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Summarizing all results from this section, ultimately, we
can write Eq. (42) as

2
—5 %5 (e =i

S CRTEE L7I0] RRAORN )

o(s) —9(0)

with integrals N7 given in Eq. (61) and integral I, given
in Eq. (72).

The case with @ = +1 (the extreme Kerr limit) requires a
separate treatment, as the partial fraction decomposition
given by Eq. (45) has a different form. Appropriate
formulas are given in Appendix B.

D. Time coordinate

The solution for T'(s) can be obtained in a similar way. A
direct integration of Eq. (15d) yields

T(s) - T(0) = / [£6) 202 HIEG) + e —ak}

5) = 2&(3) + o?

+ [ a[A, — aesin®0(5)]d5s
/
= Je(s) — a*edy(s), (83)

where

8—20:/1 f( )

0
= /sinze(i)di (85)
0
For —1 < a < 1, the expression
(& + ) —2ak¢ (82 +aP)e—2aLf (86)
£-2+a (E-&)E-&)
has the following partial fraction decomposition
(& + a®)?e —2al.& 5
4 2
E-ahE-g) Teletve
A_ A,
—, 87
R 7

where

2Fa?+2VI—-a?£2)e—a(V1—a* £ 1)1,

A, —
- V1-a?
_ 2elEy) —akly (88)
cu—1
Consequently,
Je(s) = (4 + a?)es + 2eN,(s) + eNy(s) + A_Ng(s)
+ ANy (s), (89)

where, apart from the integrals N7 computed in the
previous section, we have denoted

- / £(5)d5 (90)
0

and

Mats) = [ 67 (91)

Detailed expressions for N (s), N,(s), and Jy(s) are given
in Appendix A.
Finally, we can write Eq. (83) as

T(s)—T(0) = (4 + a?)es + 2eN,(s) + N, (s)

+A_Nz(s) + A N (s) — a®edy(s). (92)
As before, the extreme Kerr case with @« = £1 has to be
considered separately. The appropriate partial fraction

expansion of the radial part of Eq. (83) can be found in
Appendix B.

E. Proper time

The relation between the proper time 7 and the rescaled
Mino time s can also be integrated. Equations (10) or (11)
give

i M

d—T =— (& + a*cos? 0)
s m

and, upon integration,

s

M
#(s) —7(0) = — [ [&(5)% + a®cos?0(5)]5,
m \{\

which can be expressed in terms of N,(s) and Jy(s) as

(s) - %(0) = %{Nz(S) +a?[s = Jo(s)l}. (93)
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IV. IMPLEMENTATION IN WOLFRAM
MATHEMATICA

All formulas expressing the solutions obtained in Sec. III
have been encoded in a Wolfram Mathematica [62] package,
which is available at PANGAEA and at the GitHub [63]. The
implementation of our formulas is essentially straightfor-
ward, but it is tedious, due to the number of different
integrals appearing in our calculation. Perhaps the only place
which requires special attention is related with computing
the terms of the form

IHU(S—Y§92793) , (94)
o(s+y:92.93)

where o denotes the Weierstrass function sigma, s is the
Mino time, and y is, in general, a complex parameter.
Expressions of this type appear in integrals (Cl), (C3),
and (C7). A proper implementation of our formulas, yielding
continuous solutions for ¢(s) and T(s), requires careful
selection of the complex logarithm branch in Eq. (94). A
“brute force” approach to this problem is to start at s = 0 and
to follow the appropriate logarithm branch up to a given
nonzero value of s, assuring that both real and imaginary
parts of Eq. (94) remain continuous. The logarithm in
Eq. (94) can be thus computed as

o(s —y:92.93)

In G(S - y;gzu%)
o(s+ ;0. 93)

= Lo
o(s+ ;9. 93)

+27ki,  (95)

where Log denotes the principal value of the complex
logarithm, and k € Z, but one has to select an appropriate
integer k, which can change as s increases. Another
straightforward (but numerically expensive) approach is to
express (94) as

N

170 = i02.05) _ [ 6= 310299 - 6+ yiga g0,

o(s+y:92.93)
(96)

and evaluate the above integral numerically.

There is a partial work-around to the above problem,
based on the properties of the Weierstrass function sigma.
Let @; and w3 denote half-periods of p(z), and let w; be
real. The function sigma can be expressed as

o(z) _ 2 me sin ([
oz P 200, 200,
o 1 —2g% cos <Z)—Z]> + g™
X
}:[l (1 _ q2n)2

2 2\ ¢ 2wy).
wp<nz> ((72/ 21). )
2601 91(0,61)

where g = e/, p, = {(w,), 0,(z,q) denotes the
Jacobi theta function, and where we omit temporarily
the Weierstrass invariants g, and gs in the argument of
o(z) [66]. For arguments z of the form z = s & y, where y
is a (possibly) complex parameter, and s is real, we get a
product of an exponential factor exp [1;z2/(2w,))] and the
remaining part, periodic in s. To disentangle these two
different behaviors, we define

5(z) = o(z) exp [-m 2%/ (2wy)]. (98)
Thus
o(s=y) _ | 8(s=y) 2msy
Ty "ty @ Y

Here the key task is to control the phase of &(s—y)/
6(s 4+ v). The principal value of the argument of this ratio,
Argl(s —y)/6(s +y)], is discontinuous at s =0 and
s =2w,. This can be seen by expanding &(s—y)/5(s+y)
with respect to s around s = 0, which gives, up to terms
linear in s,

G(s—y)
G(s+y)

=1 +2[§(y)—%]s+0(s2). (100)

Hence, Arg[é(s —y)/6(s + )] changes at s = 0 from —z
to z, if Im[{(y) —ny/w;] >0, and from = to —z, if
Im[¢(y) —ny/@] < 0. By periodicity, the same happens
also at s =2w;. In the simplest case Arg[é(s—y)/
6(s +y)] would exhibit no additional discontinuities
within the range 0 < s < 2w;. If, however, the argument
Arg[6(s — y)/5(s + y)] changes sufficiently fast, additional
jumps may also occur. To correct for this general behavior,
we write

g = {ZE e (1]}

—km'(i— 1>,
(]

where k is a fixed integer.
A final prescription for a continuous choice of the
logarithm branch can be written as

st el
(2 1) -2

In practical examples, the above prescription works well,
saving time with respect to the “brute force” algorithm
described above. Controlling the changes of the phase of

(101)

(102)
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TABLE 1. Parameters of geodesics shown in Figs. 1-10. Black hole horizons are located at & = 1—+V1—a? =0.4 and

&r=1+V1-a>=16.

Figure Number 6, £ K A, a Radial type Real zeros of R(&) &

1 1 1.1 12 -1 0.8 11, flyby —24.3351, 0.254136 8

2 1 0.95 12 3 0.8  III, interval-bound 0.22019, 1.63896, 8.44487, 29.696 10
3 1 0.95 12 3 0.8  III, interval-bound 0.22019, 1.63896, 8.44487, 29.696 1.55
4 1 1.1 12 3 0.8 1V, flyby —26.4861, 0.230431, 1.67987, 4.57578 10
5 1 0.5 12 -1 0.8 'V, interval-bound 0.291099, 2.3974 2.3
6 1 30 12 -0.05 0.8 I, transit — 10
7 0 1 60 447214 0.8 1V, flyby —8.927, 0.296172, 1.60191, 7.02891 10
8 0 1 60 4.47214 0.8 IV, interval-bound —8.927, 0.296172, 1.60191, 7.02891 1.5
9 0 1 0.6 —0.111803 0.8 11, flyby —0.721257, —0.137167 10
10 0 1 04 -0.00912871 0.8 I, transit 10

o(s —y)/o(s+y) within one period 2w, suffices to
compute the suitable value of k. Let

¢=1Im [m%} —Im [m%], (103)

which can be computed, e.g., from Eq. (96). Assuming
Eq. (102) and the equality

o 20, — 2
Arg{wexp [k,,,-(m_ 1)]}
(s + 2w +y) o}

:Arg{%exp [kni(wil—1>]}, (104)
one gets immediately

¢ = =2km —Im(4n,y), (105)
and thus

k= —% [Im(4n,y) + c]. (106)

V. EXAMPLES

Examples of solutions obtained in Sec. III are plotted in
Figs. 1-11. In Figs. 1-10 we plot projections of the orbits
on the xy and xz planes together with projections on the
three-dimensional spaces of constant time. Here the
Cartesian coordinates (x,y, z) are defined as

TABLE 1II. Parameters of special equatorial geodesics shown
in Fig. 11.

Figure Number &, £’ K A a &o
11 1 0.77064 2.81619 2.38044 0.8 2.89664
11 0 1 5.94042 3.2373 0.8 1.80109

x = Ecosgsin 6, (107a)
y = Esingsiné, (107b)
z = ¢cosb. (107c)

The last plot (lower right panel) in Figs. 1 to 10 shows the
coordinate time 7 versus the proper time 7 for timelike
geodesics and the affine parameter for null ones. Our
analytic solutions are depicted with an orange line. For
comparison, we also plot numerical solutions corresponding
to the same initial data. They are depicted with black dotted
lines. In all plots we mark initial positions (&g, 6, @), butin
many cases the solutions are evolved both forward and
backward in time. Blue lines or gray cones in the plots show
the limiting values of the angle €, marking the region
available for the motion. Black hole horizons (inner and
outer) are drawn as black circles or gray spheres.

The coordinate singularities present in Boyer-Lindquist
coordinates prevent us from continuing the solutions through
horizons. The equations for &(s) and 6(s) are unaffected, but
the ones for ¢(s) and T(s) are. Consequently, we only plot
our solutions up to horizons.

For convenience, main parameters of solutions shown in
Figs. 1-10 have been collected in Table I, together with
information about their radial types and real zeros of the
radial potential R. In all cases a = 0.8, and consequently

the horizons are located at &5 =1 — V1 —a? = 0.4 and

& =1+V1—a*>=1.6. Figures 1-6 show examples of
timelike orbits (6; = 1). Null orbits (6; = 0) are shown in
Figs. 7-10.

Figure 1 shows a generic timelike flyby orbit of radial
type I, plunging into the black hole. The orbit crosses the
equatorial plane. Figure 2 depicts a generic timelike type 11
interval-bound orbit, restricted to a region outside the black
hole horizon, oscillating around the equatorial plane. In
Fig. 3 we assume the same constants of motion as in Fig. 2,
but the choice of the initial radius &, = 1.55 yields an inner
bound orbit. We follow the motion both forward and
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FIG. 1. An example of a timelike unbound absorbed orbit with ¢> = 1.1, 2. = —1, @ = 0.8, x = 12 and initial position at &, = 8,
6y = 0.85, ¢y = 0.33, ¢, = —1, ¢y = 1. Solid color lines correspond to solutions obtained with Egs. (34), (40), (82). Dotted lines depict
corresponding numerical solutions. The motion is depicted in two planes: xy on the right and xz on the left. The intersection of thin black
lines marks the initial position. Blue lines in the xz plane and cones in the three-dimensional plot correspond to extremal values of 6.
Gray spheres and dark circles depict black hole horizons. The figure in the lower right corner shows to the coordinate time 7" versus the

proper time 7.

backward in time, up to horizons at ¢ = &;. Figure 4 gives
a generic example of a type IV flyby orbit. In this case the
turning point is located at & ~4.58 > &;;. Consequently,
the particle incoming from & = +oo is scattered by the
black hole, and moves to £ = 4o0. Figure 5 shows an
example of an interval-bound orbit of radial type V, with
& =23 > &5 The motion is continued forward and
backward in time up to & = &;. Perhaps the most interest-
ing case is shown in Fig. 6. The trajectory is of type I and
represents a transit orbit. The motion is restricted to the
“northern” hemisphere. We emphasize once more that the

radial motion is described by a manifestly real expression
(34), even though the radial potential R has no real zeros in
this case.

In Fig. 7 we plot a generic null flyby trajectory of radial
type IV. This trajectory crosses the equatorial plane. For
the null trajectory depicted in Fig. 8 we assume the same
constants of motion as in Fig. 8, but we take &, = 1.5.
Consequently, the trajectory is of interval-bound type, and
the part of the orbit shown in Fig. 8 is restricted to the
region enclosed by the two horizons & = & and & = &;,.
Figures 9 and 10 show two examples of null orbits
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FIG. 2. Same as in Fig. 1, but for a timelike bound orbit with e =0.95, A, =3, a=0.8, k = 12, and an initial position at &, = 10,

0y = 0.85, gy = 033, ¢, = —1, ¢y = 1.

plunging into the black hole. Both trajectories originate at
&y = 10. The trajectory shown in Fig. 9 is of radial type II
(flyby). The one depicted in Fig. 10 belongs to radial type I
(transit). Both trajectories are restricted to the “northern”
hemisphere.

Figure 11 shows examples of two special equatorial
trajectories with constants of motion corresponding to
circular orbits [38,39]. Parameters of these solutions are
collected in Table II. Upper plots in Fig. 11 depict a
timelike spiraling orbit with constants of motion ¢, 4,, and x
characteristic for a marginally stable corotating circular
orbit with the radius &. In this case

R= (82 - 1)6(5 - éms)?,’ (108)

i.e., &, is a triple root of R. The radius &, can be
computed as

-7 Z,+27
5m5—3+z2_€ia\/<3 1)(3_2 1+ 2),

a

(109)

where Z, =14+ V1 - (VT +ea+V/T—ea), Z,=
\/3a* + Z% [12]. Here the sign ¢; = sgna corresponds
to a corotating orbit, and €; = —sgna to a counterrotating
one. For « = 0.8 and ¢, = +1, we get &, = 2.90664. In
this case a corotating marginally stable orbit is charac-
terized by & = 0.77064, k = 2.81619, and A, = 2.38044.
For the timelike orbit plotted in Fig. 11 we assume the

same values of &, 4,, and «, but the initial radius is set to
be &) = &, — 0.01.
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FIG. 3.
0y = 0.85, gy = 033, ¢, = —1, ¢y = 1.

Lower panels in Fig. 11 show a similar picture for an
equatorial null orbit. In this case we assume the constants &,
/., and k corresponding to a circular null orbit of radius

Eon =2+ 2cos E arccos (—e,la)} . (110)

This gives, for a = 0.8 and ¢, = +1, &, = 1.81109, and
the constants of motion A./e =3.2373, and «/&* =
5.94042. The potential R has a double zero at & = Son-

For the null orbit plotted in Fig. 11 we assume the initial
radius at &, = &, — 0.01.

Same as in Fig. 1, but for an inner bound orbit with e =0.95, A, =3, a= 0.8,k = 12, and an initial position at &, = 1.55,

VI. DISCUSSION

We have derived a single set of general, closed form
analytic solutions describing all types of timelike and null
Kerr geodesics in terms of Weierstrass elliptic functions.
Our derivation follows largely the footsteps of Ref. [32], but
a new ingredient is an application of the Biermann-
Weierstrass theorem, which allows us to parametrize sol-
utions with the constants of motion and arbitrary admissible
initial coordinates. In particular, there is no need in our
formalism to calculate any turning points of the motion,
which is generally necessary in other methods.

We tried to be coherent in our approach, and to express
our solutions in terms of Weierstrass elliptic functions only,
but one is free to mix our formulas with the existing
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FIG. 4. Same as in Fig. 1, but for a timelike unbound scattered orbit with £ = 1.1, A, =3,a=0.8, k = 12, and an initial position at

50 = 10, 90 = 085, Py = 033, €, = —1, €g = 1.

solutions, perhaps more convenient in some cases. Our
method provides very general and clear expressions for
radial and polar motions. As usual, expressions for ¢(s)
and the time coordinate 7'(s) are much more involved, as
several elliptic integrals appear that are solved using
logarithms of the Weierstrass sigma function. However,
progress has been made in the required careful selection of
appropriate branches of complex logarithms, as described
in Sec. I'V. This has been achieved by extracting the linear
parts and reducing the problem to the determination of a
single constant for the complete trajectory. On the other
hand, the big advantage of our derivation is that it does not
differentiate between many possible algebraic types of
solutions, perhaps except for (zero-measure) special cases
with € = §;, described in Appendix B 3, and a necessity to
handle some aspects of the derivation in the extreme-Kerr
case separately (Appendix B 2).

ACKNOWLEDGMENTS

The authors would like to thank Andrzej Odrzywotek
for discussions. This work was partially supported by the
Polish National Science Centre Grant No. 2017/26/A/ST2/
00530. E.H. acknowledges support from the Deutsche
Forschungsgemeinschaft  (DFG, German  Research
Foundation) under Germany’s Excellence Strategy—EXC-
2123 QuantumFrontiers (Project-ID 390837967), and within
the Collaborative Research Center SFB-1464 TerraQ
(Project-ID 43461778), project CO3.

APPENDIX A: EXPRESSIONS FOR J,4, Ny,
AND N,

In this appendix we collect expressions for Jy(s), N;(s),
and N,(s), appearing in our formulas for 7'(s). The
derivations are similar to the ones for N7; and I4(s), given
in Sec. III C.

024056-17



ADAM CIESLIK, EVA HACKMANN, and PATRYK MACH PHYS. REV. D 108, 024056 (2023)

— Analytic ]
oL < ----- Numerical ] 2

o an o a
NI ] N
b ] b ]
_2b b -2r — Analytic
Y S R PP P Numerical
] _3-””\””\””HH\HH\HH-
2 3 -3 -2 -1 0 1 2 3
X
20—
10+ b
- 0
—10F u
— Analytic
| p ---- Numerical
|==+ Analytic I
' —203 -2 -1 0 1
i . m
| /&= Numerical T —
M

FIG.5. Same as in Fig. 1, but for a timelike bound orbits with €2 = 0.5, A, = —1,a = 0.8, k = 12, and an initial position at &, = 2.3,
0y =0.85, ¢y =033, ¢, =—1,¢y= 1.

1. Expressions for Ny and N, 1.
Integrals Ny and N, are defined as G = ZR (%) (A3b)
| = —2e\ /R A3
Mi(s) = [ els)ds (A1) 5= 3oV R&). (A3c)
’ 1
and Ca =5, R"(60), (A3d)
s |- -
Cs = 4—8R(§0)R(4) (éo)- (A3e)
Na(s) = [ &7 (A2)
0
Cs
or1 =Cys+ \/——' A3f
As before, we define k1 4 2 ( )
0 = T RER"(E) - - RER (&), (A30) pra = Cs— 1|2 (A3g)
TR 0) =96 0 0)s R2 4 ok

024056-18



KERR GEODESICS IN TERMS OF WEIERSTRASS ELLIPTIC ... PHYS. REV. D 108, 024056 (2023)

15V""x"'w"" RN BN B 15V""w"w"" L B L B R
' —Analytic: '
10; ----- Numerical] 10; ]
1 / o 1
~ 0 (: 1~ 0 (4
& ] [ N
_5F ] _5} ]
_10f ] _105 — Analytic
5 N N ST Numerical
JTY | P ENN I B I B JPY | I BN B N I B
—515 -10 -5 0 5 10 15 —515 -10 -5 0 5 10 15
X X
s0F .
251 .
0,
'_
_25; ]
_50} i
L — Analytic
r 7 e Numerical 1
== Analytic —75r- ) ) -
-15 -10 -5 0
. m
-8 Numerical T —
M

FIG. 6. Same as in Fig. 1, but for a timelike unbound absorbed orbit with &2 = 30, A, = —0.05, a = 0.8, k = 12, and an initial position
at &, =10, 0, = 0.85, ¢y = 0.33, ¢, = =1, ¢y = 1.

Hence Eq. (34) takes the form

Ci + Copp(s) + C3p(5)

=<0+ , A4
) = 60 1) = o (PR) - P2) (A4)
and therefore
Ni(s) = /5(5)615 = / PR LG e AN P
0 0 [@ie(f) - pR.l} [K)ie(f) - @R,z}
=05 + C1K (83 prys Pro) + CoKo(s: Prys PR2) + C3K5(85 PRyt PR (AS5)

where pr, and pg, satisfy ©(pg 9o 9r3) = Ca + % and ©(proi9r2s 9k3) = Ca = %5 Weierstrass functions

appearing in expressions for K, K,, K3 in the above formula should be computed with the invariants gz, and g; ;.

024056-19



ADAM CIESLIK, EVA HACKMANN, and PATRYK MACH PHYS. REV. D 108, 024056 (2023)

20 ‘ 3P
L — Analytic L i

: ----- Numerical : 20:_ _:
10T = C ]

I ] 10F .
X ® g :
i ] -oF ]
—-10F - r ]

L J -20[- — Analytic ]

L 4 S N Numerical
_ppls L o ol L PN S I I\ G N B
920 -10 0 10 20 3910 0 10 20 30 40 50

X
o -20
0 x 150

20 [ )

100 ]

20 s0f :

- 0

z 0 - [ ]
—501 1

Analytio o - Nomercal |

-20 1
X _150- | | | | ]
) ) =% Numerical -150 -100 -50 0 50 100 150

-20 0 20 - E
y M

FIG. 7. Same as in Fig. 1, but for a null unbound orbit with £ = 1, A, = 4.47214, a = 0.8, k = 60, and an initial position at &, = 10,
90 = 085, Py = 033, €, = —1, €y = 1.

The integral N,(s) can be calculated as follows. We have

5) = | 2d5 — | Ci + Copp(s) + C3p(s)
N;(s) {5( )*d { o + [K)R(E)—m’l [m(g)_pm}

_ / & 4+ 2z, LT Cr(S) T () €+ Capnls) + Cal) |
o [m(f) - KJR,I} [m(f) - m,z} [m(f) - pk,l:| [W(E) - pk,z}
= &5 + 280[N (s) = &os] + Ni(s) = 26N (s) = &Gs + Ns(s), (A6)

where

) — ) Ci + Capr(s) + Cap5(s)
] | e
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FIG. 8. Same as in Fig. 1, but for a null bound orbit with e =1, A, = 4.47214, a = 0.6, k = 60, and an initial position at &, = 1.5,
60y =0.85, ¢y =033, ¢, =—1,¢y= 1.

The integral N5 can be written in the form s N =

p(5)ds
L2(5§PR,17PR,2) = _ _ 2
b [(96) = 0r.1) (96) = 0r2) |

(A9b)

N3(s) = C%Ll(&Pie,l’Pie,z) + 2Clch2(S§Pie,1’Pk,2)
+2C C3L3(s5 PR1s Pr2) +2C2C3L4(85 PRts PR2)
+C3Ls(s; piy» Pra) +C3Le(S: PRy PR2).  (AS8)

Ls(s; PR1> Pie,z) =

o\w
[ —
/N
)
~
Ll
N—
|
]
I
= |l
N— —~
=
ISH
,(;\I =]}
SN—
|
)
=
to
~—
—_
)

where

o y ds ’
Lalsipas. pr2) {[(p(s)—m,l)(p(s)—m,z)r Lalsipr-pra) s
(A9a)

1l
o\
| —
/N
)
—~
=]
S~—
|
3
=
N
)
—
=]
~—"
|
3
=
[S]
——
| I
(38
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FIG. 9. Same as in Fig. 1, but for a null unbound orbit with e€=1, A, =~ —0.111803, a = 0.8, k = 0.6, and an initial position at

& =10, 6, = 0.85, gy = 033, ¢, = —1, ¢y = L.

| o (5)%ds
Ls(s; PRy PR2) = A [(Q(E) - @:1 (@(5) - @"?-2)}2’
(A9e)
o s ¢/ (5)%ds _
Le(s;Pr1>PR2) [ [(W(E) - @R.l) (p(f) - pi”)r
(A9F)

Integrals (A9) are calculated in Appendix C. For € = 0,
integrals (AS5) and (A7) have a different form. They are
listed in Appendix B 3.

2. Expression for J,
The integral

s

Jo(s) = /sin29(§)d§ (A10)
0
can be computed in a manner similar to 7,. Let
z=sin’0=1- 4, (A11)

where p = cos 6. This gives
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FIG. 10. Same as in Fig. 1, but for a null unbound orbit with £> = 1, A, = —0.00912871, a = 0.8, k = 0.4, and an initial position at

50 = 10, 90 = 085, [ 033, €, = —1, €g — 1.
dz du

B Y 2

gy = 2= co\[ g ()

_ ea\/4(1 — 2)[bo(1 = 2)2 + 6by(1 = 2) + b]

= coes /70D, (A12)
Here
v(z) =4de 7> + 6e,7> + 4esz + ey, (A13)
and
e, =a*(e? =8, =ds, (Al4a)
e = 2 [*(26, — &%) — k = 2al.¢] = d>, (A14b)

3

e3 =K—a’8) +2ade+ 12 =d;, (Aldc)

ey = =472 = dy, (Al4d)

where coefficients d,...,d; are given by Eq. (68).
Weierstrass invariants of the polynomial v(z) read

Guo = —4eje3 + 3e3, (Al5a)

Gv3 = 2e1€3€3 — e% - 6%34’ (A15b)

and not surprisingly,
Consequently,

gv,Z = gw,Z and gv,3 = gw3-
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FIG. 11. Examples of spiraling orbits in the equatorial plane. Upper figures correspond to a timelike orbit with &> ~ 0.77064,
1, 7238044, a = 0.8, k = (1. — ae)? ~ 2.81619, and an initial position at &, = &, — 0.01 ~2.89664, 9, = /2, p, = 0.33,¢, = —1.
Lower figures correspond to a null orbit with ¢2 = 1, 1. ~3.2373, a = 0.8, k = (1, — ae)? ~# 5.94042 and an initial position at

f() = éph -0.01~ 180109, 90 = 7'[/2, Py — 033, €, = —1.

—€€,\/0(20) 9 (5) + 30" (20) [P0 (5) = 55" (20)] + 35 2(20) 2" (20)

2(s) =20+ ; (Al6)
2[pu(s) = 250" (20)P?
|
where zo = sin® 6y, ©,,(s) = ©(8; G2, G 3)- As before, we 1
e 0 0> 9w (5) = (53 G20 G 3) D, = 5 Coc v(z0). (Al7¢)
1 1 Dy = Lo (z) (A17d)
Dy = = 0(20)v"(20) = g2 v'(20)0"(20).  (Al7a) 24 ’
48 96
1
Pv1 = D4 ﬁvﬂ(ZO) (A17C)
1
D, = ~/(z). A17b
= 10(0) (AT
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D, +D;1,,(5) +D3p},(5) 5
[ (5) = ool }d

Jo(s) I]z(S)dS:AS {ZO+
0

=208 +Di15(s:py1) +Dolg(s:pp1) +Ds3la(s:py1)s

(A18)
where
I3(s:pyi) = { 76 _1 o ds.  (Al9a)
Ig(s;poa) = { [p(gfi)@ e (A19b)
Ly(s3 pua) = [ [W(E?/—(Zu.l]zdi (A19c)

and p,; satisfies p(p,1; g2 Gw3) = Dy. Integrals (A19)
are calculated in Appendix C.

APPENDIX B: LIMITING CASES

In this appendix we discuss two special limiting cases:
the Schwarzschild limit with @« — 0, and the extreme Kerr
limit with ¢ — +1.

1. Schwarzschild limit

The Biermann-Weierstrass formula has been used to
provide an explicit description of Schwarzschild geodesics
in [61,67]. The description given in [61] exploits the fact
that the motion occurs in a single plane and uses the true
anomaly as a geodesic parameter. The solution discussed
briefly in [67] is adjusted to the setup of this paper—
geodesics are parametrized by an equivalent of the Mino
time. In this subsection we discuss @ = 0 limits of our
solutions for &(s), O(s), ¢(s), and T(s) and show that they
coincide with the expressions given in [67].

a. Solution for &(s)
The form of the solution for &(s)—Eq. (34)—does not
change for @ = 0, but the coefficients (31) and Weierstrass

invariants (33) of the polynomial R acquire the following
simpler form:

ag = 82 - 6], (Bla)
Ls (BIb)
ay 501
: (Blc)
= —— C
ar 6K',

1
a3 = 5% (B1d)
as =0, (Ble)
2 1 2
Jra = —Aaas +3a3 = Sk = Ak, (B2a)
5 82 —_ 5

gi{s = 2Cl]a2a3 - a% — aoa% — 5](3 _ 1_;’(2 _ TIKZ'

(B2b)

b. Solution for 6(s)

For a =0 the solution for 6(s)—Eq. (40)—can be
expressed in a simple form, involving elementary func-
tions. This can be seen as follows. The coefficients of the
polynomial g(u) read, for a = 0,

by = 0, (B3a)

by = — (B3b)
2 — 6K’

b4 = K- /13 (B3C)

The appropriate Weierstrass invariants can be written as

1
99’2 = 3b% = EKQ, (B4)
3 1 3
gg,3 = —b2 = gK . (BS)

The value of ©(s; g,,. g,3) can be computed by noting the
following two identities ([68], p. 652, Eq. 18.12.27 and
[66], Eq. 23.10.17):

11 1 1
D B
p<Z’12’63> 2(1—cosz) 12’ (B6)

p(z: ¢ g, Og3) = Ap(cz: 9. 93). (B7)

where c¢ is any nonzero real or complex constant. This gives

1 1 1 1
0(53 992 9g3) = @(s;ﬁkz,6—3k3> = K@(ﬁs;ﬁ,§>
K K
e —— B8
2[1 —cos(y/ks)] 12 (B8)

Differentiating the above expression with respect to s,
we get
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o G 1 + cos(y/ks)
(53992 993) = 2 [1—cos(y/ks)]sin(y/xs)

Using Egs. (B8) and (B9) in Eq. (40), it is easy to obtain the
following expression for p(s):

2
(s) = o 0s (v/s) — ee\/l 1~ sin (VRs). (B10)

, we finally get

(B9)

arc sin

Denoting S, =

1__
u(s) = —epy/ 1 ——sm

This form has already been obtained for the Schwarzschild
metric in [67].

V(s =)l (BI1)

c. Solution for ¢(s)

The only term remaining in the expression for
¢(s) —@(0) in the Schwarzschild limit is the integral 1.
We have

N

0(s)=90) = 1o = 2. [ a(5)as.

0
The expression for ¢(s) = 1/sin?(s)—Eq. (70)—can
also be simplified for a=0. The -coefficients and
Weierstrass invariants of the polynomial w(q) have the form

(B12)

dy = —422, (B13a)
d =K+ 22, (B13b)
2
dz = —§K, (B13C)
dy =0, (B13d)
and
4
gqu = §K2, (B14a)
2 3
T3 = (3) K3, (B14b)

We find that

(s; ) = 422 5 1 1
OIS w2 Gn3) = P\ 3003316 ) =K sin?(y/ks) 3
(B15)

and

_ _p 3 cos(Vks)
sin’(y/ks)

An explicit expression for g(s) is lengthy, but it can be
shown that it simplifies to g(s) = 1/[1 — u(s)?], where u(s)
is given by Eq. (B10) or, equivalently, Eq. (B11). This gives

©' (83 Gw2s 9w 3) (B16)

S

0(5)=0(0) =ty=2 [ =5

— 12 (3)
0

s

ds

:%{ 1= (1=%) sin[Vk(s = o) o

Evaluating the last integral, we obtain

() = 9(0) = arstan | % anfy&(s = o))

+ arctan [%tan(\/zzﬂo)] +nz, (BI8)

where n € Z, in agreement with a formula given in [67].

d. Solution for T'(s)
Assuming a = 0, we get, from Eq. (83),

- s 63(§) ]
-T(0) = 8{56) — 2ds. (B19)
Noting that
& . 8
é___—z—f +2§+4+§_—2, (BZO)
one can write
s 2
T(s)=T(0)=e [ &(5)ds+2e | &(5)d5 +4es
0 0
[ ds
+8e[§(§)_2
=¢eN,(s)+2eN,(s) +4es+8eNj(s). (B21)

Integrals N and N, are given by Egs. (90) and (91). The
integral N3 can still be computed as in Sec. III, i.e.,

K ds K o
N,T,(s):A f(:v)——2:A u,(5)ds. (B22)
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Here u, satisfies Eq. (49) with the polynomial A (u, ) given

by Eq. (50). On the other hand, coefficients c, ..., ¢4 have,
for a = 0, the following simple form
= 16¢?, (B23)
, 1
Cq = 8¢ —EK‘—ZSI, (B24)
, 1
Cy = 4e —EK—251, (BZS)
, 3
Cy = 2e — 551, (B26)
Cy = 82 - 51. (B27)

As in the general case, the Weierstrass invariants g, , and
gn3 of the polynomial /(u. ) coincide with gz, and gz 3,
respectively.

2. Extreme Kerr limit

A few equations have to be modified in the limit of @ —
+1 (extreme Kerr spacetime). In this case A = r> — 2Mr +
a’*=(r—M)*and & - 26+ % = (6-1)2

Equation (43) reads

I(s) = a/%d' (B28)
0
A partial fraction expansion now gives
I:(s) = 2aeNy(s) + (2ae — 1,)Ns(s),  (B29)
where
ds (B30)

Integral N, can be computed as in Egs. (46)—(62). Defining
u(s) = 1/[&(s) = 1], we get

% = —€,/ h(u), (B31)
where
h(u) = cou* + 4 u? + 6¢,u* + 4czu + ¢y, (B32)
and
= 42 — dael, + 12, (B33a)

c; = 2¢* —ael,, (B33b)
1 2
=g (=6; + 8e* —k —2ael,), (B33c)
1
6= -6, (B33d)
cy = {;‘2 _ 51. (B33e)

Solution for u is then given, as in Eq. (58), and integrals
N, and N5 can be computed as

Ny(s) :/u(i)di, Ns(s) :/MZ(E)dS. (B34)
0 0

Similarly, the integral J:(s) appearing in Eq. (83) reads,
for a = +1,

y 2(5 2e = 2a s
uw=/“”+ 27(5)

1] _
EOEN

—58s+2€/§ ds—l—e/cfz(s
0

+2(4e — ad,)N4(s) +2(2e — ald,)Ns(s). (B35)

3. The case with £ =4,

In this subsection we compute integrals (AS) and (A7)
in the special case with ¢ =4§;. In this case C5 =0
[Eq. (A3e)], and Eq. (A4) has the following form

C1 + Copp(s) + Capi(s)

A T —oa

. (B36)

= (4. Thus

where 5 = P(Pies;gie.zagkj)
CI+CZPR(S)+63@;}(S)}CZ_

/E w_/{ [or()= 053]

=805 +CiI5(s:pps) +Colg(s:pg3) +Cala(s:pg3),
(B37)

and
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N%(S):/{Cl +E;§iss_);—:jfz%(s>}2d§26%119(5;171?,3)

+2C,Calyo (55 pr3) +2CC3ly (55 pR3)

+2C2Cal (53 pg3) +Calas(s:pis) +Cilas (53 Pk 3)-

(B38)
where
s ! )
B(sippy) = [ s, (B3%
0 [p(s)_@R3}
1,(s; Pr3) :/ d:v, (B39Db)
0 @R3
(B39c)

/ _ds,
0 — PR, 3

Lo(s; pR3 / ds, (B39d)
0 S) ©R, 3

L(s;pg3) / dfv, (B39e)
0 S) @R3

s

'(5) ,
Di(s:pps) = | 2 d5,  (B39f)
o / [o5) = ora]

[ dEe6)
In(s:pps) = | ——22Y g5 (B39g)
o / [o5) = oral

N (E)z i
In(sipps) = | — 22 5. (B39h)
S / [o5) = ora

y /(5 2
Irs5(s; PR3) ’=/Ld§. (B39i)

) 196) = o’

A analogous analysis should be carried out for initial
parameters yielding A5, =0 or Bs = 0.

APPENDIX C: INTEGRALS

In this appendix, we collect the formulas for all elliptic
integrals appearing in this paper and used to solve Kerr
geodesic equations. We adopt a convention according to
which in all following formulas x denotes the variable,
while y and z are treated as parameters. This is emphasized
by separating the variable x from the parameters y and z
with the semicolon. The integrals are based on the results
presented in [69] (pp. 626) [70] (pp. 311), [71] (vol.4,
pp- 109-110)

L dx 1 . o(x—y)
) = [ o= e (B0 e ) b
L) = [ 29— (o0 - o0)) )
) = dx 9"y, olx=Y)
B = [ S T e e )
IR Y T . 20" NEWN |
o () ) + (2000 + 2E0E0D). ), (©3)
L @ (x)dx B 1
R R e er oy o} (&
1) = [ 28O o) n () - 0(0) + 900, (3)
o [#We)dx I 0))
1) = [ g gy = o =00 =52 <0
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o [edx o p() b )
I7(x’y)_/@(X)—p(y)_ Yo <2C(y) oG y)’

Ity = | % = 1(xy) + o) (xey).
(

02 (x)dx

Io(siy) = [ S8 o)1 (x23) = <)

L o (x)dx B . 1, 92
Haloiy) = [ SIS = o0l (x23) + 0/ 5) + o

/2x X
Ill(x;y)=/p€c)(_)s(y) =4lo(x;y) = 9al7 (x5 ) = 9311 (x3y),

)= plodx -
o) = [ B = ) + o0 (x2)

Ii3(x;y) = /@i;(j% = Io(x;y) + () 12(x;y),

[P
Il4<x7y)_/(p(x)_p(y)>2 4113( 7y) 9218< ’y) g313( ’y)v
dx 1 ,
115<~xay):/(p<x)_p(y))3:p/<y)% (p(x—i—y)—p(x—y)—Zp (y)x

= 12p()' ()11 (x;y) = 30" ()" (0)13(x;¥)),

o [ g !
ho(x) = / (px) —p()  2(plx) - p()*

x)dx
Ii7(x;y) = /m—ls()ﬁ)’) + () 1i5(x;y),

2(x)dx

Lig(x;y) = /m: Ig(x;y) + () 117(x;y),

dx 1 o —v) — 20 (v)x
totsi) = | G a1 ) £ ) =200

— W) (x1y) — (39" (v)* +48p(y)¢' () 5(x:y) — 12@”<y)p’(y)2119(x;y)]

x)dx
o) = [ M = Is(xy) + o) o (x:y).

) — @' (x)dx !
) = | o0 — 00D~ 3000 — o0

o [ e (dx 3p(x) — ()
’22(’“”‘/ ) - o0 6 = 90

=

~—

2 X
Iy(xiy) = /m—ln(n}’) + () a0(x: ),
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Iy(xyy) = / @f;(_x% = Iig(x;y) + ()13 (x5 y), (C24)

Ls(xyy) = / (pgj;(_% = 4l(x;y) = galao(x3 ) = g3110(x3 y), (C25)
610509 = [ o ool (C26)
S e (€27)
R A S v e B st (C28)
ki) = [ o = o = )=o) (€29)
kst = [ pkp;(x()géc) = (C30)
K2 = [ o ﬁffiﬁ% = (1)
L3 = [ o o (22
R e e e (v (€39)
R e vy A e e (c34)
Lt = [ o S e (C33)
st = [ o péﬁﬁpf) = e (C26)
Loty = [ o p?)w()()p?) P = (7
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