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Axial gravitational quasinormal modes of a self-dual black hole in loop quantum gravity
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We study the axial gravitational quasinormal modes of a self-dual black hole in loop quantum gravity.
Considering the axial perturbation of the background spacetime, we obtain the Schrodinger-like master
equation. Then we calculate the quasinormal frequencies with the Wentzel-Kramers-Brillouin approxi-
mation and the asymptotic iteration method. We also investigate the numerical evolution of an initial wave
packet on the self-dual black hole spacetime. We find the quantum correction parameter P positively affects
the absolute values of both the real and imaginary parts of quasinormal frequencies. We derive the relation
between the parameters of the circular null geodesics and quasinormal frequencies in the eikonal limit for
the self-dual black hole, and numerically verify this relation.
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I. INTRODUCTION

The first direct detection of the gravitational wave (GW)
in 2015 [I] marked an all-new era of physics and
astronomy [2,3]. The Event Horizon Telescope has taken
the first picture of a supermassive object at the center of
galaxy M87 [4-9], and the picture of the central black hole
in our Milky Way [10-15]. Human beings can observe the
Universe with multimessenger; both the gravitational wave
and the electromagnetic wave. Until now, the LIGO-Virgo-
KAGRA Collaboration has finished three observing runs
and detected 90 confident GW-burst events [16—-19]. GW-
bursts, emitted from the merger of binary compact objects,
bring information about gravitational theories and sources
and provide us with a new approach to test general
relativity in the strong gravitational field [20-23]. The
whole gravitational wave waveform of a GW-burst event
can be divided into three parts; inspiral, merger, and
ringdown. The ringdown part can be successfully described
by the black hole perturbation theory [24,25].

A black hole with perturbations is a dissipative system,
and the eigenmodes of this system are named quasinormal
modes (QNMs). The QNMs are the spectroscopy of a black
hole, because the quasinormal frequencies depend only on
the black hole’s parameters, while their amplitudes depend
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on the source exciting the oscillations [26—-29]. According to
the behavior under space inversions, the gravitational
perturbations of a spherically symmetric black hole can
be divided into the odd (axial) parity part and the even
(polar) parity part [24]. As the most successful theory
for gravitational interaction, general relativity has passed
many astrophysical tests [30]. In general relativity, Regge,
Wheeler [31], and Zerilli [32] first studied the odd-parity
and the even-parity gravitational perturbations of the
Schwarzschild black hole. Moncrief first studied both the
odd parity and the even-parity gravitational perturbations of
the Reissner-Nordstrom black hole [33,34]. And Teukolsky
first studied the gravitational perturbations of the Kerr black
hole [35]. To get the quasinormal frequencies for the black
hole perturbation problem, numerical methods are needed to
solve the eigenvalue problem. With the development of the
black hole perturbation theory, more and more numerical
methods were proposed, such as the Wentzel-Kramers-
Brillouin (WKB) approximations [36—41], the asymptotic
iteration method [42], the monodromy technique [43], the
series solution [44], the resonance method [45], and the
Leaver’s continued fraction method [46].

The singularity of general relativity is a good motivation
to probe new physics. It is generally believed that a complete
theory of quantum gravity has no singularity. Loop quantum
gravity is exactly this case [47]. In loop quantum gravity,
spacetime is made up of some basic building blocks called
spin networks. In the framework of loop quantum gravity,
Modesto and Premont-Schwarz constructed the Reissner-
Nordstrom-like self-dual black hole [48,49]. Many works
investigated the phenomenological implications of this black
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hole [50-56]. The perturbations of the self-dual black hole
also have been studied in some works, which can be divided
into two categories by whether using the Arnowitt-Deser-
Misner (ADM) mass of the black hole as one of the
parameters fixed during calculation. Fixing the parameter
M/(1 + P)? instead of the ADM mass of the self-dual black
hole, Chen and Wang studied the QNMs of a massless scalar
field [57], Santos et al. studied QNMs of a massive scalar
field nonminimally coupled to gravity [58], Cruz et al
studied axial [59] and polar gravitational perturbations [60],
but it is worth pointing out that the effective potential in
Ref. [59] cannot be reduced to the Schwarzschild black hole
case when setting all loop quantum gravity parameters equal
to zero. Fixing the ADM mass of the self-dual black hole,
Liu er al. studied QNMs of the massless scalar field and
electromagnetic field [61], and Momennia studied the
QNMs of a test scalar field [62].

In this work, we focus on the axial gravitational
perturbation of the self-dual black hole with fixed ADM
mass, because the ADM mass is the physical mass of a
black hole measured in astronomical observations.
Following Ref. [48], we assume that the self-dual black
hole is described by Einstein’s gravity minimally coupled to
an anisotropic fluid, and derive the master equation of the
axial gravitational perturbation of the self-dual black hole.
This method also was used to study the gravitational
perturbations of nonsingular black holes in conformal
gravity [63] and nonsingular Schwarzschild black holes
in loop quantum gravity [64]. Then, we calculate the
corresponding quasinormal frequencies with the WKB
approximation and the asymptotic iteration method. The
influence of the quantum correction parameter P on the
QNMs is also studied. We find that the parameter P has a
positive effect on the absolute values of both the real part
and the imaginary part of quasinormal frequencies, which is
consistent with the conclusions for the QNMSs of the scalar
field and the electromagnetic field on the self-dual black
hole with fixed ADM mass during calculating [61,62].
Assuming the perturbation is a Gaussian packet, we inves-
tigate the numerical evolution of an initial wave packet on
the self-dual black hole. Besides, Cardoso, Lemos, and
Yoshida found that, in the eikonal limit, quasinormal modes
of a stationary, spherically symmetric, and asymptotically
flat black hole in any dimension are determined by the
parameters of the circular null geodesics [65]. We obtain the
relation between the quasinormal frequencies in the eikonal
limit of the axial gravitational perturbation and the param-
eters of the circular null geodesics in the self-dual black
hole, and numerically verify this relation. The numerical
results show that the relation between the parameters of the
circular null geodesics and quasinormal frequencies in the
eikonal limit is right in the self-dual black hole in loop
quantum gravity.

This paper is organized as follows. In Sec. II, we derive
the master equation of the axial gravitational perturbation

of the self-dual black hole. In Sec. III, we calculate
the corresponding quasinormal frequencies with the
WKB approximation method and the asymptotic iteration
method. And we investigate the numerical evolution of an
initial wave packet on the self-dual black hole spacetime.
Then we obtain the relation between the parameters of the
circular null geodesics and quasinormal frequencies in the
eikonal limit in the self-dual black hole, and numerically
verify this relation in Sec. IV. Finally, the conclusions and
discussions of this work are given in Sec. V.

II. GRAVITATIONAL PERTURBATION OF LOOP
QUANTUM BLACK HOLE

The line element of the spherically symmetric self-dual
black hole in loop quantum gravity is [48]

d 2
ds® = —f(r)d* + % + h(r)(d6? + sin® Bdg?),
g\r

where the functions f(r), g(r), and h(r) have the following
forms:

(2.1)

R e
A = (r—r)(r=r) r*

g(r) = Ar@ TR (2.3)

h(r)=1r? +i—§, (2.4)

where ay =~ 50%/8x (1 » is the Planck length) is related to
the minimum area gap of loop quantum gravity, r, =
2M /(1 + P)?is the outer (event) horizon, with P a function
of the polymeric parameter §, related to the geometric
quantum effect of loop quantum gravity. r_ = 2MP?/
(1+ P)? is the inner (Cauchy) horizon, ry= \/F 7,
and M is the ADM mass of the black hole. The deviation
of the self-dual black hole from the Schwarzschild black
hole is described by two quantum correction parameters P
and ay. The constraints on the parameter P have been
obtained from various astrophysical observations [54-56],
and the max one is P < 0.0675 [55]. Expanding Eqgs. (4.16)
and (2.3) in the power of 1/r, one can see that the maximal
correction from the parameter P is at the order of (MP)/r,
while the maximal correction from q is at the order of
a3/ r* [55]. In this work, we focus on the physics of QNMs
outside the event horizon. And the radius of the event
horizon of a typical Schwarzschild black hole with the mass
of the sun is of about 3 km, then P~ O(1072) and
a3/r* ~0(1077). So the effect of a, on astrophysical
observation can be safely neglected, and we only care about
the quantum correction from the parameter P.
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For the self-dual black hole, one can simulate the quantum
corrections with an effective anisotropic matter fluid, and
write the field equation as the Einstein equation form
G,, = 8xT,,, where T, is the effective energy-momentum
tensor [48]. Because of symmetries of the background
spacetime, the effective energy-momentum tensor of this
anisotropic perfect fluid can be written as

T/w = ([) + pZ)Mﬂuv + (pl - pz)X”XD + sz],m (25)
where p is the energy density measured by a comoving
observer with the fluid, p; and p, are the radial pressure and
the tangential pressure, respectively. u,, is the timelike four-
velocity and x,, is the spacelike unit vector orthogonal to u,,
and angular directions. And g,, is the metric of the back-
ground spacetime. The timelike four-velocity u, and the
spacelike unit vector x, satisfy

wu =—1 and x,x* = 1. (2.6)
We can assume u* = (u',0,0,0) and x* = (0,x",0,0) in
the comoving frame. To study the perturbations of a
spherically symmetric black hole, one can first focus on
axisymmetric modes of perturbations [24]. We consider a
perturbed spacetime which is described by a nonstationary
and axisymmetric metric as

ds? = —e?(dx®)? + e* (dp — 6dx" — q,dx* — q3dx>)?

+ e (dx?)? + %53 (dx3)?, (2.7)
where v, v, u», 3, 0, ¢», and g3 depend on time coordinate
t (t=xY), radial coordinate r (r = x?), and polar angle

coordinate 0(6 = x*). And a tetrad basis e’(ta) corresponding
to the metric (2.7) is

e’(‘o (e, 0e7,0,0),

e() = (0,e7,0,0),

ey = (0.g2e72,e72,0),

ez = (0,g3¢7,0, 7). (2.8)

In this regard, one can project any vector or tensor field onto
the tetrad frame by

(2.9)

>
=
I
N
=
N
=
=
S
=
I

Mo v
e(a)e(wBﬂy.

For a static and spherically symmetric spacetime, o, ¢,, and
q5 are zero. Then, comparing the metric (2.7) with (2.1), one
can get

= (). e=g(r). ¥ =hr),

e® = h(r)sin? 6. (2.10)

Generally, the gravitational perturbations will affect sym-
metries of the background spacetime and form of the
modified Einstein equation. Because there is no well-defined
field equation in loop quantum gravity, we assume the
quantum corrections to FEinstein equation are also the
anisotropic fluid form in the perturbation level. The per-
turbed energy-momentum tensor of the anisotropic fluid in
the tetrad frame is

ST (ayp) = (P + P2)S(w(aytt(y) + (8p + P2 ) (e s
+ (P1 = P2)0(xX(a)X(p)) + (8P1 — 6P2)X ()X (1)
+ 8PN a)(v)- (2.11)

With Eq. (2.6) and u"x, = 0, one can find that the axial
components of Eq. (2.11) vanish

6T (1)(0) = 6T (1)(2) = 6T (1)(3) = 0. (2.12)

In the tetrad frame, the modified Einstein equation is
written as

R = 87TT(a)(b). (2.13)

1
Rayp) =3 M)

With Eq. (2.12), we can obtain the master equation of
the axial gravitational perturbation of the self-dual black
hole from the axial components of R, ) = 0. Note that
the axial components of R ) here 1nc1ude perturbations
of 0, g, and g3. The (1,3) and (1,2) components of

R(a)(b)‘axial =0 are
[he*™2(q25 = q32)] 5 = [he"> (03 = q30)] . (2.14)
[he*™#2(q3, = q2.3) sin* 0] 4
= [hze—l/—ﬂz (0-’2 — CIZ,()) sm3 9]’0’ (215)
respectively, where F; =<5 £ Then, one can define
Q = he"™(qy3 — q32) sin’ 0, (2.16)
and rewrite Eqgs. (2.14) and (2.15) as
v—, Q,Z
. hsind 0 = (6,3 - Q3,0>,0v (2.17)
v Q,3
erte W2 sind 0 —(02=a20) - (2.18)

By differentiating Eqgs. (2.17) and (2.18) and eliminating
o, one can obtain
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1 ED_MQ +€”+"2 03 _ Q oo
sinfO\ b ), K2 \sin*0); he*Fasin’@’

(2.19)
Considering the ansatz [24]
Q(r.0) = 0(r)Y(0) (2.20)
with Y(0) the Gegenbauer function satisfying
d( 1 av , Y
S ) = — 221
do <sin3 9d6> Hsine (221)

where y? = (I —1)(I +2), one can rewrite Eq. (2.19) as

el w2 ev+;zzﬂ2
- =0. 2.22
(0) (e i)ee o

Note that here we have used the Fourier transformation
0t — —iw. Then, one can define

(2.23)

With this, we can obtain the Schrodinger-like master
equation of the axial gravitational perturbation for the
self-dual black hole

ot -V =0, (2.24)
where
v(r) =00 ;(1))(1 2 e o
. (w}E(rz)g(r) Wdf;(r)) s

is the effective potential, and r, is the tortoise coordinate
defined by

r, =

| e
o <1— re t 7 ln(r)>

ror_\r ror_
1 2 4
+ ao—’;r+ln(r—r+)
(ry—ro) ry
az +rt
- Or% In(r—r_) (2.26)

0.20

~
[~ —P=0
0.15 /,’I//’\Q‘\\\ — P=0.01
M7\
i/ — P=0.03
S
~0.10
~
0.05]
0.00 10 20 30
r./M
FIG. 1. The effective potential (4.15) in the tortoise coordinate

(2.26) with M = 1, [ = 2, and different values of the parameter P.
The black curve shows the Regge-Wheeler potential of the
Schwarzschild black hole.

It is worthwhile to mention that r, running from —oco to
400 matches r from the event horizon to spatial infinity.
With different values of the parameter P, the plots for the
effective potential (4.15) in the tortoise coordinate (2.26)
are shown in Fig. 1. It can be seen that, the height of the
effective potential increases with the parameter P.

III. QUASINORMAL MODES AND RINGDOWN
WAVEFORMS

A. Quasinormal modes

The Schrodinger-like equation (2.24) has a set of
complex eigenvalues, which are the QNMs of the self-dual
black holes (2.1). In this work, we calculate the QNMs of
the self-dual black hole using the WKB approximation
method and the asymptotic iteration method.

The WKB approximation method was first applied to
the problem of scattering around a black hole at the first
order by Schutz and Will [37], and later developed to
higher orders [38—41]. This method can be used to solve
the eigenvalue problem in which the effective potential has
the form of a potential barrier and approaches to constant
values at the event horizon and spatial infinity. The
effective potential (4.15) satisfies these conditions. And
the WKB approximation works best for low overtones,
i.e., modes with a long decay time, and in the eikonal limit
of large [. Setting ag =0, P from 0 to 0.05, and
{1 =12,3,4}(0 < n < I), we use the WKB approximation
to calculate the quasinormal frequencies w,,; for the axial
gravitational perturbation of the self-dual black hole. The
results are listed in Tables I-III.

To use the asymptotic iteration method, we first rewrite
the Schrodinger-like equation (2.24) in the r coordinate as
follows:

f(r)g(r)¥"(r) + % LF'(r)g(r) + £ (r)g (r)]¥'(r)

+ @’ = V(¥ =0, (3.1)
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TABLE L

The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of P and [ =2 (n < [)
calculated by the WKB approximation method and the asymptotic iteration method.

P

0

0.001

0.002

0.003

0.004

Wp2

W12

P

2

(p)

WKB
AIM
WKB
AIM

WKB
AIM
WKB
AIM

WKB
AIM
WKB
AIM

0.747239 — 0.177782i
0.747343 — 0.177925i
0.692593 — 0.546960i
0.693422 — 0.547830i

0.005

0.756968 — 0.180161i
0.757195 — 0.179856i
0.702162 — 0.555202i
0.703001 — 0.553724i

0.01

0.766907 — 0.182080i
0.767126 — 0.181794i
0.711840 — 0.561018i
0.712662 — 0.559635i

0.749070 — 0.178631i
0.749308 — 0.178310i
0.694458 — 0.550582i
0.695331 — 0.549007i

0.006

0.758947 — 0.180545i
0.759175 — 0.180243i
0.704074 — 0.556377i
0.704927 — 0.554905i

0.02

0.787023 — 0.185939i
0.787220 — 0.185688i
0.731465 — 0.572694i
0.732229 — 0.571507i

0.751042 — 0.179012i
0.751275 — 0.178696i
0.696397 — 0.551722i
0.697244 — 0.550185i

0.007

0.760937 — 0.180927i
0.761158 — 0.180630i
0.706039 — 0.557514i
0.706856 — 0.556086i

0.03

0.807444 — 0.189824i
0.807626 — 0.189606i
0.751382 — 0.584477i
0.752124 — 0.583441i

0.753013 — 0.179395i
0.753245 — 0.179083i
0.698308 — 0.552887i
0.699160 — 0.551364i

0.008

0.762917 — 0.181313i
0.763144 — 0.181018i
0.707924 — 0.558717i
0.708788 — 0.557269i

0.04

0.828184 — 0.193732i
0.828342 — 0.193545i
0.771677 — 0.596294i
0.772348 — 0.595432i

0.754989 — 0.179778i
0.755219 — 0.179469i
0.700231 — 0.554047i
0.701079 — 0.552544i

0.009

0.764911 — 0.181696i
0.765133 — 0.181406i
0.709883 — 0.559865i
0.710723 — 0.558451i

0.05

0.849226 — 0.197664i
0.849370 — 0.197505i
0.792250 — 0.608217i
0.792902 — 0.607476i

TABLE II.

The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of P and I = 3 (n < [)
calculated by the WKB approximation method and the asymptotic iteration method.

P

0

0.001

0.002

0.003

0.004

W3

w13

w13

W23

WKB
AIM
WKB
AIM
WKB
AIM

WKB
AIM
WKB
AIM
WKB
AIM

WKB
AIM
WKB
AIM
WKB
AIM

1.198890 — 0.185405i
1.198890 — 0.185406i
1.165280 — 0.562581i
1.165290 — 0.562596i
1.103190 — 0.958094
1.103370 — 0.958185i

0.005

1.214860 — 0.187462i
1.214870 — 0.187466i
1.180990 — 0.568787i
1.181060 — 0.568818i
1.117460 — 0.967595i
1.118780 — 0.968691i

0.01

1.230970 — 0.189527i
1.230970 — 0.189533i
1.196890 — 0.575022i
1.196970 — 0.575058i
1.133000 — 0.978100i
1.134320 — 0.979225i

1.202070 — 0.185814i
1.202070 — 0.185818i
1.168370 — 0.563804i
1.168430 — 0.563839i
1.105190 — 0.959163i
1.106440 — 0.960284i

0.006

1.218080 — 0.187874i
1.218080 — 0.187879i
1.184200 — 0.570014i
1.184230 — 0.570065i
1.120690 — 0.969581i
1.121880 — 0.970795i

0.02

1.263560 — 0.193675i
1.263560 — 0.193683i
1.229120 — 0.587533i
1.229160 — 0.587590i
1.164550 — 0.999115i
1.165780 — 1.000370i

1.205260 — 0.186225i
1.205260 — 0.186229i
1.171530 — 0.565043i
1.171580 — 0.565083i
1.108290 — 0.961239i
1.109520 — 0.962384i

0.007

1.221290 — 0.188287i
1.221300 — 0.188292i
1.187340 — 0.571279i
1.187410 — 0.571312i
1.123660 — 0.971795i
1.124980 — 0.972901i

0.03

1.296650 — 0.197847i
1.296660 — 0.197856i
1.261790 — 0.600136i
1.261860 — 0.600186i
1.196440 — 1.020400i
1.197770 — 1.021610i

1.208450 — 0.186637i
1.208460 — 0.186641i
1.174660 — 0.566297i
1.174740 — 0.566327i
1.111290 — 0.963398i
1.112600 — 0.964485i

0.008

1.224510 — 0.188700i
1.224520 — 0.188705i
1.190530 — 0.572520i
1.190590 — 0.572560i
1.126810 — 0.973858i
1.128090 — 0.975008i

0.04

1.330240 — 0.202038i
1.330250 — 0.202049i
1.295010 — 0.612780i
1.295080 — 0.612838i
1.228970 — 1.041680i
1.230290 — 1.042940i

1.211660 — 0.187049i
1.211660 — 0.187054i
1.177840 — 0.567532i
1.177900 — 0.567572i
1.114440 — 0.965438i
1.115690 — 0.966587i

0.009

1.227740 — 0.189113i
1.227740 — 0.189119i
1.193730 — 0.573760i
1.193780 — 0.573809i
1.129980 — 0.975910i
1.131200 — 0.977116i

0.05

1.364330 — 0.206247i
1.364340 — 0.206260i
1.328740 — 0.625475i
1.328790 — 0.625548i
1.262040 — 1.063030i
1.263430 — 1.064120i

where the prime denotes the derivative to r. For the
perturbation propagating in the black hole spacetime, there

are two physical boundary conditions: (i) ¥(r,) ~ e~ as
r, — —oo(r = r, ), which means the wave near the event

horizon should purely enter the black hole; (i) ¥(r, ) ~ e/’

as r, > oo(r - o), which means the wave is purely
outgoing at spatial infinity. For gy =0 and P # 0, the
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TABLE III.

calculated by the WKB approximation method and the asymptotic iteration method.

The QNMs of the axial gravitational perturbation of the self-dual black hole with different values of P and [ = 4 (n < [)

0.002

0.003

0.004

P 0 0.001
oy, WKB 1.618360 —0.188328; 1.622670 — 0.188743i
AIM 1.618360 —0.188328; 1.622670 — 0.188747i
w1y WKB 1.593260 —0.568668i 1.597520 — 0.569909i
AIM  1.593260 — 0.568669i 1.597540 — 0.569930i
wyy WKB 1.545390 —0.959799i 1.549230 — 0.961465i
AIM  1.545420 —0.959816i 1.549640 — 0.961934i
w3y WKB 1.479330 — 1.367800i 1.480970 — 1.368580i
AIM 1.479670 — 1.367850i 1.483820 — 1.370840i
P 0.005 0.006
woy WKB 1.639980 —0.190421i 1.644320 —0.190841i
AIM  1.639980 — 0.190426i 1.644320 — 0.190846i
w1y, WKB 1.614720 —0.574957i 1.619010 — 0.5762290i
AIM 1.614730 —0.574985i 1.619040 — 0.576250i
wyy WKB 1.566230 —0.969911i 1.570410 — 0.972080i
AIM 1.566590 — 0.970416i 1.570840 — 0.972540i
w3y WKB 1.497710 —1.380440; 1.501700 — 1.383610i
AIM  1.500460 — 1.382820i 1.504640 — 1.385820i
P 0.01 0.02
woy WKB 1.661770 —0.192524i 1.705860 — 0.196748i
AIM  1.661770 —0.192529i 1.705860 — 0.196753i
w1y WKB 1.636360 —0.581289i 1.680140 — 0.594005:
AIM  1.636370 — 0.581318; 1.680150 — 0.594035i
wyy WKB 1.587580 —0.980530; 1.630780 — 1.001860i
AIM 1.587940 —0.981045; 1.631150 — 1.002380i
w3y WKB 1.518650 — 1.395430i 1.561030 — 1.425560i
AIM 1.521430 — 1.397830i 1.563900 — 1.427990i

1.626980 — 0.189162i
1.626990 — 0.189166i
1.601810 — 0.571169i
1.601830 — 0.571193i
1.553480 — 0.963572i
1.553870 — 0.964053i
1.485160 — 1.371530i
1.487970 — 1.373830i

0.007

1.648680 — 0.191261i
1.648680 — 0.191266i
1.623350 — 0.577488i
1.623360 — 0.577516i
1.574750 — 0.974154i
1.575110 — 0.974664i
1.506070 — 1.386430i
1.508820 — 1.388820i

0.03

1.750630 — 0.200992i
1.750630 — 0.200998i
1.724610 — 0.606781i
1.724630 — 0.606813i
1.674690 — 1.023290i
1.675070 — 1.023810i
1.604130 — 1.455810i
1.607090 — 1.458230i

1.631310 — 0.189581i
1.631310 — 0.189586i
1.606090 — 0.572435i
1.606120 — 0.572456i
1.557680 — 0.965712i
1.558100 — 0.966173i
1.489220 — 1.374600i
1.492120 — 1.376830i

0.008

1.653040 — 0.191682i
1.653030 — 0.191687i
1.627680 — 0.578753i
1.627690 — 0.578783i
1.579030 — 0.976273i
1.579380 — 0.976790i
1.510280 — 1.389400i
1.513200 — 1.391820i

0.04

1.796060 — 0.205255i
1.796060 — 0.205262i
1.769770 — 0.619610i
1.769780 — 0.619645i
1.719310 — 1.044790i
1.719690 — 1.045310i
1.648010 — 1.486120i
1.651150 — 1.488830i

1.635640 — 0.190001
1.635640 — 0.190006i
1.610410 — 0.573693i
1.610420 — 0.573720i
1.561980 — 0.967793i
1.562340 — 0.968294i
1.493530 — 1.377460i
1.496290 — 1.379820i

0.009

1.657400 — 0.192103i
1.657400 — 0.192108i
1.632010 — 0.580023
1.632030 — 0.580050i
1.583280 — 0.978414i
1.583650 — 0.978917i
1.514410 — 1.392460i
1.517220 — 1.394830i

0.05

1.842160 — 0.209535i
1.842160 — 0.209537i
1.815590 — 0.632491i
1.815590 — 0.632407i
1.764590 — 1.066390i
1.765060 — 1.065550i
1.692500 — 1.516630i
1.699090 — 1.510890i

Taking the solution (3.2), we use the asymptotic iteration
method to solve Eq. (3.1) and obtain the corresponding
quasinormal frequencies with the same setting in the
previous WKB calculation. The results are also listed in
Tables I-II1.

In Tables I-III, one can find that when P = 0, the
quasinormal frequencies we obtained agree well with the
quasinormal frequencies for the axial gravitational pertur-
bation of the Schwarzschild black hole [39,66]. This is in
line with expectations because the metric (2.1) goes back
to the Schwarzschild black hole when both the two
quantum parameters vanish. For [ =2,3,4 and n =0,
the absolute values of both the real part and the imaginary
part of the quasinormal frequencies varying with the value
of P are shown in Fig. 2. It can be seen that the absolute
values of both the real and imaginary parts of the
quasinormal frequencies increase with the parameter P.
This means the parameter P has a positive effect on the
absolute values of both the real and imaginary parts of
quasinormal frequencies of the axial gravitational pertur-
bation of the self-dual black hole. This is consistent with
the conclusions for the QNMs of the perturbations of the

test scalar field and the electromagnetic field of the
self-dual black hole [61,62] by taking the ADM mass
M of the self-dual black hole as a fixed parameter in
numerical analysis. But it is different from the results in
works [57-60] in which M/(1 + P)? was taken as a fixed
parameter. The shapes of the plots in Fig. 2 depend on
whether we vary the value of P at fixed M, or at fixed
M/(1+ P)%. On the other hand, although the effective
potential (4.15) is different from the one in [59], both the
effective potential (4.15) and the one in [59] should be
consistent with the Regge—Wheeler potential of the
Schwarzschild black hole in gy — 0 and P — 0 limit.
But it is worth mentioning that the effective potential in
[59] can not go back to the Schwarzschild case when both
the two quantum parameters vanish, and the effective
potential (4.15) can do this. Our work and Ref. [59]
have used the same field equation G,, = T,,. Because
both the works end up setting the axial components of the
Ricci tensor to zero, the difference between the two is a
result of the particular choice of basis and keeping M or
M/(1+ P)? as a constant in numerical analysis.
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FIG. 2. The left plot shows the real parts of @g,, @3, @y4 in with the parameter P. The right plot shows the absolute values of the

imaginary parts of @, @wg3, @y in with the parameter P.
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FIG. 3. The time evolution of the wave function W¥,(r)
(I =2) of the axial gravitational perturbation for the self-dual
black hole with different values of the parameter P, evaluated at
r = 10r,. The black curve (P = 0) shows the Schwarzschild
ringdown case.

B. Ringdown waveforms

To investigate the contribution of all modes of the axial
perturbation of the self-dual black hole, we can consider the
numeric evolution of an initial wave packet in the self-dual
black hole spacetime. In a finite time domain, the
Schrodinger-like equation (2.24) can be rewritten as

’Y Y

V(r)¥ = 0.
o2~ or (r.)

(3.3)

Using the light-cone coordinates u =t —r, and v =t + r,
[67], the above equation can be written as

*¥(u, )

FoE T V(u, v)¥(u,v) =0.

(3.4)

Here, we set the initial data for Eq. (3.4) as

W(u,0) =0 and ¥(0,v) = exp <—(”;ﬂ2)2> (3.5)

where ¥(0, v) is a Gaussian wave packet centered in v, and
having width . Then, we choose the observer located at
r =10r, and numerically solve the partial differential
equation (3.4) to generate the ringdown waveforms. As
shown in Fig. 3, the waveform with a larger value of the
parameter P damps more quickly. Finally, without loss of
generality, we use a modified exponentially decaying
function e”'Asin(wg + B) to fit the data in Fig. 3 and
calculate the fundamental mode w, with different values of
the parameter P, which plays a major role in the ringdown
waveforms. The results are shown in Table IV. Considering
the error in the numerical calculation process, one can find
that the fitting values of the fundamental mode @, with
different values of the parameter P in Table IV agree well
with the results obtained by using the WKB approximation
method and the asymptotic iteration method.

TABLE IV. The fundamental mode @, calculated by fitting the data in Fig. 3, WKB approximation method, and

the asymptotic iteration method.

P 0

0.01 0.05

0.747304 — 0.178066i
0.747239 — 0.177782i
0.747343 — 0.177925i

Fitting
WKB
AIM

W2

0.765487 — 0.182486i
0.766907 — 0.182080i
0.767126 — 0.181794i

0.844821 — 0.199696i
0.849226 — 0.197664i
0.849370 — 0.197505i
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IV. QNMs IN THE EIKONAL LIMIT AND
CIRCULAR NULL GEODESICS

Assuming a stationary, spherically symmetric, and
asymptotically flat line element, Cardoso et al. showed
that, in the eikonal limit [ — oo, the QNMs of a black hole
in any dimensions are [65]

a)QNM = ch - l(l’l + 1/2)|/16

, (4.1)

where the subscript ¢ means that the quantity is evaluated at
the radius r = r, of a circular null geodesic, Q. and /. are
the coordinate angular velocity and the Lyapunov exponent
of the circular null geodesics, respectively. It is an interest-
ing relation between quasinormal frequencies and the
parameters of the circular null geodesics, but it may be
not valid in a specific black hole [68]. In this section, based
on Eq. (4.1), we shall derive the explicit relation between
the QNMs, in the eikonal limit, and the parameters of the
circular null geodesics of the self-dual black hole. Then we
numerically verify this relation.

The Lagrangian for a photon in the equatorial plane
(6 = 7/2) in the self-dual black hole is

£ =5 |~ 0R 4P+ b7 .

and the generalized momentum from this Lagrangian is

(4.2)

p=—f(r)t=-E, (4.3)
py =h(r)¢ =L, (4.4)
Pr= Ir)v (45)

where E is the energy, L is the angular momentum, and the
dot denotes differentiation to an affine parameter along the
geodesics of the photon. Because the Lagrangian (4.2) is
independent of both 7 and ¢, E and L are conserved. From
Egs. (4.3) and (4.4), one can get

L . E
(.p = -—, [ = . 4.6)
() 7 (
The Hamiltonian for the photon is
H 1[Ei+L'+ : '2] 0 (4.7)
=—|=- @ +——r| =0. .
2 g(r)

With Egs. (4.6) and (4.7), one can define the effective
potential as

(4.8)

For the circular (r = r,) null geodesics on the equatorial
plane, the conditions V, = V. = 0 lead to

fe

E
= =4 |25 hlo= flh,.. 4.9
FewfE =g 49)
In this case
vi =L o gy (4.10)
r _fchz c'rc crc) °
and the coordinate angular velocity is
@ _ (f\'?
Q===(—| . 4.11
== () (@)

The principal Lyapunov exponent is a quantity that
characterizes the rate of separation of infinitesimally close
geodesics. Using the expression of the principal Lyapunov
exponent [65]

V//
A== 4.12
21 (*12)
we get
he = 2 (f = fing) (4.13)
c 2hc c'rc c'rc

for the circular null geodesics of the self-dual black hole.
Taking Eqgs. (4.11) and (4.13) into (4.1), we derive the
relation between the QNMs, in the eikonal limit, and the
parameters of the circular null geodesics of the self-dual
black hole

W —l& 1/2_. 1/2 e B — f'h
o = H i(n+1/2) 2hc(fc v —=fihe).

(4.14)

Setting / =100 and n =0,1,2,3,4, we calculate the
quasinormal frequencies in the eiknoal limit by the WKB
approximation method and the relation (4.14). We list the
numerical results in Tables V and VI. Considering the error
of calculation, one can find that the quasinormal frequencies
obtained by the WKB approximation method and the
relation (4.14) agree well with each other in Tables V
and VI It means that the general relation (4.1), between
quasinormal frequencies and the parameters of the circular
null geodesics, is right for the self-dual black hole in loop
quantum gravity.

Actually, in the eikonal limit [/ — oo, the effective
potentials of scalar, electromagnetic and gravitational
perturbations of a stationary, spherically symmetric, and
asymptotically flat black hole have the same behavior [65]
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TABLE V. The QNMs w,; of the axial gravitational perturbation of the self-dual black hole with different values of the parameter P
and [ = 100, calculated by the WKB approximation method and the QNMs-circular null geodesics (CNG) relation (4.14).

0.002

0.003

0.004

P 0 0.001
wor00 WKB  38.6775-0.19244i  38.7807 — 0.19287i
CNG  38.4900 — 0.19245;  38.5927 — 0.19288i
w100 WKB 386764 —0.57733i  38.7796 — 0.57862i
CNG 384900 — 0.57735i  38.5927 — 0.57863i
wy00 WKB  38.6743 —0.96225i  38.7775 — 0.96439i
CNG 384900 — 0.96225i  38.5927 — 0.96439i
w300 WKB  38.6711—1.34719i  38.7743 — 1.35019i
CNG 384900 — 1.34715i  38.5927 — 1.35015i
ws100 WKB  38.6668 — 1.73219i  38.7701 — 1.73603i
CNG 384900 — 1.73205i  38.5927 — 1.73590i
P 0.005 0.006
w100 WKB  39.1952 —0.19458;  39.2992 — 0.19501i
CNG  39.0052 —0.19459;  39.1087 — 0.19502i
w00 WKB  39.1941 —0.58376i  39.2981 — 0.58504i
CNG  39.0052—0.58377i  39.1087 — 0.58506i
wy00 WKB  39.1920 — 0.97295i  39.2960 — 0.97510i
CNG  39.0052—0.97296i  39.1087 —0.97510i
w3100 WKB  39.1888 — 136218/  39.2928 — 1.36518i
CNG  39.0052 — 1.36214i  39.1087 — 1.36514i
wg100 WKB  39.1845— 175146/  39.2885 — 1.75532i
CNG  39.0052— 1.75132i  39.1087 — 1.75518i
P 0.01 0.02
w100 WKB  39.7169 —0.19673i  40.7723 — 0.20104i
CNG  39.5244 —0.19674i  40.5747 — 0.20105i
w00 WKB  39.7158 —0.59020i  40.7712 — 0.60312i
CNG 395244 —0.59021i  40.5747 — 0.60314i
w100 WKB 397137 —0.98368i  40.7690 — 1.00523i
CNG  39.5244 —0.98369i  40.5747 — 1.00523i
w3100 WKB 397104 — 137721  40.7658 — 1.40737i
CNG  39.5244 — 1.37716i  40.5747 — 1.40732i
wi00 WKB  39.7061 — 1.77078i  40.7614 — 1.80955i
CNG  39.5244 — 1.77064i  40.5747 — 1.80941i

38.8841 — 0.19330i
38.6956 — 0.19331i
38.8830 — 0.57990i
38.6956 — 0.57992i
38.8809 — 0.96653i
38.6956 — 0.96653i
38.8777 — 1.35318i
38.6956 — 1.35314i
38.8734 — 1.73989i
38.6956 — 1.73975i

0.007

39.4034 — 0.19544i
39.2124 — 0.19545i
39.4023 — 0.58633i
39.2124 — 0.58635i
39.4002 — 0.97724i
39.2124 - 0.97725i
39.3970 — 1.36819i
39.2124 — 1.36814i
39.3927 — 1.75918i
39.2124 — 1.75904i

0.03

41.8436 — 0.20537i
41.6408 — 0.20537i
41.8425 - 0.61610i
41.6408 — 0.61612i
41.8403 — 1.02686i
41.6408 — 1.02686i
41.8370 — 1.43765i
41.6408 — 1.43761i
41.8326 — 1.84850i
41.6408 — 1.84836i

38.9876 — 0.19373i
38.7987 — 0.19373i
38.9866 — 0.58119i
38.7987 — 0.58120i
38.9844 — 0.96867i
38.7987 — 0.96867i
38.9812 — 1.35618i
38.7987 — 1.35614i
38.9770 — 1.74374i
38.7987 — 1.74361i

0.008

39.5077 — 0.19587i
39.3162 — 0.19588i
39.5067 — 0.58762i
39.3162 — 0.58764i
39.5045 - 0.97939i
39.3162 — 0.97939i
39.5013 - 1.37119i
39.3162 — 1.37115i
39.4970 — 1.76305i
39.3162 - 1.76291i

0.04

42.9308 — 0.20971i
42.7227 - 0.20972i
42.9297 — 0.62913i
42.7227 - 0.629151
42.9275 — 1.04857i
427227 — 1.04858i
42.9241 — 1.46805i
42.7227 — 1.46801i
42.9197 — 1.88758i
42.7227 — 1.88744i

39.0913 — 0.19416i
38.9019 — 0.19416i
39.0903 — 0.58247i
38.9019 — 0.58249i
39.0881 — 0.97081i
38.9019 — 0.97081i
39.0849 — 1.35918i
38.9019 — 1.35914i
39.0806 — 1.74760i
38.9019 — 1.74746i

0.009

39.6122 — 0.19630i
39.4202 — 0.19631i
39.6112 — 0.58891i
39.4202 — 0.58892i
39.6090 — 0.98154i
39.4202 - 0.98154i
39.6058 — 1.37420i
39.4202 — 1.37416i
39.6015 — 1.76691i
39.4202 - 1.76677i

0.05

44.0338 — 0.21406i
43.8204 — 0.21407i
44.0327 — 0.64220i
43.8204 — 0.64222i
44.0304 — 1.07036i
43.8204 — 1.07036i
44.0270 — 1.49855i
43.8204 — 1.49851i
44.0225 — 1.92680i
43.8204 — 1.926651i

(4.15)

where f(r) is the g,, component of the metric of the black
hole. This means some high-order terms about f(r) in the
effective potential are ignored in the eikonal limit. For the
self-dual black hole,

2M  8(Mr— M?*)P
£(r) :1_74_#

I%

8(M3r — SM22 + 2Mr)P?
_8M’r r L (4.16)
.

where we have expanded Eq. (2.2) in the power of P and set
ag equal to 0, because we only care the influence of P. One
can find that Eq. (4.16) contains high-order terms of P.
Then, in the eikonal limit, the effective potential (4.15) in
this work indeed contains high-order terms of P. And, in

fact, we have retained high-order terms of f(r) in the
effective potential when we use the WKB approximation
method. So, our numerical results include the influence of
higher order of the parameter P.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we investigated the QNMs of the axial
gravitational perturbation of the self-dual black hole with
the fixed ADM mass in loop quantum gravity. Simulating
the quantum correction by an effective anisotropic matter
fluid, we obtained the master equation of the axial gravi-
tational perturbation of the self-dual black hole. We con-
sidered the influence of the quantum parameter P, and
found that the height of the effective potential increases with
the parameter P. Using the WKB approximation method
and the asymptotic iteration method, we calculated the
QNMs of the axial gravitational perturbation of the self-dual
black hole with different values of the parameter P. We
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The QNMs w,,; of the axial gravitational perturbation of the self-dual black hole with different values of the parameter P

and [ = 100, calculated by the WKB approximation method and the QNMs-circular null geodesics (CNG) relation.

0.2

0.3

0.4

TABLE VL
P 0 0.1
wor0 WKB  38.6775-0.19244i  49.7817 — 0.23597i
CNG 384900 —0.19245i  49.5404 — 0.23598i
w100 WKB 386764 —0.57733i  49.7805 — 0.70792i
CNG  38.4900 — 0.57735i  49.5404 — 0.70794i
wy00 WKB  38.6743 —0.96225i  49.7781 — 1.17989i
CNG 384900 — 0.96225i  49.5404 — 1.17990i
w300 WKB  38.6711—1.34719i  49.7746 — 1.65191i
CNG 384900 — 1.34715i  49.5404 — 1.65186i
ws100 WKB 386668 — 1.73219i  49.7699 — 2.12397i
CNG 384900 — 1.73205i  49.5404 — 2.12382i
P 0.5 0.6
w100 WKB 106298 —0.37938i  121.154 — 0.39247i
CNG  105.782—0.37939i  120.566 — 0.39248i
w00 WKB 106297 — 1.13814i  121.153 — 1.17742i
CNG 105782 — 1.13816i  120.566 — 1.17744i
wy00 WKB 106295 —1.89692i  121.152 — 1.96238i
CNG 105782 — 1.89694i  120.566 — 1.96240i
w3100 WKB 106292 —2.65573i  121.149 — 2.74737i
CNG 105782 —2.65572i  120.566 — 2.74736i
ws100 WKB 106288 —3.41459i  121.146 — 3.53239i
CNG 105782 —3.41449i  120.566 — 3.53232i

62.3835 — 0.27936i
62.0811 —0.27937i
62.3823 — 0.83810i
62.0811 — 0.83812i
62.3798 — 1.39686i
62.0811 — 1.39687i
62.3762 — 1.95566i
62.0811 — 1.95561i
62.3713 —2.51451i
62.0811 — 2.51436i

0.7

134.644 — 0.39203i
133.990 — 0.39204i
134.643 — 1.17609i
133.990 — 1.17611i
134.641 — 1.96015i
133.990 — 1.96018i
134.639 — 2.74424i
133.990 — 2.74425i
134.636 — 3.52835i
133.990 — 3.52832i

76.2699 — 0.31982i
75.9001 — 0.31983i
76.2687 — 0.95946i
75.9001 — 0.95948i
76.2663 — 1.59912i
75.9001 — 1.59913i
76.2627 — 2.23882i
75.9001 — 2.23878i
76.2578 — 2.87858i
75.9001 — 2.87843i

0.8

145.508 — 0.37995i
144.801 — 0.37995i
145.507 — 1.13984i
144.801 — 1.13986i
145.505 — 1.89974i
144.801 — 1.89977i
145.502 — 2.65965i
144.801 — 2.65967i
145.499 — 3.41958i
144.801 — 3.41958i

91.0856 — 0.35422i
90.6438 — 0.35423i
91.0845 — 1.06266i
90.6438 — 1.06269i
91.0822 — 1.77113i
90.6438 — 1.77114i
91.0788 —2.47963i
90.6438 — 2.47960i
91.0743 — 3.18818i
90.6438 — 3.18806i

0.9

152.442 — 0.36427i
151.702 — 0.36427i
152.441 — 1.09280i
151.702 — 1.09282i
152.439 — 1.82134i
151.702 — 1.82137i
152.436 — 2.54990i
151.702 — 2.54992i
152.431 — 3.27847i
151.702 — 3.27846i

found that the parameter P has a positive effect on the
absolute values of both the real part and imaginary part of
the quasinormal frequency. This result is consistent with the
conclusions for the QNMs of the perturbation of the scalar
field and the electromagnetic field on the self-dual black
hole with the fixed ADM mass [61,62]. In the eikonal limit,
we obtained the relation between the QNMs and the
parameters of the circular null geodesics in the self-dual
black hole, and numerically verify it.

With more and more gravitational wave signals of
compact binary components detected by the LIGO-
Virgo-KAGRA collaboration and pictures of supermassive
objects taken by the Event Horizon Telescope, it is possible
to test gravitational theories in the strong gravitational field
with multimessenger. And the coupling of electromagnetic
and gravitational fields should be considered [69,70].
Cardoso et al. provided the parametrized black hole
quasinormal ringdown in the general spherical symmetry
background spacetime [71,72]. Vélkel et al. got the bounds
on modifications of black hole perturbation potentials near
the light ring [73]. The shadow and ring of a black hole may
exhibit rich behavior [74-78], and the relation between
QNMs and shadow should be further explored. It would be

interesting to find the constraints on the quantum correction
parameters of the black holes in loop quantum gravity with
the observed gravitational wave ringdown signals and
pictures of black holes. And thermodynamics is also a
fundamental property of black holes [79-81], the relation
between QNMs and the thermodynamics of a black hole
deserves attention. On the other hand, black holes always
rotate in the real world, so the gravitational perturbations of
the rotating black holes in loop quantum gravity and the
related properties should be considered in future work.
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