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In the model of quantum gravity proposed in [J. High Energy Phys. 06 (2020) 70], dynamical spacetime
arises as a collective phenomenon of underlying quantum matter. Without a preferred decomposition of the
Hilbert space, the signature, topology and geometry of an emergent spacetime depend upon how the total
Hilbert space is partitioned into local Hilbert spaces. In this paper, it is shown that the massless graviton
emerges in the spacetime realized from a Hilbert space decomposition that supports a collection of largely
unentangled local clocks.
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I. INTRODUCTION

There is a mounting evidence that dynamical gravity can
emerge along with space itself from nongravitational quan-
tum matter [1–17]. What is lacking, though, is a concrete
model fromwhich a low-energy effective theory that includes
general relativity can be derived from the first principle. The
difficulty often lies in bridging the gap between a micro-
scopic model and the continuum limit. If one starts with a
discrete model, it is nontrivial to show the emergence of
general relativity in the continuum limit. On the other hand,
continuum theories usually require new structures at short
distances due to strong quantum fluctuations.
A toy model of quantum gravity proposed in Ref. [18] is

well defined nonperturbatively but simple enough that its
continuum limit can be understood in a controlled manner.
In the theory, the entirety of spacetime emerges as a
collective behavior of underlying quantum matter, where
the pattern of entanglement formed across local Hilbert
spaces determines the dimension, topology and geometry
of spacetime. One unusual feature of the theory is that it has
no predetermined partitioning of the Hilbert space, and the
set of local Hilbert spaces can be rotated within the total
Hilbert space under gauge transformations. As a result, the
theory has a large gauge group that includes the usual
diffeomorphism as a subset. A spacetime can be unambig-
uously determined from a state only after the Hilbert space
decomposition is specified in terms of some dynamical
degrees of freedom as a reference. As much as the

entanglement is in the eye of the beholder, the nature of
emergent spacetime depends upon the Hilbert space decom-
position. Wildly different spacetimes with varying dimen-
sions and topologies can emerge out of one state, depending
on what part of the total Hilbert space is deemed to comprise
each local Hilbert space [19]. With an arbitrary partitioning
of theHilbert space, a generic state does not exhibit any local
structure in the pattern of entanglement, and the theory that
emerges from the state is highly nonlocal. This raises one
crucial question: Is there a Hilbert space decomposition that
gives rise to a “local” theory of dynamical spacetime that
includes general relativity? In this paper, we address this
question by showing that there exists a natural partitioning of
the Hilbert space for states that exhibit local entanglement
structures. In a Hilbert space decomposition that supports a
collection of largely unentangled local clocks, a massless
graviton arises as a propagating mode along with the local
Lorentz invariance.

II. A MODEL OF QUANTUM GRAVITY
WITH EMERGENT SPACETIME

We begin with a brief review of the model introduced in
Ref. [18]. The fundamental degree of freedom is an M × L
real rectangular matrixΦA

i with 1 ≤ A ≤ M, 1 ≤ i ≤ L, and
M > L. The row (A) labels flavors and the column (i) labels
sites. The matrix can be viewed as representing a vector field
with M flavors defined on a “space” with L sites. However,
the dimension, topology and geometry of the space is not
predetermined. They will be determined from the pattern of
entanglement of states. The full kinematic Hilbert space is
spanned by the set of basis states jΦi≡ ⊗i;A jΦA

ii, where
jΦA

ii is the eigenstate of ΦA
i. The conjugate momentum of

Φ̂ is an L ×M matrix Π̂i
A. The eigenstates of Π̂ are denoted

as jΠi≡ R
dΦ eiΠ̂

j
AΦA

j jΦi.
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The gauge symmetry is generated by two operator-
valued constraint matrices,

Ĝi
j ¼

1

2

�
Π̂i

AΦA
j þΦA

jΠ̂i
A þ iMCδij

�
;

Ĥij ¼ 1

2

��
−Π̂Π̂T þ α̃0

M2
Π̂Π̂TΦ̂TΦ̂ Π̂ Π̂T

�
ij

þ
�
−Π̂Π̂T þ α̃0

M2
Π̂Π̂TΦ̂TΦ̂ Π̂ Π̂T

�
ji
�
: ð1Þ

Here, ðΠ̂Π̂TÞij ¼ P
A Π̂

i
AΠ̂j

A, ðΦ̂TΦ̂Þij ¼
P

A ΦA
iΦA

j.
C and α̃0 are constants. G is the generalized momentum
constraint that generatesGLðL;RÞ transformation. Under a
transformation generated by the momentum constraint, Φ
transforms asΦ → Φg, where g ∈ GLðL;RÞ. This includes
permutations among sites, which can be viewed as a
discrete version of the spatial diffeomorphism. However,
GLðL;RÞ is much bigger than the permutation group.
Under GLðL;RÞ transformations, the very notion of local
sites can be changed because the local Hilbert space of
Φ0 ¼ Φg at one site (column) is made of states that involve
multiple sites (columns) of Φ. Therefore, there is no fixed
notion of local sites in this theory. In Ref. [18], only

SLðL;RÞ subgroup of GLðL;RÞ is taken as the gauge
symmetry. In this paper, we include the full GLðL;RÞ as
the gauge group and introduce an additional parameter C
that controls gauge invariant Hilbert space [20]. Ĥ is the
generalized Hamiltonian constraint, which includes the
Hamiltonian constraint of general relativity, as will be
shown later. Both Ĝ and Ĥ are invariant under the OðMÞ
flavor symmetry. The most general gauge transformation
is generated by Ĝy0 þ Ĥv0, where Ĝy0 ≡ trfĜy0g and
Ĥv0 ≡ trfĤv0g. y0 is an L × L real matrix called shift
tensor and v0 is an L × L real symmetric matrix called
lapse tensor. The constraints, as quantum operators, satisfy
the first-class algebra,

½Ĝx; Ĝy� ¼ iĜðyx−xyÞ; ð2Þ

½Ĝx; Ĥv� ¼ iĤvxþxTv; ð3Þ

½Ĥv1 ; Ĥv2 � ¼ i

�
Ĉijkln
m Ĝm

n þ
1

M
D̂ijkl

nm Ĥmn

�
v1;ijv2;kl; ð4Þ

where

Ĉijkln
m ¼ −4α̃0

h
ÛnðjÛiÞ½lδk�m − Ûn½lÛk�ðjδiÞm

i
þ 4α̃20

�
−ðÛ Q̂ Þðj½mÛfl½nÛn0�kgδiÞm0� þ Ûðj½nðQ̂ Û Þ½m0 fkÛn0�iÞδlgm�

þ Ûðj½nðÛ Q̂ Þfl½mÛn0�iÞδkgm0� − Ûfl½nÛn0�kgðQ̂ ÛÞði½m0δ
jÞ
m� þ

1

M2
ðMÛðj½nÛn0�fkδlg½mδ

iÞ
m0� þ ðM þ 2ÞÛðj½nÛfliÞδn

0�
½mδ

kg
m0�

þ 2Ûðj½nÛn0�iÞδfl½mδ
kg
m0� − 2ÛðjfkÛlg½nδn

0�
½mδ

iÞ
m0� − 2ÛðjfkÛ½n0n�δlg½mδ

iÞ
m0� − 2ÛðijÞÛfk½nδn

0�
½mδ

lg
m0�Þ

�
δm

0
n0 ;

D̂ijkl
nm ¼ −4iα̃0

�
Ûklδijnm − Ûijδklnm

�
ð5Þ

with Û ¼ 1
M ðΠ̂Π̂TÞ, Q̂ ¼ 1

M ðΦ̂TΦ̂Þ and δklij ¼
1
2
ðδki δlj þ δliδ

k
jÞ [21]. Pairs of indices in ði; jÞ, ½n; n0�,

½m;m0�, fk; lg are symmetrized. The physical Hilbert space
is spanned by gauge invariant states that satisfy Ĥv0 j0i ¼ 0

and Ĝy0 j0i ¼ 0 for any lapse tensor v0 and shift tensor y0.
Gauge invariant states are non-normalizable with respect to
the standard inner product for the scalars [18].

Within the full Hilbert space, we focus on a sub-Hilbert
space that respects a specific flavor symmetry. Here, we
consider states that respect the OðN=2Þ ×OðN=2Þ ⊂
OðMÞ flavor symmetry, where N ¼ M − L. The first
OðN=2Þ acts on flavors A ¼ Lþ 1;…; Lþ N=2 and the
second OðN=2Þ acts on flavors A ¼ Lþ N=2þ 1;…;M.
The sub-Hilbert space can be spanned by the basis states
labeled by three matrix-valued collective variables,

jq; P1; P2i ¼
Z

DΠ e
−i
h ffiffiffi

N
p P

L
a¼1

Πi
aqaiþ

PLþN
2

b¼Lþ1
P1;ijΠb

iΠb
jþ
P

M
c¼LþN

2
þ1

P2;ijΠc
iΠc

j

i
jΠi; ð6Þ

where q is an L × L matrix and P1 and P2 are L × L symmetric matrices. Repeated indices i, j are summed over all sites.
Under an infinitesimal transformation generated by the constraints, jq; P1; P2i evolves as

e−iϵðĤv0
þĜy0

Þjq; P1; P2i ¼
Z

Dq0Ds0DP0DT0jq0; P0
1; P

0
2i × e

iNϵ tr

n
s0q

0−q
ϵ þT 0

c
P0c−Pc

ϵ −H½q;s0;P1;T 0
1
;P2;T 0

2
�v−G½q;s0;P1;T 0

1
;P2;T 0

2
�y
o
: ð7Þ
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Here, Dq≡Q
i;a dq

a
i, Ds≡Q

i;a ds
i
a, DP≡Q

i≥j ½dP1;ijdP2;ij�, DT ≡Q
i≥j ½dTij

1 dT
ij
2 �. Eq. (7) corre-

sponds to the phase space path integration representation
of one infinitesimal step of evolution along a gauge orbit.
ϵ and 1=N play the role of an infinitesimal parameter time
and the Planck constant, respectively. Identifying q0−q

ϵ

and P0
c−Pc
ϵ as time derivatives of q and Pc, respectively,

we conclude that s and Tc are matrix-valued conjugate
momenta of q and Pc with c ¼ 1, 2, respectively. The
theory for the collective variables fq; s; P1; T1; P2; T2g
becomes

S ¼ N
Z

dτ trfs∂τqþ T1∂τP1 þ T2∂τP2

−H½q; s; P1; T1; P2; T2�v
− G½q; s; P1; T1; P2; T2�yg; ð8Þ

where the generalized Hamiltonian and momentum ma-
trices are given by

H½q; s; P1; T1; P2; T2� ¼ −U þ α̃UQU;

G½q; s; P1; T1; P2; T2� ¼
�
sqþ 2

X
c

TcPc þ iβI
�
; ð9Þ

where Uij¼ðssTþT1þT2Þij, Qij¼ðqTqþP
c½4PcTcPcþ

iPc�Þij with β ¼ M
2N ð1þ CÞ, α̃ ¼ N2

M2−α̃0CMðLþ1Þ α̃0, v ¼�
1 − α̃0CðLþ1Þ

M

�
v0, y¼y0þ i α̃0NM2 ½ðLþ2ÞUv0þ trfUv0gI�. I

is the L × L identity matrix. It is noted that α̃, v and y are
renormalized by “contact” terms generated from normal
ordering, and Eq. (9) is exact for any L and N. From now
on, we consider the large N limit in which we first take the
large L limit followed by the large N limit while tuning α̃0
and C such that α̃ ∼Oð1Þ and β ¼ 1

2
.

In Ref. [18], the same Hamiltonian and momentum
matrices have been written for collective variables in the
dual basis, jΦi. That theory can be obtained from Eq. (9)
through a canonical transformation [22],

Tc ¼ 4tcpctc − itc; Pc ¼
1

4tc
: ð10Þ

In terms of fq; s; p1; t1; p2; t2g, the generalized momentum
constraint becomes G ¼ ðsqþ 2

P
c tcpc − i

2
IÞ. The

Hamiltonian takes the same form as Eq. (9) with

Uij ¼
�
ssT þ

X
c
½4tcpctc − itc�

�
ij
;

Qij ¼ ðqTqþ p1 þ p2Þij: ð11Þ

In the large N limit, the collective variables fq; s; p1;
t1; p2; t2g become classical. The symplectic form defines

the Poisson bracket, fA; Bg ¼
�

∂A
∂qαi

∂B
∂siα

− ∂A
∂siα

∂B
∂qαi

�
þ

δklij

�
∂A

∂pc;ij

∂B
∂tklc

− ∂A
∂tklc

∂B
∂pc;ij

�
. From now on, we will use

fq; s; p1; t1; p2; t2g for describing emergent spacetime.

There are 2L2 þ 4
LðLþ1Þ

2
phase space degrees of freedom

in these collective variables.

III. FRAME AND LOCAL CLOCKS

A semiclassical state with well-defined collective vari-
ables must satisfy the classical constraints,

−U þ α̃UQU ¼ 0; sqþ 2
X
c

t̃cpc ¼ 0; ð12Þ

where t̃c ¼ tc − i
8pc

. This freezes LðLþ 1Þ=2þ L2 collec-
tive variables in terms of other variables [23]. The gauge
redundancy removes the same number of additional var-
iables from physical degrees of freedom, leaving only

2L2þ4
LðLþ1Þ

2
−2

�
LðLþ1Þ

2
þL2

�
¼LðLþ1Þ physical degrees

of freedom. Suppose we have an “initial” configuration
of the collective variables that satisfies Eq. (12). A gauge
orbit is generated by evolving the collective variables with
∂A
∂τ ¼ fA;Hv þ Gyg, where τ is the parameter time. The
resulting equation of motion reads

∂τ t̃c ¼ −4t̃cvt̃c − α̃UvU þ 1

16

1

pc
v
1

pc
− yt̃c − t̃cyT; ∂τs ¼ −2α̃UvUqT − ys;

∂τpc ¼ 4pct̃cvþ 4vt̃cpc þ pcyþ yTpc; ∂τq ¼ 2sTvþ qy: ð13Þ

Different gauge orbits are obtained by evolving the initial
collective variables with different lapse tensors (v) and shift
tensors (y). In general relativity, different choices of lapse
function and shift vector only generate different spatial
slices of one spacetime history. In the present theory,
spacetimes with different topologies and geometries can
be realized out of one state with different choices of

lapse and shift tensors [19]. This is because in the present
theory the set of gauge orbits is much larger than that of
general relativity. Each gauge orbit is labeled by the lapse
tensor (vij) and the shift tensor (yij), which can be viewed
as bilocal fields defined on a space with L sites. In par-
ticular, the symmetric rank 2 lapse tensor has LðLþ 1Þ=2
independent entries while the lapse function of general
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relativity, being a scalar function, would have only L
independent parameters for a system with L sites. The
extra parameters in the lapse tensor are associated with the
freedom of rotating the frame that defines local sites. Under
a frame rotation generated by GLðL;RÞ, v transforms as
v → gTvg with g ∈ GLðL;RÞ. Since one can always find
g ∈ OðLÞ ⊂ GLðL;RÞ in which the lapse tensor is dia-
gonalized, the Hamiltonian with an off-diagonal lapse
tensor can be viewed as the Hamiltonian with a diagonal
lapse function in a rotated frame. Namely, L eigenvalues of
v play the role of the lapse function defined on L sites while
the rotation matrix that diagonalizes v encodes the in-
formation about the frame in which spatial sites are defined.
Therefore, we need to choose a frame by fixing the gauge

to extract a spacetime unambiguously. As a first step, we
impose a gauge fixing condition,

q≡ qTq ¼ I: ð14Þ

With this, we demand sites are defined in a frame in which
q is orthonormal as a matrix. This still leaves the OðLÞ
subgroup of GLðL;RÞ unfixed. One can fix the remaining
OðLÞ gauge symmetry in terms of a variable that is used as
local clocks. For example, we can pick p1 as our clock
variable, choose a frame in which p1 is diagonal, and
regard the ith diagonal element of p1 as a physical time at
site i. With diagonal p1, the local clocks are not entangled
with each other.
Let us now consider a state that has a local structure in

a frame in which q ¼ I and p1 is diagonal [24]. States

with d-dimensional local structures are the ones that are
short-range entangled (obeying the “area” law of entangle-
ment) when the sites are embedded in a d-dimensional
manifold [18]. In this case, we introduce a mapping from
sites to a d-dimensional manifold M that has a well-
defined topology, r: i → ri ∈ M, where region Ri ⊃ ri is
assigned to each site such that ∪i Ri ¼ M [18]. For states
with local structures, collective variables tijc , pc;ij that are
viewed as bilocal fields tcðri; rjÞ, pcðri; rjÞ decay expo-
nentially as functions of ri − rj in M. To extract a
spacetime in the gauge in which q ¼ I and p1 is diagonal,
one should evolve the state with the lapse and shift tensors
that respect the gauge fixing conditions. However, the
shift and lapse tensors that keep p1 strictly diagonal are
complicated [19]. So, we take an alternative way of fixing
gauge. We still impose q ¼ I, but relax the condition
that p1 is strictly diagonal. Instead, we fix gauge by
choosing simple lapse and shift tensors such that local
clocks remain almost unentangled under the Hamiltonian
evolution. The gauge orbits that respect the condition
q ¼ I are generated by

fHv þ G−2sTv;Gy0 g; ð15Þ

where s≡ sðq−1ÞT and y0 is L × L real matrices that satisfy
qy0 þ y0Tq ¼ 0. Gy0 generates the unfixed OðLÞ frame
rotation. Within Eq. (15), we now choose a subset of
constraints that satisfy the following two conditions:

ðiÞ the constraints in the subset satisfy the same algebra that the momentum density

and the Hamiltonian density obey in general relativity;

ðiiÞ the Hamiltonian density does not entangle initially unentangled local clocks

through anOðLÞ frame rotation in the limit that sites are weakly entangled: ð16Þ

These conditions are more explicitly explained as we
construct the momentum and Hamiltonian densities in
the following.
One can readily identify the momentum constraint of

general relativity from Gy0 [18]. Under an infinitesimal
GLðL;RÞ transformation, ΦA

i is transformed into
Φ0A

i ¼ ΦA
jðe−ϵy0 Þji. If ΦA

i varies slowly in the manifold,
it can be viewed as field ΦAðriÞ defined on manifold M,
and the transformation can be written in the gradient

expansion, Φ0AðriÞ ¼ ½1 − ϵζðriÞ�Φ̂AðriÞ − ϵξμðriÞ ∂Φ
AðriÞ
∂rμi

−

ϵ
P∞

s¼2
ξμ1 ::μs ðriÞ

s!
∂
sΦAðriÞ

∂r
μ1
i ::∂rμsi

with ζðriÞ ¼
P

j y
0 j
i , ξμðriÞ ¼P

j y
0 j
i r

μ
ji, ξμ1::μsðriÞ ¼

P
j y

0 j
i r

μ1
ji ::r

μs
ji and rμji ¼ rμj − rμi .

Here ζ is the scale factor for the Weyl transformation.
ξμ is the shift vector and ξμ1::μs with s ≥ 2 corresponds to

tensorial displacements for higher-derivative transforma-
tions. One can single out the generator with each spin
by expressing G in the gradient expansion, Gy0 ¼R
drðDðrÞζðrÞ þ PμðrÞξμðrÞ þ

P∞
s¼2 Pμ1::μsðrÞξμ1::μsðrÞÞ.

Here, we use
P

i Ai ¼
R
drÃðrÞ with ÃðriÞ ¼ V−1

i Ai with
Vi denoting the coordinate volume of region Ri assigned to

site i.DðriÞ¼V−1
i Gi

i,PμðriÞ¼V−1
i

∂Gi
j

∂rμj

			
j¼i

andPμ1::μsðriÞ¼
V−1
i
s!

∂
sGi

j

∂r
μ1
j ::∂rμsj

			
j¼i

correspond to the generator of scale trans-

formation, the momentum density and the generators of
higher-derivative transformation, respectively. The full
algebra that D, Pμ, Pμ1::μs satisfy is completely determined
from Eq. (4). In the absence of the tensorial displacement
(ξμ1::μs ¼ 0 for s ≥ 2), a simple closed algebra arises for
D and Pμ,
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Z
drðDðrÞζ1ðrÞ þ PμðrÞξμ1ðrÞÞ;

Z
dr0ðDðr0Þζ2ðr0Þ þ Pνðr0Þξν2ðr0ÞÞ

�

¼
Z

dr
h
ðLξ1ζ2ðrÞ − Lξ2ζ1ðrÞÞDðrÞ þ ðLξ1ξ2ðrÞÞμPμðrÞ

i
; ð17Þ

where Lξ denotes the Lie derivative. It is noted that Pμ

indeed satisfies the same algebra that the momentum
density satisfies in general relativity.
Identifying the Hamiltonian density of general relativity in

Eq. (15) is less straightforward because it can in general
depend on bothH and G. As a candidate for the Hamiltonian,
we consider a constraint that is labeled by a lapse function
and written as a linear combination of H and G,

Hθ ≡Hθ þ GYðθÞ: ð18Þ
Here, θij ¼ θiδij is the diagonal lapse tensor and Yi

jðθÞ is a
shift tensor that is linear in θ. θi is identified as the lapse
function at position ri, and Hθ corresponds to the
Hamiltonian associated with lapse function θ. For states
with local structures,Hθ is written as

R
drHðrÞθðrÞ, where

HðriÞ ¼ V−1
i

∂Hθ
∂θi

is the Hamiltonian density. In order for
the gauge orbits to satisfy the gauge fixing condition in
Eq. (14), YðθÞ in Eq. (18) should take the form of
YðθÞ ¼ −2sTθ þq−1ðFθ − θFTÞ, where Fi

j is a rank 2
tensor that in general depends on the collective variables.
The way Hθ is transformed under a scale transformation
and a shift follows from Eq. (4) [18]. To the leading order in
the derivative expansion of the collective variables, the
Poisson bracket between the momentum constraint and the
Hamiltonian density is given by
Z

drðDðrÞζðrÞ þ PμðrÞξμðrÞÞ;
Z

drθðrÞHðrÞ
�

¼
Z

drð2ζðrÞθðrÞ þ LξθðrÞÞHðrÞ: ð19Þ

On the other hand, the Poisson bracket of two Hamiltonians
can be written as

fHθ1 ;Hθ2g ¼ Hθ2Yðθ1ÞþYðθ1ÞTθ2−θ1Yðθ2Þ−Yðθ2ÞTθ1
þ fYðθ1ÞG; Yðθ2ÞGg0 − fGYðθ1Þ;GYðθ2Þg0
þ fHθ1 ;Hθ2g0 þ fYðθ1ÞG;Hθ2g0
þ fHθ1 ; Yðθ2ÞGg0: ð20Þ

Here, fAx; Byg0 ≡ fAi
j; Bk

lgxjiylk denotes a reduced
Poisson bracket, where the derivatives of the Poisson
bracket do not act on the variables in the subscripts of
fAx; Byg0. On the right hand side of Eq. (20), the first term
is proportional to H while the rest of the terms are all
proportional to G. The state obtained from an infinitesimal
evolution withHθ1 followed by an evolution withHθ2 must
be related to the state obtained from the sequence of
evolutions performed in the opposite order through a spatial
diffeomorphism [25,26]. This implies that the term that is
proportional to H must vanish in Eq. (20). Therefore, the
first requirement in (16) leads to

θ2Yðθ1Þ þ Yðθ1ÞTθ2 − θ1Yðθ2Þ − Yðθ2ÞTθ1 ¼ 0: ð21Þ

For q ¼ I, Eq. (21) is solved for Y of the form,
YðθÞ ¼ −2sTθ þ ðΔ − 2sÞθ −q−1θðΔ − 2sTÞq, where
Δ is a symmetric matrix. Here we consider Δ that is linear
in s [27]. The only symmetric matrix linear in s is
Δ ¼ 2κðsþ sTÞ, where κ is a parameter to be fixed from
the second requirement in (16). This gives

YðθÞ ¼ κð−2q−1θsqÞ þ ð1 − κÞð−2sTθ − 2sθ

þ 2q−1θsTqÞ: ð22Þ

Then, the Poisson bracket ofHθ becomes proportional to G,

fHθ1 ;Hθ2g ¼ θ1;iθ2;lCiilln
m Gm

n ; ð23Þ

where

Cijkln
m0 ðq−1Þm0m ¼ 4½−α̃UnkUliδjm þ κðα̃UjkUlmδni þ sknsjmδli þ slisjmδnk − ðssTÞjkδniδlmÞ þ ð1 − κÞð2α̃UnkUliδjm

− α̃UjkUlmδni þ sknsilδjm − sknsmjδli − slismjδnk − skjsmlδni þ skjslmδni þ ðs2Þkjδniδlm þ snksliδjmÞ
þ ð1 − κÞ2ðsþ sTÞinðsþ sTÞjkδlm − ð1 − κÞðsþ sTÞinfð1 − κÞsml − κslmgδjk þ ðð1 − κÞ2skjsml

þ κ2sjkslm − κð1 − κÞfskjslm þ sjksmlgÞδni − ðð1 − κÞ2fðs2Þkj þ ðsTsÞjkg − ð1 − κÞκfðssTÞjk
þ ðs2ÞjkgÞδniδlm� − ½ðijÞ ↔ ðklÞ�: ð24Þ

MASSLESS GRAVITON IN A MODEL OF QUANTUM GRAVITY … PHYS. REV. D 108, 024054 (2023)

024054-5



In Eq. (24), we use the constraint G ¼ 0 and the gauge fixing condition q ¼ I to simplify the expression for Cijkln
m . For the

state that has a local structure, Eq. (23) can be written as


Z
drθ1ðrÞHðrÞ;

Z
drθ2ðrÞHðrÞ

�
¼

Z
drðθ1∇μ1θ2 − θ2∇μ1θ1Þ

�
Fμ1ðrÞDðrÞ þGμ1μ2Pμ2ðrÞ þ

X∞
s¼3

Gμ1μ2::μsPμ2::μsðrÞ
�
;

ð25Þ

to the leading order in the derivative of the lapse function, where

FμðrÞ ¼ 1

2

X
i;l;m;n

Ciilln
m rμli

			
rnþrm

2
¼r
; Gμ1μ2 ¼ 1

2

X
i;l;m;n

Ciilln
m rμ1li r

μ2
nm

			
rnþrm

2
¼r
;

Gμ1μ2::μs ¼ 1

2

X
i;l;m;n

Ciilln
m rμ1li r

μ2
nm::r

μs
nm

			
rnþrm

2
¼r

ð26Þ

with the sum overm and n restricted to those sites for which
rnþrm

2
¼ r. If the third and higher moments of Ciilln

m are
small, the spin-s fieldGμ1μ2::μs is negligible for s ≥ 3. In this
limit, DðrÞ, PμðrÞ and HðrÞ form a closed algebra to the
leading order in the derivative expansion. In particular,
Eqs. (17), (19) and (25) restore the algebra that the
momentum density and the Hamiltonian density satisfy
in general relativity [25,26] provided that GμνþGνμ

2
is iden-

tified as −Sgμν, where S and gμν are the signature of time
and the space metric, respectively, in the convention in
which the spatial metric is positive.
Interestingly, the metric depends on κ that parametrizes

the OðLÞ frame rotation included in the Hamiltonian. The
value of κ affects how dynamical variables run under the
Hamiltonian evolution because the very notion of local sites
is rotated under the frame rotation. To fix κ, we turn to the
second condition in (16). For this, we consider the simplest
pregeometric state in which collective variables are ultra-
local with no intersite entanglement,

p1 ¼ p2 ¼ q ¼ I: ð27Þ

The rate at which the clock variable p1 runs under the
Hamiltonian evolution depends on the conjugate momen-
tum t̃1. On the other hand, t̃1 along with t̃2 is subject to the
gauge constrains in Eq. (12),

sþ 2ðt̃1 þ t̃2Þ ¼ 0;

8t̃21 þ 8t̃22 þ 4t̃1t̃2 þ 4t̃2 t̃1 þ
1

8
−

1

3α̃
¼ 0: ð28Þ

For the stationary clock with t̃1 ¼ 0, t̃2 and s are deter-
mined to be t̃2 ¼ − s

2
¼ t̄I with t̄ ¼ ½1

8
ð 1
3α̃ −

1
8
Þ�1=2. Now,

consider a small perturbation to the conjugate momentum
of the clock variable t̃1 ¼ t0 with jt0ijj ≪ t̄. The constraints
determine t̃2 and s to be t̃2 ¼ t̄ − t0

2
and s ¼ −2t̄ − t0 to the

linear order in t0. Under the evolution generated by Hθ, the
clock variable evolve as

∂τp1 ¼ p1Rþ RTp1; ð29Þ

where R¼ 4t0θþ κð−2θsÞþð1− κÞð−2sTθ−2sθþ2θsTÞ.
The antisymmetric part of R, which generates OðLÞ
rotation of the clock variable, is given by R − RT ¼
2ð5 − 4κÞðt0θ − θt0Þ. The OðLÞ rotation, if present, would
mix the clock at one site with the one at another site. We
choose κ such that local clocks do not get entangled
through OðLÞ rotation in the limit that the sites are weakly
entangled. This leads to

κ ¼ 5

4
: ð30Þ

With this, the Hamiltonian density is uniquely fixed. We
now examine the dynamics of the spacetime that emerges
from a state with a three-dimensional local structure and
study the spin-2 mode that propagates on top of the
semiclassical background spacetime.

IV. BACKGROUND SPACETIME

Since the metric determined from Eqs. (24) and (26)
depends only on s and U, it suffices to understand the
evolution of U and s to understand the dynamics of
geometry. We choose the lapse θ ¼ I which corresponds
to the uniform lapse function θðrÞ ¼ 1. The equations of
motion for U and s are given by

∂U
∂τ

¼ 2sU þ 2UsT;
∂s
∂τ

¼ −2α̃U2 þ 2ssT: ð31Þ

WhileU is a symmetric matrix, s is a general L × Lmatrix.
However, we can focus on the sub-Hilbert space in which s
is symmetric because Eq. (31) preserves the symmetric
nature of initial s.
Let us consider a state with a three-dimensional local

structure with T3 topology, the translational and space
inversion symmetry. For simplicity, let us consider L ¼ l3
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for an integer l. The natural mapping from sites to T3 is
ri ¼ ði mod l; b ilc mod l; b i

l2c mod lÞ for 1 ≤ i ≤ L,
where bxc is the floor function. In T3, the periodic
boundary condition is used with ðx; y; zÞ ∼ ðxþ l; y; zÞ∼
ðx; yþ l; zÞ ∼ ðx; y; zþ lÞ. In the Fourier space, the col-
lective variables satisfy

∂Uk

∂τ
¼ 4skUk;

∂sk
∂τ

¼ −2α̃U2
k þ 2s2k; ð32Þ

where k ¼ 2π
l ðn1; n2; n3Þ with −l=2 ≤ ni < l=2 denotes

three-dimensional momenta, Uk ¼
P

j e
−ikrjUrj;0 and

sk ¼
P

j e
−ikrjsrj;0. The solution of Eq. (31) is given by

UkðτÞ ¼
Ukð0Þ

ð1 − 2skð0ÞτÞ2 þ 4α̃Ukð0Þ2τ2
; skðτÞ ¼

skð0Þ − 2½skð0Þ2 þ α̃Ukð0Þ2�τ
ð1 − 2skð0ÞτÞ2 þ 4α̃Ukð0Þ2τ2

: ð33Þ

For states with local structures, Uk and sk are analytic functions of k and can be expanded around k ¼ 0 as

UkðτÞ ¼ u0ðτÞ þ u2ðτÞk2 þOðk4Þ; skðτÞ ¼ σ0ðτÞ þ σ2ðτÞk2 þOðk4Þ; ð34Þ

where k2 ≡P
3
μ¼1ðkμÞ2. While Uk and sk have only the discrete rotational symmetry at the lattice scale, at small k the full

rotational symmetry emerges. The coefficients of Uk and sk evolve as

u0ðτÞ ¼
ū0

ð1 − 2σ̄0τÞ2 þ 4α̃ū20τ
2
; u2ðτÞ ¼

ū2 − 4τ½ū2ðσ̄0 − σ̄20τ þ α̃τū20Þ þ σ̄2ū0ð2σ̄0τ − 1Þ�
½ð1 − 2σ̄0τÞ2 þ 4α̃ū20τ

2�2 ;

σ0ðτÞ ¼
−2σ̄20τ þ σ̄0 − 2α̃ū20τ
ð1 − 2σ̄0τÞ2 þ 4α̃ū20τ

2
; σ2ðτÞ ¼

σ̄2ð1 − 2σ̄0τÞ2 − 4α̃ū0ð−2σ̄0ū2τ þ σ̄2ū0τ þ ū2Þτ
½ð1 − 2σ̄0τÞ2 þ 4α̃ū20τ

2�2 ; ð35Þ

where ū0 ¼ u0ð0Þ, ū2 ¼ u2ð0Þ, s̄0 ¼ s0ð0Þ and
s̄2 ¼ s2ð0Þ. These functions are plotted in Fig. 1 for a
choice of initial condition.
The signature and the spatial metric is determined from

Eq. (26), which reduces to

−SgμνðrÞ ¼ −6
X

m;n
½α̃U2 − s2�nmrμnmrνnm

			rnþrm
2

¼r
: ð36Þ

Because the spatial metric gives the uniform and flat three
torus with a time dependent scale factor, we obtain the
Friedmann-Robertson-Walker (FRW) metric [18],

ds2 ¼ SðτÞdτ2 þ aðτÞ2dxμdxμ; ð37Þ

where SðτÞ is the signature of time and aðτÞ is the scale
factor of the uniform space given by

SðτÞ ¼ −sgnð½α̃u0ðτÞu2ðτÞ − σ0ðτÞσ2ðτÞ�Þ;

aðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24jα̃u0ðτÞu2ðτÞ − σ0ðτÞσ2ðτÞj

p : ð38Þ

The signature and scale factor associated with the solution
shown in Fig. 1 are plotted in Fig. 2. The saddle point
solution determines the background spacetime. In the
following, we examine the dynamics of the spin-2 mode
that propagates on this spacetime. At a critical parameter
time τc ≈ 0.182, there is a phase transition at which the
scale factor diverges and the signature of spacetime jumps.

Signature-changing transitions have been also studied in
Refs. [28,29]. Here we will focus on the range of parameter
time (0 < τ < τc) in which the spacetime is Lorentzian
(S ¼ −1) and the space is expanding.

V. GRAVITON

Small fluctuations of the collective variables above the
translationally invariant solution are described by the
linearized equations,

∂δUk1k2

∂τ
¼ 2ðsk1 þ sk2ÞδUk1k2 þ 2ðUk1 þ Uk2Þδsk1k2 ;

∂δsk1k2
∂τ

¼ −2α̃ðUk1 þUk2ÞδUk1k2 þ 2ðsk1 þ sk2Þδsk1k2 ;
ð39Þ

where δUk1k2 ¼
P

r1r2 e
−ik1r1−ik2r2δUr1;r2 and δsk1k2 ¼P

r1r2 e
−ik1r1−ik2r2δsr1;r2 . A deviation of gμν denoted as

hμν is linearly related to δU and δs. In the Fourier space,
the metric fluctuation with momentum k is written as

hμνk ¼ −6S
n
Δμν

h
α̃ðUk1 þUk2ÞδUk1k2

− ðsk1 þ sk2Þδsk1k2
io

k1¼k2¼k
2

; ð40Þ

where Δμν ≡ ð ∂

∂k1μ
− ∂

∂k2μ
Þð ∂

∂k1ν
− ∂

∂k2ν
Þ. A traceless transverse

mode can be isolated as hk ≡ a2ϵμνh
μν
k , where ϵμν is a
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FIG. 2. The signature and the scale factor plotted as functions of τ for the same parameters used in Fig. 1. Initially, the de Sitter-like
spacetime with the Lorentzian signature is realized, where the scale factor increases with increasing parameter time. The spacetime
undergoes a phase transition into a Euclidean spacetime around τc ¼ 0.182. The signature-changing phase transition is accompanied
with the divergent scale factor [18].

FIG. 1. u0ðτÞ, u2ðτÞ, σ0ðτÞ, σ2ðτÞ plotted as functions of τ for α̃ ¼ 0.1, κ ¼ 5=4, ū0 ¼ ū2 ¼ 5 and σ̄0 ¼ σ̄2 ¼ 0.
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time-independent polarization tensor that satisfies ϵμνkν ¼ 0

and ϵμμ ¼ 0. Due to ϵμν
∂

∂kμ
Uk ¼ ϵμν

∂
2

∂kμ∂kν
Uk ¼ 0, which

is guaranteed by the inversion symmetry and the discrete
rotational symmetry of the background configuration, the
traceless transverse mode is given by

hk ¼−12Sa2ϵμν
n
α̃Uk=2ΔμνδUk1k2 − sk=2Δμνδsk1k2

o
k1¼k2¼k

2

:

ð41Þ

The equation of motion of hk directly follows from
Eq. (39). To the second order in k and the number of
derivatives in time, it becomes

ḧk þ
�
15u0 _u2 − u2 _u0

4u0u2

�
_hk − Sk2hk ¼ 0: ð42Þ

Here, _f ≡ ∂ηf and f̈ ≡ ∂
2
ηf, where η is the conformal time

defined from dη ¼ aðτÞ−1dτ. Eq. (42) describes a massless
spin-2 mode propagating in the presence of time dependent
background metric and other fields [30]. In the Lorentzian
spacetime (S ¼ −1), the low-energy graviton propagates
with speed 1 in the background metric given by Eqs. (37)
and (38). This indicates that the local Lorentz invariance
emerges in the frame that supports local clocks [31]. The
uniqueness of general relativity as a Lorentz-invariant
interacting theory of gapless spin-2 particle [32] suggests
that the present theory includes general relativity as an
effective theory for states with local structures in a gauge
that supports an extended space and local clocks.

VI. TOWARD AN ISOLATED GRAVITON

One way to understand why the gapless graviton is
present as a propagating mode is to view the theory for the
collective variables in Eq. (8) as the holographic dual of a
boundary theory. In this perspective, the exponent of the
wave function in Eq. (6) is identified as the action of a
nonunitary boundary theory, and the Hamiltonian con-
straint becomes the generator of the evolution along the
emergent radial direction [14,33]. As is the case for the
AdS=CFT correspondence [1–3], every global symmetry of
the boundary theory is promoted to a gauge symmetry in
the bulk, and an unbroken symmetry in the boundary gives
rise to a gapless gauge field in the bulk [34,35]. In the
present theory, the gauge symmetry includes the space
diffeomorphism generated by the momentum constraint.
Therefore, the unbroken translational symmetry in Eq. (6)
gives rise to a gapless gauge field associated with it [36],
which is the gapless graviton.
Besides the gapless graviton, there also exists a con-

tinuum of spin-2 modes in the present model. Those modes
are labeled by the relative momentum of bilocal fields,

hμνk;q ¼ −6S
n
Δμν

h
α̃ðUk1 þ Uk2ÞδUk1k2

− ðsk1 þ sk2Þδsk1k2
io

k1¼kþq
2
;k2¼k−q

2

; ð43Þ

where k is the center of mass momentum and q is the
relative momentum of δUk1;k2. The gapless graviton in
Eq. (40) corresponds to the mode with q ¼ 0. If both k and
q are transverse to the polarization (ϵμνkν ¼ ϵμνqν ¼ 0),
hk;q ≡ a2ϵμνh

μν
k;q satisfies the equation of motion similar to

Eq. (42),

ḧk;q þ
�
15u0 _u2 − u2 _u0

4u0u2

�
_hk;q − Sðk2 þm2

qÞhk;q ¼ 0; ð44Þ

where the q-dependent mass goes asm2
q ¼ q2 in the small q

limit. The existence of the continuum of modes is a
consequence of the fact that both the center of mass
momentum and the relative momentum of the bilocal
fields are conserved. This feature is shared with the
holographic descriptions of vector models in the large N
limit [5,33,37–50]. In order to remove this unrealistic
feature, one has to allow mixing between modes with
different relative momenta. In this section, we discuss how
such mixing arises through 1=N corrections.
To consider 1=N corrections, we need the full theory in

Eq. (8). The theory for the propagating modes can be
obtained by expanding the collective fields around the
saddle-point fq; s̄; P̄1; T̄1; P̄2; T̄2g and writing down the
theory for the fluctuating variables fδq; δs; δP1; δT1;
δP2; δT2g. The quadratic part determines the free propa-
gator, which can be obtained from the equation of motion
obeyed by the fluctuating variables. The full theory also
include interaction vertices. For example, α̃UQU in Eq. (8)
includes a cubic vertex for δT2, 4α̃trfδT2P̄2δT2P̄2δT2g for
the choice of v ¼ I. In the Fourier space, the vertex can be
written as

4α̃

Z
dk1dk2dk3Vk1;k2;k3δT

k1;−k2
2 δTk2;−k3

2 δTk3;−k1
2 ; ð45Þ

where Vk1;k2;k3 ¼ P̄2;k2;−k2P̄2;k3;−k3 . At the saddle-point, the
collective fields have nonzero expectation values only for
the modes with zero center of mass momentum due to the
translational invariance. In general, loop corrections can
modify the quadratic action for δT2 as

δS ¼
Z

dk1dk2dk3dk4Σk1;k2;k3;k4ðδTk1;k2
2 Þ�δTk3;k4

2 ; ð46Þ

where Σk1;k2;k3;k4 denotes the self-energy of δT2, which is
suppressed by 1=N compared to Eq. (8). The self-energy
generated from Eq. (45) through the one-loop diagram
takes the form of

MASSLESS GRAVITON IN A MODEL OF QUANTUM GRAVITY … PHYS. REV. D 108, 024054 (2023)

024054-9



Σk1;k2;k3;k4 ∼ ðδk1;k3δk2;k4 þ δk1;k4δk2;k3Þ

×
Z

dqVk1;−k2;−qV−k1;q;k2

×G2ð−k1;−qÞG2ðq;−k2Þ; ð47Þ

where G2ðk1; k2Þ is the propagator of δTk1;k2
2 . The cubic

vertex and the one-loop self-energy are shown in Fig. 3. It is
noted that the self-energy is still diagonal both in the center
of mass momentum and the relative momentum [51]. It can
be easily checked that no interaction in Eq. (8) gives rise to
a mixing between modes with different relative momenta
except for the modes with strictly zero center of mass
momentum. This is because the vertex in Eq. (45) and all

other vertices in Eq. (8) are invariant under k-dependent
Uð1Þ tranformations, δTk1;k2

2 → δTk1;k2
2 eiðφk1

þφk2
Þ, where φk

is k-dependent phase angle with φ−k ¼ −φk. These Uð1Þ
symmetries forbid mixing between modes with different
relative momenta.
In order to generate mixing between modes with different

relative momenta, one has to break these Uð1Þ symmetries.
One simple way of achieving this is to enlarge the kinematic
Hilbert space from Eq. (6) to the one in which theOðN=2Þ ×
OðN=2Þ flavor symmetry is further broken down to
OðN=2Þ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ [52]. The first OðN=2Þ

acts on Πi
A with A ¼ Lþ 1;…; Lþ N=2 as before. The

remaining Oð ffiffiffiffiffiffiffiffiffi
N=2

p Þ ×Oð ffiffiffiffiffiffiffiffiffi
N=2

p Þ acts on Πi
A with A ¼

Lþ N=2þ 1;…;M as left and right Oð ffiffiffiffiffiffiffiffiffi
N=2

p Þ multi-
plications as Πi

A is viewed as a matrix. Namely, we identify
N=2 components of Πi

A with A ¼ Lþ N=2þ 1;…;M as affiffiffiffiffiffiffiffiffi
N=2

p
×

ffiffiffiffiffiffiffiffiffi
N=2

p
matrix:Πi

A¼π i
ab with a ¼bA−ðLþN=2þ1Þffiffiffiffiffiffi

N=2
p þ

1c and b¼ ½A− ðLþN=2þ 1Þ mod
ffiffiffiffiffiffiffiffiffi
N=2

p � þ 1 for A ¼
Lþ N=2þ 1;…;M. Under Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ, πi is

transformed as πi → oLπioR, where oL and oR are
ffiffiffiffiffiffiffiffiffi
N=2

p
×ffiffiffiffiffiffiffiffiffi

N=2
p

orthogonal matrices. The enlarged sub-Hilbert space
with the lower flavor symmetry is spanned by a larger set of
basis states given by

jq; P1; P2; Xi ¼
Z

DΠe
−i
h ffiffiffi

N
p P

L
a¼1

Πi
aqaiþ

PLþN
2

b¼Lþ1
P1;ijΠb

iΠb
jþP2;ijtrfπiðπjÞTg

i
e−i

P
C
XCWC jΠi: ð48Þ

The first line of Eq. (48) is exactly the same as Eq. (6)
because trfπiðπjÞTg ¼ P

M
b¼LþN=2þ1Πb

iΠb
j. q is an L × L

matrix and P1 and P2 are L × L symmetric matrices
as before. The second line includes additional operators
that are allowed due to the lowered flavor symmetry.
Besides what is already included in the first line, the most
general operators needed to span the Hilbert space with
Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ symmetry are the Wilson-loop-

like operators WC ¼ ðN
2
Þ−n−1

2 trfπi1ðπi2ÞTπi3ðπi4ÞT…πi2n−1×
ðπi2nÞTg defined on a series of sites C ¼ ði1; i2;…:; i2nÞ
(see Fig. 4) [53], where the prefactor normalizes the multi-
site loop operators as WC ∼OðNÞ in the large N limit. In
the new term, we only include loop operators with n ≥ 2
because the bilocal operators, which are the special case of
WC with n ¼ 1, are already included in the first line. The
enlarged kinematic Hilbert space is spanned by the bilocal
fields and the new multi-local fields XC which are defined
in the space of loops.
Because fjq; P1; P2; Xig forms a complete basis of the

Hilbert space with the symmetry, e−iϵðĤv0
þĜy0

Þjq; P1; P2; Xi
can be expressed as a linear superposition of jq; P1; P2; Xi.
The theory of the new set of collective variables can be
derived in the same way that Eq. (8) is derived,

S ¼ N
Z

dτ
h
trfs∂τqþ T1∂τP1 þ T2∂τP2g þ

X
C

YC
∂τXC

− trfH½q; s; P1; T1; P2; T2; X; Y�v
þ G½q; s; P1; T1; P2; T2; X; Y�yg

i
: ð49Þ

FIG. 4. With the lower flavor symmetry group of
OðN=2Þ ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ ×Oð ffiffiffiffiffiffiffiffiffi

N=2
p Þ, additional operators are al-

lowed in the basis states that span the kinematic Hilbert space.
Besides the bilocal operators included in Eq. (6), one has to
include WC ¼ ðN

2
Þ−n−1

2 trfπi1ðπi2ÞTπi3ðπi4ÞT…πi2n−1ðπi2nÞTg de-
fined on a series of sites C ¼ ði1; i2;…:; i2nÞ that can be viewed
as a loop, where πi is is the matrix obtained by rearranging N=2
components of Πi

A with A ¼ Lþ N=2þ 1;…; Lþ N into affiffiffiffiffiffiffiffiffi
N=2

p
by

ffiffiffiffiffiffiffiffiffi
N=2

p
matrix. In the figure, circles (squares) denote

sites with π (πT).

FIG. 3. The left diagram shows the cubic vertex for the bilocal
field δT2 shown in Eq. (45). The momentum along each single
line is preserved. As a result, the one-loop self-energy, shown in
the right, is diagonal both in the center of mass momentum and
the relative momentum of the bilocal field.
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Here XC is the dynamical source for the loop operator just as P1 and P2 are promoted to dynamical variables in Eq. (8). YC

is the conjugate momentum of XC whose saddle-point value represents the expectation value of the loop operators,
hYCi ¼ 1

N hWCi. The momentum constraint and Hamiltonian constraints are modified to

Gj
i½q; s; P1; T1; P2; T2; XC; YC� ¼ ½sqþ 2ðT1P1 þ T2P2Þ þ iβI�ji þ

X
C

YC−iþjXC;

H½q; s; P1; T1; P2; T2� ¼ −U þ α̃UQU: ð50Þ
The last term in the momentum constraint is the new addition that describes the action of a generalized diffeomorphism
under which loop C is deformed into a new loop C − iþ j which is obtained by removing site i with j in C. If C does not
include i, YC−iþj ¼ 0. In the Hamiltonian,Uij ¼ ðssT þ T1 þ T2Þij is unchanged, butQij is modified with additional terms
that involve general loop fields,

Qij ¼
�
qTqþ

X
c

½4PcTcPc þ iPc� þ 2i
X
C

XC

X
C1;C2

FC
C1;C2;ij

YC1YC2

þ2
X

C
XC

X
l

h
GC

i P2;jlYC−iþl þGC
j P2;ilYC−jþl

i
þ
X

C1;C2
XC1

XC2
GC1;C2

C;ij YC

�
ij
: ð51Þ

Here, the first two terms are the same as before. The third
term describes the process where loop C breaks into loops
C1 and C2 with the removal of sites i and j out of C and
rejoining the remaining segments. The way the remaining
segments are rejoined depends on whether i and j are
separated by an even or odd number of sites. If C includes
both i and j, it can be written as C ¼ iþ C0 þ jþ C00
without loss or generality, where C0; C00 represent open
chains that form loop C once C0 and C00 are glued via i and
j. Let nC0 denote the number of sites in chain C0. If nC0 is
even, FC

C1;C2;ij
¼ 1 for C1 ¼ C0 and C2 ¼ C00. If nC0 is odd,

FC
C1;C2;ij

¼ ffiffiffiffiffiffiffiffiffi
2=N

p
for C1 ¼ C0 þ C̄00 and C2 ¼ ∅. Here,

C̄00 denotes the chain constructed by reversing the order of
sites in C00. For the loop made of the empty set, we use the
convention of Y∅ ≡ 1=2. This is illustrated in Fig. 5(a).
While nC ≥ 4, nC1

, and nC2
can be any non-negative even

integer because loops generated from C can be of smaller
sizes. For example, C2 ¼ ∅ if i and j are adjacent in C.
If C2 is bilocal with C2 ¼ ðijÞ, YC2 ≡ Tij

2 . If C does not
include i or j, FC

C1;C2;ij
¼ 0. The fourth term describes the

process where loopCmerge with a bilocal field P2 to create
a new loop by replacing site i from C and site j from P2, or
vice versa. If C includes site i,GC

i ¼ 1. Otherwise,GC
i ¼ 0.

C − iþ l represent the loop obtained by replacing site i
with l in C. In the last term, loops C1 and C2 merge into a

new loop C by removing a site from each loop and
rejoining them. If C1 and C2 include site i and j,
respectively, we can write C1 ¼ iþC0

1 and C2 ¼ jþ C0
2.

If site i has π and j has πT (or vice versa), GC1;C2

C;ij ¼ 1 for

C ¼ C0
1 þ C0

2. If site i and j both have π (or π
T),GC1;C2

C;ij ¼ 1

for C ¼ C0
1 þ C̄0

2. This is illustrated in Fig. 5(b). The
induced dynamics of loops is similar to the dynamics that
loop fields obey in holographic duals of lattice gauge
theories [54]. It is noted that the second to the last term can
be viewed as a special case of the last term where one of the
merged loops is just bilocal.
The semiclassical equation of motion for U and s, which

determine the metric, remains the same as Eq. (31) even in
the presence of the additional loop fields. This is because
U depends only on the bilocal fields ðssTÞ, T1 and T2.
Therefore, the equation of motion for the spin-2 modes
remains the same and there still exist a continuum of spin-2
modes labeled by the relative momentum of the bilocal fields
in the large N limit. However, differences arise from 1=N
corrections because the general loop-fields give rise to new
interaction vertices. For example, α̃UQU in Eq. (9) gen-
erates a cubic vertex for δT2, iα

P
ijkl δT

ij
2 X̄jklmδTki

2 δT
lm
2 ,

where X̄i1i2i3i4 represents the saddle-point value of the four-
site loop field. In momentum space, this gives rise to a vertex
that breaks the k-dependent Uð1Þ symmetry,

iα̃
Z

dk1dk2dk3dk4X̄−k1;−k3;k1−k4;k3þk4δT
k1;k2
2 δT−k2;k3

2 δT−k1þk4;−k3−k4
2 : ð52Þ

Without the k-dependentUð1Þ symmetry, loop-corrections can give rise to the self-energy that is off-diagonal in the space of
relative momentum. Through the one-loop correction shown in Fig. 6, one obtains the self-energy for δT2,

Σk1;k2;k1−l;k2þl ∼ α̃2
Z

dqX̄−k1;−q;q;k1X̄−k1;−k2;k1−l;k2þlG2ðk1; qÞG2ðq;−k2Þ: ð53Þ
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While the center of mass momentum is still conserved, the
self-energy mixes modes with different relative momenta.
This off-diagonal self-energy also creates mixing between
δUkþq

2
;k−q
2

and δUkþq0
2
;k−q

0
2

for q ≠ q0 because δT2 linearly

mixes with δU. In the presence of such mixings, the
eigenmodes of the wave equation derived from the quan-
tum effective action should be given by linear super-
positions of modes with different relative momenta as

δUðlÞ
k ¼

Z
dqfðlÞk;qδUkþq

2
;k−q
2
; ð54Þ

where each eigenmode is labeled by the center of mass
momentum k and an additional label l. Finding the

eigenvector fðlÞk;q reduces to the problem of diagonalizing
a quantum mechanical Hamiltonian of a “particle” moving

in the space of relative momentum. The particle is subject
to a potentialNm2

q because of the mass term that is diagonal
in relative momentum [see Eq. (44)]. The off-diagonal self-
energy allows the particle to hop from q to q0 with hopping
amplitude proportional to Σkþq

2
;k−q
2
;
kþq0
2
;k−q

0
2

. The diagonaliza-

tion of the Hamiltonian will give rise to a discrete set of
bound states at low energies because the Nm2

q provides a
harmonic potential at low q. The true graviton should stay
gapless due to the diffeomorphism invariance and the
unbroken translational invariance. However, other spin-2
modes are expected to acquire nonzero masses that are
order of 1=N as their masses are not protected from
quantum corrections.

VII. DISCUSSION

In this paper, we show that the model of quantum gravity
proposed in Ref. [18] supports a gapless spin-2 excitation
as a propagating mode. Although the model has no
predetermined partitioning of the Hilbert space into local
Hilbert spaces, the low-energy effective theory takes the
form of a local theory with an emergent Lorentz sym-
metry in a frame where the pattern of entanglement exhibits
a local structure and local clocks are well defined. We
conclude with some open questions. First, the present
model has a continuum of spin-2 modes with a continu-
ously varying mass in the large N limit. This unrealistic
feature is expected to go away once the kinematic Hilbert
space is enlarged and 1=N corrections are included as is
discussed in the previous section. It will be of interest
to take into account all leading 1=N corrections and com-
pute the full mass spectrum of the propagating modes.

FIG. 6. The diagram on the left shows a new cubic vertex for
the bilocal field δT2 in the presence of a nonzero expectation
value of the four-site loop field X̄k1;k2;k3;k4 as is shown in
Eq. (52). Unlike the vertex in, the momentum in each single
line does not have to be conserved because the four-site loop field
breaks the local Z2 symmetry. Consequently, the one-loop self-
energy shown in the right panel has a nonzero off-diagonal
element between bilocal fields with different relative momenta
[see Eq. (53)].

FIG. 5. The dynamics thatQij induces on loop operators. (a) At the linear order in the source of loop (XC), a loop either splits into two
loops or shrinks to a smaller loop. If π and πT are contracted, one loop is broken into two loops. If two π’s (or two πT ’s) are contracted,
one of the segment is reversed before glued to the other segment to form one smaller loop. (b) At the quadratic order in the source, two
loops merge into one loop. If π and πT are contracted, two loops merge without changing their orientations. If two π’s (or two πT’s) are
contracted, one of the segment is reversed before merging.
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However, this would not be fully satisfactory in that there
are still light massive spin-2 modes in the semi-classical
limit. It is desirable to find a new mechanism that isolates
the massless graviton from other massive modes with a
mass gap that is not suppressed in the largeN limit. Second,
the present theory suffers from the cosmological con-
stant problem. Without fine tuning, there is no separation
between the scale that controls the rate at which time
dependent background fields change and the scale that
suppresses higher derivative terms in the effective theory. It
would be interesting to consider an alternative model
(possibly a supersymmetric model) that stabilizes the flat
spacetime as a saddle point. Despite these drawbacks, this
model serves as a concrete toy model of quantum gravity
that realizes some interesting features that the true theory
of quantum gravity may share. Those features are the
Hilbert-space-partition-independence and the emergence
of dimension, topology, signature and geometry of space-
time. Finally, we comment on the relation between the
present model and the BFSS/IKKT matrix models that
have been proposed as a nonperturbative formulation of
string theory [55–57]. Those matrix models share the same

goal of realizing emergent spacetime from nongeometric
microscopic degrees of freedom. However, one notable
difference is the fact that the number of noncompact
spacetime directions is bounded by the number of matrices
in the previous matrix models. In the present model, the
spacetime dimension is dynamical, and there are states that
exhibit spacetimes with any dimension. It would be
interesting to know if there is any relation between the
earlier matrix models and the present model restricted
to a sub-Hilbert space with a fixed spacetime dimension.
Ultimately, it will be great to understand a dynamical
mechanism that selects certain spacetime dimensions in the
model where the spacetime dimension is fully dynamical.
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