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The dynamics of the torsion-powered teleparallel theory are only viable because 36 multiplier fields
disable all components of the Riemann-Cartan curvature. We generalize this suggestive approach by
considering Poincaré gauge theory in which 60 such “geometric multipliers” can be invoked to disable any
given irreducible part of the curvature, or indeed the torsion. Torsion theories motivated by a weak-field
analysis frequently suffer from unwanted dynamics in the strong-field regime, such as the activation of
ghosts. By considering the propagation of massive, parity-even vector torsion, we explore how geometric
multipliers may be able to limit strong-field departures from the weak-field Hamiltonian constraint
structure and consider their tree-level phenomena.
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I. INTRODUCTION

The Poincaré gauge theory of gravity (PGT), as pio-
neered by Kibble [1], Sciama [2], Utiyama [3], and many
others [4–7], naturally extends general relativity (GR) as a
diffeomorphism gauge theory by additionally gauging the
Lorentz group SOþð1; 3Þ. This innovation allows for
spacetime torsion, which may be dynamical (and thus
engender new phenomena [8–10]), and possibly allows for
a breaking of the equivalence principle through the details
of the gravitational coupling to the various SLð2;CÞ
representations of matter [11–13].
The basic units of the “particle physics” formulation of

PGT [5,10,14–16] are the translational and rotational gauge
fields biμ and Aij

μ ¼ A½ij�
μ, where Greek indices are

holonomic, referring to coordinates on a flat and torsion-
free reference background M̌, and Roman indices are
Lorentzian. In the alternative “geometric” formulation, these
gauge fields are reimagined as the tetrad eiμ and spin
connection ωij

μ ≡ ω½ij�
μ, while the spacetime enjoys an

intrinsic curvature and torsion [5,17]. In the former inter-
pretation—which we use here only out of convenience—
these geometric quantities are interpreted as the field strength
tensors:

Rij
kl ≡ 2hkμhlνð∂½μjAijjν� þ Ai

m½μjAmjjν�Þ; ð1aÞ

T i
kl ≡ 2hkμhlνð∂½μjbijν� þ Ai

m½μjbmjν�Þ: ð1bÞ

In terms of these tensors, it is common to construct, for
Planck mass mp, the quadratic version of PGT

LG ¼ −
1

2
α̂0mp

2Rþ
X6
I¼1

α̂IRij
kl
IP̂ij

kl
mn

pqRnm
pq

þmp
2
X3
M¼1

β̂MT i
jk
MP̂i

jk
l
nmT l

nm; ð2Þ

i.e., extending the Einstein-Cartan-Kibble-Sciama theory [18]
by the collection of possible Maxwell-like terms via fα̂Ig,
fβ̂Mg, which could be used to introduce dynamical torsion.
The IP̂ij

kl
mn

pq and MP̂i
jk
l
nm project out the irreducible

Lorentz group representations that are contained within the
field strength tensors. As some more recent authors have
noted [9,19–22], invariants may be written down beyond the
nine considered above, if an extension is made to mixed-
parity Lagrangians. We make no physical case for excluding
such terms but restrict our discussion to the parity-even PGT
theory.1

If α̂0 ¼ 1, then we interpret (2) as a “modified gravity”
theory that deviates quadratically from Einstein, Cartan,
Kibble, and Sciama, and so phenomenologically from
GR. For some time the real concern has been promulgated
[19,23–25] that only two special cases of this configura-
tion may be viable: those with additional even/odd-parity
0þ or 0− scalar torsion modes [i.e., degrees of freedom
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quadratic action in (2) as PGTq;þ rather than PGT.
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(d.o.f.)] [23]. In general, the parameters of (2) also allow
for 1þ, 1−, 2þ, and 2− modes, but apparently no single one
of these can be invoked within the linear regime (i.e., near
a flat, torsion-free spacetime), without activating others in
the full nonlinear theory [24,26]. These uninvited modes
are thought of as strongly coupled, i.e., becoming non-
dynamical on the Minkowski background. Whether strong
coupling is intrinsically problematic can only be deter-
mined in detail for a given theory (see [27] and references
therein). In the case of the PGT, however, the unitarity
conditions (of the linearized theory) on the fα̂Ig, fβ̂Mg,
inevitably cause the nonlinearly activated modes to
contribute negative energies in the Hamiltonian. To what-
ever extent this is true, strong coupling will be fatal to the
more general PGTs. We confirmed in [15] that the
problem extends also into linearly viable cases for which
α̂0 ¼ 0.
In this paper, therefore, we seek an extension of the PGT

that tends to ameliorate the nonlinear proliferation of
propagating d.o.f. We will first require this extension to
be minimal. Many attractive options present, for example,
when one considers alternatives to the Poincaré gauge
group R1;3⋊ SOþð1; 3Þ. However, since these alternatives
are chiefly realized within existing frameworks such as
Weyl gauge theory [28,29], its extended alternative [30],
and the metric-affine generalization [31], they do not
lie comfortably within our scope. Nor shall we augment
the PGT with new (manifestly) dynamical fields, such as
the scalar added by Horndeski to Einstein’s theory [32]. In
fact a particularly conservative approach is suggested
already within PGT, in the form of teleparallel gravity
[33]. The teleparallel form of GR has total Lagrangian2

LT ¼ 1

2
mp

2T þ λij
klRij

kl þ LM;

T ≡ 1

4
T ijkT ijk þ 1

2
T ijkT jik − T iT i: ð3Þ

The dynamical part T of (3) is purely quadratic in torsion.
There is however added to this Lagrangian a kinematic
term, which suppresses the whole Riemann-Cartan curva-
ture by means of 36 multiplier fields λijkl. In the geometric
interpretation, the multipliers constrain the rich Riemann-
Cartan geometryU4 to that of Weitzenböck T4, eliminating
unwanted modes in the process. They do not however
appear as propagating d.o.f. in the final counting: those that
persist in the equations of motion do so as determined
quantities, so those same equations do not add physical
content while the rest only propagate the 2þ graviton. In the
grand picture, the theory (3) is rightly considered a PGT,

since the multipliers play a restrictive role. In this paper we
therefore focus on general geometry-constraining multi-
pliers in the PGT context, with an intended application to
strong coupling.
The remainder of this paper is set out as follows. In

Secs. II B and II C we set out the general theory of
“geometric multipliers” in the Lagrangian formulation.
We consider the new, general Hamiltonian structure in
Secs. III B and III C, indicating the mechanism by which
the multipliers may help to soften the dynamical transition
from linear to nonlinear gravity. In Sec. IV we perform
the canonical analysis of the 1þ torsional mode with a
simple choice of multiplier. Conclusions follow in Sec. V.
Most of our conventions and notation, especially for the
Hamiltonian, Arnowitt-Deser-Misner (ADM), or 3þ 1
structure of the PGT, are in common with [15,16], and
with the companion paper in [27]; these conventions are in
turn derived from [5,23,24]. We use the “West Coast”
signature ðþ;−;−;−Þ.

II. THE LAGRANGIAN PICTURE

The subject of our investigation is the covariant restric-
tion of the Riemann-Cartan geometry through the intro-
duction of geometric multipliers. An additional 60
gravitational d.o.f. are added to the PGT via the multiplier
fields λijk and λijkl, which share the symmetries and
dimensions of the Riemann-Cartan and torsion tensors.
The new gravitational Lagrangian that replaces (2) is
written as

LG ¼−
1

2
α̂0mp

2Rþ
X6
I¼1

ðα̂IRij
klþ ᾱIλ

ij
klÞIP̂ij

kl
mn

pqRnm
pq

þmp
2
X3
M¼1

ðβ̂MT i
jkþ β̄Mλ

i
jkÞMP̂i

jk
l
nmT l

nm; ð4Þ

where any nonvanishing fᾱIg and fβ̄Mg switch off the
various irreducible representations of SOþð1; 3Þ that are
contained within the field strengths: the bar indicates
coefficients associated with the Lagrange multiplier tensor
fields. The 23 × 26 configurations of these boolean
“switches” allow the greatest possible control over theory
beyond the nine “dials” that define the original PGT, whilst
maintaining general covariance.

A. Simple toy model

The apparent complexity of the Dirac Hamiltonian
constraint algorithm, when applied in its most involved
form to higher-rank field theories with various spin sectors,
and with variational interpretation of the Poisson brackets,
can obfuscate the simplicity of the physics involved. In the
good pedagogical introductions to the algorithm, field
theory is not actually used in the first instance, rather it

2Note that our conventions for multipliers, which we take to be
tensors, will differ from those used in [5], where they are treated
as densities.
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is sufficient to analyze simple, one-dimensional “beads on a
string” examples.
Accordingly, we give a rough example in this section of

how a multiplier field can extend the nonlinear dynamics
down onto a pathological phase surface, with a “toy model”
(TM) system

LTM ≡ _q1q2ð1þ q2Þ þ _q2q1ð1þ q1Þ þ λð _q1 þ _q2Þ: ð5Þ

In this example, q1 and q2 are real, generalized coordinates,
the dot denotes a derivative with respect to time t, and
there will be a corresponding action STM ≡ R dt LTM. Note
that there is also a real multiplier field, λ. The Lagrangian
looks a little peculiar, because there are fewer derivatives
than expected in a physical system. For our purposes,
we do not need to worry about this: the collection of
interactions in Eq. (5) is of the kind that could well arise
among many others in a gauge gravity theory, once the
spin-parity decomposition is performed. For the toy model,
we imagine that anomalous dimensionality among the
operators can be accounted for by (i) even powers of the
Planck mass, which we omit, (ii) interpretation of either q1
or q2 as dimensionful connection fields or dimensionless
metric (or tetrad) potentials, and (iii) recalling that in the
field theory (but not in the one-dimensional model) we
have spatial gradients that contribute a mass dimension
without (modulo important boundary effects) affecting the
dynamics on the same footing as time derivatives. We will
take the “vacuum spacetime” to simply be q1 ≈ q2 ≈ 0,
which is an exact solution to the field equations of Eq. (5)
whether or not the multiplier is included. Near this vacuum,
there will be a linearized theory where the Lagrangian
is expanded up to second order in perturbative fields.
Both the linearized and fully nonlinear theories are subject
to Hamiltonian analysis, and the results had better be
consistent.
First try omitting the multiplier: the definitions πi ≡ ∂=

∂ _qiLTMðλ → 0Þ naturally engender two primary constraints
ϕ1 ≡ π1 − q2ð1þ q2Þ ≈ 0 and ϕ2 ≡ π2 − q1ð1þ q1Þ ≈ 0,
so the Hamiltonian is HTM ≡Pi uiϕi ≈ 0, where
canonical variables ui are Dirac’s “missing/uninvertible
velocities” _qi. Now the Poisson bracket is fϕ1;ϕ2g≈
2ðq1 − q2Þ, which has the sickly property that it vani-
shes in the linearized theory. For vanishing Poisson
bracket, the consistency conditions _ϕi ≡ fϕi; HTMg ¼P

i fϕi;ϕjguj ≈ 0 are automatically satisfied, and the
undetermined ui embody the pure gauge freedoms of qi
in the trivial (in fact total derivative) linearization
LTMðλ → 0Þ ¼ d=dtðq1q2Þ þOðq3Þ. More formally there
are 1þ 1 ¼ 2 naïve d.o.f. qi, but ϕi are first class, so
2 − 1

2
2 × 2 ¼ 0 nongauge d.o.f. propagate according to

Dirac algorithm “lore” [34]. For a nonvanishing bracket
(i.e. nonlinear theory), the consistency conditions demand
ui ≈ 0, while ϕi become second class, so 2 − 1

2
1 × 2 ¼ 1

d.o.f. propagates. Indeed, the nonlinear Euler-Lagrange

equations are _qi ≈ 0, so the “lore” interprets the two initial
data qiðt ¼ 0Þ as the Cauchy data for one effective
oscillator d.o.f., which vanishes in the linear spectrum.3

Let us explicitly check that this nonlinear result is con-
sistent with the nonlinear Euler-Lagrange equations with-
out the multiplier:

_q2ðq1 − q2Þ ≈ _q1ðq2 − q1Þ ≈ 0: ð6Þ

Yes: the ui vanish on shell and so, correspondingly, do the
_qi according to Eq. (6). There may be an exception if
q1 ≈ q2, but again this corresponds to the bracket vanish-
ing, so it is just another instance of the same problem. In
general, we are most immediately concerned with brackets
that vanish upon departure from preferred spacetimes (such
as our vacuum, or the Minkowski solution). The effect may
punctuate the bulk of the phase space elsewhere, but it is
then a question of whether such spacetimes are really
observed in nature. Returning to the linear case, we see that
the field equations Eq. (6) contain no first-order terms, so
they completely evaporate under linearization. In the bulk,
we needed to fix the constant qi with our initial data, but in
the linearization the qi are completely arbitrary. In effect, a
very trivial gauge symmetry in the linear theory (arbitrary,
time-local transformations of both fields) is nonlinearly
broken. This makes the linear physics suspicious and
untrustworthy, however appealing it might be from a
particle spectrum perspective. The breaking of the gauge
symmetry is actually not the key feature we wish to capture:
rather it is the loss of propagating d.o.f. It is straightforward
to also construct one-dimensional examples akin to Eq. (5)
where the disappearing d.o.f. is due to a proliferation of
secondary constraints rather than a change in class of the
primaries—we will not do so here, but both mechanisms
can be realized in the prolific tangle of gauge gravity
interactions seen in the PGT, and both mechanisms have at
their heart a disappearing Poisson bracket.
Now λ in Eq. (5) increases us to 2þ 1 ¼ 3 naïve d.o.f.: it

is easy to check that the first class combination ϕ− ≡ ϕ1 −
ϕ2 þ 2ðq1 − q2Þϕλ ≈ 0 and second class ϕþ ≡ ϕ1 þ ϕ2 ≈
0 and ϕλ ≡ πλ ≈ 0 with linear/nonlinear nonvanishing
bracket fϕþ;ϕλg ≈ −2 indicate 3 − 1

2
ð2 × 1þ 1 × 2Þ ¼ 1

d.o.f. Again, let us check that this really works by
extending the field equations from Eq. (6) with the presence
of the multiplier:

_q2ðq1 − q2Þ ≈ _q1ðq2 − q1Þ ≈ _λ=2; _q1 þ _q2 ≈ 0: ð7Þ

3In our toy model of course, there is no harmonic oscillator, so
to complete the analogy an example with more derivatives and
more “spectator” fields representing the other spin sectors should
really be constructed so as to make the usual constrained d.o.f.
counting interpretation strictly accurate. This setup would be less
minimal than the one in Eq. (5).
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So we see from Eq. (7) how the situation develops. In
the nonlinear case, two initial data such as q1ðt ¼ 0Þ þ
q2ðt ¼ 0Þ and λðt ¼ 0Þ can be propagated, but for the
former coordinate combination we can only do this once
a single extra pure gauge variable such as q1 − q2 has
been specified along the phase trajectory. This is similar
to the nonlinear scenario without the multiplier. There is
an extra gauge variable, but once again it is possible to
construct other toy examples of this mechanism where
the comparison is exact. Now the really interesting
feature of Eq. (7) is that the equations of motion
(and their spectral ramifications) persist in the linear
theory: they now have first-order terms in the general-
ized coordinates, and it is these key terms (velocities)
which dictate the dynamics. In the linearized case, the
gauge coordinate is not needed to propagate either of
the others, but since it is present in the Lagrangian it
must still be specified to fully evolve the system—thus
the dynamics are unchanged. The overall effect is to
drag the nonlinear dynamics down into the linear
regime. This opens the door to solving a major problem
in non-Riemannian gravity, which we explore through
the rest of this work.

B. Developing the formalism

In order to efficiently and thoroughly discuss the new
general theory (4), we must create a more formal notation
than that previously used in [15]. We use [as in Eqs. (2)
and (4)] the indices I, J, K, and L to label the SOþð1; 3Þ
irreps ofRij

kl, ranging from one to six, and we also allocate
M, N, O, and P to label those of T i

jk, ranging from one
to three.
The ADM split then allows us to construct something

similar using the rotation group SO(3). There is a spacelike
slicing, characterized by a unit timelike vector nk which
can be extracted from the translational gauge field as
follows:

nk ≡ hk0=
ffiffiffiffiffiffi
g00

q
; ð8Þ

where the clock-and-ruler metric elements are reco-
vered in PGT by gμν ≡ hiμhjνηij. With respect to this
vector, any indexed quantity can then be split into

perpendicular and parallel parts Vi ¼ V⊥ni þ Vi. Note

some further identities bkαhl̄
α ≡ δk

l
and bkαhk

β ≡ δβα. As
set out in [15], the overbar on an index, and the (⊥)
symbol, refer to indices perpendicular and parallel to the
ADM unit vector ni. For a discussion of the ADM
formulation of PGT with these exact same conventions,
see [5,15].
Using (8) we now also introduce A, B, C, and D to

span the SO(3) irreps in the rotational context—such as
those contained within π̂ij

k̄, Rij
kl, and Rij⊥l̄—which are

0þ, 0−, 1þ, 1−, 2þ, and 2−. The parallel momentum
π̂ij

k̄ ≡ πij
αbkα, where α, β, etc. exclude the time index,

refer to the rotational momentum πij
μ conjugate to Aij

μ.
We will use E, F, G, and H to span these same irreps in

the translational context, i.e., wherever such irreps are
present in π̂i

k̄ (the parallel part of the biμ conjugate
momentum πi

μ), T i
kl
, and T i

⊥l̄
. Care must be taken, since

various of the six spin-parity (JP) irreps are missing from
various objects in the translational sector (there are no 0− or
2− parts in the πik̄ or T i

⊥j̄, and no 0þ or 2þ parts in T i
jk
),

and summations over the new indices are assumed to take
this into account implicitly.
Using this notation, we next introduce the “human

readable” projections as denoted with a háček (·̌)
Aπ̂ ĺ ≡ AP̌ ĺ

ij
k̄π̂ij

k̄, Eπ̂ ĺ ≡ EP̌ ĺ
i
k̄π̂i

k̄, etc. These obtain the
convenient variable-index expressions of the JP parts, such
as π̂⊥, b̂π⊥kl,

êπ⊥kl etc. (respectively, 0
þ, 1þ, and 2þ) as used

previously in [15,16,24], and where a variable number
of indices4 is denoted by ú, v́, ẃ, etc. We provide a full
list of variable-index expressions in Appendix A, and
use both the formal A and E notation and the older
variable-index notation interchangeably. To account for
missing irreps, we define placeholder projections within
the translational sector

0þP̌v́
i
jk ≡ 2þP̌v́

i
jk ≡ 0−P̌v́

i
k ≡ 2−P̌v́

i
k ≡ 0: ð9Þ

There is a corresponding complete (i.e., not variable-
index) set of operators, which is denoted with a circumflex
(·̂). It is convenient to describe relations between both sets

of operators using the dimensionless numbers fck
Ag, fck

Eg,
fc⊥

Ag, fc⊥
Eg, which are close to unity

AP̂ij
kp

lm
nq≡ck

A
A
P̌ú

ij
kpAP̌ú lm

nq; δv́ú≡ck
A
AP̌ú ij

kpAP̌kp
v́ ij;

AP̂ij
k̄
lm

n̄≡c⊥
A
AP̌ú

ij
k̄AP̌ú lm

n̄; δv́ú≡c⊥
A
AP̌ú ij

p̄AP̌v́ij
p̄;

EP̂i
kp

l
nq≡ck

E
EP̌ú

i
kpEP̌ú l

nq; δv́ú≡ck
E
EP̌ú i

kpEP̌v́ i
kp;

EP̂i
k̄
l
n̄≡c⊥

E
EP̌ú

i
k̄EP̌úl

n̄; δv́ú≡c⊥
E
EP̌ú i

pEP̌v́ i
p:

ð10Þ

These complete operators are more cumbersome in their
actual form, but useful for formal calculations.
Most importantly, we introduce a compact notation for

the linear combinations of coupling constants that will
arise frequently at all levels of analysis. Accordingly there
are eight matrices, again populated by numbers close to
unity

4See Lin’s notation in [35].
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AP̌ṕ
lm

nq
IP̂lm

nq
ij
rk ≡Mkk

AI
AP̌ṕij

rk; AP̌ṕ
lm

n̄
IP̂lm

⊥n̄
ij
rk ≡M⊥k

AI
A
P̌ṕij

rk; AP̌ṕ
lm

nq
IP̂lm

nq
ij
⊥k̄ ≡Mk⊥

AI
AP̌ṕij

k;

AP̌ṕ
lm

n
IP̂lm

⊥n
ij
⊥k ≡M⊥⊥

AI
AP̌ṕij

k; EP̌ṕ
l
nq

MP̂l
nq

i
rk ≡Mkk

EM
E
P̌ṕi

rk; EP̌ṕ
l
q
MP̂l

⊥q
i
rk ≡M⊥k

EM
EP̌ṕi

rk;

EP̌ṕ
l
nq

MP̂l
nq

i
⊥k ≡Mk⊥

EM
EP̌ṕi

⊥k; EP̌ṕ
l
q
MP̂l

⊥q
i
⊥k ≡M⊥⊥

EM
EP̌ṕi

⊥k; ð11Þ

which encode the transfer of SO(3) projections through the
SOþð1; 3Þ projections. With these matrices we obtain
various transfer couplings, using the obvious notation

α̂kkA ≡PI M
kk
AIα̂I , β̄⊥k

E ≡PM M⊥k
EMβ̄M, etc. Due to (9),

the relations (11) do not fully define these quantities and
we again supplement with the vanishing placeholder

couplings β̄⊥k
0þ , β̄

⊥k
2þ , β̄

k⊥
0− , β̄

k⊥
2− , β̂

⊥k
0þ , β̂

⊥k
2þ , β̂

k⊥
0− , and β̂k⊥2− .

Explicit formulas for all transfer couplings are provided in
Appendix B. We shall show in Sec. III that the canoncial
structure of PGT and the geometric multiplier extension in
(4) can be fully understood through the transfer couplings
and their relations Eqs. (B3) and (B4).
Finally, we will add two more items of formalism by

defining the following functions:

μðxÞ≡
�
x−1; for x ≠ 0

0; for x ¼ 0
νðxÞ≡ 1 − jsgnðμðxÞÞj:

ð12Þ

These functions allow for a general discussion of constrained
quantities in the Hamiltonian picture, and in particular the
function μðxÞ is not new, being defined already by
Blagojević and Nikolić in [36], as part of the crucial if-
constraint formalism. An if constraint is a Hamiltonian
constraint that appears only because the couplings in (2)
obey certain critical relations; we will be using this
formalism in Sec. III when we address the Hamiltonian
picture.

C. The gravitational field equations

We will begin our discussion of the physical structure of
the theory (4) by considering the Lagrangian field equa-
tions. We borrow from [5] the definition of the generalized
momenta

πi
kl ≡ ∂bLG

∂∂νbiμ
bkμblν ≡ −

∂bLG

∂Ti
μν
bkμblν;

≡ −2mp
2b
X
M

ð2β̂MT j
nm þ β̄Mλ

j
nmÞMP̂j

nm
i
kl; ð13aÞ

πij
kl ≡ ∂bLG

∂∂νAij
μ
bkμblν ≡ −

∂bLG

∂Rij
μν
bkμblν ≡ 2α̂0mp

2δk½iδ
l
j�

− 4b
X
I

ð2α̂IRpq
nm þ ᾱIλ

pq
nmÞIP̂pq

nm
ij
kl; ð13bÞ

where b≡ det biμ plays the role of
ffiffiffiffiffiffi−gp

in GR, and we note
for later convenience that, for any values adopted by the
various couplings, these quantities can be shown after a
somewhat lengthy calculation to satisfy the identities

T ½jjpqπji�
pq − 2T p

k½ijπpkjj� ≡Rk½ijpqπkjj�pq þRpq
k½ijπpqkjj�

≡ 0: ð14Þ

In terms of the generalized momenta we then obtain the
stress-energy and spin field equations of the theory in the
presence of matter sources, where Dμ ≡ ∂μ þ 1

2
Akl

μΣkl· is
the gauge-covariant derivative and Σkl the (representation-
specific) Lorentz group generators,

τνi ¼ −Dμπi
νμ þ T p

kiπp
kν þ 1

2
Rpq

kiπpq
kν þ bLGhiν;

τμν ≡ hkμ
δbLM

δhkν
≡ −

δbLM

δbkμ
bkν; ð15aÞ

σνij ¼ −Dμπij
νμ þ 2π½ij�ν σμij ≡ −

δbLM

δAij
μ
: ð15bÞ

These equations may be manipulated further. We see that
the divergence of the spin equation (15b) is

Dμσ
μ
ij ¼ 2Dμπ½ij�μ þRk½ijpqπkjj�pq; ð16Þ

and we can expand the energy-momentum equation (15b)
to give

τji ¼ −Dμπi
jμ −

1

2
T j

pqπi
pq þ T p

kiπp
kj

þ 1

2
Rpq

kiπpq
kj þ bLGδ

j
i : ð17Þ

However, by considering the skew-symmetric part of (17)
and the conservation law Dμσ

μ
ij ≡ 2τ½ij�, we see that there

is another relation

Dμσ
μ
ij ¼ 2Dμπ½ij�μ −Rpq

k½ijπpqkjj�: ð18Þ

From (18) and (16) we can use the identities (14) to
confirm the gravitational equivalent of the conservation
law, i.e., that six of the field equations are in fact shared
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between (15a) and (15b). In the simple case of the tele-
parallel theory, we note that this result may be used to
identify the so-called λ symmetry, i.e., the parts of λijk that
remain dynamically undetermined [33].
The most striking consequence of the geometric multi-

pliers in (4) follows from their own field equations, which
suppress various parts of the Riemann-Cartan and torsion
tensors. The first opportunity to employ the transfer
couplings from Sec. II B arises when we decompose these
field equations into their respective SO(3) irreps, to give 

ᾱkkA ᾱk⊥A
ᾱ⊥k
A ᾱ⊥⊥

A

! 
AP̌ ĺnm

pqRnm
pq

2AP̌ ĺnm
q̄Rnm⊥q̄

!
≈ 0; ð19aÞ

 
β̄kkE β̄k⊥E
β̄⊥k
E β̄⊥⊥

E

! 
EP̌ ĺn

pqT n
pq

2EP̌ ĺn
qT n⊥q

!
≈ 0: ð19bÞ

The consequences of the geometric multipliers are thus
fully encoded by the premultiplying matrices in Eqs. (19a)
and (19b). Less formally, we provide in Appendix B a
translation of Eqs. (19a) and (19b) in terms of the “human
readable” SO(3) representations of the Riemann-Cartan
curvature and torsion.
Multipliers imposed to correct pathologies in the original

PGT should not interfere with the desirable phenomenol-
ogy, as established for example in [10,14]. This principle of
selective noninterference can be implemented by choosing
the multiplier couplings so thatX
I

ᾱI
IP̂ij

kl
pq

mnRpq
nm ≈

X
M

β̄M
MP̂i

kl
p
mnT p

nm ≈ 0; ð20Þ

on the phase-space shell defined by all desirable solutions
to the original theory. These solutions are then still valid
for all multiplier extensions of the original theory which
obey (20), so long as the multipliers themselves solve the
coupled, homogeneous, first-order linear system

−DμΛi
νμ þ T p

kiΛp
kν þRpq

kiΛpq
kν ≈ 0; ð21aÞ

−DμΛij
νμ þ Λ½ij�ν ≈ 0; ð21bÞ

which is derived from Eqs. (15a) and (15b), and expressed
in terms of the “employed” multiplier d.o.f.

Λij
kl ≡X

I

ᾱI
IP̂ij

kl
pq

mnλpqnm; ð22aÞ

Λi
kl ≡mp

2
X
M

β̄M
MP̂i

kl
p
mnλpnm: ð22bÞ

Formally, the system (21) can always be satisfied (e.g., with
vanishing multipliers), though attention must still be paid

to the uniqueness of such solutions for a given spacetime
symmetry, along with the physical interpretation of the
multipliers.

III. THE HAMILTONIAN PICTURE

Having briefly examined the Lagrangian formulation
of geometric multipliers in Sec. II, we now turn to the
Hamiltonian formulation. The Hamiltonian structure of the
conventional PGT is well understood, and presented clearly
in [5]. We use the same conventions as in [5,15,16].

A. The new super-Hamiltonian

The total HamiltonianHT for the PGT, as we have written
it in [15], is extended by the geometric multipliers to

HT ≡HC þ uk0φk
0 þ 1

2
ujk0φjk

0 þ ðu · φÞ
þ υi

klϕi
kl þ υij

klϕij
kl: ð23Þ

We shall now account for all the quantities appearing here.
The canonical Hamiltonian HC is formed by Legendre
transforming the Lagrangian over the canonical momenta,
the timelike parts of Eqs. (13a) and (13b)

πi
μ ≡ ∂bLG

∂ð∂0biμÞ
; πij

μ ≡ ∂bLG

∂ð∂0Aij
μÞ
: ð24Þ

In the Dirac form [37,38], this quantity is

HC ≡ NH⊥ þ NαHα −
1

2
Aij

0Hij þ ∂αDα; ð25Þ

i.e., linear in the nonphysical lapse function and shift vector,
which are defined with reference to the nonphysical part of
the translational gauge field N ≡ nkbk0 and Nα ≡ hk̄

αbk̄0.
The functions in (25) are

H⊥ ≡ π̂i
k̄T i⊥k̄ þ

1

2
π̂ij

k̄Rij⊥k̄ − JLG − nkDαπk
α; ð26aÞ

Hα ≡ πi
βTi

αβ þ
1

2
πij

βRij
αβ − bkαDβπk

β; ð26bÞ

Hij ≡ 2π½iαbj�α þDαπij
α; ð26cÞ

Dα ≡ bi0πiα þ
1

2
Aij

0πij
α; ð26dÞ

where the “parallel” momenta are π̂i
k̄ ≡ πi

αbkα and π̂ij
k̄≡

πij
αbkα. The field strengths defined in (1a) and (1b), and

which appear in (4), are independent of the velocities of bk0
and Aij

0. It follows that the theory has (at least) the 10
primary constraints
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φk
0 ≡ πk

0 ≈ 0; φij
0 ≡ πij

0 ≈ 0; ð27Þ

where (≈) denotes weak equality on the phase shell, and
from (25) we see that the consistency of (27) invokes the
“sure” secondary first class (sSFC) constraints

H⊥ ≈ 0; Hα ≈ 0; Hij ≈ 0: ð28Þ

Depending on the parameters fα̂Ig, fβ̂Mg, there may be
other primary if constraints (PiCs), denoted in (23) by

ðu · φÞ≡ 1

32

X
A

c⊥
Aνðα̂⊥⊥

A ÞAuv́Aφv́

þ 1

8mp

X
E

c⊥
Eνðβ̂⊥⊥

E ÞEuv́Eφv́: ð29Þ

We note a change in (29) from the previous formalism
in [15], in that we introduce factors of c⊥

A =32 and c⊥
E=8—

this just amounts to a rescaling of the Hamiltonian multi-
pliers5 Auv́ by some constants at the point of definition, and
will make things more convenient in Sec. III B. The PiC
functions are now

Aφv́ ≡ 1

J
Aπ̂v́ þ 2α̂0mp

2AP̌v́⊥k̄
k̄− 8ᾱ⊥⊥

A
AP̌v́jk

m̄λjk⊥m̄

− 4AP̌v́jk
lm
�
ᾱ⊥k
A λjklm þ 2α̂⊥k

A Rjk
lm

�
; ð30aÞ

Eφv́ ≡ 1

J
Eπ̂v́ − 4mp

2β̄⊥⊥
E

EP̌v́j
m̄λj⊥m̄

− 2mp
2EP̌v́j

lm
�
β̄⊥k
E λjlm þ 2β̂⊥k

E T j
lm

�
; ð30bÞ

so they generally acquire a dependency on the multiplier
fields. Note that we use the foliation measure J ≡ b=N.
Within the canonical Hamiltonian defined in (25), the
super-Hamiltonian in (26a) is modified beyond the formula
in [15] to

H⊥ ≡ J
64

X
A

c⊥
Aμðα̂⊥⊥

A ÞAφv́
Aφv́

þ J
16mp

X
E

c⊥
Eμðβ̂⊥⊥

E ÞEφv́
Eφv́ þ 1

2
α̂0mp

2R

− J
X
I

ðα̂IRij
kl þ ᾱIλ

ij
klÞIP̌ij

kl
nm

pqRnm
pq

− Jmp
2
X
M

ðβ̂MT i
kl þ β̄Mλ

i
klÞMP̂i

kl
n
pqT n

pq

− nkDαπk
α: ð31Þ

The remaining parts, the linear and rotational supermomenta
Eqs. (26b) and (26c) and the surface term Eq. (26d), are as
defined in [15]. Finally, the primary constraints

ϕij
kl ≡ϖij

kl ≈ 0; ϕi
kl ≡ϖi

kl ≈ 0; ð32Þ

i.e., the naturally defined multiplier momenta

ϖi
jk ≡ ∂bLG

∂ð∂0λijkÞ
; ϖij

kl ≡ ∂bLG

∂ð∂0λijklÞ
; ð33Þ

must be introduced because the Lagrangian (4) is indepen-
dent of the multiplier velocities _λijkl and _λikl.

B. Consistency of geometric primaries

We will now consider the application of the Dirac-
Bergmann algorithm on the general theory, and discover a
substantial departure from the simple teleparallel constraint
structure of (3). In what follows we will discuss the effects
of Riemann-Cartan and torsion multipliers concurrently;
while these sectors differ in certain numerical factors and
notation, the discussion is essentially the same up to some
placeholder results in the torsion sector. We first see that
there is a new pair of secondary constraints from (32),
χijkl ≡ _ϖij

kl ≈ 0 and χikl ≡ _ϖi
kl ≈ 0, which we find to be

equivalent toX
I

ᾱI
IP̂ij

kl
mn

pq
h
8bRnm

pq þ
X
A

c⊥
A

�
bμðα̂⊥⊥

A ÞAφŕ

þ νðα̂⊥⊥
A ÞAuŕ

�
np

AP̌ ŕ
nm

q̄

i
≈ 0; ð34aÞ

X
M

β̄M
MP̂i

kl
n
pq
h
4mp

2bT n
pq þ

X
E

c⊥
E

�
bμðβ̂⊥⊥

E ÞEφŕ

þ νðβ̂⊥⊥
E ÞEuŕ

�
np

EP̌ ŕ
n
q̄

i
≈ 0: ð34bÞ

These secondaries correspond to two statements in the
teleparallel theory, eliminating the Riemann-Cartan curva-
ture and a multiplier. In the general theory we obtain by
projections of Eqs. (34a) and (34b) multiple possible
statements, which can be written more compactly as 

ᾱkkA ᾱk⊥A
ᾱ⊥k
A ᾱ⊥⊥

A

! 
8bAP̌ ĺnm

pqRnm
pq

bμðα̂⊥⊥
A ÞAφĺ þ νðα̂⊥⊥

A ÞAuĺ

!
≈ 0; ð35aÞ

 
β̄kkE β̄k⊥E
β̄⊥k
E β̄⊥⊥

E

! 
4mp

2bEP̌ ĺn
pqT n

pq

bμðβ̂⊥⊥
E ÞEφĺ þ νðβ̂⊥⊥

E ÞEuĺ

!
≈ 0: ð35bÞ

We note from Eqs. (35a) and (35b) the counterpart in the
Hamiltonian picture of the linear systems first encountered
in Eqs. (19a) and (19b). For any of the sectors A and E,

5Care should be taken to distinguish between Hamiltonian and
geometric (i.e., Lagrangian) multipliers.
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we will next discuss the implications of these systems for
various fᾱIg and fβ̄Mg, and then in each subcase for
various fα̂Ig and fβ̂Mg.

1. Sector is not multiplier constrained

Sometimes we will have results such as

ᾱkkA ¼ ᾱ⊥⊥
A ¼ ᾱk⊥A ¼ ᾱ⊥k

A ¼ 0; ð36aÞ

β̄kkE ¼ β̄⊥⊥
E ¼ β̄k⊥E ¼ β̄⊥k

E ¼ 0; ð36bÞ
in which case we proceed normally, as we did in [15]—i.e.,
we follow the conventional if-constraint formalism set out
in [36,37].

2. Sector is multiplier constrained and nonsingular

More generally we will have

ᾱkkA ᾱ⊥⊥
A − ᾱk⊥A ᾱ⊥k

A ≠ 0; β̄kkE β̄⊥⊥
E − β̄k⊥E β̄⊥k

E ≠ 0 ð37Þ

but not Eqs. (36a) and (36b), in which case one or both of
the systems Eqs. (35a) and (35b) is only satisfied by a
vanishing vector. In this case the first vanishing component
of either system always gives us a secondary constraint

A
χkv́ ≡ AP̌v́nm

pqRnm
pq ≈ 0; ð38aÞ

E
χkv́ ≡mp

2EP̌v́n
pqT n

pq ≈ 0; ð38bÞ

independently of the fα̂Ig or fβ̂Mg. The parallel parts of the
field strengths can then be safely eliminated from the
corresponding PiC functions in Eqs. (30a) and (30b).
However, we recall that this PiC function is only a PiC
if νðα̂⊥⊥

A Þ ¼ 1 or νðβ̂⊥⊥
E Þ ¼ 1. In that case, the second

vanishing component does not give us a further secondary
constraint but instead determines a multiplier

Auv́ ≈ 0; Euv́ ≈ 0; ð39Þ

and so we see that the PiC associated with sector A or E
spontaneously becomes second class (SC). If on the other
hand we have νðα̂⊥⊥

A Þ ¼ 0 or νðβ̂⊥⊥
E Þ ¼ 0, then the vanish-

ing of the second component means that the PiC function
(with its field strength terms removed) becomes a further
secondary constraint,

Aχ⊥́v ≡ Aφv́ ≈ 0; Eχ⊥́v ≡ Eφv́ ≈ 0; ð40Þ
even though it was not primarily constrained by the fα̂Ig
or fβ̂Mg.
We are now in a position to confirm the action of the

Lorentz constraint in the Lagrangian picture. We see from
the Hamiltonian equation of motion that

_Aij
α ≡ ∂αAij

0 þ 2Al½j
0Al

i�
α þ NβRij

βα

þ 1

64

∂

∂πij
α

X
A

c⊥
A

�
bμðα̂⊥⊥

A ÞAφv́

þ 2νðα̂⊥⊥
A ÞAuv́

�
Aφv́; ð41aÞ

_biα ≡ ∂αbi0 þ bl0Ai
lα − Ai

j0bjα þ NβTi
βα

þ 1

16mp

∂

∂πi
α

X
E

c⊥
E

�
bμðβ̂⊥⊥

E ÞEφv́

þ 2νðβ̂⊥⊥
E ÞEuv́

�
Eφv́; ð41bÞ

and by rearranging this and projecting, we find a useful
general expression for the velocity parts of the Riemann-
Cartan and torsion tensors in terms of canonical quantities

16bAP̌v́ij
k̄Rij⊥k̄ ≡ bμðα̂⊥⊥

A ÞAφv́ þ νðα̂⊥⊥
A ÞAuv́; ð42aÞ

8bEP̌v́ij
k̄T i⊥k̄ ≡ bμðβ̂⊥⊥

E ÞEφv́ þ νðβ̂⊥⊥
E ÞEuv́: ð42bÞ

Recall that these velocities are not part of the constraint
algebra, and are usually found to be multipliers—we could
have used this expression for example in [15]. However it is
now clear from Eqs. (42a) and (42b) and from (39) and (40)
that when the sector A or E is multiplier constrained and
nonsingular, the velocity parts of the Riemann-Cartan or
torsion tensors in that sector will be vanishing, no matter
what is μðα̂⊥⊥

A Þ or μðβ̂⊥⊥
E Þ. In combination with the

canonical constraint Eqs. (38a) and (38b), this means that
the whole of the field strength tensor in the A or E sector
vanishes, which is precisely the effect in Eqs. (19a) and
(19b) of the multipliers in the Lagrangian picture.

3. Sector is multiplier constrained and singular

There is a special case where neither Eqs. (36a) and (36b)
nor (37) are true. When one of the matrices is singular in
this way, both consistency conditions for each A or E are
equivalent but nontrivial. Once again the outcome depends
on the fα̂Ig and fβ̂Mg. If νðα̂⊥⊥

A Þ ¼ 1 or νðβ̂⊥⊥
E Þ ¼ 1, then

the original PiC function is indeed a PiC and

Auv́ ≈ −
8ᾱ⊥k

A

ᾱ⊥⊥
A

bAP̌v́nm
pqRnm

pq; ð43aÞ

Euv́ ≈ −
4β̄⊥k

E

β̄⊥⊥
E

mp
2bEP̌v́n

pqT n
pq; ð43bÞ

so the PiC is again SC. In this case no new secondaries are
introduced. Otherwise if νðα̂⊥⊥

A Þ ¼ 0 or νðβ̂⊥⊥
E Þ ¼ 0, a new

secondary is introduced
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Aχ⊨v́ ≡ Aφv́ þ
8ᾱ⊥k

A α̂⊥⊥
A

ᾱ⊥⊥
A

AP̌v́jk
lmRjk

lm ≈ 0; ð44aÞ

Eχ⊨v́ ≡ Eφv́ þ
4β̄⊥k

E β̄⊥⊥
E

β̄⊥⊥
E

mp
2EP̌v́i

lmT j
lm

≈ 0: ð44bÞ

Now again it is necessary to check the constraints from the
Lagrangian picture. We see immediately from Eqs. (42a)
and (42b) that the only such relations are

ᾱkkA
AP̌v́nm

pqRnm
pq þ 2ᾱk⊥A

AP̌v́nm
q̄Rnm⊥q̄ ≈ 0; ð45aÞ

β̄kkE
EP̌v́n

pqT n
pq þ 2β̄k⊥E EP̌v́n

q̄T n⊥q̄ ≈ 0: ð45bÞ

Again, this is exactly what we expected for the singular
case of Eqs. (19a) and (19b).

C. Consistency of geometric secondaries

In the canonical analysis of our new general theory (4)
we observe that the gravitational gauge fields introduce
2 × ð16þ 24Þ canonical d.o.f., and likewise 2 × ð24þ 36Þ
d.o.f. are introduced by the geometric multipliers, for a
total of 200 canonical d.o.f. divided over 100 fields and
100 field momenta. Typically, 2 ×m d.o.f. will have been
introduced formally through m field d.o.f. allocated to
“unemployed” multiplier irreps [unemployed in the sense
of Eqs. (22a) and (22b)]. Their elimination from the final
counting is equally formal, since the corresponding
SOþð1; 3Þ irreps of their momenta [the primaries φij

kl

and φi
kl in (32)] will be first class (FC). The primarily

constrained momenta of “employed” irreps are not obvi-
ously FC, since they fail to commute with their own
secondaries as follows:n
ϕij

kl; Aχ⊥́v
o
≈
n
ϕij

kl; Aχ⊨v́
o

≈ 16
�
ᾱ⊥k
A

AP̌v́
ij
kl þ 2ᾱ⊥⊥

A n½kj
AP̌v́

ij
¯½l�
�
δ3;n

ϕi
kl; Eχ⊥́v

o
≈
n
ϕi

kl; Eχ⊨v́
o

≈ 4
�
β̄⊥k
E

EP̌v́
i
kl þ 2β̄⊥⊥

E n½kj
EP̌v́

i
¯½l�
�
δ3: ð46Þ

We note however that every JP contains two momentum
irreps, up to placeholder cases in the torsion sector, and
from these parts we see that the combinations

2c⊥
A ᾱ

⊥⊥
A

AP̌úij
klϖij

kl − ck
Aᾱ

⊥k
A

AP̌úij
l̄ϖij⊥l̄ ≈ 0; ð47aÞ

2c⊥
E β̄

⊥⊥
E

EP̌úi
klϖi

kl − ck
Eβ̄

⊥k
E

EP̌úi
l̄ϖi⊥l̄ ≈ 0; ð47bÞ

commute with Aχ⊥́v and Aχ⊨v́ or Eχ⊥́v and Eχ⊨v́ , and are in fact
FC. We will not attempt here a general theory of the
remaining consistency conditions. For such a theory, the

effects of the fᾱIg, fβ̄Mg must in some sense be “multi-
plied” by those of the fα̂Ig, fβ̂Mg, and the interactions are
not obvious. For our purposes therefore, the consistencies
of the remaining constraints must be obtained on a case-by-
case basis.
We also recall that we must always subtract 2 × 10 d.o.f.

due to the “sure-”primary first-class (sPFCs), and in the
nonlinear theory we tentatively assume all the 2 × 10
sSFCs will be independent and must also be removed.
We show separately in Appendices C and D how the sSFCs
may be reduced or become degenerate in the linearized
theory if the Einstein-Hilbert term is absent.
Independently of their utility, the new commutators tend

to suffer from an old challenge (noticed for example in [36])
as follows. While the parallel field strengths do express the
fields conjugate to the field momenta, they also contain
spatial gradients of those fields. Within the formal defi-
nition of the Poisson bracket, this can lead to gradients
of the equal-time Dirac function, and an apparent loss of
explicit covariance for the more complex expressions. In
Appendix E we clarify such situations by constructing a
general and covariant expression for the Poisson bracket,
which then takes the form of a differential operator.

IV. MINIMAL SPIN-PARITY 1+ THEORY

Having introduced both the Lagrangian and Hamiltonian
formulations of geometric multipliers, we now provide a
brief illustration of how they might be used to combat the
strong coupling problem in PGT. We use for our example
the first of the “disallowed” PGTs from [24], the 1þ theory
which builds on the groundwork laid by Sezgin and van
Nieuwenhuizen [39]. This theory is reached by imposing
on (4) the conditions

α̂1 ¼ α̂2 ¼ α̂3 ¼ α̂4 ¼ α̂6 ¼ β̂1 ¼ β̂2;

¼ ᾱ1 ¼ ᾱ2 ¼ ᾱ3 ¼ ᾱ4 ¼ ᾱ5 ¼ ᾱ6;

¼ β̄1 ¼ β̄2 ¼ β̄3 ¼ 0: ð48Þ

Note that the multiplier couplings, which are new in this
work, must all be disabled. We provide in Appendix D our
attempt at the Hamiltonian analysis of this conventional
theory. Our findings corroborate those in [24], viz given
certain assumptions (e.g., the validity of breaking consis-
tency conditions over different JP pairs), a total of eight
d.o.f. seem to be propagating in the nonlinear theory. The
extra three d.o.f. are assumed to be a strongly coupled 1−

particle, since the PiC function φ
⇀

ī is never constrained.
How to suppress the 1− mode? By an examination of

(B2) and (48)—relations that are obeyed equally by the

fα̂Ig—we see that by setting α̂5 ¼ 0 we can fix φ
⇀

ī ≈ 0 and

so constrain the momentum π̂
⇀

ī. However by doing so we
will also fix bφ⊥ij ≈ 0, and so deactivate the 1þ mode with
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which we started. We would prefer not to modify the
Sezgin–van Nieuwenhuizen conditions at all, and so we
instead try to introduce geometric multipliers.

The natural multiplier approach will be to constrain π̂
⇀

ī
with ᾱ4 ≠ 0. In fact, this route turns out to become
complicated due to the appearance of a singular secondary,
and collateral effects in the 0þ and 2þ sectors. In general,
we feel that rotational multipliers will be more dangerous
than translational ones, so long as the main part of the
gravitational force is sequestered in the curvature—we
discuss this idea further in the context of some new
computer algebra tools in [27]. Rather than attempting

to constrain π̂
⇀

ī, we might think to target the conjugate field.
By inspecting (48) and (B2), it would seem that β̄2 ≠ 0 is a
possible option. Once again we expect this to impact the 1−

sector, since β̂2 ¼ 0, while collateral damage seems to be
confined to the 0þ translational sector. On closer inspec-
tion, however, we notice from (B5h) that the condition
β̄2 ≠ 0 is not actually deactivating the bad sector: it is
relating velocities and gradients within the torsion. Despite
this, we find it useful to proceed with the analysis. The
“collateral” 0þ sector is nonconjugate in that the 0þ spin
state is represented only in the velocity-dependent or
nonphysical components of the torsion, and not in the
canonical part T i

kl
. For this reason, there will be no parallel

secondary to worry about, which makes for a less complex
analysis. Moreover, and regardless of the unitarity of the
model, we believe the β̄2 ≠ 0 configuration to amply
demonstrate how multipliers might be used to modify
the linear-to-nonlinear transition.
The PiCs of the new theory are

φ≡ 1

J
π̂ þ 2mp

2β̄2ζ⊥ ≈ 0; ð49aÞ

φ⊥ī ≡ 1

J
π̂⊥ī þ

2

3
mp

2β̄2
�
ζ
⇀

ī þ ζ⊥ī⊥
�
≈ 0; ð49bÞ

φ̃ij ≡ 1

J
˜̂πij ≈ 0; ð49cÞ

φ⊥ ≡ 1

J
π̂⊥ þ 3mp

2α̂0 ≈ 0; ð49dÞ

Pφ≡ 1

J
Pπ̂ ≈ 0; ð49eÞ

φ̃⊥ij ≡ 1

J
˜̂π⊥ij ≈ 0; ð49fÞ

Tφijk ≡
1

J
Tπ̂ijk ≈ 0; ð49gÞ

where Eqs. (49a) and (49b) go over to their original
counterparts in the theory without multipliers by taking

β̄2 → 0, and there is an extra pair of primaries stemming
from (32)

ϕ
⇀

ī ≡ϖ
⇀

ī þϖ⊥ ≈ ϕ⊥ ≡ϖ⊥ ≈ 0: ð50Þ

Note that we are using the “variable-index” notation in
Appendix A.
Conveniently, we note that the nonlinear Poisson brack-

ets between the translational and rotational (i.e., nongeo-
metric) primaries are the same even in the β̄2 → 0 limit. We
provide these commutators in Eqs. (D1a)–(D1i).

A. The new super-Hamiltonian

For the purpose of evaluating velocities, it is important to
understand the new super-Hamiltonian described in (31).
By imposing the conditions (48) and restricting to the PiC
shell in Eqs. (49a)–(49g) among the quadratic terms (which
can always be done by redefining the Hamiltonian multi-
pliers), we obtain

H⊥ ≈
ηij π̂

⇀

ī π̂
⇀

j̄

16α̂5J
þ ηikηjlb̂π⊥ij

b̂π⊥kl

8α̂5J
þ 3ηikηjlb̂πijb̂πkl

16β̂3J
þ α̂0mp

2JR

2

−
ηij π̂

⇀

īR⊥j̄

2
þ ηikηjlb̂π⊥ijR½kl� þ

β̂3mp
2JPT 2

6

−
2β̄2mp

2jηij ζ
⇀

īT
⇀

j̄

3
−
2β̄2mp

2jηijζ⊥ī⊥T
⇀

j̄

3

þ ηikηjlb̂πijT⇀⊥kl

2
þ 16β̂3mp

2JηikηjlηmnTT ijm
TT kln

27

− nkDαπk
α ≈ 0: ð51Þ

We see in (51) the origin of the ghost nature of the
strongly coupled 1− sector. If the sign of α̂5 is fixed to cause
the 1þ momentum b̂π⊥ij to enter with positive energy, then
the same cannot apply to the quadratic term built from the

parity-odd 1− momentum π̂
⇀

ī. Hence, the strong coupling of
the 1− mode introduces a nonlinear ghost. We now proceed
to the Dirac-Bergmann algorithm.

B. Consistency of geometric primaries

In what follows we will use flinðx; y;…ju; v;…Þ to
indicate a function linear in x, y and its other (arbitrarily
indexed) arguments, with coefficients depending on ni, ηij,
ϵijk⊥, and J—i.e., quantities persisting in the linearized
theory—along withmp and any of the couplings in (4). The
arguments u, v, etc., will be nonlinear corrections to those
coefficients (if any). Note that wherever we use flin, we are
also asserting implicitly that these coefficients may be
straightforwardly determined, though the calculation may
be lengthy.
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Beginning with the 0þ sector, the consistency of ϕ⊥
concerns only the bracket

fϕ⊥;φg ≈ −6β̄2mp
2δ3; ð52Þ

and is satisfied when we fix the multiplier

u ≈ 0; ð53Þ

irrespective of whether we consider the linearized or
nonlinear theories.

In the 1− sector, the consistency of ϕ
⇀

ī involves the
bracket

n
ϕ
⇀

ī;φ⊥l̄

o
≈ flinð1j·Þδ3; ð54Þ

and is satisfied when we fix, with reference to (43b), the
multiplier

u⊥ī ≈ flinðT īj·Þ: ð55Þ

All the geometric primaries are then consistent with the
determined multipliers in Eqs. (53) and (55).

C. Consistency of rotational primaries

Having dealt with the geometric primaries, we now return
to the part of the analysis familiar from [24] and
Appendix D: the consistency of the primaries of gravitational
gauge fields in Eqs. (49a)–(49g). We begin again with the
conjugate part of the rotational sector. The consistency of the
0þ part φ⊥ involves the brackets (D1a) and (D1c). Noting
the conjugate commutator (D1a), we remember that this was
previously used to determine u♭ in the linearized theory.6

This time around, the geometric primaries have gotten there
first (by our choice of ordering). Despite the conjugacy of the
0þ PiC, we are thus forced to admit a SiC

χ⊥ ≡ flin

�Z
d3xNfφ⊥;H⊥g; u⊥ī · π̂

⇀

j̄

���·� ≈ 0: ð56Þ

The notation (·) in the first set of arguments in (56) denotes
one or more suitably indexed and symmetrized products
(in the second set of arguments, it indicates that there are no
corrections to consider). Without immediately evaluating
this, we move on to the conjugate 2þ sector. This is a
somewhat more familiar setup, in which the only brackets
are Eqs. (D1e) and (D1h). We may then use this setup to
solve for the conjugate multiplier

ũij ≈ flin

�Z
d3xNfφ̃⊥ij;H⊥g; u⊥ī · π̂

⇀

j̄

���b̂π⊥ij

�
; ð57Þ

thereby ensuring the consistency of φ̃⊥ij, regardless of
whether the theory is linearized or not.
The parity-odd rotational sectors are not conjugate.

In (D1d) we encounter yet another strictly nonlinear
commutator with the translational 1− sector, and since
u⊥ī was solved in (55) we must emulate the technique of
the linearized theory and again construct a SiC

Pχ ≡ flin

�Z
d3xNfPφ;H⊥g; u⊥j̄ · b̂π⊥pq

���·� ≈ 0; ð58Þ

whose evaluation we again defer. The same situation
applies for the 2− sector: from Eqs. (D1f) and (D1i),
and noticing that the geometric multipliers already allowed
us to solve ũij in (57), we must construct

Tχijk≡flin

�Z
d3xNfTφijk;H⊥g;u⊥ī · b̂π⊥jk; ũij · π̂

⇀

k̄

���·�≈ 0:

ð59Þ

So far we have fixed the consistencies of all the usual
rotational primaries in ways that do not qualitatively
change as we move from the linear to nonlinear theories.
We have tried to use mostly the same technique as for the
linearized theory without geometric multipliers: that of
playing off sectors with the same JP against each other.

D. Consistency of rotational secondaries

We must not, however, forget the secondaries in
Eqs. (56), (58), and (59), which are not yet consistent.
In the case of the 0− and 2− sectors, we can tentatively
assume that the situation is the same as for the linearized
theory without multipliers: the natural conjugates of these
secondaries will be their own primaries, allowing us to
obtain

Pu ≈ flin

�Z
d3xNfPχ;H⊥g;…j…

�
; ð60aÞ

Tuijk ≈ flin

�Z
d3xNfTχijk;H⊥g;…j…

�
; ð60bÞ

where we allow some space to parametrize our ignorance of
any other commutators that may arise. Thus, while we
expect to be able to construct Eqs. (60a) and (60b) in the
full nonlinear theory, we do not expect them to explicitly
determine Pu and Tuijk, due to emergent dependencies on
yet-undetermined multipliers.
What about the novel 0þ secondary? The linearized

theory without multipliers does not suggest to us the
commutators of χ⊥, so to discover these we must obtain

6Recall from [15,16,24] that the symbol (♭) is used to denote
linearization.
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an explicit formula from (56). We defer the full expression
to Sec. IV F, but for the moment we notice that only theR
d3xNfφ⊥;H⊥g term will contribute in the linearized

theory to χ♭⊥. Specifically, if we focus on the nonquadratic
part in (31), and refer to the PiC shell condition in (49a)
we have

fφ⊥;−nkDαπk
αg ≈

h
2α̂0mp

2Dl̄n
l þ 1

2J
ηijηklb̂π⊥ikT ⊥jl

− 2β̄2mp
2ζ⊥
i
δ3 þ δ3ηij π̂

⇀

īDj̄; ð61Þ

where we use the Dirac function gradient in Appendix E.
On this basis it would then appear that fχ♭⊥;ϕ♭⊥g ≉ 0.
This should also apply in the nonlinear theory, so we can
follow Eqs. (60a) and (60b) in writing

v⊥ ≈ flin

�Z
d3xNfχ⊥;H⊥g;…j…

�
: ð62Þ

At least for the linearized case, it would seem that the
consistencies of all the secondaries raised by the rotational
sector are exactly absorbed by previously undetermined
Hamiltonain multipliers: the algorithm in the this sector is
then terminated.

E. Consistency of translational primaries

Moving over to the translational primaries, we find that
we can absorb all their consistency conditions exactly
by determining the conjugate rotational or translational-
geometric Hamiltonian multipliers. Referring first to
Eqs. (53) and (D1a), then to Eqs. (D1g)–(D1i), we write

u⊥ ≈ flin

�Z
d3xNfφ;H⊥g; v⊥

���·�; ð63aÞ

ũ⊥ij ≈ flin

�Z
d3xNfφ̃ij;H⊥g; ũij · b̂πkl; Tuijk · π̂⇀l̄

���π̂⊥ij

�
:

ð63bÞ

As before, these solutions are still available as we extend to
the nonlinear theory, however they do rely on the continued
success of Eqs. (60b) and (62) for an explicit solution.
Finally we tackle the problematic 1− sector, the only
constraint whose consistency is not yet established.
Noticing that Eqs. (D1b)–(D1f) are all nonlinear commu-
tators, it seems advantageous that the only linear commu-
tator (54) allows us to solve for the remaining Hamiltonian
multiplier

v
⇀

ī ≈ flin

�Z
d3xNfφ⊥ī;H⊥g; u⊥ī · b̂πjk; u⊥ · π̂

⇀

j̄;

Pu · b̂π⊥ij; ũ⊥ij · π̂
⇀

k̄;
Tuijk ·

b̂π⊥lm

���·�: ð64Þ

This, too, is expected to hold for the nonlinear theory,
but it does rely on explicit solutions from the system
Eqs. (60a), (60b), and (62). All the translational consist-
encies are absorbed by Hamiltonian multipliers. No con-
straints remain, and the Dirac-Bergmann algorithm is
terminated.

F. Nonlinear prospects

In summary, we have obtained all Hamiltonian multi-
pliers. All the primaries are SC, and we propose to
construct three sets of SC secondaries in ξ⊥, Pξ, and Tχijk.
Wherever possible in the calculations above, we have

ensured that Hamiltonian multipliers do not need to be
solved simultaneously, the rhs of Eqs. (53), (55), (57),
(63a), (63b), and (64) each depending in turn on predeter-
mined quantities. This convenient pattern could be broken
within Eqs. (60a), (60b), and (62), which are not explicitly
obtained, and which we tentatively assume (referring back
to the traditional case [24]) not to be a singular system in
the Hamiltonian multipliers.
Accordingly, some changes to the order and structure of

these solutions are expected as we pass from the linearized
to the nonlinear theory. To see this, we use (51) to
determine the nonlinear 0þ SiC as follows:

χ⊥ ≈ −2β̄2mp
2ζ⊥ − ηijDī

�
π̂
⇀

j̄

J

�
−
nlηijDī

b̂π⊥jl
J

−
ηik π̂

⇀

īT
⇀

k̄

2J
þ ηikηjlb̂π⊥ijT ⊥kl

J
þ 3ηikηjlb̂π⊥ij

b̂πkl
8β̂3mp

2J

þ flinðu; u⊥ī · π̂
⇀

j̄

���·Þ ≈ 0; ð65Þ

where we do not need to obtain the precise coupling of
the two Hamiltonian multipliers that are tangled up in the
quantity. We see that the guess in (61) is borne out, so that
fχ♭⊥;ϕ♭⊥g ≉ 0 can be obtained from (53). However this
is not the only commutator, as we readily find for the
nonlinear case

lim
u;u⊥ī→0

fφ̃⊥ij; χ⊥g ≈
3ηklb̂π⊥hījk̄b̂π⊥l̄jj̄i
8β̂3mp

2J3
: ð66Þ

The result in (66) suggests that Eqs. (62) and (63b) will
become codependent, scrambling the order of the linear
solution method. The general system is expected to be more
complicated.
In order to calculate the d.o.f., we work with our picture

of the linearized theory and assume [by the example of the
original PGT in (2)], that the sSFCs in (28) always remain
in the final reckoning both FC and independent as geo-
metric multipliers are introduced. This postulate could be
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tested by investigating the constraint algebra [5]. In that
case we obtain7

8 ¼ 1

2
ð80þ 2 × ð3þ 1Þ½β̄2 −multipliers�

− 2 × 10½sPFC� − 2 × 10½sSFC�
− ð1þ 3þ 5þ 1þ 1þ 5þ 5þ 3þ 1Þ½iPSC�
− ð1þ 1þ 5Þ½iSSC�Þ: ð67Þ

It would seem that six d.o.f. are now moving independently
of the graviton: this structure is shown in Fig. 1.
In case of a breakdown of the linear solution, as warned

about above, we use the very general method of Yo and
Nester [24] when checking the nonlinear d.o.f. We also
assume the properties of the sSFCs to be preserved. The
evaluation of u and u⊥ī ought to remain safe at all orders.
Generically, the consistencies of the rotational primaries
φ⊥, Pφ, φ̃⊥ij, and

Tφijk should determine ũij and “overflow”
into seven SiCs χ½7�. The consistencies of φ̃ij and χ½7�
together with φ and φ⊥ī collectively determine u⊥, Pu, ũ⊥ij,
Tuijk, and also v

⇀
ī and v⊥. The situation may involve cross-

talk between JP sectors, but it seems to retain the eight
d.o.f. in (67) as we move away from the torsion-free,
Minkowski background.

V. CLOSING REMARKS

In this paper we have extended the original PGT in (2) by
introducing in (4) a complete set of geometric multiplier
fields, which deactivate various parts of the Riemann-
Cartan curvature and the torsion. Teleparallel gravity is a
special case of this extension. A chronic problem with the
original PGT is the appearance of nonlinear commutators
between primary constraints: these cause a departure from
the linearized constraint structure which is manifest as
a strong coupling problem. This problem is especially
severe in purely quadratic theories (which can exhibit
otherwise viable phenomenology without any Einstein-
Hilbert term [10,14–16]) since the removal of the Einstein-
Hilbert term leads to sparse commutators at linear order.
We have examined the effects of geometric multipliers

on the canonical analysis. New primary and secondary
constraints are produced, which typically fail to commute
with the original primaries at linear order. Heuristically, the
efficacy of this mechanism will be connected to the fact that
the new fields in (4) are multipliers: propagating d.o.f.
would tend to increase with any new kinetic terms, off-
setting any benefits.
We experimented with this approach on a nonviable

example of the PGT, in which the Einstein-Cartan term is
joined by quadratic torsion and curvature invariants so as
to introduce a unitary, massive spin-parity (JP) 1þ torsion
vector in the linearized particle spectrum. That theory was
known to contain a strongly coupled 1− ghost in its
nonlinear completion. We imposed a minimal geometric
multiplier, which affects the bad sector so as to equate the
velocities and gradients within the 1− part of the torsion
tensor.
The modified particle spectrum in our example is not

likely to be healthy before or after linearization. Rather than
a transition from five to eight d.o.f., we seem always to
have eight. Even if the assumptions made during the
evaluation are justified, we provide no reason to be
optimistic about the resulting unitarity. It is not surprising

FIG. 1. The constraint algebra of the theory defined by (48)
with β̄2 ≠ 0, as it appears in its simplest form on the constraint
shell. All Hamiltonian multipliers uJ

P

b , uJ
P

A , and υJ
P

ζ are eventually
determined in Eqs. (53), (55), (57), (60a), (60b), and (62)–(64) by
satisfying the consistency conditions of the primary constraints
φJP
b and φJP

A in Eqs. (49a)–(49g) and ϕJP
ζ in (50) (lines colored by

JP) via abundant order-unity Poisson brackets (yellow squares).
For ease of notation in this figure alone, we label the JP explicitly
and drop the combination of Lorentz indices and accents used in
the body of text. Perturbative brackets (red squares) do not reduce
the number of induced constraints χJ

P

A , which would otherwise
indicate strong coupling. Some brackets were not computed for
this work (gray squares). Subtracting the

P
J 2J þ 1 constrained

multiplicities leaves six extra degrees of freedom.

7Using basically the same labeling scheme in [15,16,24],
where if constraints iP(S)F(S)C are primary (secondary) first
(second) class.
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that it is hard to use geometric multipliers to repair
preexisting theories. By so changing the linear constraint
structure, unwanted modes may be activated and the
unitarity destroyed. Such also was the case in [16] for
the purely quadratic theory developed in [10,14]: those
same multipliers that do not interfere with the viable
cosmology or gravitational waves of the original theory
were shown to induce classical ghosts on the flat, torsion-
free background. In that case the situation was not so
critical, since the relevant cosmological background of that
theory is thought instead to contain a constant, finite torsion
condensate.
Notwithstanding the possible ghost and tachyon content

of our example particle spectrum, the analysis shows
that multiplier configurations may offer a novel route to
softening the nonlinear transition in non-Riemannian
theories and so combat strong coupling. Solving for
unitarity without strong coupling represents a major under-
taking [35,40,41]. In the companion paper [27] we present
computer algebra tools for performing the requisite canoni-
cal analysis at scale.
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APPENDIX A: IRREDUCIBLE
DECOMPOSITION

In this appendix, we detail the notation used in
[15,16,27] for the SO(3) irreps of various quantities. The
translational parallel momentum decomposes as

π̂kl̄ ¼ π̂kl þ nkπ̂⊥l̄; ðA1aÞ

π̂kl ¼
1

3
ηklπ̂ þ b̂πkl þ ˜̂πkl; ðA1bÞ

where in (A1a) there is a 1− irrep, and a term that further
decomposes in (A1b) to give 0þ, antisymmetric 1þ, and
symmetric (but traceless) 2þ irreps. Similarly, the rotational
parallel momentum is

π̂klm̄ ¼ π̂klm þ 2n½kπ̂⊥l̄�m̄; ðA2aÞ

π̂⊥kl ¼
1

3
ηklπ̂⊥ þ b̂π⊥kl þ ˜̂π⊥kl; ðA2bÞ

π̂klm ¼ 1

6
ϵklm⊥ þ Pπ̂ þ π̂

⇀

½k̄ηl̄�m̄ þ 4

3
Tπ̂klm; ðA2cÞ

with 0þ, 1þ, and 2þ modes in (A2b), and 0−, 1−, and 2−

modes in (A2c).
The field strengths are decomposed into parallel and

perpendicular parts

Rijkl ¼ Rijkl þ 2n½kjRij⊥jl̄�; ðA3aÞ

T ikl ¼ T ikl þ 2n½kjT i⊥jl̄�: ðA3bÞ

The parallel Rijkl contains the 0
þ part R, 1þ part R½ij�, 2

þ

part Rhiji, 0
− part PR⊥∘, 1− part R⊥ī, and 2− part TR⊥ijk.

The (h·i) notation indicates the symmetric-traceless oper-
ation. The perpendicular Rij⊥l̄ contains the 0þ part R⊥⊥,
1þ partR⊥½ij�⊥, 2þ partR⊥hiji⊥, 0− part PR∘⊥, 1− partRī⊥,
and 2− part TRijk⊥.
The parallel T ikl contains the 0

− part PT , 1þ part T ⊥ij,

1− part T
⇀

ī, and 2− part TT ijk. The perpendicular T i⊥l̄

contains the 0þ part T ⊥, 1þ part T ½ij�⊥, 1− part T ⊥ī⊥, and
2þ part T hiji⊥.
Our conventions for the SO(3) irreps of other quantities

whose Lorentz indices have the same structure are to
recycle the various expressions above, replacing only the
symbols π̂, R, T , etc.

APPENDIX B: THE TRANSFER COUPLINGS

We provide in this appendix translations of the transfer
couplings from Eq. (11) into the formalisms set out in [15].
The first half of the transfer couplings in (11) are found
to be

ᾱkk
0þ ≡ 1

2
ðᾱ4 þ ᾱ6Þ; ᾱkk0− ≡ 1

2
ðᾱ2 þ ᾱ3Þ;

ᾱkk
1þ ≡ −

1

2
ðᾱ2 þ ᾱ5Þ; ᾱkk1− ≡ 1

2
ðᾱ4 þ ᾱ5Þ;

ᾱkk
2þ ≡ 1

2
ðᾱ1 þ ᾱ4Þ; ᾱkk2− ≡ 1

2
ðᾱ1 þ ᾱ2Þ;

ᾱ⊥k
0þ ≡ −

1

4
ðᾱ4 − ᾱ6Þ; ᾱ⊥k

0− ≡ 1

2
ðᾱ2 − ᾱ3Þ;

ᾱ⊥k
1þ ≡ −

1

2
ðᾱ2 − ᾱ5Þ; ᾱ⊥k

1− ≡ 1

2
ðᾱ4 − ᾱ5Þ;

ᾱ⊥k
2þ ≡ 1

2
ðᾱ1 − ᾱ4Þ; ᾱ⊥k

2− ≡ −
1

2
ðᾱ1 − ᾱ2Þ; ðB1Þ
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and the remaining couplings are mostly found using the

rules ᾱ⊥⊥
A ≡ 1

2
ᾱkkA and ᾱk⊥A ≡ 1

2
ᾱ⊥k
A , with the three excep-

tions ᾱ⊥⊥
1þ ≡ − 1

2
ᾱkk
1þ , ᾱ

k⊥
1þ ≡ − 1

2
ᾱ⊥k
1þ , and ᾱ⊥k

0þ ≡ 1
2
ᾱk⊥
0þ , and

these quirks just result from the “human” normalization
of the SO(3) representations. It goes without saying that a
precisely equivalent formulation can be constructed for the
couplings fα̂Ig. The translational transfer couplings are

β̄kk
0þ ≡ 0; β̄kk0− ≡ 1

6
β̄3;

β̄kk
1þ ≡ 1

3
ð2β̄1 þ β̄3Þ; β̄kk1− ≡ 1

3
ðβ̄1 þ 2β̄2Þ;

β̄kk
2þ ≡ 0; β̄kk2− ≡ β̄1;

β̄⊥k
0þ ≡ 0; β̄⊥k

0− ≡ 0;

β̄⊥k
1þ ≡ −

1

3
ðβ̄1 − β̄3Þ; β̄⊥k

1− ≡ −
1

3
ðβ̄1 − β̄2Þ;

β̄⊥k
2þ ≡ 0; β̄⊥k

2− ≡ 0;

β̄⊥⊥
0þ ≡ 1

2
β̄2; β̄⊥⊥

0− ≡ 0;

β̄⊥⊥
1þ ≡ 1

6
ðβ̄1 þ 2β̄3Þ; β̄⊥⊥

1− ≡ 1

6
ð2β̄1 þ β̄2Þ;

β̄⊥⊥
2þ ≡ 1

2
β̄1; β̄⊥⊥

2− ≡ 0; ðB2Þ

where we find β̄⊥k
E ≡ β̄k⊥E . We can thus summarize some

important relations for nonvanishing transfer couplings as

ᾱkkA
ᾱ⊥⊥
A

≡ ᾱ⊥k
A

ᾱk⊥A
≡ α̂kkA

α̂⊥⊥
A

≡ α̂⊥k
A

α̂k⊥A
¼ 2;

β̄⊥k
E

β̄k⊥E
≡ β̂⊥k

E

β̂k⊥E
¼ 1; ðB3Þ

with two sets of exceptions in the rotational sector

ᾱkk
1þ

ᾱ⊥⊥
1þ

≡ ᾱ⊥k
1þ

ᾱk⊥
1þ

≡ α̂kk
1þ

α̂⊥⊥
1þ

≡ α̂⊥k
1þ

α̂k⊥
1þ

¼ −2;

ᾱkk
0þ

ᾱ⊥⊥
0þ

≡ ᾱk⊥
0þ

ᾱ⊥k
0þ

≡ α̂kk
0þ

α̂⊥⊥
0þ

≡ α̂k⊥
0þ

α̂⊥k
0þ

¼ 2: ðB4Þ

The resulting effect of the multipliers in the Lagrangian
picture Eqs. (19a) and (19b) translates to

ᾱ1 ≠ 0⇒Rhiji þR⊥hiji⊥ ≈ TR⊥ijk −
TRijk⊥ ≈ 0; ðB5aÞ

ᾱ2 ≠ 0 ⇒ PR⊥∘ þ PR∘⊥ ≈ R½ij� −R⊥½ij�⊥
≈ TR⊥ijk þ TRijk⊥ ≈ 0; ðB5bÞ

ᾱ3 ≠ 0 ⇒ PR⊥∘ − PR∘⊥ ≈ 0; ðB5cÞ

ᾱ4 ≠ 0 ⇒ R − 2R⊥⊥ ≈ R⊥ī þRī⊥
≈ Rhiji −R⊥hiji⊥ ≈ 0; ðB5dÞ

ᾱ5 ≠ 0 ⇒ R½ij� þR⊥½ij�⊥ ≈ R⊥ī −Rī⊥ ≈ 0; ðB5eÞ

ᾱ6 ≠ 0 ⇒ Rþ 2R⊥⊥ ≈ 0 ðB5fÞ

β̄1 ≠ 0 ⇒ T ⊥ij − T ½ij�⊥ ≈ T
⇀

ī − 2T ⊥ī⊥
≈ TT ijk ≈ T hiji⊥ ≈ 0; ðB5gÞ

β̄2 ≠ 0 ⇒ T
⇀

ī þ T ⊥ī⊥ ≈ T k̄
k̄⊥ ≈ 0; ðB5hÞ

β̄3 ≠ 0 ⇒ T ⊥ij þ 2T ½ij�⊥ ≈ PT ≈ 0: ðB5iÞ

APPENDIX C: LINEARIZATION OF SURE
PRIMARY FIRST-CLASS CONSTRAINTS

In this appendix we will consider the safety of including
the linearized sSFCs in the final d.o.f. count. We recall that
the Poincaré gauge symmetry implies the existence of
10 sSFCs, labeled H⊥, Hα, Hij, and H⊥ī. However we
frequently found in [15] that some of these quantities were
missing when linearized on the PiC shell. An sSFC may
clearly vanish if it is an arbitrary linear combination of
iPFCs (PiCs that are FC in the final analysis), consistent
with its FC property; how then to interpret an sSFC
that happens to be an arbitrary linear combination of
“if-”secondary second-class (iSSCs)?
This problem is resolved when we see that Eqs. (26a)–

(26d) are incomplete formulas for the sSFCs when
“if-”primary second-class (iPSCs) (PiCs that are SC in
the final analysis) are present in the theory. Let the super-
Hamiltonian be, to lowest perturbative order, a linear
combination of the only two iPSCs that appear in a given
theory

H♭⊥ ≡ cAúAφ♭
ú þ cEúEφ♭

ú ≈ 0; ðC1Þ

and note that the only nonvanishing commutator between
PiCs fAφ♭

ú; Eφ♭
úg will be of order unity. The total

Hamiltonian will take the form

HT ≡ NH♭⊥ þ Au♭úAφ♭
ú þ Eu♭úEφ♭

ú þ � � � ;
≡ NH̄♭⊥ þ � � � ; ðC2Þ

where the ellipses in (C2) include the remaining sSFCs,
iPFCs and surface terms, and all higher-order terms. The
modified super-Hamiltonian is formed by solving for the
PiC multipliers, and we have
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H̄♭⊥ ≡H♭⊥ − ðfEφ♭; Aφ♭g−1Þv́úfEφ♭ú;H♭⊥gAφ♭
v́

þ ðA ↔ EÞ ≈ 0: ðC3Þ

The quantity defined in (C3) is the linearization of the
complete sure secondary, and is FC by construction.
Moreover, we can see by substituting from (C1) that even
this complete quantity will vanish, with or without refer-
ence to the PiC shell. The argument can be generalized to
arbitrarily many iPSCs, and to the remaining sSFCs.

APPENDIX D: TRADITIONAL, LINEARIZED
SIMPLE SPIN 1+ CASE

It is useful to analyze the Hamiltonian structure of the 1þ
case without multipliers, as it was originally considered
in [24]. Our findings will also be corroborated by the
HiGGS computer algebra software in [27]. We note that the
defining conditions in (48) are consistent with curvature-
free constraints: the PiCs depend only on the momenta. The
nonlinear commutators of this theory are

fφ;φ⊥g ≈ −
6α̂0
J

mp
2δ3; ðD1aÞ

fφ⊥ī;φ⊥īg ≈
2

J2
b̂πilδ3; ðD1bÞ

fφ⊥ī;φ⊥g ≈ −
1

J2
π̂
⇀

īδ
3; ðD1cÞ

fφ⊥ī;
Pφg ≈ −

2

J2
ηlpηmqϵilm⊥b̂π⊥pqδ

3; ðD1dÞ

fφ⊥ī; φ̃⊥lmg ≈
1

2J2
ηīhl̄ π̂

⇀

m̄iδ3; ðD1eÞ

fφ⊥ī;
Tφlmng ≈

1

2J2

�
ηin
b̂π⊥lm þ ηī½mb̂π⊥n̄�l̄ þ

3

2
ηn̄½m̄b̂π⊥l̄�ī

�
δ3;

ðD1fÞ

fφ̃ij; φ̃lmg ≈ −
2

J2
ηðījðl̄b̂πm̄Þjj̄Þδ3; ðD1gÞ

fφ̃ij; φ̃⊥lmg ≈
�
α̂0mp

2

J
ηiðlηmÞj þ

1

J2
ηhijhlb̂π⊥m̄ijj̄i

�
δ3;

ðD1hÞ

fφ̃ij;
Tφlmng ≈ −

1

J2
TP̌lmn

pqrηr̄hīηj̄ip̄ π̂
⇀

q̄δ
3: ðD1iÞ

On the PiC shell, the linearized sSFCs of the minimal
theory are

H♭⊥ ≈
1

2
α̂0mp

2JR♭ ≈ 0; ðD2Þ

H♭
ī ≈ −η♭jkD♭

j̄
b̂π ♭

ik − α̂0mp
2JR♭⊥ī ≈ 0; ðD3Þ

H♭
ij
≈D♭½ī π̂

⇀
♭
j̄� þ 2b̂π ♭

ij − α̂0mp
2JT ♭

⊥ij
≈ 0; ðD4Þ

H♭⊥ī ≈ η♭jkD♭
j̄
b̂π ♭⊥ik − α̂0mp

2J♭T
⇀

♭
ī ≈ 0: ðD5Þ

The Einstein-Hilbert term contributes independent parts
of the Riemann-Cartan and torsion tensors to each irrep
equation, thus subtracting 2 × 10 canonical d.o.f. even at
the linear level.
Some of the commutators in Eqs. (D1a)–(D1i) also

survive at the linear level, so we do not have to worry
about the consistency conditions of φ♭, φ̃♭

kl, φ⊥♭, and
φ̃♭⊥kl. The consistencies of φ♭⊥k̄ and Pφ♭ suggest the
following secondaries on the combined shell of PiCs and
sSFCs

χ♭⊥ī ≈−
2

J♭
η♭jkD♭

j
b̂π ♭

ik −
α̂0mp

2

5α̂5J♭
π̂
⇀

♭
ī þ α̂0mp

2R♭⊥ī;

≈ 0; ðD6aÞ

fχ♭⊥ī;φ
♭⊥l̄g ≈ −

α̂0
2mp

2

2α̂5J♭
η♭ilδ

3; ðD6bÞ

Pχ♭ ≈ −
2

J♭
ϵ♭ijk⊥D♭

j
b̂π ♭⊥jk − ðα̂0 − 8β̂3Þmp

2PT ♭

≈ 0; ðD6cÞ

fPχ♭; Pφ♭g ≈ −
24mp

2ðα̂0 − 8β̂3Þ
J♭

δ3; ðD6dÞ

where these SiCs are SC at Oð1Þ, since they fail to
commute with the PiCs that invoke them. This is to be
expected from the theory of conjugate pairs [36]. We will
not obtain the secondary Tχ♭klm deriving from Tφ♭

klm, since
the square of the tensor part projection entails calculations,
which are difficult on paper; however we note that these
quantities should also form a conjugate SC pair.
In the final counting therefore, all the PiCs and SiCs are

SC, and the linearized theory propagates a total of five d.o.f.

5 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × 10½sSFC�

− ð1þ 3þ 5þ 1þ 1þ 5þ 5Þ½iPSC�
− ð3þ 1þ 5Þ½iSSC�Þ: ðD7Þ

These d.o.f. are interpreted as the massless graviton and a
massive vector mode, so that the findings of [24] are
confirmed. As discussed in Sec. IV and shown explicitly in
[24], consideration of the nonlinear commutators brings
this count to eight d.o.f.
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APPENDIX E: THE SURFICIAL
COMMUTATOR

An ostensibly limiting factor in previous Hamiltonian
analyses of the PGT [23,24,36] is the dependence of
various commutators on the spatial gradient of the equal-
time Dirac function. The coefficients of such gradients are
generally gauge dependent, while standard texts [5,44] do
not (to our knowledge) provide a prescription for their
covariant interpretation (see, however, excellent discus-
sions of special cases in electrodynamics [45] and non-
critical string theory [46]). In this appendix we provide the
covariant extension to the “Poisson bracket formula,”
which eliminates these gradients through the use of surface

terms. The resulting expression is more costly to evaluate
than the original by a factor of only several, allowing us to
proceed farther into the theory.
Our starting point is the realization that the Poisson

bracket is ultimately motivated by the time derivative
operator. We consider the time derivative of the covariant
quantity Aú, which is assumed to depend canonically on a
collection of (matter or gravitational) fields fϕẃg and their
conjugate momenta fπẃg, along with their first covariant
derivatives fDμϕ

ẃg and fDμπẃg. The total Hamiltonian is
assumed to contain a term bilinear in two further covariant
quantities HT ⊃ Bv́Cv́, and so a simple algebra reveals that
the velocity _Aú contains terms of the form

_Aúðx1Þ ⊃
Z

d3x2fAúðx1Þ;Bv́ðx2ÞgCv́ðx2Þ≡
" 

δ̄Aú

δ̄ϕẃ ·
δ̄Bv́

δ̄πẃ
−
δ̄Aú

δ̄πẃ
·
δ̄Bv́

δ̄ϕẃ

!
Cv́ þDα

" 
∂Aú

∂Dαϕ
ẃ ·

δ̄Bv́

δ̄πẃ
−

∂Aú

∂Dαπẃ
·
δ̄Bv́

δ̄ϕẃ

!
Cv́
#

þ
 

∂Bv́

∂Dαϕ
ẃ ·

δ̄Aú

δ̄πẃ
−

∂Bv́

∂Dαπẃ
·
δ̄Aú

δ̄ϕẃ

!
DαCv́ −Dα

" 
∂Aú

∂Dαϕ
ẃ ·

∂Bv́

∂Dβπẃ
−

∂Aú

∂Dαπẃ
·

∂Bv́

∂Dβϕ
ẃ

!
DβCv́

##�����
x1

; ðE1Þ

where the dot product sums over field species and we
construct a derivative which naturally extends the varia-
tional derivative on a scalar Lagrangian to tensors of
arbitrary rank

δ̄Aú

δ̄ϕẃ ≡ ∂Aú

∂ϕẃ
−Dα

 
∂Aú

∂Dαϕ
ẃ

!
: ðE2Þ

In (E2) the notation ∂=∂ϕẃ indicates that Dαϕ
ẃ is held

constant when evaluating the partial derivative [5]. It is only
expressions such as (E1) that must be covariant, and the
operations ∂=∂ϕẃ, ∂=∂Dαϕ

ẃ, δ̄=δ̄ϕẃ, and their momentum
counterparts all support that property. Therefore, we find it
most natural to express the Poisson bracket as the kernel
that reproduces (E1). In general, this kernel takes the form
of the second-order covariant differential operator

fAúðx1Þ;Bv́ðx2Þg≡
"
∂Aú

∂ϕẃ
·
δ̄Bv́

δ̄πẃ
−
∂Aú

∂πẃ
·
δ̄Bv́

δ̄ϕẃ þ ∂Aú

∂Dαϕ
ẃ ·Dα

 
δ̄Bv́

δ̄πẃ

!
−

∂Aú

∂Dαπẃ
·Dα

 
δ̄Bv́

δ̄ϕẃ

!#
δ3 þ

"
∂Aú

∂Dαπẃ
·
δ̄Bv́

δ̄ϕẃ −
∂Aú

∂Dαϕ
ẃ

·
δ̄Bv́

δ̄πẃ
þ ∂Aú

∂πẃ
·

∂Bv́

∂Dαϕ
ẃ −

∂Aú

∂ϕẃ
·

∂Bv́

∂Dαπẃ
þ ∂Aú

∂Dβπẃ
·Dβ

 
∂Bv́

∂Dαϕ
ẃ

!
−

∂Aú

∂Dβϕ
ẃ ·Dβ

 
∂Bv́

∂Dαπẃ

!#
δ3Dα

þ
 

∂Aú

∂Dαϕ
ẃ ·

∂Bv́

∂Dβπẃ
−

∂Aú

∂Dαπẃ
·

∂Bv́

∂Dβϕ
ẃ

!
δ3DαDβ: ðE3Þ

This concludes our discussion of the surficial commutator for the first-order Euler-Lagrange formalism.
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